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The generation of waves by wind 

BY J. DARBYSHIRE 

Xational Institute of Oceanog~aphy 

(Communicated by G. E.  R. Deacon, F.R.X.-Received 21 April 1952-
Revised 23 July 1952-Read 13 November 1952) 

This paper describes an investigation of the height and length of ocean waves and swell in 
relation to the strength, extent and duration of the wind in the generating area, and the 
subsequent travel of the swell through calm and disturbed water. The investigation is based 
on records of waves made on the north coast of Cornwall, in the Irish Sea and in Lough 
Neagh. It is a practical continuation of the work of Barber & Ursell (1948),who showed 
that the waves leaving the generating area behave as a continuous spectrum of component 
wave trains which travel independently with the group velocities appropriate to their periods. 
The spectral distribution of energy in the storm area is considered, and the relative amplitudes 
of the different components are deduced empirically under various wind conditions. The results 
indicate that the wave characteristics become practically independent of fetch after 200 to 300 
miles, and that in the equilibrium condition the steepness of the highest waves is inversely 
proportional to the square root of the wind speed. 

Some theoretical foundation can be found for the form of the empirical relationships if it 
is assumed that the wind acts on each wave component independently, and that the sheltering 
coefficient used by Jeffreys is proportional to the wave steepness. 

The results provide a basis for making reasonably accurate predictions of waves and swell 
from meteorological charts and forecasts. 

In  view of the present lack of knowledge of the fundamental processes governing 
wave generation, systems of wave prediction are based almost entirely on empirical 
data concerning wave characteristics and the speeds of the winds generating them. 
To predict swell-the more rounded forms into which the waves change after they 
leave the storm area-empirical data relating rate of decay to distance travelled are 
also needed. 

The information available consists mainly of synoptic meteorological charts and 
records of wave motion usually in the form of records of the pressure fluctuations 
produced by the waves on the sea bed at  a depth of about 50ft. a t  one point on 
the coast. 

Previous methods of analyzing wave records have consisted in determining some 
average value of wave period and wave height over a suitable time, and these values 
were compared with the relevant wind speeds. Although a prediction of average 
values is often sufficient for a local storm and restricted waters, a general method 
to take account of a combination of waves and swell must embrace more than this. 
The periods of the waves in the generating area cover a wide spectrum, and an 
investigation of this spectral distribution is necessary for further progress in under- 
standing the processes of wave generation and propagation. 

A method of deriving the wave spectrum from a wave record is described by 
Barber, Ursell, Darbyshire &L Tucker (1946). This is a Fourier analyzing method 
and the wave spectrum is given in ,terms of peaks (see figure I), each of which 
corresponds to a wave period which is a submultiple of the duration of the wave 
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record. Barber & Ursell(1948) have shown that when waves travel through areas 
where the wind is light so that the conditions of the classical hydrodynamical 
theory are more or less satisfied, the wave components travel independently, each 
component having the group velocity corresponding to its period. 

The present paper investigates the spectral distribution of wave energy in the 
storm area; it is a subject of some importance because the rate at  which the wave 
energy arrives a t  a distant coast depends on this distribution as well as the distance 
of the coast from the storm. The investigation is confined in the first instance to 
storms near the wave recording station at  Perranporth so that the effect of the 
dispersion of the waves on leaving the generating area can be neglected. These 
results are supplemented by others obtained for shorter fetches on Lough Neagh 
and the Irish Sea. Throughout the investigation, it is assumed that there is no 
interaction, and therefore no interchange of energy, between waves of different 
periods. This assumption, although justified by Barber & Ursell for waves travelling 
through an area of no wind, may not be strictly applicable when the waves are 
continuously under the action of the wind, but it is the best assumption that can 
be made inview of the present lack of knowledge about the behaviour of waves under 
such conditions. It is also necessary to make the somewhat arbitrary assumption 
that the wind acts on each wave component independently. 

It is assumed that in the development of a wave spectrum, the wave components 
all grow independently, and on this basis rules governing the relative amplitude of 
the various components for a given wind speed are deduced empirically from analysis 
of the wave spectra under various wind conditions. The rules obtained are then 
applied to storms a large distance away from the recording station to investigate 
the attenuation and rate of travel of waves after they leave the storm area. 

