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Abstract14

Satellite altimeters are the most common source of wave measurement in phenomenal15

sea states, with significant wave heights exceeding 14 m. Unfortunately their data is still16

considered with skepticism, because there is usually no other data to verify the accuracy17

of the largest values. Here we investigate the self-consistency of the measurement, and18

their small scale variability, in order to define an estimate of satellite altimeter precision.19

Using numerical simulations of ocean surfaces and the processing involved in satellite re-20

tracking, we find that wave groups are responsible for a variance in estimated altime-21

ter wave heights that is proportional to the square of the spectral peakedness parame-22

ter and the significant wave height. Additional variance induced by speckle noise is pro-23

portional to the wave height. The effect of wave groups generally dominates in the most24

severe storms. This variability requires a relatively large scale smoothing or filtering to25

yield accurate wave height estimates. For example, the largest ever reported 1-second26

average significant wave height from altimeters sampled by Jason-2 in the North Atlantic27

in 2011, at Hs = 20.1 m, is now interpreted to correspond to a true wave height Hs =28

18.5± 0.3 m. The difference between 20.1 m and 18.5 m is mostly due to wave group29

contributions to the raw measurement. We argue that wave group effects should not be30

included in the definition of the significant wave height, just like the maximum wave height31

differs from the significant wave height.32

Plain Language Summary33

Over most of the past 30 years, satellite altimeters have been the only means to34

measure wave properties in the most severe ocean storms. How do we know that these35

data are trustworthy, and how can we define uncertainties? Here we show that as a satel-36

lite flies along its orbit, it reports wave height that fluctuate because of the random na-37

ture of the wave field that can be organized in groups at the scale of a few kilometers.38

We are able to simulate the precision of the measurements, as a function of the wave height39

and the degree of organization of the wave field, measured by a ”spectral peakedness”40

parameter. This novel understanding can be used to define the precision of the measure-41

ments. For example, as far as we know, the largest reported value for a 1 second aver-42

aged satellite measurement of the significant wave height was Hs = 20.1 m in a 201143

North Atlantic Storm, with no precision given. We can now re-interpret this data as ev-44

idence of a true significant wave height Hs = 18.5 ± 0.3 m. The local fluctuations up45

to 20 m are caused by wave groups and should not be counted in the significant wave46

height.47

Keywords: Wave groups, altimetry, storm48

1 Introduction49

Satellite altimeters have been used over the past 30 years to measure sea level (Cazenave50

et al., 2018) and sea states (Ardhuin, Stopa, et al., 2019). These measurements are based51

on the estimated distances between a radar and the scattering elements at the sea sur-52

face, with a ‘local average’ related to the sea level and a ‘local standard deviation’ re-53

lated to the significant wave height. This separation was understood well enough for most54

applications, but new instruments able to resolve shorter and shorter scales make it more55

important to clarify how the multi-scale ocean surface elevations and velocities contribute56

to the parameters estimated from altimeter data. In particular we explore the link be-57

tween the underlying significant wave height, the ‘local standard deviation’ of the sur-58

face elevation and the altimeter measurements.59

Our goal in this paper is to build a model for the small scale fluctuations in wave60

height estimates, given below by eqs. (22)– (23). We apply this model to propose an un-61

certainty for altimeter measurements of large significant wave heights (Hs > 8 m) for62
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which too few validation data exist (Dodet et al., 2020). Understanding these fluctua-63

tions is also relevant in the context of recent efforts to improve instruments and data pro-64

cessing techniques to provide the highest possible resolution, in particular for coastal ar-65

eas (Vignudelli et al., 2018; Passaro et al., 2021). The variability of sea level and Hs es-66

timates is generally well understood at scales larger than 30 km, where geostrophic cur-67

rents and their effect on wave heights dominate (Morrow & Le Traon, 2012; Ardhuin et68

al., 2017). Extending this understanding toward high resolution requires a detailed anal-69

ysis of the measurement system. The present paper extends the previous analysis by De Carlo70

et al. (2023), hereinafter DC23, with a particular emphasis on the correlation proper-71

ties of the measured data.72

The fundamental measurement of an altimeter is the power received from sea echoes73

as a function of delay time t, known as the waveform (Brown, 1977). In practice the time74

separation is not perfect and some blurring in time is caused by the finite frequency band-75

width of the radar, so that the measured waveform is a convolution of the true waveform76

and the instrument point target response (PTR). Example of waveforms from the China-77

France Ocean Satellite (CFOSAT) are shown in Fig. 1. They correspond to the same av-78

erage significant wave height, around 9.3 m, but very different sea states, as quantified79

by their spectral peakedness Qkk, a parameter defined below, with a young wind sea on80

the left and a mature swell on the right. The method used to estimate sea level and wave81

height uses the fit of a theoretical waveform shape to the measured waveform. That the-82

oretical shape is also, but not only, a function of sea level and wave height.83

A well known source of deviations from the theoretical shape is the purely instru-84

mental effect of ‘speckle noise’ which comes from Rayleigh fading: this noise is present85

when the propagation paths between the radar and individual scattering elements at the86

ocean surface have lengths that spread over a range much larger than the radar wave-87

length (Quartly et al., 2001). In both panels of Fig. 1, speckle noise explains the fluc-88

tuations for range gates indices larger than 110: on average, for half of the range gates89

one waveform (out of 50) should exceed the upper dashed line and one should fall be-90

low the lower dashed line.91

Another well known source of deviations from the theoretical waveform is the ef-92

fect of ocean backscatter variability within the radar footprint, which is very important93

for wind speeds under 3 m/s (Dibarboure et al., 2014), and in the presence of sea ice (Tourain94

et al., 2021). Both speckle noise and backscatter variability have been cited as the pos-95

sible source of noise in the estimation of wave height and sea level, and Sandwell and Smith96

(2005) have explained the resulting correlation of these two retracked parameters. The97

observed correlation can be used empirically to reduce the noise in sea level estimates98

(Zaron & DeCarvalho, 2016; Quartly et al., 2019).99

Here we find correlations of along-track variations of parameters, shown in Fig. 2,100

that are consistent with previous studies, but with much larger relative fluctuations of101

both wave height and sea level estimates. We will show that this magnitude is specific102

to sea states with large wavelengths and narrow spectra, an effect that can uniquely ex-103

plain why the waveforms in the two panels of Fig. 1 differ so much for range gate indices104

85 to 100. In fact, a much less researched source of deviations between measured wave-105

forms and parametric models, is the non-uniform statistical distribution of the elevation106

of sea surface scatterers at the scale of the ”instrument footprint” (to be precisely de-107

fined below). The first study of that effect was published by DC23, with the main re-108

sults summarized at the beginning of section 2. The waveforms in Fig. 1.a are consis-109

tent with the assumption of uniform wave heights across the footprint that was used to110

derive parametric theoretical waveforms, whereas in Fig. 1.b the waveforms are more dif-111

ferent from the theoretical shape, which is typical of non-uniform conditions. Fitting these112

different waveforms with the theoretical shape gives wild variations of the wave height113

estimate Ĥs, shown in Fig. 2.a, that may not be realistic, and even wilder variations of114

the sea level anomaly in Fig. 2.b, with differences up to 1.8 m for measurements only 19 km115
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Figure 1. Two groups of 50 consecutive CFOSAT/SWIM nadir waveforms spanning 11 sec-

onds each (i.e. a distance of 75 km along-track), individual waveforms are color-coded with

the estimated wave height Ĥs. Both groups were acquired along the same descending orbit in

the North Atlantic on February 14th 2020 around 9:10 UTC, on the edges of storm Dennis (a)

around 61.5◦ N and (b) around 44.5◦ N. These are the echo L1A variable, already corrected for

the antenna pattern, and normalized by the estimated Level 2 Normalized Radar Cross Section.

The white line represents the average waveform. The horizontal dashed lines represent the 98%

confidence interval expected for random fluctuations due to speckle, assuming that 264 indepen-

dent radar pulses are averaged for each range gate.
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Figure 2. Estimates of the (a) epoch and (b) wave heights for the 50 waveforms of Fig. 1.b,

using two different cost functions: ”LS” is a least squares 2-parameter fit to the theoretical

waveform given by eq. (A17) with a = b = ξ = 0, γ = 1 and ”ML” is a maximum likelihood

2-parameter fit to the same theoretical waveform. The ”native” data is shown for reference and is

the operational method as described in Tourain et al. (2021). The good agreement of the ”ML”

retracking with the ”native” data requires to ignore the first range gates using kmin ≃ 80, or

adapting kmin such that S(kmin) > rmin max(S), with rmin ≃ 0.06.

apart. This sharp gradient in that region of the ocean (middle of the North Atlantic Ocean)116

is clearly not realistic and can be a spurious effect of the violated elevation uniformity117

assumption.118
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In section 2 we provide a basis for the understanding of perturbation of altimeter119

measurement associated to wave groups. This extends the approach of DC23 to more120

realistic representation of altimeter waveforms. Section 3 builds the uncertainty model,121

starting from the uncertainty of individual measurements and, after defining the rele-122

vant along-track correlation scales, defining an uncertainty for along-track averages. These123

effects are illustrated using simulated waveforms for the sea state conditions with strong124

wave groups corresponding to Fig. 1.b. The contribution of wave groups is a simple func-125

tion of Hs, Qkk, and instrument parameters. The same method can be applied to sea126

level fluctuations. This theoretical model is verified in section 4 using simulated wave-127

forms corresponding to all combinations of Hs and Qkk that may be found in the global128

ocean. This model is then applied to the estimation of Hs uncertainty from a sequence129

of Ĥs estimates obtained from individual waveforms. Summary and conclusions follow130

in section 5.131

2 Waveforms and their retracking over wave height gradients132

Here we extend the work of DC23 who neglected the Earth sphericity, assumed a133

broad antenna pattern and neglected effects of the PTR and of speckle noise. We relax134

these assumptions and investigate the influence of the choice of the cost function. We135

provide analytical derivations of the forward model (a generalized parametric waveform)136

with details in Appendix A. We emphasize that this parametric waveform was not de-137

signed for retracking, but rather to guide the interpretation of existing datasets that are138

the results of retracking with the usual Brown waveform. Indeed the inverse modelling139

