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In this note we use the method of multiple scales to derive the two coupled nonlinear partial 
differential equations which describe the evolution of a three-dimensional wave-packet of 
wavenumber 7c on water of finite depth. The equations are used to study the stability of the 
uniform Stokes wavetrain to small disturbances whose length scale is large compared with 
27/k. The stability criterion obtained is identical with that derived by Hayes under the more 
restrictive requirement that the disturbances are oblique plane waves in which the ampli- 
tude variation is much smaller than the phase variation. 

1. INTRODUCTION 

The evolution of progressive waves of slowly varying amplitude moving under 

gravity in water of finite depth has generated considerable interest in recent years. 
In particular, Whitham, in a series of papers beginning in 1965, has developed an 
attractive theory in which the motion is described in terms of a phase variable and 
an amplitude variable. The Whitham theory is actually applicable to a wide class 
of non-dissipative wave systems, especially those for which a Lagrangian is known, 
but in this paper we shall restrict attention to its use in the theory of water waves. 
Extensions of the theory have been made by Lighthill and by Hayes; the reader is 
referred to a recent paper by Hayes (I973) for a list of relevant articles on the Whit- 
ham theory. Perhaps the most notable success of the theory is in the study of the 

instability of the (uniform) Stokes wavetrain. If the depth is h and if the wavelength 
of this train is 27/k, Benjamin & Feir (1967) proved theoretically and Feir (1967) 
demonstrated experimentally that it is unstable if kh > 1.363 approximately. The 
Whitham theory implies that the evolution of a wave-packet is governed either by 
a hyperbolic or an elliptic equation and that the transition from the first kind to 
to the second occurs as kh increases through the value 1.363. When the governing 
equation is elliptic it appears that the mathematical problem of determining the 
motion is not well posed in that it is set as a Cauchy problem and the solution breaks 
down after a finite time. 

There are a number of features of the Whitham theory which deserve attention. In 
the first place it is difficult to understand precisely what is meant by a slow variation. 
It is usual in studies of slowly varying phenomena to introduce a small parameter 
e which in some sense is allowed to tend to zero and the notion of slow variation 
is made precise by reference to e. No such parameter is explicitly defined in the 
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Whitham theory. Secondly, the appearance of ill-posed equations is rare and since 
the rigorous theory of such equations is in its infancy many students feel a certain 
unease in using their solutions widely, particularly as the leading term of some 

asymptotic expansion. Finally, the restriction to non-dissipative systems excludes 

many important fluid dynamical problems which involve bifurcation and transition. 
An alternative way to study nonlinear wave-packets is to make use of the method 

of multiple scales wherein the small parameter e is explicitly built in to the expan- 
sion scheme. This method has been used by a number of authors in various fields 
and has been applied to gravity waves by Hasimoto & Ono ( 972); they also give 
a list of useful references. If we write the height C of the free surface above its un- 
disturbed value in the form 

g~ = ieoA (, r) exp {i(kx - (t)} + c.c. + O(62), 

where = e(x-Cgt), = e2t J 

x denotes distance in the direction of the wave motion, t is time, )2 = gk tanh kh, cg 
is the velocity, g is the acceleration due to gravity, and c.c. denotes the complex 
conjugate, then they showed that A satisfies the nonlinear Schrodinger equation 

?aA a2A 
A + =-vJAI2A, (1.2) 

where A, v are known real functions of g, k and h. With the further substitution 

A= Rexp{i0}, (1.3) 

where R and 0 are real functions, (1.2) is equivalent to the pair of real equations 

s^0 Sao\2 62R 

BR +A R -a =o- , 

XT 
4-A aR A= 0.( 

The form of Whitham's equations for this problem may be obtained from (1.4) 
on making the assumption that the phase variations, although small, are much 

larger than the amplitude variations so that 

R \ 
2 

a2Rg (1.5) 

Thus in a sense (1.2) includes Whitham's theory, but we must not exclude the 
possibility that it may have a wider application outside the range of validity of 
(1.2). Further (1.2) is a parabolic type of equation and as such the determination of 
A is a well-posed problem if A is given at r = 0 and at, for example, I61 = oo and these 
conditions are natural for the study of the evolution of wave-packets. Moreover 
the uniform wavetrain 

A = R exp (i^R2 r} (1.6) 
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may be obtained from (1.2) on assuming A to be independent of E. Hasimoto & 
Ono (I972) established that this solution is stable to relatively small disturbances 
only if Av > 0, a condition which leads to kh < 1.363 and is the same as that found by 
Benjamin & Feir (I967). The reason why this more general equation gives the same 
stability criterion as the Whitham theory, in which the simplifying assumption 
(1.5) has been made, is that all disturbances of sufficiently long wavelengths are 
unstable and these include those for which (1.5) is valid. 

