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Eulerian drift induced by progressive waves above rippled
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Abstract. A simple, practical, analytical model is developed of the drift induced by weakly
asymmetrical progressive waves in the bottom boundary layer above rippled and very rough
beds. Above such beds, momentum transfer is dominated not by random turbulence, but by
the well-organized process of vortex shedding, which is characterized here by a strongly
time-varying “convective” eddy viscosity K. The one-dimensional wave boundary layer
model proposed is consistent with the presence of Stokes' second-order waves in the free-
stream flow. The solution for the Eulerian drift is characterized by a pronounced near-bed
jet in the direction of wave advance, beneath a layer extending to the edge of the boundary
layer in which the drift is in the opposite direction. An empirical approach involving five
published laboratory data sets is used to estimate the coefficient defining the asymmetrical
time-varying component of K above rippled and very rough beds. The resulting “standard”
model is then compared both with measurements of the drift at the edge of the wave
boundary layer and also with measured drift profiles. Good agreement is found for ranges

of wave steepness and relative bed roughness of practical importance.

1. Introduction

The accuracy of models of coastal sediment transport
depends upon reliable parameterizations of detailed hydrody-
namic processes. However, these processes are not always
well understood. For example, the presence of small, near-
bed, wave-induced currents has been shown to have a large
effect upon the net sediment transport rate beneath asymmetri-
cal waves [Davies and Li, 1997]. Such currents necessarily
affect also the vertical profile of the residual current in the
water column as a whole, since the near-bed streaming
provides the bottom boundary condition for this profile (e.g.,
Longuet-Higgins' [1953] “conduction solution”). However,
the magnitude and even direction of such near-bed currents are
sometimes uncertain, and their effects are often not included
in models. This raises questions of fundamental interest, as
well as practical importance for applied work.

Most previous studies of near-bed drift have been con-
cerned with smooth beds or flat rough beds, for which con-
cepts derived from steady turbulent boundary layer flow
remain applicable (see the review of Davies and Villaret
[1997]). The effect of vertical velocities induced in the bottom
boundary layer by progressive waves was first explained
theoretically by Longuet-Higgins [1953], who showed that, at
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the edge of the laminar boundary layer above a smooth flat
bed, the Eulerian drift U,, is given to a first approximation by
U.,c/U,2 = 0.75, where ¢ is the wave phase speed and U, is the
near-bed velocity amplitude. This classical result has been
shown to agree with measurements made above smooth beds
in laminar conditions, at least for low waves [e.g., Brebner et
al., 1966]. Longuet-Higgins [1958] also argued that, subject
to the assumption of a time- and height-invariant eddy viscos-
ity K, the normalized drift at the edge of the turbulent bound-
ary layer above a smooth bed should still equal 0.75, and, in
fact, this result remains valid even if height variation is
introduced into K [e.g., Johns, 1970].

However, experimental and theoretical studies involving
flat rough beds in the turbulent flow regime have shown that
the near-bed drift depends rather critically upon the bed
roughness, as well as on the degree of wave asymmetry. The
effect of bed roughness is to reduce the phase lead of the
bottom velocity in comparison with the lead of ©/4 given by
the classical Stokes' solution. This causes the Eulerian drift to
be reduced (i.e., U, c/U,2 < 0.75), as shown by Trowbridge
and Madsen [1984b], whose two-layer eddy viscosity model
included both height variation in K and also a reference
elevation (i.e., bed roughness length scale z, = k,/30 > 0). (It
should be noted that a very different behavior is found in the

* transitional flow regime, where a strong enhancement in the

nondimensional drift may be expected, at least for low values
of the wave Reynolds number [Davies and Villaret, 1998].)
In addition to the drift associated with the vertical velocity
field, any asymmetry in the turbulence intensity in successive
wave half cycles will give rise to a near-bed residual current
component. For a plane bed, this component is in the offshore
direction as demonstrated, in isolation from other processes,
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by Ribberink and Al Salem [1995] for asymmetrical waves in
an oscillating water tunnel [see Davies and Li, 1997]. These
two competing mechanisms were considered by Trowbridge
and Madsen [1984b], whose model included an asymmetri-
cally time-varying eddy viscosity. In this and other modeling
studies, it has been found that, above flat rough beds, the effect
of asymimetry in the turbulence in successive half byucb is to
reduce the Eulerian drift, with a reversal in the direction of
drift occurring for very long waves.

The present study is concerned with the prediction of
residual currents generated in the turbulent wave boundary
layer above very rough and rippled beds. In this regime (A,/k,

s 5, where A, is near-bed excursion amplitude and k, is
eauwalenr bed roughness), momentum transfer in the ncgr-hpd

layer is dommated not by random turbulent processes, but by

At n h t ofrire
more organized, spatially and temporally coherent structurces,

resulting from the shedding of vortices from bed roughness
elemenis at flow reversal. This complex two- (or three-)
dimensional process can be represented by discrete vortex
models [e.g., Block et al., 1994; Perrier, 1996]. However, in
order to simplify the problem for practical purposes, Davies
and Villaret ”007] (hereafter referred to as DVO7) adonted a

illaret [1997] (hereafter referred to as DVO7) adopted a
simpler one- dlmensmnal horlzontally averaged dcscrlptron of
the flow. This analysis, based on spatial-mean quantities, was
suggested by the experimental work of Ranasoma [1992] [see
also Ranasoma and Sleath, 1992]. Here local, phase-averaged
measurements of horizontal velocity and momentum transfer
were made above rippled beds in symmetrical oscillatory flow,
and the results were then horizontally averaged at various
elevations above the ripple crest level. From an analysis of the
resulting mean velocity field, Ranasoma and Sleath concluded
that, close to the bed, large-scale mixing produced by vortices
had the dominant effect on the mean velocity profiles, whereas
at distances from the bed greater than about two ripple heights,
turbulence had the dominant effect. Noting that the measured
spatial-mean velocity profiles preserved features of the
classical Stokes' shear wave solution, DV97 suggested that the
problem might be analyzed quite simply using standard
gradient diffusion arguments. In particular, they defined a
time-varying “convective” eddy viscosity to relate the horizon-
tally averaged total shear stress, due mainly to periodic
velocity contributions, to the horizontally averaged mean flow
velocity gradient. This approach clearly does not provide any
insight into the details of the flow in between roughness
elements. However, its validity was confirmed by Perrier
[1996], who horizontally averaged the results of a two-
dimensional (2-D) discrete vortex model of oscillatory flow
over a rippled bed [Perrier et al., 1994] and hence recovered
the essential structure of the present one-dimensional (1-D)
time-varying eddy viscosity from the computed shear stress
and mean velocity fields.

A parameterization of both the mean and time-varying
components of the convective eddy viscosity was obtained by
DV97 from a detailed analysis of Ranasoma's [1992] data.
They found that the maximum value of K during each wave
half cycle occurred at the phase angle of flow reversal, and that
the relative amplitude of the (symmetrical) time-varying
component of K was of the same order of magnitude as the
mean component. In a previous study, Sleath [1991] adopted
an analogy with grid turbulence and suggested use of a time-
and height-invariant eddy viscosity in very rough turbulent
flow conditions. In fact, the formula proposed by Sleath was
found by DV97 to be in reasonable agreement with the mean

(time averaged) component of K, which they had estimated
from Ranasoma's laboratory data. A similar time- and height-
invariant eddy viscosity formula was suggested by Nielsen
[1992], though for somewhat rougher flow conditions.
Following Sleath [1991] and Nielsen [1992], DV97 assumed,
as a first approximation, that both the mean and time-varying
components of the convective eddy viscosity should remain
constant with height above the bed. They noted also that the
peak values of K given by this model during the wave cycle
were comparable in magnitude with the constant values of K
determined independently by Ranasoma and Sleath [1992] for
the outer turbulent flow in their experiments.

For symmetrical waves, the effect of the above time-varying

eddy \ncr‘nmty is to alter the r\hf\cp relationshin between the
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hor 1zontal and vertical components of velocrty within the
bottom wave UUullUdly mycr This causes a reduction in the
near-bed drift of the kind observed qualitatively by Bijker et al.
[1974], who found that when the same incident waves propa-
gated above a smooth bed, then above a flat, sand-roughened,
bed and, finally, above a rippled bed, the onshore near-bed
drift was reduced in magnitude above the sand bed, and then

tal ko~ tha rinmlad had
further reduced to approximately zero above the rippled bed.

This behavior has been confirmed in several more recent
quantitative studies.

The predictions of the DV97 model were tested by Davies
and Villaret [1998] (hereafter referred to as DV98) against
four published data sets obtained in the rough turbulent
regime. Their main conclusion was that the predictions of the
model systematically underestimated the reduction in the near-
bed drift (i.e., compared with Longuet-Higgins' [1953] result).
This was attributed to the fact that all the data considered had
been obtained beneath waves displaying some degree of
asymmetry, which caused shedding of vortices of unequal
strength in successive wave half cycles above the rippled and
very rough beds in question. In fact, it was shown qualita-
tively by DV98 that the effects of wave asymmetry, which
were not included in the DV97 model, played a major,
complementary role in determining the near-bed drift.

Our aim in this paper is to extend the DV97 convective
eddy viscosity model by including the effects of wave asym-
metry, and to examine the implications of this model for the
drift within the wave boundary layer. In section 2 we intro-
duce the time-varying eddy viscosity K used to represent
momentum transfer due to vortex shedding. Here also we
discuss the “spatially-averaged” boundary layer equation and
obtain equations at first and second order in a scheme consis-
tent with classical Stokes' theory. In section 3, these equations
are solved using a standard perturbation approach in which
both symmetrical and asymmetrical time-varying components
of K are assumed to be small. In section 4 we then obtain the
solution for the Eulerian drift, and discuss the behavior of its
different components as the degree of wave asymmetry B
(equation (29)) and the nonlinearity parameter ¢/U, are varied.
In section 5, an empirical approach, based on five published
experimental data sets, is used to estimate the coefficient
defining the asymmetrical time-varying component of K. The
model predictions are then compared both with measurements
of the drift at the outer edge of the wave boundary layer and
also with measured drift profiles. In section 6 the results are
discussed, and the dependence of the model coefficients on the
degree of wave asymmetry as well as on the relative roughness
of the bed are considered. In section 7 the conclusions are
stated.