(the retracking) could be done analytically in the case of DC23. For the generalized wave-140

form the analytical retracking may not be feasible but for cost functions based on least-141

squares the retracked wave height and sea level can still be expressed as functions of anoma-142

lies of the wave height field.143

2.1 Footprints144

The ”radar footprint” is the region of the ocean that produces backscatter from145

a radar single pulse, and depends on the antenna aperture, satellite altitude h and Earth146

radius RE . In the case of the nadir beam on SWIM, this is typically a disc of radius 9.5 km147

centered on the nadir, where we have defined the footprint boundary as the location where148

the backscattered power drops to half the peak power at nadir. There are notable ex-149

ceptions with strongly reflecting surfaces at high elevations above sea level (land or ice-150

bergs) that may corrupt the measurements even if they are further than 9.5 km from nadir.151

When we exclude these exceptional cases, the measurements are mostly sensitive to an152

area much smaller than the radar footprint. For those altimeters that only measure power153

as a function of time delay, Chelton et al. (1989) have argued that the estimates Ĥs for154

wave height and ẑe for sea level are associated to the true physical values of the signif-155

icant wave height Hs and sea level ze within an ”oceanographic footprint” which they156

defined to be a disc of radius157

ρC =
√
2h(Hs + δR)/(1 + h/RE), (1)158

where the range resolution δR = c/(2B) is defined by the radar bandwidth B and the159

speed of light c. So far, all altimeters that use a Ku-band frequency have used B = 320 MHz160

giving δR = 0.47 m so that the minimum radius ρC , corresponding to the lowest sea161

states, is of the order of 1 km. For a very large sea state with Hs = 9 m and the rel-162

atively low orbit height of 519 km of CFOSAT, one gets ρC = 3.1 km.163

However, that estimate turns out to be very conservative. Data from the SWIM164

instrument on CFOSAT occasionally shows meaningful variations in Ĥs between con-165

secutive measurements separated by only 1.7 km, for example over coral reefs (Alice Dal-166

phinet, personal communication). In Fig. 2 these variations of Ĥs are as large as 3 m167
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and may be caused wave groups. So what is the effective diameter of the footprint of a168

satellite altimeter?169

2.2 The wave group effect and DC23 results170

Non-uniform wave heights occur even in homogeneous sea states represented by a171

single wave spectrum, due to the interference of wave trains with different frequencies172

and directions. This interference produces series of high waves known as wave groups173

(Arhan & Ezraty, 1978). We will therefore call this particular non-homogeneity the ”wave174

group effect”. It is present for all sea states, albeit with different magnitudes. The most175

simple form of wave groups is shown in Fig. 3 with the sum of two monochromatic wave176

trains, of wavenumbers k1 and k2 forming a beating pattern. It is obvious that waveforms177

obtained at times t1 and t2 are different: at t1 the first echoes correspond to the distance178

h − a whereas at t2 the first echoes arrive later and correspond almost to h. As a re-179

sult, the corresponding wave height estimates Ĥs differ by a factor 10, even though the180

sea state is ”spatially homogeneous”, in the sense that the corresponding wave spectrum181

and associated parameters, including the underlying significant wave height Hs, are con-182

stant.
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Figure 3. (a) Geometry of the measurement in the simplified case of a flat mean sea surface,

and in the presence of wave groups giving a significant wave height Hs = 2a. (b) Corresponding

waveforms with the x-axis showing the range distance from the satellite. In (a) the wave height is

exaggerated and the satellite height is reduced by the same factor giving the correct Chelton ra-

dius ρC ≃
√
2hHs defined as the distance from nadir where the mean sea surface is at a distance

h+Hs from the satellite.

183

It is common to study the properties of wave groups by introducing the wave en-184

velope (Rice, 1944; Tayfun & Lo, 1989), which defines a local wave amplitude η from the185

surface elevation ζ, as represented in Fig. 3. In the bi-chromatic case of Fig. 3, the en-186

velope varies at scales given by the wavenumber K = |k1−k2|. A realistic sea state is187

the sum of many monochromatic components with a range of wavenumber vectors k. An188

important result is that the envelope contains all the spatial scales larger than the scale189

of dominant wave group, i.e. with all the wavenumbers K = k± k′, including K = 0.190

Namely, whereas the elevation associated with a given sea state (outside of long swells191

or very severe storms) may not contain any wavelengths longer than say 400 m, the en-192

velope of that same sea state does vary at all scales, including tens of kilometers.193

From the envelope η, obtained from the analytical form of the surface elevation (see194

DC23 for details), we defined a local wave height195

Hl = 4
√
2/π × η, (2)196
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with a scaling a little different from Janssen (2014) so that the large-scale average of Hl197

is the usual significant wave height defined from the average of the surface elevation vari-198

ance ⟨Hl⟩ = Hs = 4
√
⟨ζ2⟩. More specifically, the Power Spectral Density (PSD) of199

the envelope, and thus the PSD of the local wave height Hl, is proportional to the con-200

volution of the double-sided wave spectrum E(kx, ky) by itself (Tayfun & Lo, 1989). In201

particular, for a Gaussian wave spectrum, the envelope spectrum is also a Gaussian, but202

centered on K = 0, as detailed in DC23.203

When concerned about fluctuations of the wave height Hl filtered at scales much204

larger than the dominant wave groups, one can approximate the PSD of Hl as a constant,205

and obtain the variance of Hl as the value of the Hl PSD at K = 0 times the spectral206

integral of the filter response ∆2
k. DC23 showed that this gives the following variance207

associated to wave groups208

varwg(Hl) = (4− π)H2
sQ

2
kk∆

2
k, (3)209

where they have defined the spectral peakedness as210

Q2
kk =

∫∫
R2 E

2(kx, ky)dkxdky(∫∫
R2 E(kx, ky)dkxdky

)2 . (4)211

The link between these properties and altimeter data was made explicit by DC23 who212

showed that the output of the simplest 2-parameter (wave height and sea level) altime-213

ter retracker can be expressed analytically as a spatial filter of the Hl field.214

More precisely they shown that the magnitude of Ĥs fluctuations is consistent with215

smoothing the Hl field with a two-dimensional Gaussian filter of parameter σ ≃ ρC/4.5.216

Furthermore, in their Annex A, they introduced an ideally perturbed waveform, and an-217

alytically calculated the impact of the perturbation on a 2-parameter least-square fit with218

a non-perturbed waveform.219

In that work the authors neglected the Earth sphericity, assumed a broad antenna220

pattern and neglected effects of the PTR and of speckle noise. Moreover, they only con-221

sidered a very simple altimeter retracker.222

Here we extend the work of DC23 by relaxing these assumptions and investigat-223

ing the influence of the choice of the cost function for retracking. To do so, in section 2.3224

we define the different retracking cost functions we will be using and in section 2.4 we225

extend the DC23 perturbation theory to more realistic waveforms. In section 2.5, this226

will lead to new functions representing the impact of these perturbation on retracked pa-227

rameters. And the generalization of the spatial filtering of Hl is shown in section 2.6.228

2.3 Definitions of retracking cost functions229

In the following, we will fit the measured or simulated waveform (yk) with a para-230

metric form (sk), for all range gate indices k between kmin and kmax. One possibility is231

to use a least square cost function232

CLS =

kmax∑
k=kmin

w(k)(yk − sk)
2 (5)233

with the default weights w set to 1 for all k. This is used in the very common so-called234

”3- or 4-parameters Maximum Likelihood Estimator” (MLE3/MLE4). In the present con-235

text a better name for these would be LS3 and LS4, with the 3 fitted parameters being236

Ĥs, ẑe, and the normalized radar cross section σ̂0, and the fourth power is generally the237

antenna mispointing angle (Schlembach et al., 2020).238

We may also use a maximum likelihood (ML) fit, first introduced by Rodriguez (1988)239

and particularly developed for the ERS-1 altimeter by Challenor and Srokosz (1989). ML240
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is the optimal method for a uniform sea state with fluctuations in the waveforms dom-241

inated by speckle noise. In the limit of a large number of looks it takes the following form,242

CML =

kmax∑
k=kmin

yk + ε

sk + ε
− log

(
yk + ε

sk + ε

)
, (6)243

where we have introduced ε = 10−5 to reduce the influence of numerical errors. We also244

define kmin to be the highest index such that245

S(kmin) > rmin max(yk). (7)246

The ML-type cost function is used in the ”adaptative” method used to produce the ”na-247

tive” CFOSAT data (Tourain et al., 2021), but it is not clear which are the actual range248

gates used in practice. Although we initially used rmin = 0, we found a generally good249

agreement with the native CFOSAT data when using rmin = 0.06. In the example on250