The empirical formulae obtained for the spectral distribution of energy in the 
storm area imply that waves with periods covering a wide range grow together under 
the action of the wind, and lead to the rather surprising result that the wave charac- 
teristics become practically independent of the fetch after 200 to 300 miles. Under 
such equilibrium conditions, the longest wave present has a wave period which, 
expressed in seconds, is one-third of the gradient wind speed expressed in knots. 
The shorter waves which are dominant a t  the beginning are successively dwarfed 
by longer waves that can grow without breaking, till, after 200 to 300 miles, the 
highest waves have an equilibrium period which, expressed in seconds, is approxi- 
mately one quarter of the gradient wind speed in knots; the steepness of the highest 
waves appears to be inversely proportional to the square root of the wind speed. 

An attempt is made to explain some of these conclusions in terms of the normal 
and tangential stresses exerted by the wind on the water surface. 

he investigation was started by examining wave spectra obtained by analyzing 
records of the waves produced by thirty different storms close to the recording 
station so that the effect of dispersion could be neglected. In  each storm the fetch 
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was over 100 miles and sometimes as much as 1000 miles. The investigation was 
supplemented for shorter fetches of 1to 10 miles by using waves recorded at different 
points on Lough Neagh, and for fetches of 40 to 100 miles by measuring waves with 
an airborne wave-recorder a t  different points along a line from Dublin to Liverpool 
at  a time when there was a steady west wind of force 6. The methods used to analyze 
and extract the information will now be discussed. 

(1)Analysis of wave spectra 

The method of analysis described by Barber & Ursell and others gives a Fourier 
analysis of a 20 to 30-minute record; the analysis appears in the form of a series of 
peaks, each corresponding to a harmonic component which is an exact submultiple 
of the total length of the record. An example of such an analysis containing waves 
due to a local storm and a band of swell from a distant storm is shown in figure 1. 
While it cannot be implied that these discrete periodicities are actually present in 
the sea waves, it is possible, for the duration of the record, to represent the pressure 
variations at  the point of measurement by a combination of independent sine waves 
with periods which are submultiples of the duration of the record and with ampli- 

scale of wave period (sec) 

FIGURE1. Typical wave record and spectrum. 

tudes proportional to the heights of the peaks on the spectrum. The heights of the 
peaks as they stand refer to the pressure variations at  the depth of recording, but 
they can be adjusted to refer to variations in surface height if it is assumed that the 
classical hydrodynamical theory relating surface height to wave pressure can be 
applied to each wave component separately. It is reasonable to assume this for calm 
conditions because it has been shown in this case .that the wave pattern consists of 
a number of sine waves travelling independently, and it is unlikely that any great 
error will be introduced by making the same assumption when the waves are acted 
on by the wind. Accordingly the analyses for the pressure variation a t  the sea bottom 
were converted into analyses of surface height. 

The state of the sea can best be described in terms of the wave energy. Assuming 
that for the duration of the record the wave pattern consists of a combination of 
independent sine waves with periods and amplitudes corresponding to those of the 
peaks on the spectrum, it is possible to evaluate the wave energy. Since the energy 
per unit area of a single sine wave of height 72 is &gph2, the total energy for all the 
waves in the spectrum = hgpC72: where h, corresponds to the height of the nth peak 
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in the spectrum. If H is the height of a hypothetical single sine wave train which has 
the same energy per unit area as the complicated wave pattern, then &gpH2= AgpXhL 
and H can be defined as the equivalent height of the waves. To compare such 
equivalent height with the maximum heights measured on the wave records, corre- 
sponding values of H and maximum height H,,,. are plotted in figure 2. The graph 
shows that H,,, = 2H. 

square root of the sum of the squares of all peaks in wave pressure analysis 

FIGURE Comparison between maximum wave height and equivalent wave height. 2. 

The idea of an equivalent height can be extended to parts of a wave spectrum as 
well as the whole. The energy ET in a unit wave-period interval T- & to T+ is 

r + a  
given by ET = &gp hk = $gpH$. HT can be defined to be the equivalent height 

T - t  

for waves of period between T-+ and T+&,and it is obtained from the Fourier 
spectra by measuring and taking the square root of the sum of the squares of the peaks 
which represent each harmonic within successive one-secondintervals of wave period. 
The values obtained were expressed in feet of water by calibrating the analyzer with 
a function whose Fourier spectrum is known and the values for each period interval 
were divided by the classical attenuation factor appropriate to the period and the 
depth of the recorder to make them refer to surface heights. 