DAVIES AND VILLARET: WAVE-INDUCED EULERIAN DRIFT ABOVE RIPPLES

2. Formulation

2.1. Governing Equations

We consider the flow induced in the bottom boundary layer
by progressive, monochromatic waves traveling in water of
constant mean depth. At the edge of the oscillatory boundary
layer, the unsteady component of the motion is assumed to be
described by the classical Stokes' second-order solution for
inviscid, irrotational flow. The bed is assumed to be fixed and
very rough, the roughness elements being either three-dimen-
sional grains or two-dimensional ripples. In each case the
boundary layer flow is assumed to be nonlaminar, being
influenced in the former case and dominated in the latter case
by spatially and temporally well-organized vortex shedding
events.

In models of rough turbulent boundary layer flow it is
normally assumed that the boundary layer thickness is large
compared with the scale of the bed roughness, such that there
exists a region inside the boundary layer that is not influenced
directly by the flow past individual roughness elements. In
order to retain the simplicity of a one-dimensional model
based on the gradient diffusion concept, this assumption is
made here, even for the case of rippled beds above which
vortex shedding gives rise to complicated two-dimensional
flow structures extending through much of the boundary layer.
In the model described below, we aim to capture the essential
physics of the 2-D vortex shedding phenomenon within a
simple, locally 1-D model.

Initially, we extend the formulation discussed by DV97 by
the inclusion of nonlinear convective terms in the free-stream
flow at the edge of the boundary layer. In DV97 the instanta-
neous, local, horizontal, and vertical components of velocity
u,w in the two-dimensional boundary layer flow were decom-
posed into phase-averaged u,,w, and turbulent u’,w’ compo-
nents, such that u = u, + u' and w = w, + w'. If viscous
stresses are neglected and convective terms are included in the
free stream, the phase-averaged momentum balance in the
horizontal x -direction (the direction of wave travel) may be
expressed [cf. Nielsen, 1992] as

ou ou ou
Py P P
ot P ox 7 9z
Ju,, ou,, 3. P
= +u— - —W'? - =@ww) . 1
ot = ox 8x( I az( h W

Here z is positive in the upward direction with z = 0 at the bed;
time is denoted by ¢, u,, is the free-stream velocity; and (u’z)p
and (u'w’), are the normal and tangential components,
respectively, of the phase-averaged turbulent Reynolds stress.
The velocity components u,,w, are related by the continuity
equation

Ju ow
_r P =0, )
ox 0z

For a rippled bed of wavelength A which is much smaller than
the surface wavelength A, the velocity components u,,w, may
be horizontally averaged locally (i.e., over one ripple wave-
length) such that

u =<u>+u , wo=<w>+ W, 3)

where
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X+A2 x+A2

1 1
<u> = 0 f u, dx <w,> = n f w, dx , @)
x=A12 x=A2
and #,,w, represent the variations in velocity occurring within

one wavelength (with <@ > = <w > = 0). This averaging
procedure may be extended to three-dimensionally rough beds
by the choice of a suitably large averaging length. After local
averaging, the horizontal variations in <u,> and <w,> that
remain are due solely to the changes that occur on the larger
scale of the surface wavelength.

After (3) is substituted into (1) and (2) and local averaging
has been carried out, the momentum equation (1), subject to
the boundary layer approximation, may be written as

o<u > o<u > o<u >
L+ <u L+ cw>—2L
ot P ax P gz
Ju,, du,, 1071,
= 2 vy —= 2 (5)
ot ox p Oz

where p is the fluid density, and the shear stress T,is given by

T, = p<(u’w’)p> - p<1ipwp> . (6)
The total stress T, in (6) is made up of two components. The
first is the horizontally averaged turbulent Reynolds stress, and
the second is the horizontally averaged momentum transfer by
periodic velocity correlations, which makes the dominant
contribution to t, above rippled (and very rough) beds [cf.
Sleath, 1987]. The eddy viscosity K which relates the total
shear stress to the horizontally averaged velocity gradient is
defined by

8<up>

oz

As has often been pointed out [e.g., Rodi, 1984], the eddy
viscosity analogy between turbulent and molecular motion
cannot be correct, in principle, because the "free paths" of the
larger eddies responsible for momentum transfer are not small
compared with the fluid domain. Indeed, this objection to the
use of gradient diffusion concepts might be considered
particularly relevant here. However, our aim is to demonstrate
that the eddy viscosity K as defined by (7) provides a good
practical tool with which to analyze the spatial-mean flow.
The unsteady component of u,, is assumed to be described
by Stokes' second-order solution evaluated at z = 0, while the
steady component is determined by the mechanics of the

(N

T, = pK

. boundary layer and so is unknown at the outset. At the edge

of the boundary layer, <u,> tends to u,, while 7, decreases to
zero. At the theoretical bed level, located between the crests
and troughs of the bed roughness elements, the flow is
assumed to satisfy the no-slip condition (<u,> = <w,>=0 at
z=0). Finally, the locally averaged continuity equation that
must be satisfied by the two-dimensional boundary layer flow
is

o<u > o<w >
14 + 14

Ox 0z

In the boundary layer approximation (5) to the momentum’
equation, the terms neglected are O(k8) compared with the
leading terms, which comprise the linear terms (including the
stress term), while the nonlinear convective terms in (5) are
O(kA,) compared with these leading terms. (Here k is the

=0. ®
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surface wavenumber and & is the boundary layer thickness.)
Since in Stokes' solution the quantity (kA,) is assumed to be
small compared with unity, this allows a series solution to be
written, as follows:

U, = Uy U,
<I/ll) = I/ll + le +

W/)‘ W T WZ -

T, 2T T, te )]

where quotients such as u,/u, are O(kA,). Substitution of (9)
into (5) and (8) yields the following linear equations at leading
order [O(kA))]:

du, ou,, (102)

71T NLAN
(10b)

ou, © du, du,
—_— ”1_ + 1~
ot ox 0z
3 ]
s N R (1)
ot ox oz\ p
Oy Mo (11b)
ox 0z

The unsteady components of horizontal velocity at the outer
edge of the wave boundary layer, consistent with (10) and (11),
are given by

u, = Uycos® (12a)
— 3kA,
Uy — U ————— U,cos20 , (12b)
451nh kh

where U, = A,w is the free-stream velocity amplitude, 6 = (wt -
kx) is the wave phase function in which w is the angular
frequency and h is the water depth. The overbar denotes time-
averaging over one wave period.

Finally, in anticipation of the constrained relationship
between the even and odd harmonics in the solution, it is
convenient to write:

K =K + K

even odd

(13)
where K., and K, include, respectively, the even and odd
harmonic contributions to the time-varying eddy viscosity K.
The resulting first- and second-order stress fields are then

given by

ou,
T = mea—z (14a)
ou, 7 Ou,
‘CZ = pK('vma_Z * melda_Z : (14b)

Hereafter, we use complex notation, replacing the various
(lower case) variables in (9) by the real parts of (upper case)
variables defined by u, = Re (U,e®), etc.

2.2. Time-Varying Eddy Viscosity

For the specification of the eddy viscosity within the
oscillatory boundary layer above rippled (or very rough) beds,
we follow DV97 and define a “convective eddy viscosity”
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which exhibits time ¢ dependence but no height z dependence
as follows:

1 1 i 0]
K = 2Ky |l « ee + ee], (15a)
so that ‘
174 R f- L .21‘6] r _ gy 0 (18K
Boven = FRo|L T '€ | Boga ~ 3“0 1€ - oY)

on 1
on i, i€adl

the ]pqr‘hng constant term (V4K ) on the

consta 1 (V2K,)) on th
rlght hand d of (15a) may be calculated using the formula of
either Sleath [199'1] or Nielsen [1992] (see section 5.2.2). The
second term represents the time variation in K which occurs at
the first harmonic frequency as a result of asymmetry in the
free-stream flow (equation (12)). The magnitude of the
complex coefficient €, = |¢,|exp(i(p,) might therefore be
expected to be small, though we leave open the possibility that
it is O(1); its phase angle ¢, which is governed by the eddy-
shedding process at the bed level, is discussed in section 5.2.1.
The third term on the right- hand side of (15a) represents
symmetrical time variation in the convective eddy viscosity,
which also occurs as a result of eddy shedding from the bed in
each wave half cycle. The magnitude of the coefficient €, =
|e,|exp(ip,) is not prescribed at the outset; in fact, from an
analysis of the rippled bed data of Ranasoma [1992], it has
been shown by DV97 to be O(1). Initially therefore we leave
open the possibility that |€,] is either small or O(1). As far as
the phase angle @, is concerned, this has been shown by DV97
to be governed by the phase of eddy shedding at flow reversal
(see section 5.2.1).

The truncation of the expression for K at the third harmonic
frequency is not intended to imply that time variation in the
eddy viscosity is nonexistent at frequencies higher than the
second. However, it has been shown by DV97 that the
contribution to the solution for the velocity field arising from
the fourth and higher (even) harmonics in K is relatively small.
Thus, in order to preserve simplicity while still capturing the
essential consequences of the eddy-shedding process, we have
adopted the simple form for K given by (15).

3. Perturbation Solution Scheme

3.1. Structure of Solution

The structure of the perturbation solution is shown in
Table 1. Essentially, we treat (kA,) as the small parameter
which establishes the basic hierarchy in the solution (see (9)).
The solutions obtained at both first [O(kA())] and second
[O(kA,)*] order are then perturbed by the terms in (15) involv-.
ing ¢, and ¢,, which define the time variation in K. In other
words, we treat €, and €, as secondary perturbation parameters
and, initially at least, neglect térms involving squares and
products of these quantities at each order of the basic solutlon
defined by (kA,).

As noted in section 2.2, there is some uncertainty about the
magnitude of ¢, (and also €,). The possibility that |¢,| is O(1)
has been discussed by DV97, who compared the present
perturbation solution with a coupled solution based on the
method of normal modes (see the appendix). This comparison,
which showed close agreement between the amplitude and
phase of the fundamental component of velocity, even if |¢,|
is O(1), provides independent support for the development
here of a relatively simple practical model involving the
secondary perturbation parameters. For completeness,
however, we note later both thie effect of retaining ~ |¢,]* terms
in the lowest-order velocity solution and the effects of retain-
ing terms involving squares and products of €, and &, in the
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Table 1. Summary of the Perturbation Solution Scheme for the Velocity Field and the Eulerian Drift

Order of Basic Solution for
Velocity Field

Perturbations to Velocity Field

Order of Contributions to Eulerian drift

First harmonic O(kA,) O(g,), equation (21)*

basic Stokes' solution, (18)

Second harmonic O(kA,)> none’

basic Stokes' solution, (30)

wave Reynolds stress terms

on right hand side of (32):

O(kA,)* and perturbation

Ol(KA? 5], (39) and (42)"
asymmetry terms:

0 [&/(kAy)], (46)°
wave Reynolds stress terms:

none since O(kA,)* terms negligible
asymmetry term:

o[ ez(kA())z]’ (48)

Here £ is the surface wavenumber and A, is the near-bed excursion amplitude.
“ The complete solution correct to O(g,)” is given in the appendix. There is no possible €, perturbation.
" See the appendix for additional g,” perturbation term (see (43)).