Fig. 5.B,D, using rmin = 0.06 corresponds to fitting only the part of the waveform that251

is above the horizontal dashed line. More details on the sensitivity of results to the value252

of rmin are given in Appendix C. An intermediate cost function is used in the WHALES253

retracker (Schlembach et al., 2020)? It is a weighted least squares with much larger weights254

w(k) for the early part of the waveform, defined by the inverse of the standard devia-255

tion of waveform residuals caused by speckle noise for the same wave height.256

Taking the waveforms of Fig. 1.b as an example, LS-based retracking has less vari-257

ability than the ML-based result, their mean values differ by 27 cm, and both retrack-258

ers give a strong correlation between epoch and Hs anomalies, shown in Fig. 2.b. Us-259

ing simulated sea surfaces and altimeter waveforms (see details in Appendix B for the260

simulation method), we will show in section 4 that this example is actually representa-261

tive of large sea states with narrow wave spectra. In these cases speckle noise is a less262

important source of waveform deviations than the wave group effect, and ML-based re-263

trackers are not optimal.264

2.4 Wave height gradient effect on waveforms: beyond DC23265

Following DC23, we start by deriving an analytical perturbed waveform in the pres-266

ence of an unrealistic localized anomaly in surface elevation. This is detailed in Appendix267

A. Our anomaly consists of a change in significant wave height Hs, defined as 4 times268

the standard deviation of the surface elevation, from a background value Hs to an anoma-269

lous value Hs(1+∆) over an area A0 centered at the distance from nadir ρ0. Both the270

normal and anomalous sea levels are taken to be Gaussian distributed. The distance from271

nadir ρ0 correspond to a distance h+R0 from the altimeter at the mean sea level. The272

wave height anomaly can be localized or distributed over a ring, as shown in Fig. 4. More273

realistically, the anomaly is the ring-average of the true local wave heights Hl for the dis-274

tance ρ0. After dealing with the kind of anomalies represented in Fig. 4, we will consider275

the superposition of all the distributions at all the distances from nadir. Those anoma-276

lies can be caused by wave groups but also by many other processes (wave breaking over277

a coral reef, dissipation over a mud bank, wave-current interactions ...). We define the278

equivalent footprint area Ae = πhHs(1+h/RE)/2, and find that the local wave height279

anomaly adds a perturbation to the usual waveforms, as given by eq. (A10) and (A17).280

The two adimensional parameters that define magnitude and location of the perturba-281

tion are282

a = ∆
2A0

πhHs/(1 + h/RE)
= ∆

A0

Aeq
(8)283

b =
R0

Hs
=

ρ20
2hHs(1 + h/RE)

≃ (ρ0/ρC)
2
. (9)284

One example of this theoretical perturbed waveforms is shown in Fig. 5 for a =285

0.3 and b = 0, compared to the unperturbed Brown waveform plotted with a dashed286
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Figure 4. Schematic of idealized sea surface anomalies located at a given distance ρ0. This

distribution is obviously impossible to obtain with real waves: a real wave field will have a

smoothly varying distribution of Hl as a function of ρ.

line, and different attempts at fitting it with a Brown waveform. Taking into account
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Figure 5. Example of theoretical perturbed waveforms based on eq. (A17) for Hs = 10 m,

τ = 0, ξ = 0, Nt = 0.001, a = 0.3 and b = 0 and its comparison to unperturbed waveforms with

a = 0. The x axis is the delay time normalized by σs = 2Hs/c. Left panels (A,B) are obtained in

the limit of very broad antenna pattern, and (C,D) correspond to the real SWIM antenna pattern

with θ3dB = 1.6◦. The bottom panels (B,D) correspond to the same waveforms but plotted with a

logarithmic y axis, and the shaded area is ignored in the ML fit using rmin = 0.06. All waveforms

use the PTR given by eq. (A16).

287

–9–



manuscript submitted to JGR: Oceans

the full complexity of the waveform (right panels) does not change the qualitative im-288

pact on the simplest possible waveforms (left panels) used in DC23. In our example per-289

turbation, a > 0 means that the wave heights are locally higher, which tends to shift290

some of the echoes to shorter and larger ranges: the black curve is higher than the dashed291

curve for |t− τ | ≃ 2σs.292

We have plotted the waveforms using both linear (top panels) and logarithmic (bot-293

tom panels) coordinates to illustrate the fact that the Maximum Likelihood cost func-294

tion uses ratios instead of differences and gives a better fit in logarithmic coordinates.295

When b = 0, our perturbed waveform is identical to the waveform for a uniform296

but non-Gaussian skewed surface elevation distribution, with skewness parameter λ3,0,0 =297

6a (Hayne, 1980; Srokosz, 1986). Although a = 0.3 is a fairly large but not impossi-298

ble wave group effect, it would correspond to an impossibly large λ = 1.8. Hence the299

wave group effect can be locally much larger than the skewness effect. We note that the300

spurious perturbations on the sea level estimate ẑe is a ’tracker bias’ (not a true phys-301

ical effect) since the model waveforms correspond to a zero sea level and we do not take302

into account non-uniform scattering along the surface (the electro-magnetic bias). How-303

ever, when averaging waveforms along the altimeter track, skewness persists but the wave304

group effect should vanish because a, the amplitude of wave group effects, is symmet-305

rically distributed around zero. Consequences for retracking with generalized waveforms306

are discussed in Appendix D.307

2.5 Influence of idealized wave field anomalies on retracked parameters308

Our wave field anomaly of amplitude a and location b gave us the perturbation to309

the waveform that in turn produces a perturbation of the retracked parameters: the es-310

timates of wave height Ĥs and sea level ẑe. Using the analytical form of the perturbed311

waveform (obtained in the limit of a broad antenna pattern, i.e. using v = 0 in eq. (A10),312

and ignoring the PTR), DC23 have computed the cost function CLS analytically, replac-313

ing the discrete sum by an integral over all ranges from minus infinity to plus infinity.314

Taking its derivative with respect to Ĥs and ẑe, they found that the cost function is min-315

imum for these values of the retracked parameters316

Ĥs = Hs +
aHs

2
JH(b), (10)317

ẑe = −cτ̂/2 = −aHs

16
Jz(b), (11)318

with b = ρ20/ρ
2
C = ρ20/(2hHs) and319

JH(b) = 2b
(
6− 16b2

)
e−4b2 , (12)320

Jz(b) =
(
2− 16b2

)
e−4b2 . (13)321

The perturbation caused by the wave anomaly on the retracked parameter is proportional322

to aHs and, a function of the off-nadir distance ρ0 which we normalize as b. Further in-323

terpretation of JH is given in section 2.3. In simple terms, the large values of JH(b) for324

b up to 0.30 are the main driver of the along-track correlation scale, as will be explained325

below. The analytical perturbations in eqs. (10)–(11) are typically accurate within 10%326

for LS retracking and a < 0.2, with some examples given in Table 1, showing that it327

is in fact fairly robust up to a = 0.3.328

For more realistic waveforms or different cost functions such as ML or MMSE, there329

are no simple analytical solution. One can still analyze the perturbations of the retracked330

parameters and interpret the results by computing the following functions331

ĴH(b) = 2(Ĥs −Hs)/a, (14)332

Ĵz(b) = 16(cτ̂/2)/(aHs), (15)333
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Table 1. Fitted parameters (in meters), Ĥs and epoch converted to distance, for the

(a = 0.3, b = 0) waveform shown in Fig. 5.A,B, and a few other examples, using three differ-

ent cost functions: the Least Square of eq. (5) and two versions of the Maximum Likelihood of

eq. (6), with rmin = 0 or rmin = 0.06.

LS fit eq. (10) eq. (11) ML fit ML, rmin = 0.06

(a, b) Ĥs ẑe Ĥs ẑe Ĥs ẑe Ĥs ẑe

(0.00, 0.00) 10.0 0.00 10.0 0.0 10.0 0.00 10.0 0.00
(0.30, 0.00) 9.5 0.42 10.0 0.38 13.5 0.29 14.9 0.79
(-0.03, 0.00) 10.0 -0.04 10.0 -0.04 8.9 -0.25 9.6 -0.08
(0.30, 0.25) 12.8 0.22 12.9 0.14 10.1 -0.33 11.7 0.05
(-0.30, 0.25) 7.1 -0.12 7.1 -0.14 9.4 0.23 8.10 - 0.05

with results shown in Fig. 6. These results demonstrate that the analytical derivation334

in DC23 does not exactly correspond to realistic waveforms, but it is qualitatively cor-335

rect. The numerical estimates of the wave height perturbation ĴH and sea level pertur-336

bation Ĵz were obtained for a = 0.1, progressively relaxing the different simplifying as-337

sumptions on the waveform: considering the instrument PTR, using a finite radar beam338

width. We also tested different cost function options: Least Squares (LS), and Maximum339

Likelihood (ML) with rmin = 0 and rmin = 0.06, and the MMSE of the WHALES re-340

tracker using the actual weights used for retracking Jason-2 in the Seastate CCI dataset.341

We note that relaxing the assumptions on the PTR has no visible effect when using LS342

fitting, and using the real radar beam width θ3dB = 1.6◦ instead of v = 0 also has a343

limited impact, especially for significant wave heights lower than the 10 m used here (not344

shown).345

The ĴH and Ĵz functions obtained with ML are very different from those obtained346

with LS: they are both maximum and larger for perturbations near nadir (b=0), which347

explains the stronger correlation between epoch and wave height anomalies when using348