The division of the energy into one-second intervals is made solely for reasons of 
arithmetical convenience. It will be shown later that a more fundamental division 
would be into unit intervals of the ratio of wave velocity to wind velocity. 

( 2 )Analysis of wind data 

There are not usually sufficient observations of wind strength in the wave 
generating area to allow detailed comparisons between the wave and wind charac- 
teristics, and it was made a general practice to compute the wind from isobaric 
charts. Six-hourly charts provided by the Naval Weather Service were found most 
convenient, and gradient wind speeds were calculated according to the instructions 
in the Admiralty Weather Manual. The relation between surface wind and gradient 
wind varies with the atmospheric stability and other factors, but Gordon (1950), 
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using observations over the sea, found that the ratio between the two varied between 
0.60 and 0.80, the mean value being 0.68. The best that can be done at  present is to 
assume a constant ratio of 0.86 and to compare the wave characteristics with the 
gradient wind speeds. There is some advantage in doing this since in any application 
of this work, it is more likely that weather charts will be available than wind 
observations. 

2 23E)29 29 25 
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distance from Land's End (miles) 

FIGURE3. Wind data diagram. 
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The gradient wind in each region traversed by the waves was determined by 
superimposing on the chart a reference grid drawn on tracing paper with lines 
radiating at  intervals of 10" from the recording station, and concentric circles a t  
intervals of 200 miles. Where the gradient wind had a component in the direction 
of the wave recording station, the component was determined from the mean value 
of the isobar spacing (over an area narrow enough to exclude any great variation) 
and the angle between the wind direction and the direction of the wave recording 
station. The values of the gradient wind speed derived by this method were plotted 
a t  100-mile intervals for every six hours as in figure 3. This is called a wind data 
diagram. To find the mean gradient wind speed along the paths taken by the wave 
conlponents of each period which arrive a t  the recording station a t  a particular time, 
a set of wave propagation lines diverging from the point representing the wave 
recording station was superimposed on the wind data diagram. The lines correspond 
to the group velocities of all integral values of wave period between 6 and 24 see, 
the time and distance scales being the same as in the wind data diagram. Applying 
the hypothesis that waves of different periods travel independently, it can be argued 
that waves of a particular period, arriving at  the recording station a t  a particular 
time, must have travelled through the areas and times traversed by the line whose 
slope is proportional to the group velocity of waves of that period, provided that the 
wind data refer to areas which lie on approximately the same bearing from the 
recording station. This will generally be so when there is one storm near the recording 
station and one distant storm because the near storm must subtend a large angle 
at  the recording station. When there are two distant storms on widely different 
bearings, a separate wind data diagram must be drawn for each storm. 

In  investigating the growth of a wave spectrum, the relationships of the gradient 
wind strength to the maximum wave period present in the spectrum and to the 
wave period of greatest amplitude are both important. 

The relationship between the maximum wave period and the greatest gradient 
wind strength was found by taking the upper limits of wave period in the analyses 
for storms a t  distances up to 3000 miles from Perranporth and plotting them 
against the corresponding maximum gradient wind strengths in figure 4. In  each 
example, the fetch was over 100 miles. The graph in figure 4 shows a large scatter 
but the maximum wave period expressed in seconds is approximately one-third of 
the maximum gradient wind speed in knots. 

To see how the period of the highest waves was related to the wind strength for 
large fetches, the value of T in seconds corresponding to the maximum value of 
H, in the wave spectra from sixty storms was plotted against the mean (instead of 
the maximum) gradient wind speed. The mean was evaluated over that part of the 
generating area in which the gradient wind speed in knots exceeds 3T (Tsee), and 
is therefore, according to the results of figure 4, capable of generating waves of 
period Tsee. The best evidence (derived from storms near the recording station only) 
is shown in figure 5a. The second diagram, figure S b ,  is derived from the spectra of 



305 The generation of waves by wind 

swell from distant storms, and for these the period for which H,, is a maximuin is 
likely to be displaced slightly to the long period end of the spectrum because of the 
smaller attenuation of long wave components. The two diagrams are, however, not 
appreciably different and they give a clear indication that a wave component 
reaches its maximum amplittlde when the ratio of its period, expressed in seconds, 
to the prevailing mean gradient speed, expressed in knots, is approximately 1to 4. 