¢ See (47) for O[g,&,(kA)] term.

¢ Any €, perturbation will not contribute to the drift at order lower than (kA,)*.

final solution for the Eulerian drift. In practice, the inclusion
of such terms makes a very minor adjustment to the results.

In sections 3.2 and 3.3, we obtain solutions for the velocity
field at the first and second harmonic frequencies for use in the
determination of the near-bed drift. In principle, since the
eddy viscosity is time varying, the velocity field should contain
an infinite number of harmonics. However, in practice, we
concentrate on the leading terms, giving emphasis to those
aspects of the solution relevant to the generation of near-bed
currents. So, for example, the contribution of the velocity field
at the third harmonic frequency has been neglected, even
though the behavior of the third (and also fifth) harmonic was
used by DV97 to determine the form of the time-varying eddy
viscosity K in (15).

3.2. First-Order Solution

We seek initially the lowest-order [O(kA,)] solution of (10a)
at the first harmonic (fundamental) frequency, and then obtain
the perturbation to this solution resulting from the (small) term
of order |g,| in the convective eddy viscosity (15) (see
Table 1). As a result of the distinct roles of the odd and even
harmonics in K, it is only the term ~g&, which contributes a
perturbation to the lowest-order component of the velocity u,.

If we write

u

= Ue®, (16)

and then substitute (14a) into (10a), subject to (15), the
momentum equation O(kA,) at the first harmonic frequency
(~€™®) becomes

- 8
u, =Ujze

. 2 2
EU,:——O 82dU1*+dU1
2 2 4 12 dz? dz?
in which the asterisk denotes the complex conjugate. In the
absence of ¢, time variation in (17), the solution for U,(z)
(=U,,, say) that satisfies the no-slip condition at z = 0 reduces
to the familiar Stokes' shear wave solution, namely,

Uy, = Uyl - e 0] (18)

where o = (w/K,)""” is the wavenumber that characterizes the
decay rate of the shear wave with height above the bed. If the

1 K
w +_o

, (17)

€, term is reintroduced and a solution of (17) is sought which
represents a perturbation of (18) such that

Uy =0, + U, (19)
where U ,(2) is O(e,), then U,, must satisfy
Uy 2iw, 54, (20)
2t K, 72 gt

in which U, is given by (18). In order to satisfy the no-slip
condition, the particular solution of (20) must be combined
with the solution of the homogeneous equation for U,,,
yielding the following solution for U,:

ie—(l-i)ocz _ _f_:ge—(l*ri)ocz .

4 4

U = U1 - e 0 s @1)

The corresponding solution (O(g,)) for the velocity component
U, at the third harmonic frequency has been discussed by
DV97. They found that |U,/U,| remains small, even if |g,| is
O(1), as a result of the constraint of the upper and lower
boundary conditions.

3.3. Second-Order Solution

The second-order solution for the velocity field satisfying
(11) and (12) is obtained by arguments similar to those used by
Trowbridge and Madsen [1984b]. With an eye on the objec-
tive of this paper, namely, the determination of the near-bed
residual current field, we anticipate that a second-order
solution that is consistent with the present small parameter
approach requires K, ., in (15b) to be taken equal to only the
time-invariant component of the eddy viscosity, namely, %2K,,.
In other words, the second harmonic contribution to K in (15a)
may be neglected. As far as the first harmonic contribution is
concerned, this may be retained through the second-order
stress field (equation (14b)). However, the contribution
ultimately made by this term to the residual current field is
strictly of higher order. If the second harmonic in K is ne-
glected in calculating u,, the lowest order velocity field for use
in (11a) becomes simply the Stokes' shear wave solution U,
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given b y (18), and the mrrespondin g lowest-order shear stress

T, Say, is given by (14a) in which K., = 2K,
At the outset we need to eliminate w, from (11a) by using
(10). For progressive waves, integration of (10b) yields

w ot )

z gll 1 Z AYI
Ok K 9%
w, = -[—tdz = +—[—Ldz, (22)
! { x (o{ t .
and so, after using (10a),
k i, k rtl ThI]
wo= % z+——l———J, (23)

PP

in which 1, represents the lowest-order bed shear stress and in
which we take 17, = 1:,', for the reason given above. After

buuautuuug \43} into \1 ld), the second-order momentum
equation may be written in the form:

r q

O]
ot az lp]
u 3 )
=" =2 %A—( ] _} - ,—iruxl(uwl—-ul)-i
ot 2ox oxt o
r 1
Lk du,, du, k ou, [T T
k5 24)
w 81 az w Jz|p p

The second-order velocity and stress fields each comprises a
second harmonic component and a time-mean component
(denoted by an overbar) as follows:

uzz[ =[‘L'_2+T262[6].

For consistency with the notation adopted in obtaining the
first-order solution, we denote by u,, and T,,, respectively, the
second-order velocity and stress components derived subject
to the assumption of a time-invariant eddy viscosity (i.e.,
=1K,), such that

W U™, (25)

CVCH

| du,,

T T 50 dz 21
If the £, term is retained at this stage, this has no effect at
lowest order on solution (30). We therefore delay the introduc-
tion of this term until section 4, where the drift velocity is
calculated.
After substituting (25) into (24) and collecting the terms at
the second harmonic frequency, the equation governing U,,
becomes

=1
780

X au,,
p— . (26)
dz

d|i, U, s
d—zE 0 dz } 2l(A)U2]
= -2i0U,, + ikU_[U.,- ]—%[UWI—U”]Z
du a,|T, T
LS LA Bt 11 | R @7)
2 dz 2w dz p

The terms on the right-hand side of (27) are known from (18)
and (14a), in which U, = U, and K., = ¥2K,, in the calculation

cven

of t,, =T, If, for convenience, (12b) is rewritten

u, - u, = BU, e, (28)
so that

U., = BU,

w2 (29)

where B = %kA, /sinh” kh, then, after some algebra, the solution

for U,,, which satisfies the no-slip condition on z = 0, becomes
U, =U, { B - %iUo[l +oz(1+i)]e iz
l ©
( -B + 1L ] f“*'m} : (30)
P APRS
\ W J

4, Eulerian Drift in the Bottom Boundary Layer
4.1. Mean Momentum Balance and Drift Profile

The near-bed drift a, results from contributions (see Table

RLIDVLIONS & 1

1) arising from the relatlonship between the time-varying
velocity field, which has been determined earlier to first and
second order with respect to (kA,) (equations (21) and (30),
respectively) and the time- varying eddy viscosity K given by
(15). If, foliowing substitution of (25) into (24), the time-mean
momentum balance is obtained and this equation is integrated
with respect to z, it follows that [cf. Trowbridge and Madsen,

1984b]

T, ou (T, T, i T
2. ﬁzul o, ﬁul(_l _ﬂJ N ﬁumli, (1)
o ® ot w \p p ® p
By use of (23), this may be expressed alternatively as
_pi = uw, - (uw, 32)

It is (32) which most clearly expresses the essential physics of
the time-mean momentum balance in the bottom boundary
layer. Note that the second-order velocity field does not
contribute to the right-hand side of (32), the term ( u,w, ) being
O(KA,)".

The second-order velocity U,, was derived earlier, subject
to the neglect of the €, term in (15). In order to calculate the
complete second-order stress field on the left-hand side of (32),
we now reintroduce both this symmetrical (~¢,) time variation
in K, and also the asymmetrical (~¢,) time variation. The
complete second-order mean stress field then comprises the -
contribution T,, given by (26) together with contributions at
second-order arising from the following: (1) One contribution
is the leading-order component of velocity (u,,) at the first
harmonic frequency, in combination with the €, asymmetry
term in K (equation (15)). Since u,, is O(kA,) and the eddy
viscosity term is O(g,), the resulting contribution to the mean
stress is O[g,(kA,)]. Although the €, terms in the complete
first-order solution (21) may not be strictly "small", we assume
here initially that terms involving the product €,¢, are small
and may be ignored. (2) A second contribution is the leading-
order velocity component u,, at the second harmonic fre-
quency, in combination with the €, term in K. Since u,, is
O(kA,)? and the eddy viscosity term is O(g,), the contribution
to the mean stress is O[e,(kA,)*]. The justification for the
neglect of €, terms in the earlier derivation of u,, was that the
resulting contribution to the mean stress field would be
Ole,*(kA,)*], which is assumed to be negligible.

So the second-order mean stress arises from (the real part of)
(15a) and the expression

U=U~+U, e+ U, (33)
in which U (= @,) is the second-order residual velocity, U, is
the first-order velocity amplitude which contains terms both
O(kA,) and O[e,(kA,)] (see (21)), and U, = U,, is the second-
order velocity amplitude which is O(kA,)>. Assuming that
terms involving squares and products of €, and €, are negligi-
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ble, the second-order mean stress T, (= T,) is given by the real
part of

du,

du,, | 20«
£ + =€ . (34)
dz

k, |4V . 1
2N 4y 2

1
20 gy

2

T
p

Before substituting this expression into (32), we use (22) to
express the first-order vertical velocity as

W= 2 fude, (35)
c
where the phase speed ¢ = w/k. It follows that
ww, - ww), = SUW,, - i(UW )
m)U
= f dz - f U,dz. (36)

After substitution of (34) and (36) into (32), the mean momen-
tum balance may be expressed as follows:

K, dU
0
0% - = Udz - U, |Udz
2 dz f z f
_ KyedUy,, K &, dU,, 37)
22 dz 22 dz

in which the respective terms on the right-hand side are
subject, at most, to a correction of order €, or €, (see Table 1).
The first term arises from (32) and depends upon the vertical
velocity field. The second and third terms are “asymmetry
terms” arising from the first and second harmonics of the time-
varying eddy viscosity, respectively, and are independent of the
vertical velocity field. We now evaluate these terms in turn.
4.1.1. Term 1. This arises from the wave Reynolds stress
associated with the lowest-order velocity field. Prior to the
introduction of the €, correction, the horizontal velocity is
given by U,, (equation (18)). If, initially, U, is substituted
for U, in the first term on the right-hand side of (37), the basic
Stokes contribution to the Eulerlan drift U, say, is given by

the real part of
KodU, 02|00,

o cosz
2 a’z 2c o

_ Ze—azeiuz _

(-9
20

e 20z ,

(33)

which yields the following drift profile satisfying the require-
ment of no slip at z = 0 [cf. Longuet-Higgins, 1958]:
2

S
U = —2[3 - 4e “cosaz + e %]
’ 4c
2
- 2—{o¢ze "% [sinoz +cosoz] —e"“sinaz}. (39)
C

The lowest-order velocity field U, subject to the correction
O(g,) is given by (21), which may be written as
€
_ 2
U =0, + T [Uu - Um] . (40)
If (40) is now substituted into the first term on the right-hand
side of (37), the resulting contribution to the drift U ¢V, say,

may be expressed as
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K, du®
P} dz

-;ﬁ UH*[U”a'z U, /U“dz [1 +Le ve )} (41)
from which, recalling that €, =|¢,|exp(i@,), it follows that

U =T, [] + %|82|coscp2 . 42)

No terms of order g,*arise in (42).