ML fitting, as shown in Fig. 2.c. As discussed above, the ML cost function introduces349

a very strong sensitivity to the early part of the waveform, and hence to near-nadir per-350

turbations (b < 0.15): the estimated Ĥs can be corrupted by a very small area with351

very large waves. We have thus introduced the rmin parameter as defined above in sec-352

tion 2.3. Even with this adjustment, the ML-estimated Ĥs is a non-linear function of the353

perturbation amplitude a, as shown with the dotted line in Fig. 6, obtained with a neg-354

ative wave height anomaly. Finally the WHALES retracker gives results close to ML re-355

tracking but are linear: the ĴH and Ĵz are independent of the amplitude a.356

2.6 Generalization to any wave field and Hl pattern357

The analysis of localized wave height anomalies generalizes to any combination of358

anomalies when using LS fitting, because the retracked values are linear combinations359

of the perturbations for each anomaly. DC23 demonstrated that a good estimate of the360

retracked values Ĥs can be obtained directly by filtering the map of local wave heights361

Hl using the functions JH , without performing any retracking.362

In the rest of this section, we have taken the most simple waveforms, as done in363

DC23, generated from the same surface used in that paper and in the next section. Fig. 7364

shows details of the surface and corresponding waveform simulations with a nadir po-365

sition at (x = 11.7, y = 43.2). This is the location where LS retracking gives the high-366

est value of Ĥs. From the surface elevation in Fig. 7.(a) to the waveforms in Fig. 7.(f),367

the altimeter processing can be approximated with the following steps. First we may ig-368
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Jz^
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WHALES - J2, Hs=10 m
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Figure 6. Influence of a local wave height anomalies as given by eqs. (8)-(9) when retracking

with a waveform that uses a = b = 0, for (a) wave height (b) epoch as a function of the per-

turbation distance from nadir defined by the parameter b. All results were obtained for a = 0.1,

except for the last curve with a = −0.02. The analytic expression are given by eqs. (12) and

(13) and are independent of a. The numerical evaluations are given by eqs. (14) and (15) and

were obtained for different waveforms, with a broad (v(t) = 0 in in eq. (A10)) or realistic beam,

with or without PTR, with either LS or ML fitting. For realistic beams, the waveform power is

also fitted, with very little influence on the adjustment of Ĥs and τ̂ . For the WHALES retracker

the weights in the least-square cost function are the weights used for Jason-2 retracking in the

SeaState CCI-V3 dataset, for a wave height of 10 m.

nore the phases and only consider local wave heights Hl shown in (b), then we filter us-369

ing the JH(b) filter in (c) to produce amplified anomalies in (d) that can be averaged for370

each normalized radius b into a value Hb(b), as shown in (e), before summing the con-371

tributions for all radii to provide the local estimate 10.8 m. The local retracked value372

is Ĥs = 12.2 m and both are significantly larger than the true wave height Hs = 9.3 m.373

This large local value is explained by the positive Hl anomalies around b = 0.25 (ρ =374

ρC/2) where JH is positive and maximum, and the negative anomalies around b = 0.9375

where JH us negative. The sum can also be done directly on all pixels of panel (d), in376
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Figure 7. (a) surface elevation ζ(x, y) and (b) local wave height Hl around (x = 12, y = 43)

for the sea state used in Fig. 9. (c) shows the values of JH(b) with b = ρ2/ρ2c and ρ the distance

from nadir. (d) JH multiplied by the local wave height anomaly, (e) sums of anomalies for each

distance-to-nadir b, (f) waveform simulated from ζ(x, y) and fits with different waveforms.

which case the equivalent perturbation amplitude is a(x, y) = [Hl(x, y)−Hs]dx dy/(HsAeq),377

and the contribution to Ĥs of each pixel is JH(b)×a(x, y)×Hs/2, as given by eq. (10).378

We note that if we multiply the surface elevation by -1, the crests become troughs379

and vice versa, leading to a slightly different waveform shown with the dashed line in Fig. 7.f,380

and a slightly different retracked value Ĥ−
s = 11.8 m, even though that surface has the381

exact same local wave heights Hl. It thus appears that the JH filter can give an inter-382

esting approximation of the altimeter result, but it cannot be exact, due to phase effects383

that it does not represent.384

Testing further this JH filter idea, and the equivalent Jz filter for the sea level, gives385

results shown in Fig. 8, now looking at all 11000 waveforms obtained from the same sea386

surface with nadir positions at all values of x and y spanning 35 km in each dimension.387

The right-most pixel of (a) corresponds to the case detailed in Fig. 7. Our filter theory388

does not reproduce all the details of the variability in Ĥs and ẑe estimates, but it explains389

80 to 90% of the variance. Here again, we have verified that changing the sign of the sur-390

face elevation gives a different estimation Ĥ−
s and τ̂−s . Interestingly, the theoretical value391

is very close to the average of Ĥs and Ĥ−
s , as illustrated in Fig. 8.c,d.392

3 A model for small scale Ĥs fluctuations393

3.1 Retracking of realistic waveforms394

In all the simulations discussed in this paper, the perturbation of the estimated epoch395

that is proportional to Hs is completely spurious: it is a tracker error. In reality it will396

be combined with a true millimeter-scale sea level variation that is expected to scale like397

H2
s (Longuet-Higgins & Stewart, 1962; Ardhuin et al., 2004). In contrast, a large part398
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Figure 8. Scatter plots of retracked (a) wave height and (b) sea level for a 35 km all altimeter

nadir position every 346 m in both x and y directions, giving 11,130 waveforms (without any

noise added), compared to estimates using eqs. (10)-(11). Red lines are best fit to the data, and

the pixel circled in pink correspond to the case in Fig. 7. (a) and (b) are obtained from the sur-

face elevation ζ(x, y), (c) and (d) include a phase-average of two realizations ζ(x, y) and −ζ(x, y).

Averaging over more realisations with different phases does not reduce further the scatter.

of the variability of the wave height is real and may be of geophysical interest. In the399

case of wave groups, true perturbations of the local wave height Hl travel at the group400

speed and do not persist for more than a few minutes. For other sources of gradients in401

wave heights, Hl variability is related to a spatial gradient of Hs, and may persist longer402

and may be visible from one satellite pass to the next in the case of gradients caused by403

refraction over bottom topography or dissipation over mud banks. Whatever the source404

of the gradient in Hl, what is the smallest scale that can actually be resolved, and how405

well are the true patterns visible in altimeter data? To answer this question we use nu-406

merical simulations as described in Appendix B, starting from a directional wave spec-407

tra. In this section we use the same spectrum derived from CFOSAT L2S data that was408

already used in DC23.409
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Different retracking results are shown in Fig. 9 and compared to smoothed local410

wave heights in panel (c) and (d), which are obtained directly from the surface eleva-411

tion without any retracking. The smoothed local wave height Hl,σl
, are obtained from412

Hl, given by eq. (2), with a two-dimensional Gaussian smoothing with a parameter σl.413
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Figure 9. (a,b) maps of sea level estimated from waveform retracking using ML or LS cost

functions, (c,d) maps of spatially filtered wave heights, using a two-dimensional Gaussian filter

with a parameter σl = 175 m or σ = ρC/4.5 = 708 m, (e,f) maps of retracked Ĥs corresponding

to (a,b). (f) is the retracking of the same waveforms but with rmin = 0.06 in ML cost function,

and (g) is obtained with the LS cost function retracking of waveforms without speckle noise. The

dashed circle around the filtered peak at x= 19 km, y = 20 km, has a radius ρC/2 = 1.6 km.

414

The first striking result is that the retrackers give sea level estimates in panels (a)415

and (b) with significant variability (of the order of 40 cm for the ML fit), whereas the416

true sea level is actually flat in the simulation. That variability generally follow the large417

scales of the envelope in Fig. 9.d, and miss smaller details present in 9.c.418

For the wave heights, all retracking options used here give results that are visually419

clearly different from a simple Gaussian filter applied to the map of local wave heights420

Hl in (c) or (d). The ML-retracked Ĥs in (e) is the most similar to the large-scale fil-421

tered local height Hl in (d), with a maximum near x = 19 km and y = 20 km that422

has a similar shape, but this is not the case for other localized maxima in (d) that have423

ring shapes in (e). These ring shapes are much more present with LS retracking due to424

the shape of the JH function that is maximum for off-nadir perturbations, as further dis-425

cussed in Appendix B. The radius of these rings is clearly related to the Chelton radius426

ρC , given by eq. (1), with a ring radius ρC/2 for LS retracking, corresponding to b =427

0.24, and a smaller radius for ML retracking. Panel (g) was also obtained with ML but428

with rmin = 0, which gives different patterns. For example the maximum at x = 19 km,429

y = 20 km gives a pattern reminiscent of a Mickey Mouse face with ears much more430

prominent than the nose. The fact that the ”ears” are more prominent comes from the431

presence of two higher but much more narrow peaks in Hl, above 16 m. These higher432
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values are not visible in Fig. 9.c because the color bar is saturated. ML fitting with rmin =433

0 therefore gives a very particular distortion of the true map of wave heights that strongly434

emphasizes very high peaks even if they are very narrow. Finally we have also included435

in (h) one example with LS retracking of waveforms that do not include speckle, with436

the ring shapes now appearing more clearly than in (f). With ML the speckle has no vis-437

ible impact for this sea state (not shown).438

3.2 Linking standard deviation of Ĥs to wave spectral shape439

Because satellite altimetry is a technique more recent than in situ buoy measure-440

ment, the uncertainty of satellite data has generally been estimated based on buoy data441

(Abdalla et al., 2011; Dodet et al., 2020). These analyses have struggled to account for442

the fact that the two measurements cannot represent the same space-time coverage of443

the wave field. Section 2.6 has now clarified that, for least square cost functions, the spa-444

tial coverage of altimeters can be interpreted as a ĴH -filtered map of the local wave heights445

