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a b s t r a c t 

The time-domain motion of a finite depth ocean subject to an arbitrary (in both time and 

space) imposed displacement of the bottom is studied under the assumption of linear the- 

ory. This solution provides results for this limiting case which may be helpful for bench- 

marking. The focus is on the numerical simulation of the near-field waves with application 

to the simulation of tsunami waves. The fluid domain is assumed two-dimensional, and the 

effect of com pressibility is included. The time-domain solution is built from the frequency 

domain solution taking a Fourier series expansion of the bottom motion. This expansion 

allows complex displacements to be simulated. The solution in the frequency domain is ex- 

pressed as a sum over modes. The time-domain solution is calculated by numerical eval- 

uation of the Fourier transform in time, allowing arbitrary time-dependent motion. This 

code is extremely efficient and highly accurate, and there is no time–stepping so that er- 

rors do not accumulate in time. The eigenfunction expansion method to obtain the velocity 

potential for a flat ocean bottom case is independently derived. A shallow water limit for 

all the above cases is provided, giving a method to check the correctness of the numerical 

solution. Separate treatment for all the situations under the compressible assumption is 

also performed. The horizontal and vertical particle velocities are graphically presented for 

the time-harmonic oscillation. Time-dependent surface wave propagation is computed to 

show the initiation of tsunami waves in the deep ocean and their subsequent propagation. 

The calculations presented here allow for the simulation of tsunami wave generation and 

to investigate various effects, including the role of acoustic gravity waves. It is shown that 

the compressibility is not always significant, but that when the water is either sufficiently 

deep or the rise sufficiently rapid, acoustic gravity waves are produced. It is shown that, in 

this case, the ocean surface undergoes a rapid oscillation and that this may be a method 

to detect tsunamis. 

© 2023 Elsevier Inc. All rights reserved. 

 

1. Introduction 

Coastal areas, including both land-mass and water, throughout the world have been the most significant part of 

human civilisation as more than 600 million people live in a coastal region within 10 m of elevation, which ac-
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count for 10 per cent of the world population ( https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/ 

Ocean- fact- sheet- package.pdf ). On top of that, approximately 2.4 billion people, around 40 per cent of total world popula-

tion, live within 100 kilometers of the coastline. Any threat to the coastal region thus possesses an enormous amount of

potential damage to the world population, a country’s economy, and natural food resources, to name a few. Among all the

natural calamities, tsunamis possess a grave threat which is evident from the recent accounts of destruction caused by 2004 

Indian Ocean, 2011 Tohoku Oki, 2018 Sulawesi and Palu tsunamis, which are caused following submarine earthquakes. 

Predicting and simulating tsunami waves is of obvious importance in providing a reliable warning system. Detailed 

progress of tsunami research that includes state-of-the-art knowledge of the underlying physics, monitoring system, and 

mitigation mechanisms can be found in [1] . Numerical simulations play an essential role, and very sophisticated models 

have been developed [2] . In particular, the inclusion of compressibility allows for the simulation of acoustic gravity waves, 

which have been proposed as a method for early warning [3–5] although the method is in dispute [6] . However, it has also

been shown that a tsunami model based on a compressible ocean is more accurate than a model with an incompressible

ocean [4] . It is also essential to simulate different kinds of motions of the ocean bottom. An appropriate model taking the

water compressibility into account and that can cater to such changes in the initial time-domain displacement is developed 

in this work. 

Acoustic-gravity waves are low–frequency acoustic waves that propagate in the ocean analogous to modes in a waveg- 

uide. These waves are hydro-acoustic waves that are influenced by gravity at a low frequency. It is the mathematical treat-

ment that differentiates acoustic-gravity waves from hydro-acoustic waves. These waves travel much faster than tsunami 

waves, but their generation depends on the properties of the ocean floor motion [3,5,7,8] and they have potential util-

ity in detecting tsunamis. Under linear water wave theory, the compressibility alters some of the evanescent modes, the 

purely imaginary naturally occurring modes for the incompressible ocean, into real propagating modes. These newly gener- 

ated waves are the acoustic-gravity waves that appear alongside the one purely gravity mode, in addition to the multiple 

propagating gravity modes, which may occur due to the exceptional case of wave blocking [9,10] . The oscillatory pressure

signature generated at the ocean bottom as an outcome of the generation of acoustic-gravity waves can cause microseism 

[11] . These waves have the potential to cause deepwater transport [12] , and even to impact on ice-sheets [13] as well as

influence their breaking [14] . 

There are many other mechanisms, including the triad resonance (see [15–17] ), horizontally moving wavemaker (see 

[18] ), which generates acoustic-gravity waves. The triad resonance has been proposed to mitigate tsunami waves [19] . There

are other complex contributing factors such as variable ocean bathymetry [20] causing reflection and scattering, surface 

gravity waves [21] , and even by the dissipation caused by the bottom friction, elastic [22] and viscous [23] nature of the

seafloor, and movement of marine sediment [24] . The effect of a porous ocean bottom is included in the mathematical

formulation by Chierici et al. [25] in addition to the nonlinear temporal rise time of the fault. In all these factors, ocean water

compressibility plays a pivotal role, which was pointed out through the fundamental works of [8,26,27] . Later, the idea was

utilised and extended to the works of [4,5,28–30] . Earlier, [31] suggested the possible cause of tsunami time delay due to the

effect of self-gravitating elastic earth. Later, [32] included the asymmetric earthquake motion into the formulation. On the 

other hand, [33] later included the gravity term in the governing equation and demonstrated its effect on both the acoustic-

gravity and surface waves. The idea is further extended to include the influence of sea-floor elasticity [34,35] . Most of these

works are based on acoustic-gravity waves generated by an elongated one-dimensional fault which was later extended to 

two dimensions by Hendin and Stiassnie [36] with the help of Green’s function method. Further development occurred in 

terms of the mild-slope equation for these waves to tackle two-dimensional bathymetry and fault area [13,23,37] . These 

models apply to other generic bottom topography as long as the spatial variation is not so large. Very recently, the idea was

extended to tackle the case of a slender fault [38] and later extended to multiple slender faults to emulate multi-fracture

fault [39] . The geometry of all these faults has one aspect in common, i.e. the floor surface of the displacement is kept flat

or slowly varying - be it one-dimensional or two-dimensional. Other types of ocean floor surfaces where the depth variation 

is large have not yet been attempted in any context. 

This work studies the mathematical problem of surface wave propagation induced by a motion of the ocean bottom 

under the assumption of a compressible ocean. The mathematical problem is solved using the Fourier transformation tech- 

nique, and the analytical form of the displacement potential function is obtained. Such methods have appeared previously 

in the literature, for example, [5,8,13] to name a few. These were limited to simple motions of the ocean bottom, and we

extend this method to arbitrary motions using a Fourier series expansion for the bottom displacement. Moreover, the near 

field fluid motion was not simulated in previous works; only the asymptotic solution was derived. This is because the nu-

merical expressions are complicated to work with. Moreover, no attempt was made to validate the method and neither was 

any computational code provided with the calculations. We validate our solution by showing it agrees with the simple shal- 

low water solution in the limit of small depth. Moreover, the numerical solutions provided here are given as animations 

which elucidate the physics of the motion. We also note that the solution method provided is highly efficient and does not

require any time stepping, and can serve as benchmark calculations. 

Free surface elevation is evaluated numerically. A similar problem is solved using the rising ocean bottom instead of the 

oscillating bottom, making the mathematical problem time-dependent. The evolution of the surface profile over time under 

the influence of AGW is demonstrated along with its shallow water approximation and incompressible ocean case. Other 

forms of ocean bottoms are also approximated, including the flat bottom case. The influence of AGW is demonstrated with 
833 
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the help of a graphical representation of free surface elevation and the horizontal and vertical velocity distributions inside 

the water domain. 

The paper is arranged in the following manner. The mathematical formulation of the physical problem of a compressible 

ocean is detailed in § 2 where the solution methodology for an arbitrary spatio-temporal displacement of the ocean floor is 

considered. The solution process for the single frequency involving the Fourier transform technique, which will be utilised 

to solve the problem described in § 2, is detailed in § 3. Different special cases involving flat ocean bottom, incompressible

ocean, and shallow water approximation are considered in § 4. The graphical representations for the time-harmonic solution 

of flat ocean bottom case and time-dependent surface wave profile for two different choices of ocean bottom profiles are 

illustrated in § 5. The paper ends with a brief conclusion in § 6 followed by derivations of flat ocean bottom case using the

eigenfunction expansion method and its incompressible shallow water counterpart. 