In obtaining (21) for U,, we treated €, as a small parameter
and then, in the appendix, showed how the solution is affected
if €, is not small (i.e., if terms of order €, are retained in the
analysis). If this assumption is also made in the determination
of the Eulerian drift and (A7) is used instead of (21), the final
result for the drift arising from term 1 on the right-hand side of
(37) differs from (42) in two respects; first, the shear wave-
number o is replaced by B as defined by (A6) and, second, the
coefficient in (42) [1 + V2|e,|cos @, ] is replaced by

2 + |g,|cosg,

The modified drift profile, which is stated in the appendix as
(A8), is correct to order g,%. The effects of the two modifica-
tions to (42) are, first, that the vertical decay rate in the
solution becomes rather greater (since § > o) and, second, that
the magnitude of the drift also becomes greater since

(1+=]e,[cos,) (1-]e,[*)"?
I, e,/
8

(43)

1+ + o (44)

cos@, +

4.1.2. Term 2. The first of the two asymmetry terms in (37)
is readily evaluated to give the second contribution to the drift,
U @. Substitution of (18) into the second term on the right-
hand side of (37) yields

du®
dz

and integration of this with respect to z, subject to the no-slip
condition at z = 0, gives

= —og Uga(l-ne 7%, 453)

U® = %Uolel{[e‘“zcos(oczﬂp]) - cos@,|, (46)
where €, = |¢,|exp(i¢,). This solution, being derived from U},
(equation (18)) rather than U, (equation (21)) neglects terms
involving the product (g,&,) and so is consistent with the
perturbation procedure. However, if ~(g,¢,) terms are included
on the grounds that term 2 is only O(kA,) (see Table 1) and
also that either €, or &, may not be small, then the solution
based upon (21) becomes

W]m -U, I—]—l cos®,

£
—e *cos(az+@) - 1—221 sin(¢,~@,)sinaz (. 47)

However, in practice, the effect of the extra €€, term has been
found to be very small, supporting the present perturbation
approach.
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4.1.3. Term 3. The second of the two asymmetry terms in
(37) yields the third and final contribution to the drift, U®. If
U,, given by (30) is substituted into the third term on the right-
hand side of (37) and the no-slip condition is again applied at
z=0, it may be shown that U® is given by

2
4c
+sin(az + <p2)] —e V22004 (ﬁaz + mz)}

u® {e “%cos(aiz + @y + 0ze "“Z[cos (az+@,)

£
+ %BUO[e Ve gng 20z + @,) - cos (pz] . (48)

This solution, being derived from U, (equation (30)), neglects
square terms O(g,’), as well as the €&, term that would have
arisen from the inclusion in (26) of the €, term in the second-
order stress field. However, the present approach is a consis-
tent one, since term 3 is O(kA,)*>.  The final solution for the
drift is obtained from the sum of the three terms given by (42),
(46), and (48):

T=-00+0®+ 09, (49)

If these terms are evaluated at the edge of the boundary layer,
the expression for the drift becomes simply

Z]': - :])V_‘_ U:,Z) i Uo(f)
= U:ll +%l€2|COS(pZ]—%UOItI]'COS(pl

- %Uolslecos 9, (50)

in which U _, = %U,/c.
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4.2. Model Predictions for the Eulerian Drift

The model prediction for the nondimensional Eulerian drift

(U .c/U,?) for a representative asymmetrical wave is shown in
Figure 1, together with the classical drift profile of Longuet-
Higgins [1958] (hereinafter referred to as LH) (equation (39)).
The parameter settings, which are typical of those determined
for the experimental data sets in section 5, are as follows:
asymmetry parameter B = 0.1 and propagation parameter ¢/U,
= 10. This value of ¢/U, is physically reasonable since c/U, =
(A,k)" and (Ajk) was treated earlier as a small parameter. The
phase angles @, and @, are defined according to (54) (see
section 5.2.1), such that the dominant eddy viscosity peak
during the wave cycle occurs at the instant of flow reversal
following the passage of the wave crest (here @, =-80°). The
values of |¢,| and |&,| have both been taken as 1.3. The use of
such large values was justified earlier with reference to the
comparison made by DV97 with a solution obtained by the
method of normal modes. However, it still may be considered
disturbing that our data analysis (section 5) yields values of
|e,| and |e,| greater than unity, implying a (slightly) negative
eddy viscosity at certain instants in the wave cycle. In the first
place, it should be noted that since we are considering a
perturbation solution, no mathematical difficulty (i.e., singular-
ity) arises when the sign of K changes. Further, the signifi-
cance of the negative eddy viscosity should not be overstated.
If a more complete model of the eddy viscosity had been
adopted, including, for example, a fourth harmonic component
in K with its positive peak values at the same instants as those
of the second harmonic, negative values of K would not
necessarily have arisen. This point is discussed more fully in
section 6.

45r

3.5F
az

25F

LH j

1 15 2

U;

Figure 1. Representative spatially averaged drift profile resulting from asymmetrical waves above a very
rough or rippled bed. The present model prediction U (equation (49)) is shown by the solid line, and its
component parts U", U® and U ® by the dashed, dash-dotted, and dotted lines, respectively. Parameter
settings are B = 0.1; ¢/U, = 10, where c is wave speed and U, is near-bed velocity amplitude; with|e, | = |&,|
= 1.3. Phase angles @, and ¢, are given by (55); here @, = -80°. Longuet-Higgins' [1953] solution (solid line

labelled LH) is shown for comparison.



DAVIES AND VILLARET:

WAVE-INDUCED EULERIAN DRIFT ABOVE RIPPLES

1473

5

45t

4}

azZ
35+F

3l

2.5¢F

2k

15¢

0.5F e

0.7 0.8 0.9

UO¢
23

0.6

Figure 2a. Profiles of drift component U with |¢,| = 1 and ¢, = 7/2 (dashed line), 37/4 (and 5n/4) (dash-

dotted line), and 7 (solid line).

In Figure 1 the drift profile given by (49) is shown by the
solid line, and the contributions of terms 1, 2 and 3 (equations
(42), (46), and (48)) are shown by the dashed, dash-dotted, and
dotted lines, respectively. In comparison with LH (labeled
solid line), the direction of the Eulerian drift is reversed at the
edge of the boundary layer. Here positive contributions from
terms 1 and 3 are offset by a large negative contribution from
term 2. This latter effect is predicted also by Trowbridge and

Madsen's [1984b] eddy viscosity model for long (asymmetri-
cal) waves. In contrast, close to the bed, terms 1, 2, and 3
complement one another and the drift profile shows a pro-
nounced forward jet, the reversal of the direction of drift
occurring within the boundary layer (at a.z = 2.8). This effect
is not predicted by Trowbridge and Madsen's model.

The predictions for the drift are dependent upon the values
assumed for the complex coefficients €, and €,, as well as on

az

Figure 2b. Profiles of drift component U® with |e,| = 1 and @, = -7/2 (dotted line), -37/8 (solid line), -1t/4

(dash-dotted line), and -7t/8 (dashed line).
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Figure 2c. Profiles of drift component U® with B = 0, ¢/U, = 10, |¢,| = 1, and @, = 7/2 (dashed line), 31/4
(dash-dotted line), 7 (solid line), and 57/4 (dotted line).

the values of the parameters B and. ¢/U,. First, the U ©
contribution to the drift (equation (42)) depends upon the
values of |¢&,| and @,. The effect on U" of varying ¢, with
|e,| = 1 is shown in Figure 2a, in which ¢, = 11/2 (dashed line)
corresponds to LH; here the largest reduction in the drift is
given by ¢, = 7 (solid line). Second, the U ® contribution
(equation (46)) depends upon |¢,| and ¢,. The effect on U @
of varying ¢, with |¢,| = 1 is shown in Figure 2b. The
essential difference between the predictions of the present

convective eddy viscosity model and Trowbridge and Mad-
sen's [1984b] model lies in the behavior of this (dominant) U@
term. Above very rough and rippled beds, flow reversal occurs
such that U ® has the form of the profile for @, = -311/8 in
Figure 2b. In contrast, Trowbridge and Madsen's solution for
less rough beds corresponds to values of @, in the range 7/10
to 7/5. Thus, in the former case, there is a forward near-bed jet
with a backward drift in the outer boundary layer, while, in the
latter case, the drift is in the backward direction at all heights.

451

az
3.5F

25

—
W
T

U9c

Uy

Figure 2d. Profiles of drift component U® as in Figure 2c, but with B = 0.1.
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Figure 1, with ¢/U, = 10 and B = 0.05 (dotted line), 0.1 (dash-dotted line), 0.15 (solid line), and 0.2 (dashed

line).

Finally, the U® contribution (equation (48)) depends not only
upon |g,| and ¢, but also on the values of the parameters Band
¢/U,. Figure 2c shows the effect on U of varying ¢, , with
le,| = 1, B =0, and ¢/U, = 10. Figure 2d shows the same
profiles but now with B = 0.1; the change in the value of B
increases the magnitude of this contribution and produces a
nonzero value at the edge of the boundary layer.

The results shown in Figure 1 are sensitive to the values of
the parameters B and ¢/U,. This is highlighted in Figure 3a,
where the effect of increasing the asymmetry parameter B

while keeping ¢/U, constant is to increase both the near-bed jet
and the (negative) outer flow drift. In Figure 3b, the effect of
increasing c/U,, while keeping B constant, is to increase the
magnitude of the mean velocity gradient; the near-bed maxi-
mum drift is increased, while the outer flow drift is decreased.