Numerical studies by Karpman & Krushkal (I968) have established that when 
Ar < 0, the uniform wavetrain breaks up into a number of solitons and an oscillatory 
tail and completely loses its original structure. The solution does not terminate 
at a finite value of T, as appears to be the case in the Whitham formulation, the 
breakdown being prevented by the extra term 82R/8g2 in (1.4). Hayes (1973) 
refers to this term as a diffraction term and suggests that it 'may be made as small 
as desired through a suitable scale transformation'. In our opinion this is too narrow 
a view. Since the Whitham equations are correct in the sense in which they are 
formulated it is certainly possible to consider evolutionary systems in which the 
diffraction term might be removed by a suitable scale transformation. It does not, 
however, follow that such a transformation enables us to remove this term in general, 
or, for example, in all studies for which (1.2) is relevant, for the initial conditions 

may not permit such a transformation to be made. 
We observe also that Stewartson & Stuart (I971), using the method of multiple 

scales, have developed a theory for the evolution of small two-dimensional dis- 
turbances in marginally unstable plane Poiseuille flow, where dissipative effects 
are important. Their governing equation is very similar to (1.2). The differences 
are that A, v are now complex and there is an additional term proportional to A 
to represent the linear growth of A due to the marginal instability. Perhaps it may 
prove possible to generalize the Whitham theory to include dissipation, but at 

present it does not seem obvious how to do this even when nonlinear effects are 

neglected. (See note added in proof on p. 110.) 
An important result obtained by Hayes (I973) is the stability criterion for the 

Stokes wavetrain in three dimensions when subject to small disturbances consisting 
of oblique plane waves. Our aim in this paper is to develop a theory for three- 
dimensional wave-packets parallel to that of Hasimoto & Ono (I972). We shall 
show that for the three-dimensional problem two partial differential equations are 
needed to describe the motion, but that when the three-dimensionality is in the 
form of an oblique plane wave the two equations can be converted into a single 
equation similar to (1.2), so that the stability criterion follows very easily. Further 
it is shown that the Stokes wavetrain is stable to all small disturbances if it is stable 
to oblique plane waves. 

7-2 
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2. MULTIPLE SCALE DERIVATION OF THE 

EVOLUTIONARY EQUATIONS 

We choose a fixed Cartesian system of coordinates Oxyz, with origin 0 in the 
undisturbed free surface of the water and Oz pointing vertically upwards so that the 
bed of the water is defined by z =- h and the plane Oxy coincides with the 
undisturbed free surface. We suppose that at time t = 0 a progressive wave is 
established such that the elevation of the free surface is raised to z = , where 

g^t=O = iewa(ex, ey) exp {ikx} + c.c. (2.1) 

In (2.1) g is the acceleration due to gravity, k and o denote the wavenumber and 

frequency of the progressive wave respectively, a is a given function of ex, ey and e 
is a small positive constant. In physical terms this form corresponds to a progressive 
wave of wavelength 2n/k travelling in the direction of x increasing and with an 

amplitude slowly varying with position and on a scale inversely proportional to 
its height. The dispersion relation between k and to is 

= (gkr)i-, (2.2) 
where o = tanh kh. 

At subsequent times, measured by t, let the velocity potential be 0(x, y, z, t), so 
that 

820 82O 820 

x-2+ +--- 
= 

0, in -h < z < (2.3) 
ax2 a 2 aZ2 

The corresponding boundary conditions are 

-O0=, when z=-h, (2.4) 

a when nz wzhen z , (2.5a) 

and 2gf+2 ( 2+() 
2 

+a() = 0 when z= . (2.5b) at \ox Q \Q 
Iv 

Since the disturbance is assumed to be a progressive wave we can look for a solu- 
tion of (2.3)-(2.5) of the form 