Hl, with the ĴH functions shown in Fig. 6 and Hl defined by eq. (2). We can now gen-446

eralize the analysis of the statistical uncertainty of integrals of buoy spectra given by Young447

(1986) to provide estimates of uncertainties for these spatially filtered wave heights.448

Indeed, Young (1986) showed that any integral of the wave spectrum E(f), obtained449

from a time series is χ2-distributed. For the particular case of the zeroth moment of the450

wave spectrum m0 =
∫
E(f)df the number of degrees of freedom is related to the record451

length τ , νm0(τ) = 2τ/Q2
f with the spectral frequency peakedness Qf defined by452

Q2
f =

∫∞
0

E2(f)df(∫∞
0

E(f)df
)2 . (16)453

Because the buoy estimate of the significant wave height is Ĥτ = 4
√
m0, it im-454

plies that Ĥτ is χ-distributed, and, assuming error-free measurements in the time series,455

std(Hτ )

mean(Hτ )
=

√
Γ2(νm0(τ)/2)νm0(τ)

2Γ2((νm0(τ) + 1)/2)
− 1 ≃ 0.5Qf/

√
τ , (17)456

where Γ is the Euler gamma function.457

Following Young (1986), if we had a perfect spatial mapping of the surface eleva-458

tion ζ(x, y) over a square of side length L, then ĤL is a χ-distributed random variable459

with νm0(L) = 2L2/Q2
kk(2π)

2 degrees of freedom, giving the uncertainty460

std(HL)

mean(HL)
=

√
Γ2(νm0(L)/2)νm0(L)

2Γ2((νm0(L) + 1)/2)
− 1 ≃ πQkk/L. (18)461

Qkk is given by eq (4), and is analogous to Qf but defined from the double-sided wavenum-462

ber spectrum E(kx, ky), instead of the single-sided frequency spectrum E(f).463

In our example, with Qkk = 43 m and Qf = 4 s0.5, a standard 20-minute buoy464

record gives a relative uncertainty std(Hτ )/Hs = 0.058, and it would take a square of465

side length L = 2.4 km to obtain the same uncertainty.466

More generally, the same relative uncertainty is given by equating eq. (17) and eq. (18)467

giving the spatio-temporal equivalence between observations of spatial scales L and time468

scale τ ,469

L = 2π
Qkk

Qf

√
τ . (19)470

However, for an altimeter single measurement, our simulations in Fig. 9.e give a relative471

uncertainty of 0.085 that is equivalent to a square side L = 1.6 km. That scale is about472

ρC/2, and thus covers the same area as a disk of radius ρC/(2
√
π).473
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Alternatively, this result can be obtained by integrating the PSD of Hl. In the limit474

of statistics taken over scales d1 much larger than ρC , eq. (step 4 bis) in DC23 gives,475

std(Ĥs) ≃
√
2(4− π)QkkHs

4.5ρC
≃ 4.2Qkk

√
Hs√

h
(20)476

The combination of L ≃ ρC/2 with eq. (18) gives the same result with the factor 4.2477

replaced by 4.4.478

Because altimeter data is generally averaged or filtered along-track in order to re-479

duce the uncertainty of the measurements (Schlembach et al., 2020), we will now exam-480

ine the uncertainty of the resulting along-track averages. For this we first need to inves-481

tigate along-track correlations and define an effective resolution.482

3.3 Along-track correlation and effective resolution of Ĥs483

The best retracker for sea level in Fig. 9 is the one that will give the smallest val-484

ues of ẑe, hence the LS retracker with results shown in (b). For the wave heights, it is485

unclear what are the retracking options that give the most accurate representation of486

the variability of the local wave Hl. Here we propose that wave heights Ĥs should be487

as similar as possible to the along-track sampling of the smoothed local wave height Hl,σl
,488

obtained from Hl with a two-dimensional Gaussian smoothing with a parameter σl. A489

reasonable expectation, consistent with the power spectrum of along-track Ĥs (Fig. 10.a),490

is that the ”reasonable truth” is given by filtering with a scale σl ≃ ρC/4, which is σl =491

800 m in the example considered here. We may dream of being able to resolve smaller492

details, that can be found for example in Hl,ρC/10, corresponding to σl = 320 m, but493

that ”dream” is out of reach of altimeters, given the sensitivity kernels ĴH for different494

retracking options, as shown in Fig. 6. Indeed, the least square cost function leads to a495

maximum sensitivity at b = 0.25 which corresponds to a distance from nadir ρ = ρC/2496

where ĴH is maximum.497

In terms of sea level, instead of a zero value which is our input to the simulation,498

the retracked sea level exhibits a plateau at wavenumbers under 0.2 cpk, corresponding499

to the well-known ’bump’ in along-track sea level spectra (Dibarboure et al., 2014). In500

terms of wave heights, considering the LS retracking, the black curve in Fig. 10.a, we find501

that its spectrum is similar but slightly higher than the ”reasonable truth”, consistent502

with the analysis by DC23 who found the same variance as the ”truth” when using σl =503

ρC/4.5. The ML retracking was adjusted, with rmin = 0.06 to give a similar PSD, while504

maximizing the coherence with the reasonable truth. This is detailed in Appendix C.505

The coherence and phase are useful to quantify the distortion effect caused by the506

maximum of the JH function away from b = 0, and its change of sign. In along-track507

spectra this leads to scales for which the coherence goes to zero for LS retracking, here508

at k ≃ 0.22, 0.5, and 0.71 count per km (cpk), corresponding to wavelengths L ≃ 1.5,509

0.7 and 0.46 times ρC . For these wavenumbers, the coherence phase jumps from near zero510

to near 180◦ and back. As a result, LS retracking does not reproduce correctly any de-511

tail at wavelengths shorter than about 1/( 0.22 cpk)≃ ρC/0.7, and it misses part of the512

true variability for scales longer than that. Assuming that we need at least two indepen-513

dent measurements per resolved wavelength, we may define an effective along-track res-514

olution ρeff = ρC/α. At this stage we expect that α ≃ 1.4, with different values for515

different retracking method.516

3.4 Uncertainty of averaged estimated wave heights Hs517

Now that we know how Ĥs estimates are correlated along-track we can estimate518

the uncertainty of Hs, the average of n (< · >n) consecutive values of Ĥs. For inde-519

pendent measurements this reduction would be a factor 1/
√
n, but because the succes-520
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Figure 10. Along-track spectra of (a) Ĥs and (b) ẑe = −τ̂ c/2 estimates with different re-

tracking options in the case of noiseless waveforms. (c) and (d) shown their coherence and phase

shift relative to a ”reasonable truth” Hl,ρc/4 obtained by filtering the local wave height Hl with a

2-dimensional Gaussian filter of width σl,4 = ρc/4 centered at the nadir point, while the ”alterna-

tive truth” that contains much smaller detail is Hl,ρc/10.

sive footprints overlap, there is only a
√
nf/n reduction where nf is the number of data521

points per effective footprint,522

nf =
ρeff

Vn/fs
≃

√
2Hsh

αVn/fs
, (21)523

where Vn ≃ 7km/s is the velocity of the satellite nadir on the ground, α is an along-524

track de-correlation parameter, fs is the sampling frequency of the measurement, typ-525

ically fs = 20 Hz for most altimeters. In practice we have found α ≃ 1.5 to be a good526

approximation for both ML and LS retracking, with possibly a weak dependence on Qkk527

and a range of possible values from 0.5 to 2.528

This gives an expected variance of (Hs) caused by wave groups,529

varwg(Hs) = var(< Ĥs >n) ≃
4.22Q2

kknfHs

nh
, (22)530

All these calculations assumed noise-free measurements, but the interference of radar531

waves causes speckle noise, just like the interference of waves make groups. Speckle gives532

a extra term in the cost function that is a sum of χ2-distributed independent variables,533

and thus also χ2-distributed, as detailed in Appendix A.3 of DC23. The corresponding534

variance of fluctuations induced by speckle noise is given by,535

vars(Hs) = s×Hs/n (23)536

with s a function of the number of pulses Np per measurement. For least-square fitting537

with broad antenna patterns DC23 found538

s ≃ s0/Np, (24)539
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with s0 = 5 m. This expression gives s = 0.019 m for the LS fit of CFOSAT wave-540

forms. There is a priori no such simple expression for ML retracking. It should be noted541

that the variance induced by speckle averages out faster than the wave group effect, like542

1/n, without the correction factor nf . We note that for wave heights under 3 m, the speckle543

effect is further influenced by the discretization of the waveform and typically gives higher544

values of s0.545

We may assume that both effects are uncorrelated giving a total variance,546

var(Hs) = varwg(Hs) + vars(Hs). (25)547

4 Verification over a wide range of simulated sea states548

Although we looked in detail at a single and very particular sea state, we expect549

that our uncertainty model is applicable to any sea state, which is uniquely character-550

ized by two parameters: the significant wave height Hs and the wavenumber spectral peaked-551

ness Qkk. The uncertainty model is also a function of the satellite instrument configu-552

ration through the altitude h and number of pulses averaged Np.553

Given the prominent role of the peakedness, it is interesting to show the expected554

variability of Qkk. We have used a 0.5 degree resolution global WAVEWATCH III model555

configuration with wave generation and dissipation source terms parameterized follow-556

ing the T702GQM option described in Alday and Ardhuin (2023), using a quasi-exact557

calculation of wave-wave interactions (Lavrenov, 2001; Gagnaire-Renou et al., 2010). As558

expected from its definition, Qkk is much larger for swells than for wind seas, and gen-559

erally larger for longer dominant periods. Fig. 11 gives average values of Qkk over a time560

period corresponding to the Austral summer and Fall.