2. Mathematical formulation 

We consider free-surface gravity wave propagation in a compressible ocean of finite depth h . The inclusion of compress- 

ibility is essential to this work, and we will show that for typical tsunami wave cases, the inclusion of compressibility has a

significant effect. Many other authors have shown this [4,26,29] . The physical problem is formulated in a two-dimensional 

Cartesian coordinate system having z- axis pointing upwards and x - axis horizontal. The ocean bed is characterised as rigid.

A wave propagation due to the ocean floor disturbance is realised both towards the positive and negative x - direction un-

der the assumption of linearised water wave theory. The flow is considered irrotational. We are interested in calculating 

the time-dependent motion of the fluid due to a movement of the seafloor, simulating the generation of a tsunami in two

dimensions. We consider time dependent growth l(t) of a fixed displacement function X (x ) of the ocean bottom between

−b and b. We note that it would be straightforward to generalise to more complex motions which were not separable using

linearity. Under these assumptions, the small amplitude displacement of the sea floor ˜ h is given by, 

˜ h (x, t) = l(t) X (x ) H(b 2 − x 2 ) , 

where H(·) represents Heaviside unit step function. A few works such as [33] considered the density profile associated with

the static compression of the ocean under its own weight. We here neglect such an effect mainly for two reasons. First, the

majority of the literature does not include it. Secondly, we primarily focus on the solution methodology and the numerical 

calculation that can be used to validate other problems pertaining to an arbitrary spatio-temporal motion of the ocean bed. 

However, the inclusion of the ambient static compression is an interesting problem and can be taken as a future extension.

Hence, the boundary value problem we wish to solve is given by 

∇ 

2 �(x, z, t ) = 

1 

c 2 
∂ 2 �

∂t 2 
in − h < z < 0 , (1a) 

�tt + g�z = 0 at z = 0 , (1b) 

�z = l(t) X (x ) H(b 2 − x 2 ) at z = −h. (1c) 

where � is the displacement potential, g is the acceleration due to gravity, c = 

K 0 

ρ0 
is the speed of sound in water and

K 0 being the bulk modulus, and ρ0 is the undisturbed density of the whole water region. The gradient of � provides the

water particle displacements along x (say u ) and z (say v ) directions, i.e., ∇� = (u, v ) . Note that we are linearising about

an infinitesimal motion so that the depth is assumed constant, precisely as is done at the free surface. We also assume that

� and l are zero for t < 0 , i.e., the fluid is initially at rest. 

We use the linearisation in which the dimensional units are used here. The linear assumption is valid only for infinites-

imal displacements. When we talk about the solution for ˜ h we mean the solution for ε ˜ h for infinitesimal ε, which is then

divided by ε. This point is often taken for granted and not mentioned explicitly. For example, it is not mentioned in [36] ;

however, it does underlie their (and our) solution. 

We now return to our initial problem of a finite time growth of the ocean bottom between −b and b. Applying a Fourier

transformation in time (which is equivalent to a Laplace transform since the fluid is at rest), 

ˆ �(x, z, ω) = 

ˆ ∞ 

0 

�(x, z, t) e −i ωt dt , (2) 

the boundary value problem (1) is converted to 

∇ 

2 ˆ �(x, z, ω ) = 

ω 

2 

c 2 
ˆ �, in − h < z < 0 , (3a) 

ˆ �z − ω 

2 

g 
ˆ � = 0 , at z = 0 , (3b) 

ˆ �z = X (x ) H(b 2 − x 2 ) W(ω) , at z = −h, (3c) 
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where 

W(ω) = 

ˆ ∞ 

0 

l(t) e −i ωt dt . (4) 

We write X (x ) as a Fourier series 

X (x ) = 

( 

∞ ∑ 

m =0 

ζ m 

c cos 

(
mπx 

b 

)
+ ζ m 

s sin 

(
mπx 

b 

)) 

(5) 

We can find the solution as 

ˆ �(x, z, ω) = W(ω) 

( 

∞ ∑ 

m =0 

ζ m 

c φ
m 

c (x, z, ω) + ζ m 

s φ
m 

s (x, z, ω) 

) 

, (6) 

where φm 

c and φm 

s are the solutions of the boundary value problem for a single frequency for ζ m 

c = 1 and all other terms

zero or ζ m 

s = 1 and all other terms zero respectively. They will be carefully defined and solved in the next section. Now

taking the inverse Fourier transformation, we obtain the potential function as 

�(x, z, t) = 

1 

2 π

ˆ ∞ 

−∞ 

ˆ �(x, z, ω) e i ωt dω = Re 

{ 

1 

π

ˆ ∞ 

0 

ˆ �(x, z, ω) e i ωt dω 

} 

. (7) 

3. Solution for a single frequency and sinusoidal bottom motion 

We calculate the single frequency solution considering a complex exponential bottom profile from which we can extract 

the cosine and sine expansion ( Fig. 1 ). We solve for the displacement potential φm which satisfies the following equations 

∇ 

2 φm (x, z) = −ω 

2 

c 2 
φm in − h < z < 0 , (8a) 

−ω 

2 φm + gφm 

z = 0 at z = 0 , (8b) 

φm 

z = exp 

(
i 
mπx 

b 

)
H(b 2 − x 2 ) at z = −h. m ∈ Z . (8c) 

Notice that the boundary value problems defined in (3) and (8) are equivalent when X (x ) = exp 

(
i mπx 

b 

)
and W(ω) = 1 .

The real part of X (x ) leads to the solution φm 

c , where the imaginary part corresponds to φm 

s . These computed values of φm 

c 

and φm 

s will be put into (6) to obtain the solution for arbitrary ocean bottom motion. It may also be noticed that the above

boundary condition at the ocean bottom varies in the spatial coordinate but become simpler in wavenumber space. Thus a 

Fourier transformation in the wavenumber space is applied to solve the boundary value problem. This problem was solved 

in [8] for the m = 0 case. The solution here follows the method described in a similar fashion. 

The problem will be solved by applying the Fourier transformation of the form 

F(k, z) = 

ˆ ∞ 

−∞ 

φm (x, z) exp (−i kx ) dx, (9) 
Fig. 1. Schematic diagram of the physical problem in a compressible ocean having sinusoidal ripple bottom. 
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whose inverse Fourier transformation is given by 

φm (x, z) = 

1 

2 π

ˆ ∞ 

−∞ 

F(k, z) exp (i kx ) dk , (10) 

and the set (8) transforms into the following boundary value problem: 

F zz = 

(
k 2 − ω 

2 

c 2 

)
F, in − h < z < 0 , (11a) 

F z = 

ω 

2 

g 
F, on z = 0 , (11b) 

F z = 

2 b sin (mπ − kb) 

mπ − kb 
, on z = −h. (11c) 

Using separation of variables method, the solution to Eq. (11a) can be expressed as 

F(k, z) = A cosh (μ(z + h )) + B sinh (μ(z + h )) where μ2 = k 2 − ω 

2 

c 2 
. (12) 

Applying the boundary conditions (11b) and (11c) , the following pair of equations are obtained: [
μ sinh (μh ) − ω 

2 

g 
cosh (μh ) 

]
A + 

[
μ cosh (μh ) − ω 

2 

g 
sinh (μh ) 

]
B = 0 , (13) 

B = 

2 ζ0 b sin (mπ − kb) 

μ(mπ − kb) 
, (14) 

solving which we obtain 

A = −
2 b sin (mπ − kb) 

[
μ cosh μh − (ω 

2 /g) sinh μh 

]
μ(mπ − kb) [ μ sinh μh − (ω 

2 /g) cosh μh ] 
. (15) 

Thus the potential function F(k, z) can be expressed as 

F(k, z) = 

2(−1) m b sin (kb) 

μ(mπ − kb) D(μ, h ) 

[
μ cosh μz + 

ω 

2 

g 
sinh μz 

]
, (16) 

where 

D(μ, h ) = μ sinh (μh ) − ω 

2 

g 
cosh (μh ) . (17) 

Taking the inverse Fourier transform, the velocity potential φm (x, z) is obtained as 

φm (x, z) = 

(−1) m b 

π

ˆ ∞ 

−∞ 

sin kb 
[
μ cosh μz + (ω 

2 /g) sinh μz 
]

μ(mπ − kb) D(μ, h ) 
e i kx dk , (18a) 

= 

(−1) m b 

2 π i 

ˆ ∞ 

−∞ 

M(k, z) 
[
e i k (x + b) − e i k (x −b) 