The two diagrams indicate that when the fetch is large, the period of the highest 
waves depends only on the wind strength U ,  and that in these equilibrium Z',,. 
conditions T,,,./U = 0.25 (Tsec, U knots). Since the wave speed is proportional 
to the period, the relation suggests that there is an optimum ratio of wave speed 
to mean wind speed: waves of slower speed and shorter period have heights less than 

maximum wave period (see) 

FIGURE4. Correlation of maximum wave period with maximum wind 
strength for all storms. 

the maximum, presumably because they become unstable before they attain such 
a height, and waves of greater speed and longer period are also smaller, probably 
because they are less able to absorb energy as their velocities become nearer that 
of the wind. 

These two relations between the maximum wind speed and the maximum wave 
period, and between the mean wind speed and the period of the highest waves 
suggest that if H,, is plotted against T/Uto give the envelope of the wave spectrum, 
the envelope should always have the same shape and an increase in wind speed 
should change only the vertical scale of the curve. This implies that the envelope 
can be expressed in the form fIT = Unf(T/U) where U is the mean wind speed and 
f (TIU )is a function which is a maxinium at T/U (T  sec, U knots) = 0.25,and nearly 
zero when T/G is 0.33. Assuming H17= Gq"fT/U ) ,H T / P  = (U/T)nf(T/U) and the 
values obtained by dividing HT by some power of the corresponding value of 
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T ,  should lie on a curve which is a function of T /U or the ratio of the wave speed to 
the wind speed. Values of H, were divided by various powers of T and those obtained 
by dividing by the first power only were found to lie most closely on a single curve. 
These values of H,/T are plotted for every wave component in the spectra of waves 

(a) storms within 
400 miles of 
Land's End 

(b) 	 storms more 
than 400 miles 
from Land's End 

wave period (see) 

FIGURE5 .  	Correlation of period of maximum amplitude with mean gradient 
wind speed in strongest part of storm. 

generated near the wave recorder in figure 6a .  The scatter of the points in each 
diagram is large but there is some indication that the ratio H,,/T remains more or 
less the same function of T / U .The scatter must be large because we are dealing with 
data which are subject to many causes of error, some instrumental and some 
attributable to the use of isobaric charts which cannot be expected to give a perfect 
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representation of the variable conditions through which the waves have travelled. 

No significant difference in the distribution curve becomes apparent when the data 

are sub-divided into classes corresponding to different fetches. 


(a)For all periods 

0.14 0.18 0.22 0.26 0.30 0.34 

ifA [A
0 . 4  

0 . 3  .* .  ...- .. . . 
0 .2  . . . . .. .. . . . . 
0.1 

Fi 
2 


0.7 11src 
0.6 
0.5 
0.4 I/\0 . 3  
0 .20.1 I I 

0.14 0.18 0.22 0.26 0.30 

L 
 13sec 


2' U (see, knots) 
(b) For each onc-second period interval separately. 

FIGURE Graphs of HT/T  against T / U .6. 

Attempts to fit curves to the data suggest that the relation between &,IT and 

T/U is represented by a Gaussian function of the form 


y = K exp (- (x-a)2/20-)2. 

The full line drawn in figure Ga corresponds to the function 

fIT/T = 0.44 eXp { - (T/U-0.24)2/0.0027), ( I )  
where NT is in feet, T in seconds, U in knots. 

This relation gives a maximum value of 0.44 for HT/T, and the value 0.0027 which 
is equal to 2cr2 determines the ratio of EIT/T for any other value of T/U to the 
maximum value. The same curve is fitted to the observations of HT/T for each period 
separately in figure 6b. 



308 J. Darbyshire 

The relation (1)was obtained by considering wave components of the same period 
under the action of winds of different speeds, but it can be immediately extended 
to find the variation of HT with 7' when the wind speed U is constant. It then 
agrees with the results of figures 4 and 5,  for when 7' = 7113 the value of HT is very 
small, only one-fourteenth of the maximum value of H,. 