In section 5 the present model results for the Eulerian drift
are compared with various published data sets. For brevity, we
have not included examples of profiles of velocity amplitude
and phase (first and second harmonics). For such compari-
sons, the reader is referred to DV97.

az
35 \

2.5

1.5r

Figure 3b. Same as Figure 3a, but for B=0.1 and c/U, =5 (dash-dotted line), 10 (solid line), and 15 (dashed line).
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5. Comparisons Between Measurements of
Eulerian Drift and Model Predictions

5.1. Laboratory Data Sets

We consider five laboratory studies of the Eulerian drift in
the bottom boundary layer beneath progressive waves. The
relevant aspects of these studies, the first four of which were
considered by DV98, are summarized below. For full details
of the experimental conditions, the original papers (cited
below) should be consulted. We make comparisons here only
with the subset of tests carried out in the rough turbulent
regime, the details of which are given in Tables 2 and 3.
Unless stated otherwise, vertical profiles of velocity were
measured in the respective tests using an LDA system. In
several cases, these profiles include not only the bottom wave
boundary layer but also a significant region of the “interior”
flow above this.

5.1.1. Van Doorn and Godefroy [1978]. A flume experi-
ment (tests RA/RB) was carried out with waves alone, above
a bed comprising 2-D strip roughness (of height 0.2 cm)
distributed over a 1.5 m test section. The velocity profiles
were measured above the roughness crests and troughs. The
equivalent bed roughness, taken here as k, = 2.1 cm, was
obtained from a logarithmic fit to a mean velocity profile
measured in steady flow conditions.

5.1.2. Sleath [1984]. Flume experiments were carried out
using a single layer of gravel of median diameter D = 1.1 cm,
distributed uniformly over the bed for a distance of 8 m. In
this case, no vertical profiles of velocity were obtained and the
results reported were of the maximum near-bed- drift, rather
than the drift at the edge of the boundary layer. In addition, the
results were spatially averaged across the width of the flume.

DAVIES AND VILLARET: WAVE-INDUCED EULERIAN DRIFT ABOVE RIPPLES

Following Sleath [1984], we have taken the bed roughness as
k,=2D,,=2.45 cm.

5.1.3. Villaret and Perrier [1992] [see also Villaret and
Latteux,1992].. Three experiments were carried out with
progressive waves above a test section of 20 m length compris-
ing mobile, rippled sand (D = 0.009 cm). Of these, tests 35
and 39 are considered to be the best, since lateral reflections
and free waves may have affected the results in the remaining
case. The spatially averaged horizontal velocity was measured
with a 1-D ultrasonic meter, and the drift values reported here
were recorded at levels uncontaminated by suspended sedi-
ment. While the equilibrium profiles were reasonably symmet-
rical, the ripple pattern was transitional between two and three
dimensional. In test 39, the representative ripple height n was
0.75 cm and the wavelength A was 6.1 cm; the equivalent bed
roughness given by Swart's [1976] formula (see below) was
therefore k,=2.31 cm.

5.1.4. Marin and Sleath [1994]. Three experiments were
carried out in a 17.5 m flume, above a test section comprising
a fixed, stabilized sand bed of symmetrical 2-D ripples. The
ripple height ) was 0.8 cm, and wavelength A was 4.5 cm; the
equivalent roughness was therefore k, = 3.6 cm. Since Eulerian
drift profiles were measured only very close to the bed (in a
layer of thickness about A/5) at both crests and troughs, the
appropriate basis for comparison with the other data and also
with our model is less clear in this case.

5.1.5. Mathisen and Madsen [1996a, b]. Nine experiments
were carried out in a 28 m flume above a test section compris-
ing transverse 2-D triangular bars of height 1.5 cm and spacing
10 cm (20 cm in some cases). FEulerian drift profiles were
measured above both crests and troughs of the bars. Represen-
tative equivalent roughness values were determined from

Table 2. Hydrodynamic Parameter Settings Used in the Laboratory Experiments

Test Period Depth Wave U, ms’ kh B /U,
T,s h, m Height
H,m
MS1 1.35 0.2 0.029 - (0.080) 0.72 (0.10) (16.2)
0.086 0.08 15.0
MS2 1.38 0.2 0.048 0.121) 0.70 (0.17) (10.8)
0.144 0.15 9.0
MS3 1.33 0.2 0.064 (0.158) 0.73 (0.15) (8.2)
0.190 0.17 6.8
MMa 2.24 0.6 0.101 0.171 0.75 0.084 13.0
MMb 2.63 0.6 0.107 0.190 0.63 0.139 12.0
MMc 2.89 0.6 0.106 0.193 0.57 0.177 12.0
MMd 2.24 0.6 0.070 0.118 0.75 0.058 18.9
MMe 2.63 0.6 0.077 0.137 0.63 0.100 16.7
MMf 2.89 0.6 . 0.074 0.136 0.57 0.124 17.0
MMm 2.24 0.6 0.099 0.167 0.75 0.082 13.3
MMn 2.63 0.6 0.107 0.191 0.63 0.140 11.9
MMo 2.89 0.6 0.110 0.200 0.57 0.183 11.6
VP35 1.50 0.6 0.232 0.300 1.26 0.040 6.7
VP39 2.00 0.6 0.232 0.373 0.86 0.135 5.8
VD RA/RB 2.00 0.3 0.120 (0.298) 0.58 0.22) 5.5
0.308 0.38 5.3
S11 1.92 0.334 0.085 0.202 0.64 0.19 8.4
- S12 1.90 0.333 0.077 0.183 0.65 0.17 9.3
S13 1.86 0.333 0.073 0.172 0.67 0.15 11.3
S14 1.92 0.333 0.092 0.219 0.64 0.20 7.8
S28 0.96 0.193 0.085 0.217 1.07 0.08 5.5

Values were calculated using linear wave theory. Numbers in parentheses are measured values. Parameters are U,, near-bed
velocity amplitude; k, surface wavenumber; B, asymmetry parameter (see (29)); and ¢, wave phase speed. Test abbreviations are
defined as follows: MS, Marin and Sleath [1994], tests 1-3; MM, Mathisen and Madsen [1996b], tests a-f and m-o; VP, Villaret and
Perrier [1992], tests 35 and 39; VD, Van Doorn and Godefroy [1978], test RA/RB; and S, Sleath [1984], tests 11-14 and 28.
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Figure 4. Delineation of flow regimes, indicating the

boundary between transitional and very rough turbulent

oscillatory flow. The symbols representing the data sets are as follows: asterisks, Sleath [1984]; open circles,
Marin and Sleath [1994]; solid circles, Villaret and Perrier [1992]; pluses, Mathisen and Madsen [1996a,b];

and cross, Van Doorn and Godefroy [1978].

experiments involving currents alone, waves alone, and also
combined wave and current flows, as k, = 21.3 cm for the 10
cm bar spacing and &, = 11.1 cm for the 20 cm spacing.

It should be noted that beach reflection was of negligible
importance in each of these studies. In the experiments of Van
Doorn and Godefroy [1978], the reflection coefficient R was
zero due to the short duration of the tests [see also Trowbridge
and Madsen, 1984b]. In the experiments of Sleath [1984], R
was always less than 0.03, and since Marin and Sleath’s
[1994] experiments were carried out with the same wave flume
and beach, the same value of R may be inferred. In the tests of
Villaret and Perrier [1992], R was about 0.05, and so beach
reflection would not have appreciably affected the drift results.
Although no value of R is quoted by Mathisen and Madsen
[19964a, b], their discussion indicates that care was taken to
ensure that the waves were of pure progressive type.

In discussing the respective data sets, we treat in exactly the
same way the cases of rough (3-D) and rippled (2-D) beds.
Initially, in Figure 4, we show the location of the various data
points on the delineation of the (Re, A,/k,) plane adopted by
DV97, where the wave Reynolds number Re = U, A, /v (v is
kinematic viscosity). All of the data (except for two of Marin
and Sleath's [1994] tests) lie in the very rough turbulent
regime. Linear theory has been used here to calculate the wave
parameters (U, A, etc.) from the measured water depth A,
wave height H, and angular frequency w in each test. Where
an equivalent roughness has been determined experimentally,
this has been used in the classification (see Table 3). Other-
wise, for the two cases involving ripples, Swart's [1976]
formula has been used, namely, k, = 25n(1/A). It may be noted
that if the values determined experimentally for k, in the
experiments of Van Doorn and Godefroy [1978] and Mathisen
and Madsen [1996a, b] are related in this way to the height and
wavelength of the respective (sharp crested) roughness
elements, it turns out that k, = 80n(n/A). This suggests that

the equivalent roughness may have been underestimated for the
rippled beds by our use of Swart's formula, the shape as well
as the size of the roughness elements evidently having a
significant influence upon k.

The uncertainty in our determination of k, is illustrated by
the fact that the value A, /k, given for Van Doorn and Gode-
froy's [1978] test RA/RB is comparable with that obtained for
Villaret and Perrier's [1992] test 39, despite the fact that, in
the former case, the particle excursion amplitude A, corre-
sponds to about six rouighness spacings and, in the latter case,
to only about one and a half ripple wavelengths. Although
according to the value of A,/k,, the two cases are hydraulically
equivalent, the conditions in test RA/RB are likely to have
been influenced to a greater extent by turbulence and to a
lesser extent by organized vortex shedding than in test 39.
Thus a less strongly time varying eddy viscosity may be
expected in the former case than in the latter (see section 6).

For a true comparison with the model, the Eulerian drift data
should represent an appropriately averaged mean velocity, i.e.,
a horizontal average on at least the scale of the bed roughness
elements. In practice, only Slec:th [1984] presented his data in
this form. In the experiments of Villaret and Perrier [1992],
the measuring length scale was somewhat smaller than the
ripple length. In the remaining experiments, LDA measure-
ments were carried out above the crests and troughs of the bed
roughness elements. In these cases, the Eulerian drift can be
defined with confidence only if measurements made at the
same absolute level at these two locations are reasonably
consistent. Fortunately, in most of the experimental tests, this
was the case. However, in the experiments of Marin and
Sleath [1994], the data were obtained so close to the bed that
most of the measurement levels in the trough were actually
below the crest level.