]
dk , (18b) 

where 

M(k, z) = 

μ cosh μz + (ω 

2 /g) sinh μz 

μ(mπ − kb) D(μ, h ) 
(19) 

It will be easier to evaluate the above integral when we consider another integral of the form 

F (ξ , z) = 

ˆ ∞ 

−∞ 

M(k, z) e i kξ dk , (20) 

and write 

φm (x, z) = 

b(−1) m 

2 π i 
(F (x + b, z) − F (x − b, z)) . (21) 

M(k, z) has singularities at the following points: 

k = 

mπ

b 
, μ = 0 and μ sinh (μh ) − ω 

2 

g 
cosh (μh ) = 0 . (22) 
836 
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The singularity at k = 

mπ

b 
is a removable one and will use the form 

lim 

ε→ 0 

(
mπ

b 
+ i ε

)
= 

mπ

b 

to calculate the integral. We may choose the other form 

(
mπ

b 
− i ε

)
, but it will not affect the form of the potential function

to be obtained using (21) . The last equation of (22) is the dispersion relation for surface-gravity waves, and the solution is

given by 

μ = ±μ0 , and μ = ±i μn (n = 1 , 2 , . . . ) , (23) 

where μ0 and μn generate propagating and evanescent modes, respectively, and the roots are located at the points 

k = 

(
mπ

b 
+ i ε

)
, ±ω 

c 
, ±k 0 , ±k n , ±i λn (n = 1 , 2 , . . . ) , 

where k 0 , ka n , λn are positive real numbers, and expressed as 

k 0 = 

√ 

μ2 
0 

+ 

ω 

2 

c 2 
, (24a) 

k n = 

√ 

ω 

2 

c 2 
− μ2 

n , 

(
ω 

c 
> μn 

)
, (24b) 

λn = 

√ 

μ2 
n −

ω 

2 

c 2 
, 

(
ω 

c 
< μn 

)
. (24c) 

Here 
ω 

c 
represents the wavenumber of sound wave in water, k 0 is propagating purely surface-gravity mode (larger 

wavenumber compared to μ0 of an incompressible fluid), λn are attenuation coefficients of evanescent modes in com- 

pressible ocean and are smaller than μn - the attenuation coefficient of evanescent modes for an incompressible fluid. The 

evanescent modes μn for incompressible fluid are converted to propagating acoustic-gravity modes (with wavenumber k n ) 

in compressible ocean once the wavenumber of sound wave becomes larger than μn . The mode k e = mπ/b is due to the

ripples in the elevated bed, and we assume this wave mode not to be overlapping with any other wave modes. 

The wave periodicity is proportional to e i ωt . The contours for ξ > 0 and ξ < 0 are given in Fig. 2 . 

While Fig. 2 (a) shows the contour for waves propagating in the positive direction, Fig. 2 (b) shows the same for negative

direction. 

We will apply the above contour scheme to find the integral given in (20) . First, we distribute the spatial length into the

following 3 parts. 

(i ) − ∞ < x < −b, (ii ) − b < x < b and (iii ) b < x < ∞ . (25)

The following three contour schemes will be applied to these three regions. 

(i) −∞ < x < −b: Here, the contour taken will be such that all the waves corresponding to F (x ± b) travel towards the

negative direction. Hence, we take the contour given in the first subplot of Fig. 2 (b), which we will refer to as a

TYPE-b − contour. 

(ii) b < x < ∞ : Here, the contour taken will be such that all the waves corresponding to F (x ± b) travel towards the

positive direction. Hence, we take the contour given in the first subplot of Fig. 2 (a), which we refer to TYPE-a + . 
(iii) −b < x < b: Here, the contribution due to F (x + b) will be those waves travelling towards the positive direction. Thus

the appropriate contour will be the TYPE-a + . The same from F (x − b) will be the waves travelling in the negative

direction. Thus the corresponding contour will be the TYPE-b −. 

Now we shift our focus to the contour integration. The evaluation of the integrals is based on the calculation of residue

at the points of singularities of the function M(k, z) . For x > b, we obtain x ± b > 0 . Hence, the contour for ξ > 0 will be

applicable for both F (x ± b, z) ( Fig. 3 ). Consequently, 

F (x ± b, z) = 2 π i 

[ 

∞ ∑ 

n =1 

Res (x ± b, i λn ) + Res (x ± b, −k 0 ) + Res (x ± b, −k s ) + 

N ∑ 

n =1 

Res (x ± b, −k n ) 

] 

. 

For x < −b, we obtain x ± b < 0 . Hence, the contour for ξ < 0 will be applicable for both F (x ± b, z) ( Fig. 3 ). Consequently, 

F (x ± b, z) = − 2 π i 

[ 

∞ ∑ 

n =1 

Res (x ± b, −i λn ) + Res (x ± b, k 0 ) + Res (x ± b, k s ) + 

N ∑ 

n =1 

Res (x ± b, k n ) 

] 

− lim 

ε→ 0 
2 π i Res (x ± b, mπ/b + i ε) . 
837 
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Fig. 2. Contours for the integral of the form given in Eq. (20) . 

Fig. 3. Schematic diagram showing the wave directions due to the functions F (x ± b) in different spatial regions. 

 
For −b < x < b, we obtain x + b > 0 and x − b < 0 . Hence, the contour for ξ < 0 will be applicable for F (x − b, z) , and F (x +
b, z) will use the contour for ξ > 0 ( Fig. 3 ). Consequently, 

F (x + b, z) = 2 π i 

[ 

∞ ∑ 

n =1 

Res (x + b, i λn ) + Res (x + b, −k 0 ) + Res (x + b, −k s ) + 

N ∑ 

n =1 

Res (x + b, −k n ) 

] 

. 
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F (x − b, z) = −2 π i 

[ 

∞ ∑ 

n =1 

Res (x − b, −i λn ) + Res (x − b, k 0 ) + Res (x − b, k s ) + 

N ∑ 

n =1 

Res (x − b, k n ) 

] 

− lim 

ε→ 0 
2i Res (x − b, mπ/b + i ε) . 

Now putting the above expressions of F (x ± b) , region-wise, back into (21) , 

φm (x, z) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[ 

∞ ∑ 

n =1 

{ Res (x + b, i λn ) − Res (x − b, i λn ) } + { Res (x + b, −k 0 ) − Res (x − b, −k 0 ) } 

+ 

N ∑ 

n =1 

{ Res (x + b, −k n ) − Res (x − b, −k n ) } + { Res (x + b, −k s ) − Res (x − b, −k s ) } 
] 

×b(−1) m if x > b, 

−
[ 

∞ ∑ 

n =1 

{ Res (x + b, −i λn ) − Res (x − b, −i λn ) } + { Res (x + b, k 0 ) − Res (x − b, k 0 ) } 

+ 

N ∑ 

n =1 

{ Res (x + b, k n ) − Res (x − b, k n ) } + { Res (x + b, k s ) − Res (x − b, k s ) } 

+ lim 

ε→ 0 

{ 

Res 

(
x + b, 

mπ

b 
+ i ε

)
− Res 

(
x − b, 

mπ

b 
+ i ε

)} ] 
b(−1) m if x < −b, [ 

∞ ∑ 

n =1 

{ Res (x + b, i λn ) + Res (x − b, −i λn ) } + Res (x + b, −k 0 ) + Res (x − b, k 0 ) 

+ 

N ∑ 

n =1 

{ Res (x + b, −k n ) + Res (x − b, k n ) } + { Res (x + b, −k s ) + Res (x − b, k s ) } 

+ lim 

ε→ 0 
Res 

(
x − b, 

mπ

b 
+ i ε

)] 
b(−1) m if − b < x < b . 