= E OnEn, n = Z En, (2.6) 
n= - oo n:= - o 

where E = exp(i(kx-ot)}, -n, = , n = c, (2.7) 

and a tilde denotes the complex conjugate. Further, we may write 

O, n = E i, n = E Cj, (n > 0), (2.8) 
' 1n j=n 
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where fnj is a function of 6, y, z, r only, ~nj is a function of 6, y1, r only and 
oo = o00o = O. Here 

e(X--cgt), = ey, T = e2t (2.9) 

and Cg is the group velocity of the primary progressive wave so that 

Cg = '(k) = (g/2&) {- + h(l- -2)}. (2.10) 

We substitute the expansions (2.6), (2.8) for 0 into the partial differential equa- 
tion (2.3) and use the method of multiple scales to obtain a series of ordinary dif- 
ferential equations for the functions qSj, and when the boundary condition (2.4) 
is satisfied we find that, in particular, 

A cosh k(z + h) cosh 2k(z + h) 
A oshkh ' 22 cosh2kh ' 

(2.11) 
cosh k(z + (h) sinh k(z + h) -hocosh k(z + h) 

912 = D cosh kh' cosh kh 

where A, D, F are functions of 5, ,, r only. The solutions of the equations for the 

5oj functions are of especial interest for it emerges that their properties are strongly 
dependent on the value of ekh. We shall restrict attention here to the case ekh < 1, 
sometimes referred to in the literature as the case when 'the wave feels the bottom'. 
(The wave motion when this restriction is removed has been considered by J. M. 
Gardiner, who will report on his work elsewhere.) It follows that 9o1, b02 are in- 
dependent of z, while 

ie03 _ _+h>_t_o_ ^o aO -(Z+ )h) 
=2 +20i (2.12) 

The next step is the laborious one of substituting (2.6)-(2.8) into the boundary 
conditions (2.5a), (2.5b), using the method of multiple scales, and equating 
coefficients of ciEn to zero, seriatim, for j = 1, 2, 3 and n = 0, 1, 2. The procedure 
closely follows that of Hasimoto & Ono (1972) and so we shall omit the details. The 
results are: 

eE?; o01= 03 (2.13a) 

eEl; gli = ioA, (2.13b) 

e2E0; ggo2 = cg -l 2(-. _ 2)lA 2, (2.13c) 

aA 
e2E1; gl2 = ioD + Cg-, (2.13d) 

4y2 
-3\ /1- '4\ 

2E2; g2 k2A2 2 ) = 3ik2A2 A4 (2.13e) 

When we consider the coefficient of e3E0 in (2.5a) we have, in addition to the 
contribution from differentiating 02 with respect to 6, associated with ag/8t, a 
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contribution from 8503/8z, which is non-zero from (2.12). It then follows, on using 
(2.13c) to eliminate 02, that 

(gh-cg2) +h =-k2(2cp+c ,(1- )} a (2.14) 

together with an equation for o03 which we shall not need; in (2.14) c = wlk denotes 
the phase speed of the primary wave. 

The result of equating the coefficients of e3E1 in (2.5 a), (2.5 b) yields two algebraic 
equations for 913 and .3 at z = 0. If we eliminate 13 (or 913) from these two equa- 
tions we find that they are only compatible if 

OA A2A 82A 
2io -2 a- _ ) (1 _gh()} - + Cv Cg - {cj-gh( 21 kho)}^+cpg 

{-k 4{90-2 -12+ 13a0-2- 2(4} IA 12A+ k2{2c + g(l I -2)}A 00? (2. 15) 

Equations (2.14), (2.15) together describe the evolution of the progressive wave, 
to first order in e. The appropriate initial condition on A is that 

A (6, , 0) = a(6, ij). (2.16) 

On physical grounds a reasonable boundary condition is that, for any fixed r, the 
wave completely dies away sufficiently far from its centre so that 

A -> 0, gradol->0 as 62+y2-oo. (2.17) 

In the deep-water limit kh->oo (but preserving ekh < 1) or- 1, and equations 
(2.14), (2.15) simplify to grad 01 = 0 and 

aA g 82A ag 2A 4l12A ( 2io +- 44klk2--k8-q (2.ts) 
aT 4k a 2k a 

In the shallow-water limit kh - O, Cg -> c% and equations (2.14), (2.15) simplify to 

mm 0 d 200 3kC2 lA2 
Ek2h-2 ?lt g?- I I p (2.19) 