An additional point relating to the basis for comparison
between the present theory and the data sets above concerns
the validity of the assumption (see (32)) that the mean bed
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Table 3. Bed Roughness, Mean Eddy Viscosity 2K, and Boundary Layer Thickness 6 for the Experiments

Test Roughness Type Roughness Size, k,, cm Aylk, VK, &, (=a™), d,, cm
cm cm?’ s’ cm
MS1 2-D stabilized sand, A=45,1n=08 3.6 (0.48) 0.11) (0.22) (1.1)
rippled bed 0.52 0.12 0.23 1.15
MS2 2-D stabilized sand, A=45,1=0.8 3.6 (0.75) 0.17) 0.27) (1.4)
rippled bed 0.89 0.21 0.30 1.5
MS3 2-D stabilized sand, A=45,1=0.8 3.6 (0.94) 0.22) (0.31) (1.5)
rippled bed 1.13 0.27 0.34 1.7
MMa 2-D triangular A=10,n=15 21.3* 0.29 1.46 1.02 5.1
roughness elements
MMb 2-D triangular A=10,n=15 21.3* 0.37 1.62 1.16 5.8
roughness elements
MMc 2-D triangular A=10,n=15 21.3* 0.42 1.65 1.23 6.2
roughness elements
MMd 2-D triangular A=10,n=15 21.3 0.20 1.006 0.85 4.2
roughness elements
MMe 2-D triangular A=10,n=1.5 21.3* 0.27 1.17 0.99 4.9
roughness elements : :
MMf 2-D triangular A=10,n=15 21.3¢ 0.29 1.15 1.0 5.1
roughness elements
MMm 2-D triangular A=20,n=15 11.1 0.54 0.74 0.73 3.6
roughness elements i
MMn 2-D triangular A=20,n=1.5 11.1 0.72 - 0.85 0.84 42
- roughness elements ‘
MMo 2-D triangular A=20,n=15 11.1 0.83 0.88 0.90 4.5
roughness elements
VP35 rippled bed, A=5,1=0.7 2.45* 2.9 0.32 0.39 1.9
2-D (2Y¥2-D)
VP39 rippled bed, A=6.1,1=0.75 2.31% 52 0.49 0.56 2.8
2-D (2¥2-D)
VD 2-D square A=15n=02 2.1 4.5) (0.34) (0.46) (2.3)
RA/RB roughness 4.7 0.35 0.47 24
S11 immobile gravel bed Dy, =1.22 245 2.53 0.20 0.35 1.8
S12 immobile gravel bed Dy, =1.22 2.45 2.24 0.18 0.33 1.7
S13 immobile gravel bed Dy, =1.22 245 2.08 0.17 0.32 1.6
S14 immobile gravel bed Dy, =1.22 2.45 2.73 0.22 0.36 1.9
S28 immobile gravel bed Dyy=1.22 245 1.35 0.21 0.25 1.3

See Table 2 for test abbreviations. Here k, is equivalent bed roughness and s and w subscripts are defined such that wave boundary
layer thickness 8, = 58, = 5(K,/w)" (see (55)); A is wavelength, and 7 is ripple height. Values in parentheses have been obtained from
measured values. Mean eddy viscosity is given by Nielsen's [1992] formula for A,/k, < 2.5 and Sleath's [1991] formula for A, /k, >2.5.

* Swart's [1976] formula was used (k, = 251()/A)).

shear stress is equal to the mean stress at the edge of the wave
boundary layer given by the terms on the right-hand side of (6).
In fact, the total mean stress is not equal to this latter Reynolds
stress term owing to momentum flux contributions arising in
the boundary layer from the effects of (1) surface wave
amplitude dissipation and (2) any surface (mean) slope in the
wave flume in question. Following arguments similar to those
adopted by Nielsen and You [1996], we have carried out a
control-volume analysis to assess the balance of forces within
the wave boundary layer, though, for brevity, the details of this
are not included here. Essentially, for wave dissipation rates
such as those measured by Mathisen and Madsen [1996a] and
with the edge of the boundary layer as defined by (55), the
momentum flux contribution due to dissipation is, at most,
0.12 times the (dominant) wave Reynolds stress component at
the edge of the boundary layer. As far as the surface slope
contribution is concerned, even if a substantial mean slope of
0(107) is assumed, the contribution to the momentum flux is
no more than about one half of that due to wave dissipation.
So, even in the worst case in which the two above effects
complement one another, it is reasonable to assume that the
total stress is approximately equal to the wave Reynolds stress.
In relation to surface slope effects, Mathisen and Madsen
[1996b] carried out a test on.the return currents in their flume,
from which they concluded that the drift observed at the edge

of the wave boundary layer was the result of processes within
the boundary layer.

The approach adopted in sections 5.2 and 5.3 is to use the
various data sets to evaluate the coefficient €, defining the
asymmetrical component of the time-varying eddy viscosity K
(see (15)). Comparisons are then made between the model
predictions and measurements of the drift at the edge of the
wave boundary layer, as well as with vertical profiles of the
drift. For consistency and simplicity in the treatment of all the
data sets and also in the model comparisons, the origin of z has
been assumed to be located at the level midway between crest
and trough of the bed roughness elements. This definition was
adopted also by Ranasoma and Sleath [1992].

5.2. The Drift at the Edge of the Boundary Layer

5.2.1. Model prediction. According to’(50), the nondimen-
sional drift at the outer edge of the wave boundary layer (U )
is a function of both B and ¢/U,. This may be seen when (50)
is written

Uc
<€ _ 1[1 +i|ez|cos(p2}
LR
-1 _lg ¢
: U0|£1|COS‘91 2BUO|£2|cos<p2 . (51)
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Figure 5. Nondimensional Eulerian drift at the edge of the boundary layer in relation to A,/k,. The dashed
line shows the expected reduction (cf. Longuet-Higgins, 1953) in the drift for purely symmetrical waves,
resulting from the behavior assumed for |¢,| by Davies and Villaret [1998]. The symbols representing the
various data sets are as defined in Figure 4.
The first term on the right-hand side of (51) is the modification i
to the nondimensional drift (i.e., compared with the classical U, = U, |coswt +Bcos2wt + —= (53)
LH result of %) resulting from the time-varying viscosity for o

purely symmetrical waves. It was concluded by DV98 that this
first term alone is insufficient to fully explain the reduction in
the nondimensional drift observed in the very rough turbulent
regime. This is shown in Figure 5, which also includes the
recently published data of Mathisen and Madsen [1996b].
Here the dashed line represents the nondimensional drift
determined by DV98 for purely symmetrical waves. It was
assumed by DV98 that |¢,| = 1.3 and ¢, = 7 for A,/k, < 1 and
|e,| =0 for A, /k, > 30, with |¢,| decreasing linearly between
these values in the range 1 < A, /k, < 30.

The second and third terms on the right-hand side of (51)
account for the effects of wave asymmetry. Since the product
Bc/U, in the third term is equal to 3/[4 sinh®kh] (from (29)),
(51) can be rewritten

Uc | 1
=21+ 1- le,| cos @,
UO2 42 sinh?kh

féﬁkzl[cosq)] . (52)

0

It follows that if both €, and €, remain approximately constant,
the nondimensional drift should decrease linearly with increas-
ing ¢/U,, provided that kh is also approximately constant for
the data considered. In the case of symmetrical waves it was
established by DV97 that ¢, = m, such that maxima in the time-
varying eddy viscosity K occur at times of flow reversal. Here

maxima in K are again linked to flow reversal in the wave -

cycle, but with the additional effects of wave asymmetry taken
into account. If the free-stream flow, which includes both first
and second harmonic components and also the residual
velocity, is expressed as

(see (33) in which we have taken x = 0, for convenience), then
flow reversal following the passage of a wave crest occurs
when wt = arccos {B - U /U,}. Since eddy shedding is
expected to occur slightly in advance of flow reversal, with
phase lead Ag, say [Block et al, 1994], we have defined the
phase angle at which the principal peak in K occurs during the
wave cycle, as follows:

B = A
(, = —arccos - + A@
: U

0

(54a)

with

¢, =21 + 2¢, . (54b)
These definitions have been used in all the comparisons below.
For simplicity, we have used the measured values of U. to
obtain @, from (54a) in the respective cases, which turns out to
give consistent estimates for the drift.

5.2.2. Data sets. Most of the measured vertical profiles of
Eulerian drift include not only the bottom wave boundary layer
but also a significant region of the interior flow above this.
Since, in practice, variations in the mean velocity occur near
the edge of the boundary layer, a consistent definition of the
boundary layer thickness is essential in the determination of
the values of U,. Here we have defined the wave boundary
layer thickness 0, as

5 =56 (55a)

3

¥

where

(55b)
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Table 4. Comparison of Laboratory Data and Standard Model of Eulerian Drift at the Edge of the Wave Boundary

Layer, z =z,
Test Measurements of Vertical Profile of Drift Measured Drift Velocity Model Prediction
Location Z., CM U, ,cms’! U.. c/Uy} U, c/Uy

MSI1 crest and trough 0.9 (-0.69) (-1.4) (-1.44)
-0.81 -1.35

MS2 crest and trough 0.9 (-1.57) (-1.4) (-1.31)
-2.22 -1.13

MS3 crest and trough 0.9 (-1.06) (-0.55) (-0.51)
-1.53 -0.45
MMa crest and trough 8.5 -1.5 -1.14 -1.08
MMb crest and trough 5.25 -1.2 -0.76 -0.85
MMc crest and trough 6.0 -4.0 -2.47 -2.19
MMd none 5.25 -1.9 -3.04 -2.58
MMe none 5.25 -1.2 -1.46 -1.50
MMf none 5.25 -3.2 -4.02 -3.38
MMm none 5.25 -1.0 -0.80 -0.87
MMn none 5.25 -1.4 -0.87 -0.93
MMo none 5.25 -2.5 -1.44 -1.42
VP35 spatial average 2.0 -1.60 -0.36 -0.25
VP39 spatial average 2.8 -1.80 -0.28 -0.18

VD RA/RB crest and trough 2.3 -0.60 (-0.11) (-0.11)
-0.10 -0.37
S11 none max. Eulerian drift 2.6 0.11 -0.10
S12 none max. Eulerian drift 2.6 0.13 -0.12
S13 none max. Eulerian drift -3.0 -0.17 -0.34
S14 none max. Eulerian drift -1.8 -0.06 -0.21
S28 none max. Eulerian drift -2.7 -0.07 -0.02

For the standard model, see (51) in which |g,|=|g,|=1.3, with ¢, and @, given by (54) in which A@=4°. Values in parentheses

have been obtained from measured values.

which, according to Stokes' solution (18), is approximately
double the height at which the velocity maximum or “over-

shoot” occurs on the vertical profile of U,,. The cycle-mean -

value of the convective eddy viscosity (¥2K,) (see (15)) has
been estimated using the formula of either Nielsen [1992] or
Sleath [1991], according to whether A, /k, is less than or greater
than 2.5 (the value at which the two formulas are in agree-
ment):

KO AO

—2 = 0.004U,k, — <25

2 ! . .
(56)

K, A A

—2 = 0.00253U,k, |2 2>25

2 | &, k,

The values of ¥2K,,, 1/&, and 0,, thus calculated for the various
data sets are given in Table 3. For example, in the case of Van
Doorn and Godefroy's [1978] experiment, the edge of the
boundary layer is given by (55) as §,, # 2.4 cm, which corre-
sponds to approximately twice the height at which the maxi-
mum overshoot was observed. In tests 35 and 39 of Villaret
and Perrier [1992], the values of ,, given by (55) correspond
to 2.7 and 3.7 times the ripple height, respectively.