Figure 11. Map of the mean values of Qkk, in meters, simulated for January to July 2023.

561

We chose that time frame to minimize the effect of sea ice in the Southern Ocean:562

the presence of sea ice strongly damps the shorter wave components, leading to very large563

values of Qkk and very small wave heights. Outside of ice-covered regions, Qkk is typ-564

ically under 10 m for enclosed seas and fetch-limited regions, and increases to 15–40 m565

in the swell pool of the Eastern Pacific. Besides these mean values there is a significant566

variability, with a general increase with wave height shown in Fig. 12.a. Among the usual567

sea state parameters, Qkk is best correlated to the square of the so-called energy period568

Tm0,−1 (Fig. 12.b). When comparing the uncertainty of wave heights from buoy mea-569
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Figure 12. Distribution of modeled peakedness Qkk for ice-free conditions for January to July

2023, against usual parameters (a) Hs and (b) energy period Tm0,−1. (c) compares Qkk to the

peakedness for the frequency spectrum Qf .

surements and satellite data, it is also useful to know that there is not a simple corre-570

spondence between Qkk and Qf (Fig. 12.c).571

We have simulated waveforms for 250 different sea states selected to fill a gridded572

histogram of Hs and Qkk. We insist that our sea state selection maximizes the ranges573

of Hs, from 0.5 to 12.5 m, and Qkk varying from 3 to 110. Most of these selected sea states574

are extremely unlikely, as shown in Fig. 12.a. A first display of the variability for the sea575

level and wave height is shown as a function of the wave height in Fig. 13. In each panel,576

each dot corresponds to a different sea state with a given value of Hs and Qkk. For each577

dot, 11000 waveforms were simulated from the same sea surface, shifting the nadir po-578

sition (as we did for Fig. 9) and retracked. Waveforms were simulated with and with-579

out speckle noise, and each was retracked with both LS and ML cost functions, using580

rmin = 0.06. The variability generally increases with wave height. For sea level, in pan-581

els a and b, it is of the order of 1 to 3% of Hs, with some enhancement caused by speckle582

noise. We note that ML-based retracking is more noisy than LS for ẑe retrieval, with oc-583

casional outliers. For wave heights, in panels c and d, the variability is generally higher584

with LS retracking once speckle noise is taken into account (panel d). We have found585

that even for ML fitting, we may use eq. (23) with a variance reduced by a factor 5 com-586

pared to LS fitting, as shown in Fig. 13.e.587

At any given wave height, the variability can take values that differ by a factor 4588

or more, as we expect from our analysis and the range of possible Qkk values. We ver-589

ify our uncertainty model given by eq. (20) by plotting the uncertainties, now normal-590

ized by Hs to a power p against Qkk in Fig. 14. We first note that the sea level, Fig. 14.a)591

and b), scales with p = 1, probably due to the zero average of Jz, but we have not in-592

vestigated this question further. For wave heights, eq. (20) gives a good representation593

of the data without speckle noise (see Fig. 14.c), and eq. (25) is a good model for the594

full simulation that includes noise (see Fig. 14.d), both uncertainties scaling with p =595

1/2. In both cases there is an underestimation of the variability for high values of Qkk.596

597

We finally estimate along-track averages of 20 consecutive values to simulate 1 Hz598

averages. In Fig. 15, we compare our error models given by eqs. (22)-(23) to the vari-599

ation of 1 Hz average simulation outputs. It show that the error model given by eq. (22)600

is generally correct (R2 = 0.99 for the selected sea states).601
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Figure 13. Variability of (a,b) estimated sea level ẑe, and against Qkk, (c,d) wave height Ĥs

against Hs. (e) Speckle contribution to the variance of wave height.

5 Discussions and applications602

The uncertainty model proposed in eqs. (22)–(23) and verified with Fig. 14.d,h, ap-603

pears robust, and is explained by the correlation structure that we understand well for604

the Least Square cost function. It also seems to hold for our adaptation of the Maximum605

Likelihood cost function. Some persistent biases may be refined. For example, the speckle606

contribution is underestimated for large wave heights. This is possibly due to the use607

a broad antenna pattern in DC23: for the largest wave heights and narrow radar beams608

the different shape of the waveform will give a different value of s0, which can possibly609

be obtained analytically or numerically. Another bias is found for Qkk > 50, with an610

overestimation of the wave group contribution given by eq. (20). In these cases the spec-611

trum of the surface envelope must be very narrow, possibly narrower than the altime-612

ter transfer function (the Fourier transform of JH), and the approximation proposed in613

DC23, that the envelope PSD is constant, is likely to overestimate the variability of Ĥs.614

This may be corrected by computing the spectral convolution (Step 3 in DC23), or us-615

ing a better approximation for the envelope spectrum, not as a constant but for exam-616
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Figure 14. Variability of (a,b) estimated sea level ẑe against Qkk, (c,d) wave height Ĥs

against Hs. This is the same data as in Fig. 13 but rescaled and plotted against different vari-

ables. Smaller dots correspond to cases with Hs < 2 m.
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Figure 15. Variability of along-track 1 Hz averages Hs plotted against our predicted variance

from eqs. (22)-(23). The black line shows the x = y.

ple a two-dimensional Gaussian function. For our objective, very few conditions are con-617

cerned as the median value of Qkk is under 60 m, even for wave heights up to 18 m. This618

will be a real issue when extending the present work to Delay-Doppler altimetry, as the619

effective footprint becomes very small in the along-track direction.620

5.1 Other satellite missions621

We are now in a position to propose a clear trade-off between precision and res-622

olution for storm conditions for CFOSAT data, and possibly extrapolate this to other623
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satellite missions, as illustrated in Fig. 16. And it would be interesting to compare the624

measured values of std(Ĥs) at cross-overs from different missions.
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Figure 16. Resolution and uncertainty for wave height measurements extrapolated to other

satellite missions, taking into account their different altitudes and acquisition chronogram (num-

ber of pulses per burst Np and number of bursts per second fs), but neglecting the effect of the

antenna aperture: (a) spatial resolution estimated as 1.5ρC (b) normalized standard deviation of

the measurement, (c) normalized standard deviation of 1 Hz along-track averaged measurements.

We have used typical values of Qkk = 2Hs for wind-seas and a higher value for very long periods

or narrow swells Qkk = 60. The speckle parameter s0 = 5 m is typical of least square (LS) fitting,

while s0 = 1 m corresponds to maximum likelihood (ML).

625

In order to arrive at the same uncertainty level as the buoy data, we find that we626

need to average around n = 3 points with CFOSAT’s 4.5 Hz sampling, and n = 12627

points at 20 Hz for the storm case considered here, for both cases this is an along-track628

length of 4.2 km. Due to the scaling of the effective footprint with ρC =
√
2hHs, the629

lowest altitude of CFOSAT allows it to have a higher resolution with h = 519 km, com-630

pared to the h = 1336 km of Jason 3. The sampling fs = 4.5 Hz of CFOSAT is par-631

ticularly efficient, with measurements that are more independent than with fs = 20 Hz.632

For CFOSAT the available time between independent samples is well used by scanning633

the ocean with off-nadir beams to measure the wave spectrum (Hauser et al., 2021) that634

can be used to estimate Qkk, as in DC23, and other properties useful to interpret nadir635

altimetry such as the skewness and the slope-sea level correlations (Srokosz, 1986; Janssen,636

2014). Future missions can use the same type of nadir + off-nadir design to also mea-637

sure ocean currents (Ardhuin, Brandt, et al., 2019).638

Even for a low wave height of 1 m, at the Jason 3 altitude, the 20 Hz data is only639

useful for reducing speckle. The value nf = 3 means that, without speckle, a 6 Hz sam-640

pling would be enough to sample the variability induced by wave groups. ML retrack-641

ing, with s0 ≃ 1 m (see Fig. 16.b) can also be used to reduce noise levels, in particu-642

lar for wind seas with low wave heights (solid and dotted lines). However,when data are643

averaged over 1 Hz, the speckle contribution is less important, especially for swell-dominated644

conditions (dashed lines in Fig. 16.c). In that case a higher orbit provides averaging over645

a wider area, both along-track and across-track.646
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5.2 Re-defining significant wave heights647

Looking back at Fig. 3, there is a need for defining the underlying wave height from648

fluctuating measurements. The obvious solution is to average the data along-track and649

estimate the precision of the average using our uncertainty model. We give here two ex-650

amples.651

In the case shown in Fig. 2, the maximum estimate Ĥs is 11.8 m, using LS fitting.652

When averaging over the 50 bursts, and considering our sampling error model we get the653

following estimate of the underlying true wave height (removing speckle and wave group654

effects), Hs = 9.2± 0.3 m.655

Hanafin et al. (2012) reported the highest-ever wave height measurement at Hs =656

20.1 m, using a Jason-2 data over storm Quirin on 14 February 2011 at 11:05 UTC, in657

the North Atlantic, with a relative precision ⟨std(Ĥs)/Ĥs⟩ = 8.9 % for the neighbor-658

ing values. This is a 1 Hz-averaged data. Due to a different retracker, called WHALES,659

the maximum value for this event was revised at Hs = 19.7 m in the version 3 of the660