!i p'
2 I I I
" 0 100 200 300 

/ U ,  gradient wind meed (knots))% 

FIGURE Graph of H against U*.7. 

The equivalent height H can be found by integratingH2,,dT  from 0 to oo and taking 
the square root of the result, which gives 

H = 0.027 Ua (Hfeet, U knots). (2) 

Values of H found directly froni the spectra are plotted in figure 7. The straight line 
which corresponds to the relation (2) appears to give an adequate representation of 
the data. 

The constants in (1)and (2) are not dimensionless, the dimensions of the constant 
0.027 in (2) being L-*T*. The spectrum curve can, however, be expressed in terms 
of non-dimensional constants if the wave energy is sub-divided into unit intervals 
of the ratio of the wave speed to the surface wind speed instead of unit intervals 
of wave period. If U is the gradient wind speed, then the surface wind speed is 
$ U ,  and the ratio of wave speed to surface wind speed becomes c/(+U) = $(c/ U). If 
3 U/2c = p,E,dT = E,dp (cf. distribution of energy in spectrum of thermal radia- 
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tion), and taking c (in knots) as equal to 3.03T (Tin seconds), and EII==ggpH2,, 
H, = BT4{2U/(3x 3-03)) and from (1) 

H,, = 0.068UB(c/U) exp- ((c/U- 0.72)2/0.025) (Hft.,  U knots). 

If this expression is divided by (2) one obtains 

H,/H = 2.52(c/ U) exp -{(c/Lr -0.72)2/0.025). ( l a )  

The constant 2.52 is now dimensionless and the ratio H,/H is a function of c/U only. 
Equation (1a )  might also be applicable to observed wave profiles. The calculations 

on wave energy discussed above are based on the assumption that waves of periods 
corresponding to the harmonic components are continuous throughout the record. 
The observer sees a wave profile which is the sum of these component wave trains 
and the wave periods which he observes change from wave to wave within the limits 
of the spectrum. It would be useful, in the further study of wave steepness a,nd wind 
pressure on waves, to be able to estimate the mean height distribution over all such 
observed wave periods. It is difficult to formulate such a distribution but it is 
reasonable to assunie that it is similar in form to that given by (1 a)and an estimate 
of its scale can be obtained by making the reasonable assumption that the mean 
height of the dominant waves is not very different from the maximum value of wave 
height recorded. Equation (1 a )  would thus approximate to this distribution in form 
and scale for ( l a )  becomes a maximum a t  T = 0.24, or c/U = 0.72 which gives 
H,/H = 2.52 x 0.72 = 1.81, which also agrees fairly closely with the maximum 
wave height. 

The data employed so far were obtained under wind conditions in which the fetch, 
the distance over which the wind acted on the waves, was a t  least 100 miles and in 
some instances ten times as much; they indicate that for wave periods up to 13 sec 
(the limit for which sufficient observations are available), the increase of fetch above 
100 miles appears to have no important effect on therelation between HT/T and T/U .  

For shorter fetches, the relation might well be different and the question has been 
examined with the help of analyses of wave records with fetches up to 16 miles on 
Lough Neagh. Values of HT were calculated as before but the wind speeds recorded 
at  the neighbouring R.A.F. station a t  Aldergrove were used instead of calculations 
based on isobaric charts; there is little doubt that these would be more representative 
of the variable conditions over the lake and in dealing with such sniall waves and 
short fetches the wind and wave observations had to be identified as closely as 
possible with each other. The winds were measured a t  a height of 15 metres above 
lake level and a t  a distance of 2 to 3 miles from the lake. The wind values were 
multiplied by + to niake them comparable with the calculations based on isobaric 
charts over the sea and are referred to as gradient winds. 

The fetch varied according to the position of the wave recorder which was moored 
at various distances froni the weather shore. The values of H, for 2 to 2 miles fetch 
and 7 to 16 miles fetch are plotted in figure 8a and sub-divided into diagrams for 
each one-second period interval in figure 8 b. 