Note that the potential function φ(x, z) is a function of ω as well and we denote it by φ(x, z, ω) from now onward. The

residues are calculated to be 

Res (x, ±k 0 ) = ± 2 μ0 cosh μ0 (z + h ) 

k 0 (mπ ∓ k 0 b)(2 μ0 h + sinh 2 μ0 h ) 
e ±i k 0 x , (26a) 

Res 

(
x, ±ω 

c 

)
= 0 , (26b) 

Res 

(
x, 

(
mπ

b 
+ i ε

))
= −

μe cosh μe z + 

ω 2 

g 
sinh μe z 

μe bD(μe , h ) 
exp 

(
±i 

(
mπ

b 
+ i ε

)
x 

)

where μe = 

√ (
mπ

b 
+ i ε

)2 

− ω 

2 

c 2 
, (26c) 

Res (x, ±k n ) = ± 2 μn cos μn (z + h ) 

k n (mπ ∓ k n b)(2 μn h + sin 2 μn h ) 
e ±i k n x n = 1 , 2 , . . . , N, (26d) 

Res (x, ±i λn ) = ± 2 μn cos μn (z + h ) 

λn (i mπ ± λn b)(2 μn h + sin 2 μn h ) 
e ∓λn x n = N + 1 , . . . . (26e) 

It is easy to verify that 

lim 

ε→ 0 

{ 

Res 

(
x + b, 

mπ

b 
+ i ε

)
− Res 

(
x − b, 

mπ

b 
+ i ε

)} 

= 

[
μe cosh μe z + (ω 

2 /g) sinh μe z 

μe bD(μe , h ) 

]
e i k e x 2i sin (mπ) = 0 . 

Now the potential function is retrieved as 

φm (x, z, ω) | | x | >b = ± b(−1) m 

{
4i μ0 cosh (μ0 (z + h )) sin (k 0 b) e ∓i k 0 x 

k 0 (mπ ± k 0 b)(2 μ0 h + sinh 2 μ0 h ) 

+ 

N ∑ 

n =1 

4i μn cos (μn (z + h )) sin (k n b) e ∓i k n x 

k n (mπ ± k n b)(2 μn h + sin 2 μn h ) 
−

∞ ∑ 

n = N+1 

4 μn sinh (λn b) cos μn (z + h ) e ∓λn x 

λn (i mπ ± λn b)(2 μn h + sin 2 μn h ) 

} 

. (27) 
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where the + sign is for x > b and - sign is for x < −b. The above equation can be written in the following form by equating

i k n = λn etc. 

φm (x, z, ω) | | x | >b = ∓b(−1) m 

∞ ∑ 

n =0 

4 μn sinh (λn b) cos μn (z + h ) e ∓λn x 

λn (i mπ ± λn b)(2 μn h + sin 2 μn h ) 
. (28) 

This form is ideal for computation. However, we stick to the form (27) so that the clear distinction among pure gravity,

acoustic-gravity and evanescent modes are visible. This matches with the derivation of [8] for the m = 0 case. We also

provide a separate derivation for the m = 0 case for incompressible fluid in Appendix A . 

The upper sign is for x > b, and the lower sign is for x < −b. When | x | < b, the following form of φ(x, z, ω) is obtained: 

φm (x, z, ω) | | x | <b = b(−1) m 

{
4 μ0 cosh μ0 (z + h ) e −i k 0 b (mπ i sin (k 0 x ) + k 0 b cos (k 0 x )) 

k 0 ( m 

2 π2 − k 2 
0 
b 2 )(2 μ0 h + sinh 2 μ0 h ) 

+ 

N ∑ 

n =1 

4 μn cos μn (z + h ) e −i k n b (mπ i sin (k n x ) + k n b cos (k n x )) 

k n (m 

2 π2 − k 2 n b 
2 )(2 μn h + sin 2 μn h ) 

+ 

∞ ∑ 

n = N+1 

4 μn e 
−λn b cos (μn (z + h ))(i mπ sinh (λn x ) + λn b cosh (λn x )) 

λn (m 

2 π2 + λ2 
n b 

2 )(2 μn h + sin (2 μn h )) 

} 

− (−1) m 

ξm 

cosh ξm 

z + (ω 

2 /g) sinh ξm 

z 

ξm 

D(ξm 

, h ) 
e i mπ(x + b) /b , where ξm 

= 

√ 

m 

2 π2 

b 2 
− ω 

2 

c 2 
. (29) 

The solution for cosine type bottom ( cos (mπx/b) ) can be retrieved as 

φm 

c (x, z, ω) = 

φm (x, z, ω) + φ−m (x, z, ω) 

2 

. 

The region-wise explicit forms for the potential function turn out to be 

φm 

c (x, z, ω) | | x | >b = b 2 (−1) m 

{
−4i μ0 sin (k 0 b) cosh (μ0 (z + h )) e ∓i k 0 x 

(m 

2 π2 − k 2 
0 
b 2 )(2 μ0 h + sinh (2 μ0 h )) 

+ 

N ∑ 

n =1 

−4i μn sin (k n b) cos (μn (z + h )) e ∓i k n x 

(m 

2 π2 − k 2 n b 
2 )(2 μn h + sin (2 μn h )) 

−
∞ ∑ 

n = N+1 

4 μn sinh (λn b) cos (μn (z + h )) e ∓λn x 

(m 

2 π2 + λ2 
n b 

2 )(2 μn h + sin (2 μn h )) 

} 

(30) 

The upper sign is for x > b, and the lower sign is for x < −b. When | x | < b, the following form of φm 

c (x, z, ω) is obtained: 

φm 

c (x, z, ω) | | x | <b = b 2 (−1) m 

{
4 μ0 cosh (μ0 (z + h )) e −i k 0 b cos (k 0 x ) 

(m 

2 π2 − k 2 
0 
b 2 )(2 μ0 h + sinh (2 μ0 h )) 

+ 

N ∑ 

n =1 

4 μn cos (μn (z + h )) e −i k n b cos (k n x ) 

(m 

2 π2 − k 2 n b 
2 )(2 μn h + sin (2 μn h )) 

+ 

∞ ∑ 

n = N+1 

4 μn e 
−λn b cos (μn (z + h )) cosh (λn x ) 

(m 

2 π2 + λ2 
n b 

2 )(2 μn h + sin (2 μn h )) 

} 

−
ξm 

cosh ξm 

z + 

ω 2 

g 
sinh ξm 

z 

ξm 

(
ξm 

sinh (ξm 

h ) − ω 2 

g 
cosh (ξm 

h ) 
) cos 

(
mπx 

b 

)
, where ξm 

= 

√ 

m 

2 π2 

b 2 
− ω 

2 

c 2 
. (31) 

Similarly, the same results for the sine type bottom ( sin (mπx/b) ) can be obtained as 

φm 

s (x, z, ω) = 

φm (x, z, ω) − φ−m (x, z, ω) 

2i 
. 

The potential function in the region | x | > b is calculated to be 

φm 

s (x, z, ω) | | x | >b = ± (−1) m bmπ

{
4 μ0 sin (k 0 b) cosh (μ0 (z + h )) e ∓i k 0 x 

k 0 (m 

2 π2 − k 2 
0 
b 2 )(2 μ0 h + sinh (2 μ0 h )) 

+ 

N ∑ 

n =1 

4 μn sin (k n b) cos (μn (z + h )) e ∓i k n x 

k n (m 

2 π2 − k 2 n b 
2 )(2 μn h + sin (2 μn h )) 

+ 

∞ ∑ 

n = N+1 

4 μn sinh (λn b) cos (μn (z + h )) e ∓λn x 

λn (m 

2 π2 + λ2 
n b 

2 )(2 μn h + sin (2 μn h )) 

} 

, 

(32) 
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and the same in the region | x | < b is found to be 

φm 

s (x, z, ω) | | x | <b = (−1) m bmπ

{
4 μ0 cosh (μ0 (z + h )) e −i k 0 b sin (k 0 x ) 

k 0 (m 

2 π2 − k 2 
0 
b 2 )(2 μ0 h + sinh (2 μ0 h )) 

+ 

N ∑ 

n =1 

4 μn cos (μn (z + h )) e −i k n b sin (k n x ) 

k n (m 

2 π2 − k 2 n b 
2 )(2 μn h + sin (2 μn h )) 

+ 

∞ ∑ 

n = N+1 

4 μn cos (μn (z + h )) e −λn b sinh (λn x ) 

λn (m 

2 π2 + λ2 
n b 

2 )(2 μn h + sin (2 μn h )) 

} 

−
(
ξm 

cosh ξm 

z + 

ω 2 

g 
sinh ξm 

z 
)

ξm 

(
ξm 

sinh (ξm 

h ) − ω 2 

g 
cosh (ξm 

h ) 
) sin 

(
mπx 

b 

)
. (33) 

The conventions for the upper and lower signs remain the same as before. Let us define the following quantities 

f m (x, ω) = 

∂φm (x, z, ω) 

∂z 

∣∣∣∣
z=0 

, f m 

c (x, ω) = 

∂φm 

c (x, z, ω) 

∂z 

∣∣∣∣
z=0 

and f m 

s (x, ω) = 

∂φm 

s (x, z, ω) 

∂z 

∣∣∣∣
z=0 

, 

which will be required to calculate the surface elevation at a later stage. 