9g2 
+ 

jj gah 5 g 

and 2ik aA k2h2A 82A 9k2 3k2 a8(o0 and --" aT 22 + 2h 2A g2 hi - (2.20) 

although difficulties may now arise due to the non-uniformity of the approach of the 
asymptotic expansions for 0, C to the double limit e -p 0, kh -> O. At some stage in 
the limit process kh -> 0 extra terms may enter, depending on the magnitude of e, 
and the governing equations change to a form of the Korteweg-de Vries equation. 
We note that g, k and h may all be formally removed from (2.19), (2.20), for example 
by using the transformation 

g = kh*, T = kg-gh--T2*, A = k-lg1hA*, o = k-glW^i01. 
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Moreover if A and 001 are independent of y then (2.19), (2.20) reduce to 

2ik 8A k 2A - 9kc2 
-i __k2h2A- = 2hh3 JA2A. (2.21) g(M 8r 8 2 2gh-3 ' 

Hasimoto & Ono (1972) have pointed out that the nonlinear plane wave solution of 

(2.21) corresponds to the weak cnoidal wave solution of the Korteweg-de Vries 

equation. 
At first sight the form of the equations for A and Q01 look rather different from 

those obtained by Hasimoto & Ono (1972) for the two-dimensional problem but it 
is possible to write (2.14), (2.15) in an alternative way which makes the connexion 
obvious. The height of the free surface for t > 0 is given by 

g. = ieoA exp{i(kx - ot)} + c.c + O(2), (2.22) 
and as a consequence of the passage of the progessive wave, the local height of the 
free surface varies slowly, in addition to the more rapid variation characterized by 
(2.22). Let this secular variation be 

E2 [ T) - - g_ 
. 

IA|j (2.23) 
e2 [k Q( , , r)_k{ r+ 2kh(1 _ 2)} ] (2.23) 

and we note in passing that it is also equal to e202. Then equivalent forms for (2.14), 
(2.15) are aA a2A f2A 

(i +-?02 +/ A= VIAI2A + vAQ, (2.24a) 

62Q +,2Q =K 21A2 (2.24b) 

where A= -"(k) < 0, t = - 2k >' 0 

_ 22 0-7.2 ]- 

C [ 9-107 +90- -c2 {4c2 + 4cP cg( l- 2) + h(l )2}, 
wC[ L -gh- C - (2.25) k4 

v =- {2c +cg(l -2)}, = g1h-c~> 0, A = gh 
Cg 

+ Cg(l - 
2)1 and K1 = g c g( 
) 

The principal equation (4.5) of Hasimoto & Ono (1972) is now recovered on assum- 

ing A to be independent of y and putting Q = 0. 

3. STABILITY OF A UNIFORM WAVETRAIN 

The simplest solution of the equations for A and Q is the Stokes wavetrain in 
which A is a finction of r only, of constant modulus Ao. The boundary conditions 

(2.17) as 62 + 2 -> oo must now be relaxed since the train is unmodulated and the 
solution is not unique since Q can take on any constant value Q0. The solution is 

A = Aoexp{ipr}, Q = Qo, where p = - A- v1Qo. (3.1) 
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Associated with such a wavetrain is a change in the height of the mean free surface 

equal to 

e2[ k{?o + 2kh(l- 2)}A] (3.2) Q7 gl-- 0- (3.2) 
and a drift speed 

[k2Q k2(2c, + cg(l- -2)} 62 0Qo_ 7gh-c (3.3) 

When considering the stability of (3.1), however, the choice of the value of Q0 
is immaterial as the stability criterion is independent of Q0. For on writing 

A =A0(6, , r)exp{ipT}, Q = Q +Q, (3.4) 

we find that A and Q satisfy 

iaA + ^2 82 = ( 1 ) X + A 
i + 2A D P =A aTr2 j2 -tV 

, A2 (3.5) 
and Alag+/lagQ K=/lA21I. 

Now suppose that A- and Q are sufficiently small so that squares and products 
of these quantities may be neglected. Then A - 1 and Q satisfy a pair of linear 
differential equations which may be solved by taking a Fourier transform with 

respect to ? and y. Thus the stability problem for (3.1) may be reduced to setting 

A-1 = exp{j(l6+my)}P(r), Q = exp{j(l1+my)}S(r), (3.6) 

where P, S are functions of T only and examining whether the ordinary differential 

equations satisfied by P, S have bounded solutions for all r when 1, m are arbitrary 
real numbers. Here j = / - 1 and is distinguished from i because the complex con- 

jugate of A, needed in (3.5), is obtained from A by changing the sign of i but it is 
still thought of as a function of the type (3.6). 