The measured values of Eulerian drift estimated on this
basis at the edge of the boundary layer are given in Table 4. In
tests 35 and 39 of Villaret and Perrier [1992] and also in the
experiments of Van Doorn and Godefroy [1978] (test RA/RB)
and Mathisen and Madsen [1996a, b] (tests a, b, and c),
measurements of the drift were made throughout the wave
boundary layer. In these cases, the values of U, have been
obtained by interpolating the velocity measurements made near

the edge of the boundary layer. In the case of Mathisen and
Madsen's test a, the value calculated for &, is clearly an
underestimate (by a factor about 1.8, as discussed later), and so
here the outer flow drift has been obtained by interpolating the
velocity data at a height of 9 cm, rather than at 6,=5.1 cm. In
Mathisen and Madsen's tests d to o, we have used the values of
the Eulerian drift quoted by the authors, which were measured
at a constant elevation of z = 5.25 cm, just above the boundary
layer (8, = 3.6 - 5.1 cm; see Table 3). In the experiments of
Marin and Sleath [1994], drift velocities were measured only
in a near-bed layer of thickness 0.9 cm. These measurements

" did not therefore extend to the edge of the boundary layer (5,

= 1.1 to 1.5 cm); here we consider only the drift measured
above the crest and have taken the uppermost measurement
level (at height = 9 mm) as the edge of the boundary layer (see
Table 4). In the data sets of Sleath [1984], the measurements
were of the maximum (averaged) drift within the boundary
layer.

5.2.3. Estimates of model coefficients. In order to deter-
mine the parameters €, and A¢ in the time-varying eddy
viscosity model, (52) has been compared with our estimates in
Table 4 of the Eulerian drift. The measurements of non-
dimensional Eulerian drift are plotted against (c/U,)cos(¢,) in
Figure 6. According to (52), the value of |g,| should be given
by twice the slope of a best fit regression line. Here a standard
linear regression procedure has been used to determine |¢,|,
while the phase lead A has been treated as a fitting parameter.
The best fit line in Figure 6 corresponds to |g,| = 1.3 (0.2
defining the 90% confidence interval) with Ag = 4°.

These new results for |e;| and A, together with the
previous estimate of |g,| = 1.3 used by DV98, are assumed
initially to remain constant in a “standard” time-varying eddy
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Figure 6. Nondimensional Eulerian drift in relation to (¢/U,)cos@,. The symbols representing the various
data sets are as defined in Figure 4. The best fit regression line corresponds to |¢,| = 1.3 with Ap = 4°.

viscosity model for the very rough turbulent regime. This
global model for K, which applies to the parameter range
corresponding to the present data sets, is illustrated in Figure
7. The dominant (first) peak in the nondimensional eddy
viscosity [K /(¥2K,)] follows the passage of the steep wave
crest, while the smaller (second) peak follows the trough. The
relative magnitude of the two peaks is 3.6. The larger peak
occurs 4° ahead of flow reversal, which corresponds to the
expected phase lead of vortex ejection before reversal in the
free stream. i

The standard model has been used to predict the drift at the
edge of the boundary layer for each data set. As noted in
section 4.2, the model results are sensitive to the values of the
coefficients B and ¢/U,, defining the wave asymmetry. Both
coefficients can be calculated using linear wave theory (see
(12)), given the period, water depth, and (local) wave height.
However, waves generated in flume experiments may be
perturbed significantly by parasitic reflections and sec-
ond-order free waves, such that the amplitudes (and phases) of
the first and second harmonics of velocity may differ locally

4 T
K 3 5 o -
VK, 3l i
2.5¢ .
U, 2+ ! ‘.“ 4
Uy -

w?

Figure 7. Standard time-varying eddy viscosity model for asymmetrical waves in the very rough turbulent
regime. The solid line represents velocity variation through the wave cycle with B = 0.1, while the dashed
line represents the nondimensional eddy viscosity K/(Y2K,).
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Figure 8. Comparison between the predicted and measured values of the nondimensional Eulerian drift at
the edge of the boundary layer using the standard time-varying eddy viscosity model. Perfect agreement
corresponds to the solid line. The symbols representing the various data sets are as defined in Figure 4.

from the theoretical values. In Table 2, the measured values of
B and ¢/U, are shown (where available) in parentheses, while
theoretically calculated values are shown without enclosures.

- The predictions of the outer flow Eulerian drift in Table 4 have
been made using both the measured and theoretical values, the
agreement with the data generally being improved by using the
measured values.

The predictions of the standard model shown in Figure 8 are
in good overall agreement with the data and certainly represent
an improvement on the classical LH value (of %) for the
nondimensional drift. In the case of Sleath's [1984] data, the
standard model suggests a rather stronger reversal in the drift
than that which was observed. However, this is as expected
since it was the maximum drift that was measured in this case,
rather than the drift at the edge of the boundary layer. The
model also tends to underestimate systematically the large
(negative values of) drift reported in some of Mathisen and
Madsen's [1996b] data (tests ¢, d and f). This discrepancy
could be due to a dependence of the eddy viscosity model
coefficients (g,, €,, and A@) on the degree of wave asymmetry
and also on the relative roughness (Ay/k,). The effect of
varying these parameters is discussed in section 6.

5.3. Model Predictions of Vertical Profiles of Eulerian
Drift :

For those tests where vertical profiles are available, the
standard model (|g,| = | &,] = 1.3, Ap = 4°) has been used to
predict the Eulerian drift throughout the boundary layer. In
particular, the following data sets have been considered: Van
Doorn and Godefroy's [1978] test RA/RB (VD), Mathisen and
Madsen's [1996b] tests a,b,c (MMa, b, c¢), and Villaret and
Perrier's [1992] tests 35 and 39 (VP35, 39). Marin and
Sleath's [1994] data sets have been excluded from this compar-
ison for the reason given in section 5.1.

Comparisons between the predictions of the standard model
(solid lines) and the drift data (symbols) are shown in Figures
9, 10, and 11. In some cases, a small change in the model
coefficients was found to improve the overall fit to the data;
these “adjusted” model results are also shown (dash-dotted
lines). The classical LH solution is shown for comparison in
each figure. In addition, in the cases of VD and VP39, the
profile given by Trowbridge and Madsen's [1984b] model
(TM) is also included. Although it should be emphasized that
this model is being used here outside its range of validity
(A, Tk, = 30), the two cases chosen are those for which A, /k,
was relatively large (>4).

In Figure 9, the comparison between the standard model and
the VD data is generally satisfactory. However, the maximum
near-bed drift is overestimated by the model, while the height
at which the direction of drift reverses is underestimated.
Significantly better agreement can be achieved by reducing the
values of the eddy viscosity coefficients to |€,| = 1.0 and |&,|
= 0.33, while maintaining the phase lead as A@ = 4°. This
improvement suggests a possible dependence of the model
coefficients upon the relative roughness (since A,/k, = 4.1 in
VD), as well as upon the degree of wave asymmetry (B = 0.22
in VD). This is discussed further in section 6.  The agreement
between the TM model (run here with B = 0.22) and the data
is quite good in this case and certainly much better than
obtained by use of the LH model.

The comparisons between the standard model and Mathisen
and Madsen's [1996b] data are shown in Figure 10. For test
MMa (Figure 10a), the boundary layer thickness is clearly
underestimated in comparison with the data. In this case, it
was found necessary to enhance 0, by a factor of 1.8. This
suggests that in the lower range of relative roughness (here
A, Ik, ~ 0.3), the method used to estimate §,, (section 5.2.2)
may no longer be valid (see section 6). After enhancement of
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the boundary layer thickness, the agreement between the
measured drift profile and the standard model is quite good,
both the outer flow drift and also the level at which the flow
reverses being reproduced accurately. For test MMDb (Figure
10b), the agreement between the standard model and the

10 T

U (cm/s)

Figure 9. Comparison between measured and predicted vertical profiles of the Eulerian drift for the data (test
RA/RB) of Van Doorn and Godefroy [1978]. The symbols indicate measurements made above the crests
(crosses) and troughs (circles) of the roughness elements. The origin of z is located at the level midway
between the crests and troughs, and the height of the crests of the roughness elements is indicated by the dash-

dotted line at the bottom left. The predicted profiles are from the standard model (solid line), the adjusted
model (dash-dotted line), and LH model (dashed line).

measurements is generally satisfactory, though there is
substantial scatter in the data in this case. For test MMc
(Figure 10c), the agreement between the standard model and
the Eulerian drift measurements is improved by reducing the
value of |¢&,| from 1.3 to 0.43, while keeping the other coeffi-

z (cm)

\;

- ; S
e

U (cm/s)

Figure 10. Measured and predicted vertical profiles of Eulerian drift for Mathisen and Madsen's [1996b]
tests (a) MMa, (b) MMb, and (c) MMc. The definitions of the symbols and lines are the same as in Figure
9. . '
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Figure 10. (continued)

cients unchanged. This reduction in |&,| can be justified in
terms of the large degree of wave asymmetry in this case (B >
0.15) (see section 6). :

The comparisons between the standard model and the VP35
and VP39 data (Figures 11a and 11b, respectively) are gener-
ally satisfactory. Both the outer flow drift and the height of
reversal are well reproduced, such that no adjustment of the
model coefficients is beneficial in these cases. The agreement
between the TM model and the data is not as good in the case
of VP39.