4. Special cases 

We present a few special case formulas that follow our derivation and which we use for the numerical calculations. 

4.1. Surface elevation 

The free surface displacement is written as 

η(x, t) = 

∂�

∂z 

∣∣∣∣
z=0 

. 

We present here a formula for the surface elevation, which is 

η(x, t) = 

1 

π

∞ ∑ 

m =0 

ζ c 
m 

Re 

{ ̂ ∞ 

0 

W(ω, τ ) f m 

c (x, ω ) e i ωt dω 

} 

+ 

1 

π

∞ ∑ 

m =1 

ζ m 

s Re 

{ ̂ ∞ 

0 

W(ω, τ ) f m 

s (x, ω ) e i ωt dω 

} 

. (34) 

Note that this expression for m = 0 is closely related to that given in [5] except that we keep the rise time general here.

Note that no numerical calculations of this expression were given there. 

The first integral in the RHS represents the surface elevation when cos (mπx/b) type bottom is considered, and the 

second term represents the same for sin (mπx/b) type bottom. 

The region-wise f m 

c (x, ω) is given by 

f m 

c (x, ω) | | x | >b = b 2 (−1) m 

{
−4i μ2 

0 sin (k 0 b) sinh (μ0 h ) e ∓i k 0 x 

(m 

2 π2 − k 2 
0 
b 2 )(2 μ0 h + sinh (2 μ0 h )) 

+ 

N ∑ 

n =1 

4i μ2 
n sin (k n b) sin (μn h ) e ∓i k n x 

(m 

2 π2 − k 2 n b 
2 )(2 μn h + sin (2 μn h )) 

+ 

∞ ∑ 

n = N+1 

4 μ2 
n sinh (λn b) sin (μn h ) e ∓λn x 

(m 

2 π2 + λ2 
n b 

2 )(2 μn h + sin (2 μn h )) 

} 

, (35a) 

f m 

c (x, ω) | | x | <b = b 2 (−1) m 

{
4 μ2 

0 sinh (μ0 h ) e −i k 0 b cos (k 0 x ) 

(m 

2 π2 − k 2 
0 
b 2 )(2 μ0 h + sinh (2 μ0 h )) 

−
N ∑ 

n =1 

4 μ2 
n sin (μn h ) e −i k n b cos (k n x ) 

(m 

2 π2 − k 2 n b 
2 )(2 μn h + sin (2 μn h )) 

−
∞ ∑ 

n = N+1 

4 μ2 
n e 

−λn b sin (μn h ) cosh (λn x ) 

(m 

2 π2 + λ2 
n b 

2 )(2 μn h + sin (2 μn h )) 

} 

− ζ0 

ω 2 

g 

ξm 

sinh (ξm 

h ) − ω 2 

g 
cosh (ξm 

h ) 
cos 

(
mπx 

b 

)
. (35b) 

Note that when m = 0 , this reduces to that given by [8] . The same for f m 

s (x, ω) are obtained as 

f s m 

(x, ω) | | x | >b = ± (−1) m bmπ

{
4 μ2 

0 sin (k 0 b) sinh (μ0 h ) e ∓i k 0 x 

k 0 (m 

2 π2 − k 2 
0 
b 2 )(2 μ0 h + sinh (2 μ0 h )) 

−
N ∑ 

n =1 

4 μ2 
n sin (k n b) sin (μn h ) e ∓i k n x 

k n (m 

2 π2 − k 2 n b 
2 )(2 μn h + sin (2 μn h )) 

−
∞ ∑ 

n = N+1 

4 μ2 
n sinh (λn b) sin (μn h ) e ∓λn x 

λn (m 

2 π2 + λ2 
n b 

2 )(2 μn h + sin (2 μn h )) 

} 

, 

(36a) 
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f s m 

(x, ω) | | x | <b = (−1) m bmπ

{
4 μ2 

0 sinh (μ0 h ) e −i k 0 b sin (k 0 x ) 

k 0 (m 

2 π2 − k 2 
0 
b 2 )(2 μ0 h + sinh (2 μ0 h )) 

−
N ∑ 

n =1 

4 μ2 
n sin (μn h ) e −i k n b sin (k n x ) 

k n (m 

2 π2 − k 2 n b 
2 )(2 μn h + sin (2 μn h )) 

−
∞ ∑ 

n = N+1 

4 μ2 
n sin (μn h ) e −λn b sinh (λn x ) 

λn (m 

2 π2 + λ2 
n b 

2 )(2 μn h + sin (2 μn h )) 

} 

−
ω 2 

g 

ξm 

sinh (ξm 

h ) − ω 2 

g 
cosh (ξm 

h ) 
sin 

(
mπx 

b 

)
. (36b) 

4.2. Incompressible ocean with different types of ocean bottom 

In the case of incompressible ocean, the AGW modes disappear, i.e., k n (n = 1 , 2 , . . . , N) vanishes, and μ0 = k 0 , μn = λn .

All the cases considered for a compressible ocean, i.e., sine, cosine and flat ocean bottom with shallow water approximation, 

and the cases of the time-dependent rise of the fault could be obtained using the approximation ω/c = k s = 0 in the results

obtained for the compressible case. 

4.3. Flat oscillating ocean bottom 

This case can be approximated by putting m = 0 in the cosine type bottom, and the region-wise displacement potential

function can be written from Eqs. (30) and (31) . The horizontal displacement component can be written as 

∂φ0 

∂x 

∣∣∣∣
| x | >b 

= ±
{ 

4 μ0 sin (k 0 b) cosh (μ0 (z + h )) e ∓i k 0 x 

k 0 (2 μ0 h + sinh (2 μ0 h )) 
+ 

N ∑ 

n =1 

4 μn sin (k n b) cos (μn (z + h )) e ∓i k n x 

k n (2 μn h + sin (2 μn h )) 

+ 

∞ ∑ 

n = N+1 

4 μn sinh (λn b) cos (μn (z + h )) e ∓λn x 

λn (2 μn h + sin (2 μn h )) 

} 

, (37a) 

∂φ0 

∂x 

∣∣∣∣
| x | <b 

= 

4 μ0 cosh (μ0 (z + h )) e −i k 0 b sin (k 0 x ) 

k 0 (2 μ0 h + sinh (2 μ0 h )) 
+ 

N ∑ 

n =1 

4 μn cos (μn (z + h )) e −i k n b sin (k n x ) 

k n (2 μn h + sin (2 μn h )) 

+ 

∞ ∑ 

n = N+1 

4 μn e 
−λn b cos (μn (z + h )) sinh (λn x ) 

λn (2 μn h + sin (2 μn h )) 
. (37b) 

Similarly, the vertical displacement components are written as 

∂φ0 

∂z 

∣∣∣∣
| x | >b 

= 

4i μ2 
0 sin (k 0 b) sinh (μ0 (z + h )) e ∓i k 0 x 

k 2 
0 
(2 μ0 h + sinh (2 μ0 h )) 

−
N ∑ 

n =1 

4i μ2 
n sin (k n b) sin (μn (z + h )) e ∓i k n x 

k 2 n (2 μn h + sin (2 μn h )) 

+ 

∞ ∑ 

n = N+1 

4 μ2 
n sinh (λn b) sin (μn (z + h )) e ∓λn x 

λ2 
n (2 μn h + sin (2 μn h )) 

, (38a) 

∂φ0 

∂z 

∣∣∣∣
| x | <b 

= − 4 μ2 
0 sinh (μ0 (z + h )) e −i k 0 b cos (k 0 x ) 

k 2 
0 
(2 μ0 h + sinh (2 μ0 h )) 

+ 

N ∑ 

n =1 

4 μ2 
n sin (μn (z + h )) e −i k n b cos (k n x ) 

k 2 n (2 μn h + sin (2 μn h )) 

−
∞ ∑ 

n = N+1 

4 μ2 
n e 

−λn b sin (μn (z + h )) cosh (λn x ) 

λ2 
n (2 μn h + sin (2 μn h )) 

+ 

ω 

2 cos (k s z) − gk s sin (k s z) 

gk s sin (k s h ) + ω 

2 cos (k s h ) 
, 

(
k s = 

ω 

c 

)
(38b) 

The potential function matches with what was found by Yamamoto [8] . The horizontal ( u ) and vertical ( v ) velocity com-

ponents can be obtained as 

W = i ω 

∂φ0 

∂ s 

∣∣∣∣
| x | ≶ b 

, where W = (u, v ) , s = (x, z) . (39) 

4.4. Shallow water approximation 

The calculations we present are challenging to validate except in the shallow-water limit. We know the solution profile 

for shallow water can be calculated in a more straightforward alternative manner. Under the assumption of shallow water, 

the region-wise f c m 

(x, ω) can be written as 

f m 

c (x, ω) | | x | >b = − b 2 (−1) m 

i μ2 
0 sin (k 0 b) e ∓i k 0 x 

m 

2 π2 − k 2 b 2 
, (40a) 
0 

842 



S. Das and M.H. Meylan Applied Mathematical Modelling 118 (2023) 832–852 

Fig. 4. Horizontal velocity components are plotted for b = 500 , 750 , 1000 and 2400 m. The angular frequency and ocean depth are fixed at ω = 2 π, h = 

50 0 0 m, respectively. Slanted stratified layers are found around the narrower fault, which become near-vertical away from the fault. 