An equivalent procedure is to assume that A, Q are functions of X = 1 + m and 
r only when (2.24) yield 

Q = 1A 12+ I IA{2+Ql1, (3.7) 
= A)12 +jt2m2 

OdA 2A ( Kixir2 and i i +(A12+/ym2) ~-X = (v+ IKlm 
IAA +,2 AQ1, (3.8) 

where QL is a real function r only. We note that Q1 may be eliminated from (3.8) 
by an appropriate frequency shift in A. The stability of the solution of (3.8) in 
which A is a function of r only, is subject to the same criterion as that found by 
Hasimoto & Ono (1972), namely 

(A12P+Im) (v+ A12+,m2 ) > 0, (3.9) 
( l1 # 
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and this criterion is identical with the one obtained by Hayes (1973), who used the 
Whitham formulation. Hayes discusses the implication of (3.9) in some detail 

referring to the curve in 1, m space on which the first factor vanishes as the dispersion 
neutral curve and the curve on which the second factor vanishes as the hardness 
neutral curve. He points out that except when kh = 0 and kh = 0.380 it is always 
possible to choose 1, m so that (3.9) is violated. Strictly therefore the Stokes wave- 
train is unstable for all other values of kh but Hayes notes that the two curves are 
so close together for 0 < kh < 0.5 that 'the predicted instability is non-existent 

practically'. 
The reason for the two approaches to the stability problem leading to the same 

conclusion is as explained in the introduction for two-dimensional disturbances. The 
unstable modes include those with very long wavelengths for which the governing 
equations reduce to the Whitham formulation, the amplitude variation in space 
being much smaller than the phase variation. The present theory makes two new 
contributions to this problem. First, it establishes that if the Stokes wave-train is 
stable to disturbances whose length scale is large compared with the inverse ampli- 
tude of the wave (taking the wavelength of the train as the unit of length) then it 
is also stable to disturbances whose length scale is of the same order as the inverse 

amplitude. Secondly, it establishes that if the train is stable to plane-wave disturb- 
ances then it is stable to all disturbances including centred disturbances. 

4. DIscussIoN 

In this paper we have presented an alternative approach to the problem of the 
evolution of surface waves of slowly varying amplitude by using the method of 

multiple scales. The principal results which we have obtained are in agreement with 
those found using an approach based on Whitham's ideas, when the flow properties 
are such that both theories are relevant, but we claim that our approach has a 
number of advantages even though it explicitly lacks the unifying features of the 

Lagrangian, which can be such a powerful aid to obtaining evolutionary properties. 
These advantages are, first, the explicit appearance of a small parameter e, which 
can be used to set up an asymptotic expansion of the solution, secondly, the leading 
term satisfies a well-posed differential equation, and thirdly, the generalization to 
other systems which may include dissipation is immediate. As an example of a 

typical problem in which dissipation is important, and which may be readily studied 

by use of the method of multiple scales, the reader is referred to Davey, Hocking & 
Stewartson (1974) for an account of the evolution of three-dimensional disturbances 
in marginally unstable plane Poiseuille flow. For this problem they find, incidentally, 
that the evolution may be described by two coupled nonlinear partial differential 

equations similar to (2.14), (2.15) except that it is necessary to add a term propor- 
tional to A to (2.15), and to change the coefficients of all the terms in (2.15) to corn- 

plex constants of known value. It is not apparent as to how the Whitham theory 
could be used, or even a modified form thereof, to consider this problem. 
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Note added in proof, 4 March 1974. 

Whitham (I970) has discussed the equivalence of his variational method with 
a particular multiple scale theory for dissipationless systems. The scaling he con- 
sidered (X = e2x,T = e2t) is, however, different from and coarser than that 

adopted here. It is the same scaling as used by Stewartson & Stuart (I97I) in 
the first stage of their theory which led to a first order equation for A. In the 
second stage they used the finer scaling of (1.1) which led them to the dissipative 
equivalent of (1.2). 
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