Sea State CCI dataset (Schlembach et al., 2020), with a relative precision of 6.4%. Based661

on Fig. 6, we expect the WHALES retracker to provide an effective resolution ρeff in be-662

tween the ML and LS retrackers, so that the uncertainty model, eqs. (20) and (23) should663

apply. We thus expect the effective Jason resolution to be close to 10 km. Without a spe-664

cific wave model hindcast of that storm we may expect Qkk ≃ 60 based on Fig. 12.a.665

With that value, our uncertainty model, eqs. (20) and (23) using Np = 90 and h = 1336 km,666

gives std(Ĥs) = 1.43 m for a single 20 Hz estimate. For reference, the value provided667

in the CCI dataset is std(Ĥs) = 0.58 m. That value is anomalously low compared to668

the neighboring 1 Hz record with the following sequence of 9 values centered on the record669

with the maximum wave height std(Ĥs) =1.43, 1.35, 1.31, 1.08, 0.58, 1.09, 1.3, 1.6, 1.1 m,670

corresponding to 1 Hz averages Hs =19.7, 17.6, 18.8, 19.3, 19.7, 17.6, 17.2, 18.3 and 17.8 m.671

The number of valid waveforms was also minimum (13 out of 20) for that record with672

the lowest variability.673

Our model uncertainty for the 1 Hz average, eqs. (22) and (23) gives 0.90 m, or about674

5% of the measurement, with wave groups alone accounting for 0.87 m. We may aver-675

age over a longer distance to get a mean value of Hs and the corresponding uncertainty.676

Averaging over 54 km (9 points at 1 Hz) reduces the uncertainty to 0.29 m and gives an677

average of 18.5 m.678

Hence, what should be reported as the maximum value of Hs? Is it 19.7±0.9 m,679

from the 1 Hz record, or 18.5±0.3 m from the 54-km average? From our analysis the680

first number is likely to be strongly impacted by wave groups: it may be correct for defin-681

ing a local wave height that is physically correct, there is indeed a region with very high682

waves over a few kilometers of the satellite track, just like on Fig. 3. However if we want683

to compare to numerical wave models that ignore wave groups, the longer along-track684

average is a better choice.685

Alternatively, filtering small-scale variations in Hs can be done using Empirical Mode686

Decomposition (Quilfen et al., 2018; Dodet et al., 2020). That procedure gives Hs =687

18.7±0.3 m, a value also reported in the CCI dataset, which is consistent with our es-688

timate. Further analysis of other storm events will be useful for better understanding689

of the output of denoising using Empirical Mode Decomposition (Quilfen et al., 2018).690

6 Conclusions and perspectives691

Following the demonstration by De Carlo et al. (2023) that the sampling uncer-692

tainty in the presence of wave groups is a significant source of along-track fluctuations693

in altimeter measurements, we have explored how we may interpret these fluctuations694

and define an uncertainty for the underlying true significant wave height. Our argument695
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is that the contribution of wave groups to the local wave height should be removed when696

estimating a significant wave height due to their fast propagation: they are not relevant697

for most applications. That approach is consistent with phase-averaged wave modelling698

in which wave group fluctuations are absent. We have confirmed the analysis by DC23699

for a wide range of realistic waveforms and retracking methods: the amplitude of small-700

scale fluctuations caused by wave groups is proportional to the peakedness parameter701

Qkk and the square root of the wave height. These fluctuations are spatially correlated702

through the effective footprint width that can be approximated as ρC/1.5, with some small703

differences depending on the details of the retracking method. This provides a useful scale704

to count the number of independent data in a satellite segment. The along-track distance705

1.5ρC is also a good estimate of the shortest wavelength that can be resolved in the spa-706

tial pattern of the local wave height, including wave groups when they are present. This707

finest resolution is achieved when using some form of Maximum Likelihood cost func-708

tion that is more sensitive than the least square cost function to perturbations near nadir,709

and the weighted least squares used in WHALES provides an interesting intermediate710

method. These prediction could be tested with cross-overs between Jason-3 and SWOT711

which carries a nadir Poseidon-3 altimeter that is a copy of the Jason-3 instrument, but712

at a different altitude. It should also be possible to see that speckle noise is decorrelated713

between measurements from satellites flying in tandem with a 30 s time separation, whereas714

the effect of wave groups should be persistent (Rieu et al., 2021).715

Our implementation of a Maximum Likelihood cost function may provide more re-716

alistic estimates of wave heights, but it generally led to larger errors in the sea level. The717

WHALES retracker is an interesting candidate for obtaining both accurate sea level and718

wave heights. An alternative approach was timidly explored in Appendix D: one may719

add more degrees of freedom to the waveform shape to properly handle their more com-720

plex shapes, including wave groups and skewness effects.721

For very large wave heights, say Hs > 15 m, we find that the effective altimeter722

along-track resolution is of the order of 6 km or more, depending on the satellite alti-723

tude. Any estimate of wave heights with an accuracy of 3% or better typically requires724

along-track averaging or spatial filtering methods. With this kind of post-processing (av-725

eraging or filtering), the effect of speckle noise is less important, and we might even make726

a meaningful use of the C-band instruments that are also present on most satellite al-727

timeters in addition to the Ku-band data that were discussed here.728

The effects of wave groups on Delay-Doppler altimetry are not obvious a priori, and729

will require a dedicated investigation. As noted by Moreau et al. (2018), the anisotropic730

measurement geometry of Delay-Doppler altimetry introduces the difficulty that narrow731

directional swells are now part of the sea level fluctuations when propagating along-track,732

whereas they are still very much part of the sea state when propagating cross-track. That733

difficulty may be leveraged to provide some advantage, for example for swell detection734

(Altiparmaki et al., 2022; Collard et al., 2022).735
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Appendix A Derivation of a theoretical waveform736

In the following we shall use the same notations as in Tourain et al. (2021). We gen-737

eralize the usual approach by Brown (1977), allowing the vertical distribution of scat-738

tering elements, denoted as PDF, to be a function of both the horizontal distance to nadir739

ρ and the time t. In practice we start with Gaussian surface elevation PDF with a stan-740

dard deviation σH , which translates to a standard deviation in the arrival time of the741

echo σs = 2σH/c, with c the speed of light. At nadir, ρ = 0, the epoch τ defines the742

local mean sea level and we have,743

PDF(ρ = 0, t) = G(σs, τ, t) =
e−(t−τ)2/2σ2

s

σs

√
2π

. (A1)744

Off-nadir this generalizes to (Chelton et al., 1989)745

PDF(ρ, t) = G(σs, τ + tρ, t) (A2)746

where RE is the Earth radius, h is the satellite altitude, and the radius-dependent time747

shift is748

tρ =
ρ2

ch
(1 + h/RE). (A3)749

This gives the theoretical waveform as750

S(t) = PDF(ρ = 0, t) ∗ FSSR(t)︸ ︷︷ ︸
SSR(t)

∗PTR(t). (A4)751

where FSSR stands for Flat Sea Surface Response and PTR stands for Point Target Re-752

sponse. The first convolution represented by the symbol ∗ is in fact the sea surface re-753

sponse SSR obtained from the integral over the distance from nadir ρ (Brown, 1977). We754

introduce a local perturbation of σs which becomes σs(1+∆) and this perturbation af-755

fects an area A0 of the ocean centered at the distance from nadir ρ0, which correspond756

to a range h+R0 in the absence of waves. DC23 showed that the PDF(ρ, t) could be757

assumed Gaussian for each value of ρ. The perturbed surface elevation pdf is now758

PDF′(ρ, t) = PDF(ρ, t) +
A0δ(ρ− ρ0)

2πρ0
[G((1 + ∆)σs, τ, t− tρ)−G(σs, τ, t− tρ)]759

≃ PDF(ρ, t) +
∆A0σsδ(ρ− ρ0)

2πρ0

∂G(σs, τ, t− tρ)

∂σs
, (A5)760

= PDF(ρ, t) +
∆A0δ(ρ− ρ0)

2πρ0
G(σs, τ, t− tρ)

(t− τ − tρ)
2 − σ2

s

σ2
s

. (A6)761

In the usual expressions, ρ is transformed to a time tρ with the following expression on762

the sphere763

dtρ
dρ

=
2ρ(1 + h/RE)

ch
. (A7)764

Using this relation, we may now replace δ(ρ−ρ0) by δ(tρ−tρ0
)dtρ/dρ , to get the per-765

turbed pdf as a function of two time scales,766

PDF′(tρ, t) = G(σs, t) + aδ(tρ − 4bσs)p(t− tρ), (A8)767

with a and b defined by eqs. (8)–(9).768

p(t) =
1√
2π

e−0.5( t−τ
σs

)
2

[(
t− τ

σs

)2

− 1

]
. (A9)769

The dimensionless parameter a < 1 is the product of the relative wave height change770

and the ratio of the area A0 affected by that change and an equivalent footprint area Aeq =771
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πcσsh/(1 + h/RE) which is close to π(ρC/2)
2 or one quarter of the area of the oceano-772

graphic footprint defined by Chelton et al. (1989).773

The convolution of FSSR(t) and PDF′(t) corresponds to an integration over the774

the time tρ, which is eq. (2) in Brown (1977). It is thus the sum of two parts, the un-775

perturbed part, and the perturbation given by the second term in eq. (A8),776

SSR(t) = Aσ0

{
ap(t− 4bσs) +

1

2
[1 + erf(u(t))]