Fig. 5. Vertical velocity component for the same set of parameters considered in Fig. 4 . Very high magnitude is observed in the water column above the 

wider fault. Velocity stratification above the fault is semi-circular for narrow faults and turns out to be more horizontal when fault width increases. 
f m 

c (x, ω) | | x | <b = b 2 (−1) m 

μ2 
0 cos (k 0 x ) e 

−i k 0 b 

m 

2 π2 − k 2 
0 
b 2 

− ω 

2 cos (k e x ) 

gξ 2 
m 

h − ω 

2 
, (40b) 

where k 0 = ω/ 
√ 

gh . An equivalent expressions for f s m 

(x, ω) are given by 

f m 

s (x, ω) | | x | >b = (−1) m bmπ
μ2 

0 sin (k 0 b) e ∓i k 0 x 

k 0 (m 

2 π2 − k 2 
0 
b 2 ) 

, (41a) 

f m 

s (x, ω) | | x | <b = (−1) m bmπ
μ2 

0 sin (k 0 x ) e 
−i k 0 b 

k 0 (m 

2 π2 − k 2 
0 
b 2 ) 

− ω 

2 sin (k e x ) 

gμ2 
e h − ω 

2 
. (41b) 

The surface elevation can be obtained using Eq. (34) . 
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5. Numerical results 

5.1. Time-harmonic solution of flat ocean bottom 

The horizontal and vertical velocity components for four different values of width b, namely 500 , 750 , 1000 and 2500

m, of the oscillating bottom are plotted. The angular frequency is fixed at ω = 2 π and the ocean depth at 50 0 0 m. 

The contour plot of the horizontal velocity component is shown in Fig. 4 for the same values of b mentioned in the

previous graph. The locations of equal horizontal velocity occupy slanted vertical water columns for lower values of b and 

near the fault region. They tend to be almost vertical as b becomes larger. Consecutive regions of low and high horizontal

velocity exist along the horizontal direction. 

A similar contour plot for the vertical velocity component is shown in Fig. 5 . A clear pattern of larger velocity amplitude

is found in the water column just above the fault. The magnitude increases sufficiently for a larger fault width. The con-

secutive stratified layers of opposite velocity are more circular for smaller fault width, and they become flattened near the 

surface. Such layers just above the larger fault width are more flattened. Consecutive patches of the positive and negative 

velocity regions occur in horizontal and vertical directions far away from the fault region and are less influenced. 

5.2. Time-dependent motion of the free surface 

The method allows arbitrary bottom displacements and rise times to be simulated or more complicated combinations of 

these to be simulated. However, we present here some simple calculations. Note that the solution needs to be seen in the

accompanying movie files to appreciate the complex motion. We take our scenario from [5] details of which will be given
Fig. 6. The displacement of the free-surface for a flat bottom profile with τ = 10 s, b = 40 km and l max = 1 for the times shown. The bottom displacement 

is shown as a red dashed line for illustration with the same vertical scale as the surface but plotted relative to negative two. The incompressible shallow 

water solution is also given and the incompressible solution. The depth is 1 km. The full animation can be found in movie 1 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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shortly. For the computations which follow, we assume the growth rate is constant for a finite time τ , i.e. 

l(t) = 

l max t 

τ
H(t(τ − t)) + l max H(t − τ ) (42) 

and in this case, the quantity W(ω, τ ) takes the following simple form: 

W(ω, τ ) = l max 

(
e −i ωτ − 1 

)
τω 

2 
. (43) 

For the numerical calculations which follow we will assume τ = 10 s and l max = 1 , following [5] . 

We assume that b = 40 km, again following [5] . Other scenarios are shown in the supplementary material. The exact

solution can be found for shallow water for m = 0 forcing, i.e. X is a constant, which is given in Appendix B . 

The displacement of the free surface is best viewed as movies that are supplied as supplementary material. Figures 6 to

8 are solutions for X = 1 . They show the displacement of the free surface for shallow incompressible water, incompressible

water and compressible water. The dotted line shows the ocean bottom displacement, which is drawn for illustration only. 

The ocean depth is assumed 1 km in Fig. 6 , where we also consider a simple flat profile. The effect of compressibility is

small here, and no AGW can be seen. The shallow water approximation works well. In Figs. 7 and 8 the depth is increased

to 4 km, again as used in [5] . In Fig. 7 where we also consider a simple flat profile, while in Fig. 8 , we consider a Gaussian

profile with 

X = exp (−6(x/ 40 0 0 0) 2 ) (44) 

We calculate the coefficients ζ c 
m 

from the well-known Fourier series formula. 

The movies show a number of striking features, including a very strong dependence on depth to see the effect of the

compressibility and the existence of a compressive wave that propagates vertically with a period of four times the depth 

divided by the acoustic speed. The rapidly propagating AGW, proposed as a mechanism to predict tsunamis, is also apparent. 

The purpose of the present work is not to exhaustively describe the complex emotions which arise. We provide the computer

code used to generate the figures to motivate others in further investigations in the supplementary material. However, we 
Fig. 7. As in Fig. 6 except the depth is 4 km. The full animation can be found in movie 2 . 
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Fig. 8. As in Fig. 6 except the bottom displacement is given by (44) and the depth is 4 km. The full animation can be found in movie 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

believe that this phenomenon in which the entire ocean surface oscillates has not been reported previously. We believe that 

this could be a method to predict tsunamis; however, we note that this oscillation required a sufficiently deep ocean or

rapid sea floor rise. 

The results in Fig. 8 are closely related to those given in [5] . However, in that paper, the focus was on the far field wave,

and they only calculated the response at X = 10 0 0 km and after a larger time than we show here. From the associated

movie file, we can see that the AGW are generated there as an initial oscillation of the ocean surface. Detection of this

oscillation may be a possible method to detect tsunamis. It may be noted that the static compression is neglected in this

work unlike the work by [33] where its impact on the long wave range is shown. Inclusion of this effect would result in

0 . 5 − 1 % error, depending upon the ocean depth, in the phase speed as well as in the near-field surface elevation. More

detailed analysis of this can be found in Appendix C . Recently, [40] have shown that the mathematical model where static

compression is ignored led to good matching with the measured field data for a relatively short time. We acknowledge that

a further detailed study is required to ascertain fully the effect of static compression. 

6. Conclusion 

Within the linear water wave theory framework, the generation of acoustic-gravity waves due to the vertical oscillation 

of seafloor having a sinusoidal surface is studied. A closed-form solution for the velocity potential is obtained using the 

Fourier transformation technique, which is utilised to find the surface profile for the case when the fault rises for a finite

time. This form is generic, and other profiles, including the flat surface case, can be approximated. The time-dependent 

solution of the sinusoidal case is utilised to depict the surface wave profiles due to flat and Gaussian-type raised ocean

floor. The simulations show the surface wave propagation imitating the tsunami wave generation at the surface over the 

raised seafloor and its propagation away from the source origin. A clear distinction between the surface wave profile for the

compressible and incompressible ocean is shown for different types of ocean bottom profiles. The time-harmonic solution 

corresponding to the flat surface fault is utilised to compute velocity profiles. The horizontal velocity profile around the fault 

shows slanted water columns of equal properties, which becomes near-vertical away from the fault. However, the vertical 

velocity component has a very high magnitude above the wider fault. In the case of a narrow fault, semi-circular stratified
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layers are found close to the fault. The near field time domain calculations show that when the acoustic gravity waves are

generated, they lead to a rapid oscillation of the fluid surface. We also show that significant AGW are generated only for

sufficiently deep water for a given rise time. 
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Appendix A. Solution using eigenfunction matching for m = 0 