6. Discussion

In the standard time-varying eddy viscosity model, the
magnitude of the coefficients |€,| and |€,| has been assumed
to remain constant. On the basis of our analysis of the outer

flow Eulerian drift, we found that |e,| = 1.3 £ 0.2 with Ag =
4°, while for|e,| we used the earlier estimate of DV97,
namely, |&,| = 1.3. The resulting standard model has been
shown to make reasonable estimates for both the outer flow
Eulerian drift and also the vertical drift profile. However, for
some of the data sets, a slight adjustment to the model coeffi-
cients was found to improve the overall fit to the profiles.
Since a dependence of the coefficients upon the degree of
asymmetry B, as well as on the relative roughness A, /k,, may
be expected physically, we now consider these possibilities in

turn.
6.1. Dependence of the Drift on A, /k,

First, in the \}ery rough turbulent range (A, /k, ~ 0.3, test
MMa), it was found necessary to increase the boundary layer
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thickness by a factor of 1.8. The underestimate of 6, by the
standard model may be due to the fact that Nielsen's [1992]
formula (equation (56)) is not valid in these conditions. (This
formula is based only on data for which A,/k, > 2.) Another
possibility is that the boundary layer thickess should have been
scaled on the maximum value of eddy viscosity during the
wave cycle, rather than on the cycle-mean value (equation
(55)).

Second, in the intermediate range (A, /k, > 2.5, test VD), it
was found necessary to reduce the magnitude of both of the
time-varying components of K. In fact, this is not surprising,
given that the eddy-shedding process should become less
important as the bed roughness decreases. In the limit of a flat

U (crvs)

Figure 11. Measured and predicted vertical profiles of Eulerian drift for Villaret and Perrier's [1992] tests
(a) VP35 and (b) VP39. The definitions of the symbols and lines are the same as in Figure 9. No adjusted
model runs were found beneficial in this case.

rough bed (A4, /k, > 30), Trowbridge and Madsen [1984a]
assumed that |g,| = 0.4.

6.2. Dependence of the Drift on B

The relative magnitude of the two peaks in the standard
time-varying eddy viscosity model was assumed to remain
constant (Figure 7). In fact, this is a very crude approximation,
since the degree of wave asymmetry B is expected to have
some influence on K. It has been noted previously that for very
asymmetrical waves (B > 0.2), secondary vortex ejection
following the passage of the wave trough may no longer occur
[Perrier, 1996]. This effect can be reproduced in the present
simple model by decreasing the relative magnitude of the ¢,
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component. For example, in both tests MMc and VD, which
correspond to the largest values of B (0.18 and 0.21, respec-
tively), better agreement is achieved by reducing the quotient
|e,]/|€,| to about Va. The time-varying eddy viscosity model
then contains only one peak per wave cycle.

Owing to the lack of suitable data, some uncertainty remains
about the range of validity of the present model and about the
precise behavior of the model coefficients as the value of B is
varied. Nevertheless, there is sufficient evidence to suggest the
following general trends for the model coefficients in the very
rough turbulent regime (4,/k, < 2). For symmetrical waves (B
= 0), we expect that |¢,| =0 and |¢,| = 1.3 (with @, = 7). In
the range 0 < B 5 0.05, |¢,| increases steadily to a maximum
value of about 1.3 at B = 0.05. For weakly asymmetrical
waves in the range 0.05 < B 5 0.1, |¢,| and |g,| both then
remain constant (and equal to about 1.3) with phase angles
given by (54). As the waves become still more asymmetrical
in the range 0.1 < B 5 0.15, the coefficient |g,| decreases such
that for B = 0.15, |g,| = 1.3 and |¢,| = Y3]¢,].

In the very rough turbulent regime (A,/k, < 2), momentum
transfer is dominated by the eddy-shedding process, and this
may be represented by the above convective eddy viscosity. As
Ay/k increases in the range (2, 30), the role of coherent vortex
structures progressively decreases (whatever the value of B is),
while the importance of random turbulent fluctuations in-
creases. Finally, for A,/k, 230, momentum transfer is domi-
nated by turbulent processes and a modeling approach such as
that of Trowbridge and Madsen [1984b] becomes appropriate.
For symmetrical waves, Trowbridge and Madsen found that the
near-bed Eulerian drift increases slightly in magnitude as A, /k,
decreases, tending to U .c/U,*> = 0.75 as Ay/k, - 30. In obtain-
ing this result in the symmetrical wave limit, Trowbridge and
Madsen included no time variation in K. According to our
solution, this trend of increasing nondimensional drift does not
continue as A,/k, decreases in the range A, /k, < 30.

In relation to the vertical structure of K in turbulent flows,
it was suggested by Trowbridge and Madsen [1984a] that the
time-varying component of K may decay more rapidly with
distance above the bed than the steady component. Here, for
rippled and very rough beds, we have assumed the same (i.e.,
constant) vertical structure for both the steady and unsteady
components of K, there being no clear empirical evidence to
suggest an alternative structure. However, it is possible that
the time-varying component of K does, in fact, vary with
height, particularly in the outer part of the oscillatory boundary
layer (i.e., above the near-bed vortex-dominated layer).

Finally, as noted in section 4.2 the simple convective eddy
viscosity defined by (7), which was assumed (equation (15)) to
include only harmonics up to the second in K, becomes
negative for short intervals during the wave cycle (Figure 7).
This is a consequence of our analysis of the data of Ranasoma
[1992]. If, in general, the eddy viscosity is considered to be
proportional to a (positive) velocity scale and also a (positive)
length scale characterizing the turbulent motion, then, as
pointed out by Rodi [1984], even in relatively simple flows, the
eddy viscosity concept breaks down. For example, in simple
wall jets, regions exist where the shear stress and velocity
gradient have opposite signs, implying a negative eddy
viscosity which, according to Rodi [1984, p.11] is "mathemati-
cally possible, but not physically meaningful". However, the
above notion of an eddy viscosity, which involves a strict
analogy with molecular diffusion, need not be adopted: In fact,
the idea of a negative eddy viscosity has been invoked many
times as a possible explanation for common instabilities in
geophysical flows [see Frisch [1995, chapter 9, and references
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therein]]. For example, Kraichnan [1976] obtained negative
values for the eddy viscosity, which he used to interpret the
reverse flow of energy to larger scales in the “inverse cascade”
of two-dimensional turbulence. In the context of measure-
ments made in oscillatory flow above rippled beds, Sato et al.
[1987] obtained negative values of eddy viscosity in regions
where the flow was accelerating, and Marin and Belorgey
[1994] reported regions of “negative turbulent energy produc-
tion” close to the bottom. In fact, at certain instants during the
wave cycle, the results of this latter study suggest negative
production in the spatial-mean sense, a phenomenon possibly
connected with a negative viscosity. However, for the reason
given in section 4.2, we do not seek here to attach such a
definite interpretation to the short intervals of negative
viscosity implied by our present definition of K.

7. Conclusions

A simple, analytical model has been presented for the
prediction of the near-bed Eulerian drift induced by weakly
asymmetrical waves (B s 0.2) above very rough and rippled
beds (Ay/k, < 5). Above such beds, momentum transfer is
dominated by the spatially well organized process of vortex
shedding, rather than by random turbulent processes. A
simplified, time-varying convective eddy viscosity K has been
defined here (equation (7)) to characterize this vortex-shedding
process in a standard, one-dimensional, gradient diffusion
framework. This approach was motivated by the observation
that the measured spatial-mean velocity field above a rippled
bed preserves features of the classical Stokes' shear wave
solution. The present convective eddy viscosity includes
symmetrical and asymmetrical time-varying components, with
phase angles such that the peak value of K occurs at about the
time of flow reversal following the passage of each (steep)
wave crest.

The Eulerian drift in the bottom wave boundary layer
(equation (50)) comprises three contributions that arise from
the relationship between the time-varying velocity and eddy

-viscosity fields. The first contribution (equation (43)) arises

from the wave Reynolds stress associated with the lowest-
order velocity field, while the second and third contributions
(equations (47) and (49)) are asymmetry terms arising from the
time-varying components of K. For typical weakly asymmetri-
cal waves, the Eulerian drift profile comprises (1) a near-bed
jet in the direction of wave advance; (2) a level of zero drift
within the boundary layer; and (3) a reversal in the direction of
drift, which then extends to the edge of the boundary layer.

The model predictions have been compared with results
from five flume investigations involving asymmetrical waves
above very rough and rippled beds. The reversal in the drift
noted above was evident at the edge of the boundary layer in
almost all of these experiments, its magnitude depending upon
the degree of wave asymmetry B and also on the relative bed
roughness Ay/k,. The model presented here shows good
agreement with the measured vertical drift profiles for ranges
of values of B and A, /k, of practical importance. The results
obtained have significant implications both for the magnitude
and direction of net sediment transport in the coastal zone and
also for vertical profiles of residual currents in the water
column as a whole.

Appendix: First-Order Solution When ¢, is Not
“Small”

The governing equation (17) for the first harmonic of the
velocity field was obtained earlier as a perturbation solution in
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which €, was assumed to be small. Since, in practice, €, may
not be small, it may be noted that (17) can be solved directly as
follows. If a solution is sought for the defect velocity U,F(z)
exp(i0), where function F(z) is defined by

U, =U, [l - FQI, (AD)
and if F'is written in the form
F =G, +1iG,, (Gu real) (A2)

then two coupled equations are obtained for G, and G, after
(A2) is substituted into (17), the real and imaginary parts of the
equation yielding, respectively,

, 46, 46, ,d%,
~0,G, = ——&; +
dz* dz 2 dz?
(A3)
2, . d’G, 4G, | d’G,
TG T T T T T
dz dz dz

where €, = |g,|cos@, and €, = |g,|sing, are the real and
imaginary parts of &, = |g,|exp(i@,), respectively, and o =
(w/K,)"*. Eliminating G, leads to the following fourth-order
equation for G;:

d*‘G
(1 - —]-|82]2) L+ 40°G, = 0. (A4)
4 dZ4
The solution for G, has the form
G, = AeP2cosBz + Be Psinfz , (A5)
where A and B are constants and in which f is given by
o
By = ———— . (A6)
(L 4le.l)
4

It is apparent from (A6) that the shear wavenumber B is
smaller than the wavenumber o in the perturbation solution,
implying that the boundary layer becomes thinner as ¢, is
increased. After some further algebra the solution may be
written as

U =10, {1—e'ﬁzcosﬁz

ey + Q2 5 )

As &,~ 0, it is apparent that B—« and that (A7) reverts to (21).

If (A7) is used in (37) instead of (21) in order to determine
the contribution to the Eulerian drift arising from wave
Reynolds stresses, the drift profile may be expressed in the
form (see (42)):

(AT)

e Psin Bz} .

_ 2 + ¢
=T | R |

|m sStm
\/4 - lszlz

where U |, is equal to the drift profile given by (39), subject
to the replacement of « by 3 throughout this equation.

(A8)
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