}
e−v(t) +Nt, (A10)777

with778

u(t) =
(
t− τ − cξσ

2
s

)
/(
√
2σs), (A11)779

v(t) = cξ
(
t− τ − cξσ

2
s/2

)
. (A12)780

A = exp
(
−4 sin2 ξ/γ

)
, (A13)781

cξ =
4c(4mss cos(2ξ) + γ)

h4γmss
(A14)782

γ =
2

ln(2)
sin2(θ3dB), (A15)783

where ξ is the antenna mispointing angle, θ3dB is the antenna pattern parameter, Nt is784

the mean thermal noise, and mss is the mean square slope (Tourain et al., 2021).785

Eq. (A10) corresponds to a modification of the adaptive model in Tourain et al.786

(2021) with the perturbation function p(t−4bσs) that is the difference of two Gaussian787

PDFs centered at t = τ + 4bσs, with standard deviation σs and (1 + ∆)σs.788

In the case b = 0, we note that eq. (A10) is equivalent to the effect of surface el-789

evation skewness derived by Hayne (1980), with λ = 6a, re-derived by Srokosz (1986)790

and used by Gómez-Enri et al. (2007).791

The full waveform is finally obtained by convolution with the instrument PTR. In792

the absence of more information we have used,793

PTR(t) = sinc2(πBt), (A16)794

giving the waveform795

S(t) = SSR(t) ∗ PTR(t). (A17)796

Appendix B Waveform simulation, retracking and verification797

The waveforms are obtained from a realization of the sea surface elevation map us-798

ing random phases over 4096 by 4096 points with a horizontal resolution of 14 m, hence799

covering 56 by 56 km. Each point of the surface is given a radar power based on the 2-800

way antenna pattern, and the waveform is given by the power-weighted histogram of the801

distribution of travel times between each point of the surface and the satellite. When802

speckle noise is included it corresponds to Np×320/400 looks, which is the number of803

pulses per cycle, Np = 264 for CFOSAT (Tourain et al., 2021), corrected for the resam-804

pling factor of the waveform, from 320 to 400 MHz. A ”local significant wave height”805

is defined at each point as Hl(x, y) =
√
32/π×η(x, y) where η is the surface envelope806

(De Carlo et al., 2023), so that the spatial mean of Hl is the true underlying wave height807

Hs. The retracked wave height Ĥs and epoch τ are computed for discrete satellite po-808

sitions on a two-dimensional grid with a resolution of 350 m, as if the ocean were sam-809

pled by 106 satellites flying side by side and with a waveform computed every 0.05 s (a810

rate of 20 Hz) along each track. The result is a map of estimated parameters.811

Fig. 9 shows some examples of such maps for different simulation settings, and fit-812

ting with ML or LS cost functions. Statistics for the retrieved parameters shown in Fig. 9,813
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are summarized in table B1. We find that the root mean square (rms) wave height is un-814

derestimated with ML compared to LS, and the standard deviation of wave heights is815

larger with ML compared to LS, consistent with the retracking of the true waveforms816

in Fig. 2. We also note that the ML retrieved epoch and wave height are strongly cor-817

related with r = 0.85, which is comparable to r = 0.81 in Fig. 2. For the purpose of818

reducing the epoch noise, for example taking z′e = ẑe − α(Ĥs −Hs), the LS data give819

lower noise residuals than the ML data.820

Table B1. Statistics for wave height and epoch, for a surface with strong wave groups. Start-

ing from the idealized waveform simulation which does not include the PTR at the top, we

progressively add the PTR (no noise), then thermal noise, then the speckle.

PTR thermal speckle Ĥs (m) ẑe (m)
noise mean std mean std

× × × ML, rmin = 0 8.88 1.00 -0.122 0.24
LS 9.23 0.70 0.000 0.07

✓ × × ML, rmin = 0 9.14 0.96 0.328 0.22
LS 9.27 0.70 0.001 0.07

✓ ✓ × ML, rmin = 0 9.14 0.96 -0.045 0.22
LS 9.27 0.70 0.001 0.07

✓ ✓ ✓ ML 9.14 0.96 -0.045 0.23
ML, rmin = 0.06 9.23 0.78 -0.009 0.11

LS 9.28 0.77 0.002 0.08

Appendix C Influence of rmin821

When using ML retracking, one may optimize the contribution of the lowest range822

gates used in ML fitting. Here we investigate the influence of the choice of rmin, and try823

to maximize the coherence with our ”reasonable truth” given by Hl,σ=ρC/4 over the widest824

possible range of scales, while keeping a near-zero phase shift, and getting perturbations825

on the epoch as low as possible. The value rmin = 0.06 that gave results similar to the826

CFOSAT in Fig. 2 appears to be a good compromise. Fig. C1 shows that lower values827

of rmin will all produce more noise in the epoch. Higher values reduce the range of wavenum-828

bers with high coherence, giving results closer to the LS retracking, with a wider range829

of short scales for which the retracked values are out of phase of the true perturbations.830

831

Appendix D Consequences for retracking832

This paper dealt with existing datasets, already retracked with existing methods,833

but our results may be used to refine retracking methods and better interpret alterna-834

tives. On a basic level, it is possible that some averaging before retracking may provide835

more robust results. Also, the results on along-track correlations and uncertainty model836

may differ for methods we did not cover: for example the use of range-dependent weights837

in the ALES (Passaro et al., 2014) and WHALES (Schlembach et al., 2020) modifies the838

ĴH function as shown in Fig. 6. Alternatively when a skewness parameter is added to839

the set of fitting parameters, following Hayne (1980), it will catch the waveform distor-840

tion caused by wave groups near nadir. One could imagine adding more degrees of free-841

dom to the waveforms with a sum of wave group contributions a(b) for each range b, and842
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Figure C1. Same layout as Fig. 10, with additional lines for different values of rmin.

ideally one may want to estimate these values of a(b) for each discrete range, and invert-843

ing the black curve Hb(b) in Fig. 7.e from the waveform in 7.f.844

Since the possible adjustment to retracking methods are endless and best choices845

probably depend on the chosen application (e.g. characterizing wave group properties,846

reducing noise on sea level estimates ...) we will not go down this path here. Instead we847

just illustrate how a modified retracker may better fit the waveform: we have chosen 2848

variants on the LS and ML retrackers (here termed LS2 and ML2 for clarity) used in Fig. 2.849

In LS3 and ML3 we add a the skewness parameter λ3,0,0 as defined by Srokosz (1986),850

which is the skewness of the surface elevation points of zero slope, and in our model wave-851

form corresponds to 6 times the amplitude of wave group perturbations at nadir λ3,0,0 =852

6a(b = 0). This is the approach followed by Callahan and Rodriguez (2004) and Gómez-853

Enri et al. (2007), with the minor difference is that we use SWIM L1B data in which the854

antenna pattern and power have been corrected for, so that we do not have to deal with855

the usual other unknowns that are the mispointing and σ0. In LS4 and ML4 we allow856

the Brown waveform to have one wave group perturbation of amplitude a but that can857

be range b: because the possible waveforms fits with LS3 and ML3 are a subset of those858

for LS4 and ML4, the fits are at least as good with that other option, in the cases where859

the minimization method found the global minimum.860

Results in Fig. D1 show the values of wave heights, and λ3,0,0 (or 6 × a for LS4861

and ML4), and two waveforms corresponding to the two highest values of Ĥs in the na-862

tive CFOSAT data, here corresponding to the 20th and 49th (last) waveform in that se-863

quence. We recall that the acquisition rate is 4.5 Hz, so that the nadir positions for con-864

secutive waveforms are separated by about 1.5 km.865

The first clear outcome shown in panel (a) is that LS3 and ML3 give wave heights866

very close to LS2 and ML2, with slightly lower extremes, and LS4 and ML4 give much867

lower value for the extremes (waveforms 20 and 49) but often fail to converge to reason-868

able values (waveforms 39 for LS4, 16, 22, 23 ... for ML4): this is not proposed as a prac-869

tical retracking method but as a tool to understand some of the parameter variations.870

In panel (b), λ3,0,0 fluctuations (-1 to 2) are much larger than its mean value of 0.17 with871

LS3 and 0.09 with ML3. We note that the mean value of λ3,0,0 from ML3 is consistent872
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Figure D1. Retracked values of (a) Ĥs and (b) λ3,0,0 or 6 × a using 2, 3 or 4 parameter re-

trackers applied to the same CFOSAT waveforms (c) and (d) waveform number 30 and 49 in that

sequence, and associated fits.

with the skewness of 0.08 estimated from the CFOSAT directional spectrum using the873

method of Srokosz (1986) as implemented in the ECWAM model (Janssen, 2014). We874

suspect that the larger mean value for LS3 is caused by speckle noise, and estimating875

λ3,0,0 is probably better done by first averaging several waveforms before retracking.876

For waveforms number 20 and 49, we may expect that there is some significant wave877

group contribution, with a maximum Hl that could be close to nadir for #20 because878

of the stronger value of Ĥs with ML2 compared to LS2, based on the different shapes879

of ĴH in Fig. 6. When the fitting waveform is allowed to have some skewness effect, the880

value of Ĥs is reduced from 13.9 with ML2 to 12.3 m with ML3 as we are effectively re-881

moving the effect of wave groups at nadir, and ĴH,ML2 is senstive to these. This is not882

the case when changing from LS2 to LS3. However, if we allow the wave group pertur-883
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bation to be away from nadir, then Ĥs drops to 10.2 m with LS4 compared to 11.5 with884

LS2, and the optimal perturbation position is placed at b = 0.13. Things are a little885

different for waveform #49, presumably because the perturbations are located further886

from nadir. In that case ML3 is not very different from ML2, but both LS4 and ML4887

give a much lower wave height, at 9.5 and 9.2 m respectively, with b = 0.14.888
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