Since the mathematical problem is symmetric across x = 0 , we shall solve it in the region x > 0 and utilise the symmetry

to calculate the displacement potential function in the region x < 0 . The region x > 0 is divided into two parts, namely x > b

and 0 < x < b. The potential function in the region x > b can be written as 

f 1 (x, z) = a 0 
cosh μ0 (z + h ) 

cosh μ0 h 

e −i k 0 (x −b) + 

N ∑ 

n =1 

a n 
cos μn (z + h ) 

cos μn h 

e −i k n (x −b) + 

∞ ∑ 

n = N+1 

a n 
cos μn (z + h ) 

cos μn h 

e −λn (x −b) . (A.1) 

Likewise, the potential function in 0 < x < b can be written as 

f 2 (x, z) = b 0 
cosh μ0 (z + h ) 

cosh μ0 h 

cos k 0 x 

cos k 0 b 
+ 

N ∑ 

n =1 

b n 
cos μn (z + h ) 

cos μn h 

cos k n x 

cos k n b 

+ 

∞ ∑ 

n = N+1 

b n 
cos μn (z + h ) 

cos μn h 

cosh λn x 

cosh λn b 
+ 

k s cos k s z + 

ω 

2 

g 
sin k s z 

k s 

(
ω 

2 

g 
cos k s h + k s sin k s h 

) . (A.2) 

The above forms can be symbolically written as 

f 1 (x, z) = 

∞ ∑ 

n =0 

a n 
cos αn (z + h ) 

cos αn h 

e −δn (x −b) , 

f 2 (x, z) = 

∞ ∑ 

n =0 

b n 
cos αn (z + h ) 

cos αn h 

cosh δn x 

cosh δn b 
+ 

k s cos k s z + 

ω 

2 

g 
sin k s z 

k s 

(
ω 

2 

g 
cos k s h + k s sin k s h 

) , 

along with the dispersion relation 

ω 

2 

g 
= −αn tanh αn h , (A.3) 

where (α0 , δ0 ) = (i μ0 , i k 0 ) , (αn , δn ) = (μn , i k n ) for n = 1 , . . . , N and (αn , δn ) = (μn , λn ) for n = N + 1 , . . . . 

Now using the matching of potential and its derivative along x = b, 

∞ ∑ 

n =0 

b n 
cos αn (z + h ) 

cos αn h 

+ 

k s cos k s z + 

ω 

2 

g 
sin k s z 

k s 

(
ω 

2 

g 
cos k s h + k s sin k s h 

) = 

∞ ∑ 

n =0 

a n 
cos αn (z + h ) 

cos αn h 
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and 

∞ ∑ 

n =0 

b n δn 
cos αn (z + h ) 

cos αn h 

tanh δn b = 

∞ ∑ 

n =0 

−a n δn 
cos αn (z + h ) 

cos αn h 

Using the orthogonality relation of αn , the above two equations provides: 

(a n − b n ) 

ˆ 0 

−h 

cos 2 αn (z + h ) 

cos 2 αn h 

dz = 

ˆ 0 

−h 

k s cos k s z + 

ω 

2 

g 
sin k s z 

k s 

(
ω 

2 

g 
cos k s h + k s sin k s h 

) cos αn (z + h ) 

cos αn h 

dz , (A.4) 

b n tanh δn b = −a n , (A.5) 

solving which we obtain the unknowns a n and b n . Simplifying Eq. (A.4) using the dispersion relation 

ω 

2 

g 
= −αn tanh αn h ,

we obtain 

a n − b n = 

4 αn cos αn h 

(k 2 s − α2 
n )(2 αn h + sin 2 αn h ) 

(A.6) 

Now we consider the three following cases: 

A1. Case I: n = 0 

This case corresponds to the propagating gravity mode with α0 = i μ0 and δ0 = i k 0 . The dispersion relation takes the

form 

ω 

2 

g 
= μ0 tanh μ0 h . The system of equations ( A .5 and A .6 ) take the following form: 

a 0 = −i b 0 tan k 0 b , and a 0 − b 0 = 

4 μ0 cosh μ0 h 

k 2 
0 
(2 μ0 h + sinh 2 μ0 h ) 

, 

solving which we obtain 

a 0 = 

4i μ0 cosh μ0 h sin k 0 b 

k 2 
0 
(2 μ0 h + sinh 2 μ0 h ) 

e −i k 0 b and b 0 = − 4 μ0 cosh μ0 h cos k 0 b 

k 2 
0 
(2 μ0 h + sinh 2 μ0 h ) 

e −i k 0 b . (A.7) 

A2. Case II: n = 1 , . . . , N

This case corresponds to the acoustic-gravity modes and the corresponding dispersion relation takes the form 

ω 

2 

g 
= 

−μn tan μn h . We consider αn = μn and δn = i k n . Applying a similar approach, the coefficients a n and b n are expressed as 

a n = 

4i μn cos μn h sin k n b 

k 2 n (2 μn h + sin 2 μn h ) 
e −i k n b and b n = − 4 μn cosh μn h cos k n b 

k 2 n (2 μn h + sin 2 μn h ) 
e −i k n b . (A.8) 

A3. Case III: n = N + 1 , . . . 

This case corresponds to the evanescent modes and the corresponding dispersion relation takes the form 

ω 

2 

g 
= 

−μn tan μn h . We consider αn = μn and δn = λn . Applying a similar approach, the coefficients a n and b n are expressed as 

a n = − 4 μn cos μn h sinh λn b 

λ2 
n (2 μn h + sin 2 μn h ) 

e −λn b and b n = 

4 μn cosh μn h cosh λn b 

λ2 
n (2 μn h + sin 2 μn h ) 

e −λn b . (A.9) 

Putting the expressions of a n and b n ( n = 0 , 1 , . . . ) from Eqs. (A .7) - (A .9) back into Eqs. (A.3) and (A.3) , we are able to retrieve

the form of the potential functions obtained using the Fourier Transformation technique (see [8] ). The same equations can

also be derived from the expressions (30) and (31) after putting m = 0 . 

Appendix B. Shallow water incompressible ocean for m = 0 

We consider here the time-domain case of shallow water with m = 0 . We focus on the region x > 0 , and the solution for

x < 0 can be obtained from the symmetry. Here the displacement potential is written as 

�(x, z, t) = 

1 

2 π

ˆ ∞ 

−∞ 

φ(x, z, ω ) e i ωt dω , 
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where 

φ(x, z, ω) | 0 <x<b = 

e −i ωτ − 1 

τω 

2 

{
− cosh k 0 (z + h ) cos (k 0 x ) e 

−i k 0 b 

k 2 
0 
h 

+ 

(
z + 

g 

ω 

2 

)}
, (B.1a) 

φ(x, z, ω| x>b ) = 

e −i ωτ − 1 

τω 

2 

i cosh k 0 (z + h ) sin (k 0 b) e −i k 0 x 

k 2 
0 
h 

. (B.1b) 

where k 0 satisfies the dispersion relation 

ω 

2 

g 
= k 2 0 h. 

B1. Instantaneous displacement 

We derive here the well-known solution for an instantaneous displacement. This is a common assumption used to model 

tsunami waves, and this provides some confidence in our solution for the more general case. We take the limit as τ → 0 ,

and we have a single root 
√ 

gh k 0 = ω. Under the shallow water approximation of the free surface displacement can be

written as 

η(x, t) | 0 <x<b = 

1 

2 π

ˆ ∞ 

−∞ 

−i 

ω 

{
−e −i k 0 b cos (k 0 x ) + 1 

}
e i ωt dω, 

= 

1 

2 π

ˆ ∞ 

−∞ 

−i 

ω 

{ 

−e −iωb/ 
√ 

gh cos (ωx/ 
√ 

gh ) + 1 

} 

e i ωt dω, (B.2a) 

η(x, t) | x>b = 

1 

2 π

ˆ ∞ 

−∞ 

− i 

ω 

{
i sin (k 0 b) e −i k 0 x 

}
e i ωt dω , 

= 

1 

2 π

ˆ ∞ 

−∞ 

1 

ω 

{ 

sin (ωb/ 
√ 

gh ) e −i ωx/ 
√ 

gh 
} 

e i ωt dω . (B.2b) 

We further simplify the above expressions in the following manner: 

η(x, t) | 0 <x<b = 

1 

2 π

$ ∞ 

−∞ 

−i 

ω 

{ 

−e −iωb/ 
√ 

gh cos (ωx/ 
√ 

gh ) + 1 

} 

e i ωt dω, 

= 

1 

2 π
lim 

a → 0 

[(ˆ −a 

∞ 

+ 

$ a 

−a 

+ 

ˆ ∞ 

a 

)
(−i) 

ω 

{ 

−e −iωb/ 
√ 

gh cos (ωx/ 
√ 

gh ) + 1 

} 

e i ωt dω 

]
, 

= 

1 

2 π

[ 

−π i Res (x, 0) + 

∞ ˆ
−
ˆ

−∞ 

(−i) 

ω 

{ 

−e −iωb/ 
√ 

gh cos (ωx/ 
√ 

gh ) + 1 

} 

e i ωt dω 

] 

, 

= 

1 

2 π

∞ ˆ
−
ˆ

−∞ 

(−i) 

ω 

{ 

−e −iωb/ 
√ 

gh cos (ωx/ 
√ 

gh ) + 1 

} 

e i ωt dω , ( since Res (x, 0) = 0) . (B.3) 

where ́−́ represents the Cauchy Principal Value of the integral, 
# 

represents contour integration using the path that includes 

the singularity at ω = 0 from above and involves the lower half of the complex plane, i.e., (ω) < 0 with representing the

imaginary part of a complex number, and Res (x, 0) represents the residue of the integrand at the point ω = 0 . Similarly, 

η(x, t) | x>b = 

1 

2 π

$ ∞ 

−∞ 

1 

ω 

{ 

sin (ωb/ 
√ 

gh ) e −iωx/ 
√ 

gh 
} 

e i ωt dω , x > b, 

= 

1 

2 π

[ 

−π i Res (x, 0) + 

∞ ˆ
−
ˆ

−∞ 

1 

ω 

{ 

sin (ωb/ 
√ 

gh ) e −iωx/ 
√ 

gh 
} 

e i ωt dω 

] 

, 

= 

1 

2 π

∞ ˆ
−
ˆ

−∞ 

1 

ω 

{ 

sin (ωb/ 
√ 

gh ) e −iωx/ 
√ 

gh 
} 

e i ωt dω , ( since Res (x, 0) = 0) . (B.4) 

Here, we shall apply the following expression to compute the surface displacement with the help of the Heaviside func- 

tion 

1 

2 π i 

$ ∞ 

−∞ 

e −i ωt 

ω 

dω = H(t) , t > 0 , (B.5) 
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Then the region-wise surface displacements are written as 

η(x, t) | 0 <x<b = −1 

2 

[ 

H 

( 

t + 

x − b √ 

gh 

) 

+ H 

( 

t − x + b √ 

gh 

) ] 

+ H(t) , 

= 

1 

2 

[ 
H(x − t 

√ 

gh + b) − H(x − t 
√ 

gh − b) + H(x + t 
√ 

gh + b) − H(x + t 
√ 

gh − b) 
] 
. (B.6a) 

η(x, t) | x>b = 

1 

2 

H(x − t 
√ 

gh + b) − 1 

2 

H(x − t 
√ 

gh − b) . (B.6b) 

It is quite astonishing to notice that the free surface displacement is a smooth function, and the integral is computable

using Cauchy Principal Value. 

B2. Finite time displacement 

Now we consider the case when τ is finite and the corresponding expressions of free surface elevation become 

η(x, t) | 0 <x<b = 

1 

2 π

$ ∞ 

−∞ 

e −i ωτ − 1 

τω 

2 

{ 

−e −i ωb/ 
√ 

gh cos (ωx/ 
√ 

gh ) + 1 

} 

e i ωt dω, 

= 

1 

2 π

[$ ∞ 

−∞ 

−1 

2 τω 

2 

(
e i ω(t−τ ) − e i ωt 

)(
e −i ω(b−x ) / 

√ 

gh + e −i ω(b+ x ) 
√ 

gh − 2 

)
dω 

]
, (B.7) 

and 

η(x, t) | x>b = 

1 

2 π

$ ∞ 

−∞ 

e −i ωτ − 1 

τω 

2 

{ 

i sin (ωb/ 
√ 

gh ) e −i ωx/ 
√ 

gh 
} 

e i ωt dω , 

= 

1 

2 π

[$ ∞ 

−∞ 

1 

2 τω 

2 

(
e i ω(t−τ ) − e i ωt 

)(
e −i ω(x −b) / 

√ 

gh − e −i ω(x + b) 
√ 

gh 
)

dω 

]
, (B.8) 

Here, we shall apply (B.5) and the following expression to compute the surface displacement with the help of Heaviside

function 

1 

2 π

$ ∞ 

−∞ 

e −i ωt 

ω 

2 
dω = t H(t ) , t > 0 , (B.9) 

Then the region-wise surface displacements are expressed as 

η(x, t) | 0 <x<b = 

1 

2 τ

[ 

2(τ − t) H(τ − t) − 2(−t) H(−t) −
( 

b − x √ 

gh 

− t + τ

) 

H 

( 

b − x √ 

gh 

− t + τ

) 

+ 

( 

b − x √ 

gh 

− t 

) 

H 

( 

b − x √ 

gh 

− t 

) 

−
( 

b + x √ 

gh 

− t + τ

) 

H 

( 

b + x √ 

gh 

− t + τ

) 

+ 

( 

b + x √ 

gh 

− t 

) 

H 

( 

b + x √ 

gh 

− t 

) ] 

(B.10) 

η(x, t) | x>b = 

1 

2 τ

[ 

−
( 

x + b √ 

gh 

− t + τ

) 

H 

( 

x + b √ 

gh 

− t + τ

) 

+ 

( 

x − b √ 

gh 

− t + τ

) 

H 

( 

x − b √ 

gh 

− t + τ

) 

−
( 

x − b √ 

gh 

− t 

) 

H 

( 

x − b √ 

gh 

− t 

) 

+ 

( 

x + b √ 

gh 

− t 

) 

H 

( 

x + b √ 

gh 

− t 

) ] 

. (B.11) 

Appendix C. Effect of static compression of the ocean water 

A few recent works in the context of the present physical problem have included the effect of static ocean compressibility

into the system (e.g. [33] ). Such a modification results in the new dispersion relation 

ω 

2 

g 
= ˆ μn 

(
1 −

(
γ

2 ̂ μn 

)2 
)

tanh ( ̂  μn h ) 

1 −
(

γ
2 ̂ μn 

)
tanh ( ̂  μn h ) 

, (C.1) 

where ˆ μ2 
n = μ2 

n + γ 2 / 4 and γ = g/c 2 is the parameter representing the static compression. 
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Fig. C1. The relative error in computing the phase speed of the surface gravity wave is presented in the left panel when the static ocean water compression 

is ignored. The maximum relative error is 0 . 55% up to 50 0 0 m ocean depth. The phase speed c 1 and c 2 are shown in the right panel. 

Fig. C2. The relative error in computing the wavenumber μ is shown in a surface plot within a frequency range of 0 . 0 0 01 − 10 rad/s taken, and for the 

surface gravity and the first 10 evanescent modes. The maximum relative error obtained is 0 . 5% . 

 

 

 

 

 

Under the shallow water approximation, the corresponding phase speed of the surface gravity waves (from (22) or equiv- 

alently by putting γ = 0 in the above equation) turns out to be 

C 1 = 

√ 

gh 

(
1 − 1 

4 

M 

2 
)
, (C.2) 

where M = 

√ 

gh /c. Now the corresponding phase speed of the surface gravity wave in the absence of static compression

leads to 

C 2 = 

√ 

gh 

(
1 − 1 

2 

M 

2 
)
. (C.3) 

The corresponding relative error 
| c 1 −c 2 | 

c 2 
× 100% is plotted in the Fig. C.9 for water depth up to 40 0 0 m. The figure clearly

shows the relative error below 0 . 55% . The phase speed is a monotonically increasing function of ocean depth, and the

computed maximum values are c 1 = 220 . 2653 m/s and c 2 = 219 . 0583 m/s. 

We compute wavenumbers μn at h = 50 0 0 m using both (C.1) and (22) . The relative error in computing the values of μ

is defined by 
| μ − ˆ μ| 

μ
× 100% . The values of N = 0 , 1 , . . . , 10 for the frequencies ω = 2 , 4 rad/s are considered. The result is

shown in Fig. C.10 , which provides a maximum error of 0 . 5% in the computation. In addition, the error in the computation

of evanescent modes for two values of frequencies is small. 
851 



S. Das and M.H. Meylan Applied Mathematical Modelling 118 (2023) 832–852 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.apm.2023.01.030 . 
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