20 -2  
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A curve corresponding to the expression 

HT/T = 0.44 exp -((TIU-s)2/0.0027} (HTft., T sec, U knots), (3) 

is drawn through the points. This expression is the same as equation (1) used for 
long fetches except that the constant e is no longer 0.24 but varies with the fetch, 
being about 0.05 for 2 to 2 miles and 0.11 for 7 to 16 miles. The fit, although not so 
good as that for long fetches, is not unsatisfactory since the waves were caused by 
-winds which had passed over the land and were subject to greater variations than 
winds blowing over the sea. 

74x16 miles ELrn;' 

7tol6miles 1% to 2f/zsec to 16 miles 2-3 sec 7 to16 miles 3to 4 sec 
0.5 
0.4 

;;0.3 
@ 0.2 

0.1 

0.6 0.10 0.14 0.18 0.22 

o.Sb3hto2miles lgto2%sec 3/4 t o 2  miles 2 t o  3 sec 

b 
T / U , ratio of wave period (sec) t o  8 x surface wind speed (knots) 

FICTJRE Graphs of HT/T against T / U  for small fetches: (a)for all periods; 8. 
(b) for each one-second period interval. 

Equation (3) can be integrated in a similar manner to equation (1)and provided 
that s >0.03 H+0-027U%/0.024 (Hft., U knots). (4) 

The variation of e for fetches between 40 and 100 miles was found from the line 
of observations across the Irish Sea. The records obtained by an airborne wave 
recorder contain some irregular variations due to the weave of the aircraft, which 
prevent such a precise determination of the upper and lower limits of wave bands 
as is usually possible in the analyses of wave records from a stationary instrument 
on the sea bed, but the period of the waves of maximum amplitude could be deter- 
mined with an accuracy of 1 sec from most of the analyses of the records. I n  all the 
analyses, the value of the period corresponding to the maximum value of HT was 
also that corresponding to the maximum value of H,/T, so that the values of 
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s corresponding to fetches of 40 to 100 miles can be calculated. They are plotted 
against the fetch in figure 9. The two values 0-03 and 0.11 from Lough Neagh are 
included in the diagram. The distribution suggests an exponential relationship and 
the curve drawn is -5 = 0.24(1- exp ( -0-23x*)),x being the fetch in nautical miles. 
When the same distribution is plotted for long fetches, as in the inset to figure 9, 
there is some indication that the relationship becomes linear. The curve drawn is 

6 = 0.24(1+ 1.25 x 10-*x) ( 1  -exp ( - 0.23x*)). 

A t  400 miles the difference between this and the simpler expression is 5 %, and since 
longer fetches are rare, the simpler equation will generally be adequate. 

111
 -
0 1 0  40 60 80 100 

fetch (nautical miles) 

FIGURE against fetch.9. Graph of E 

Using the simpler expression and then the more accurate, one obtains 

H,/T = 0-44exp - [TIU -0.24{1- exp ( -0.23~*))]~ /0-0027  

or 

H,/T = 0-44exp - [ T / U-0.24(1+ 1.25 (1-exp ( -0.23~*))]~/0.0027 

(H ,  ft., T see, U knots, x nautical miles). 

Similarly from equation ( 4 )one obtains 

H = 0.027 P ( 1 -  exp ( -0.23xi)), 

or H = 0.027U*(l+ 1.25 x 10-*x) (1  -exp ( -0 . 2 3 ~ ) ) ) .  
( 4  a )  

These equations hold when s > 0.03, as i t  does with fetches greater than about 1mile. 
The expressions incorporating the simpler relationship reduce to equations (I) ,  
( 2 )and ( 1  a )  for infinite fetch; the other expressions reduce to 

HT/T  = 0-44exp- { T / U -  0.24(1+ 1.25 x 10-4x))2/0.0027 

and H = 0.027U4(1+ 1.25 x 10-4x). 
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These expressions for infinite fetch may represent a correction on the formulae 
derived earlier in the sense that the wave characteristics continue to increase slightly 
with fetch but the difference between them lies within the margin of uncertainty 
of the data, and the simpler expression is used throughout this paper. 

For an examination of the effect of waves on ships and for other practical 
purposes, it has been found convenient to use the average height and period of the 
highest third of the waves observed and this statistical wave model has been called 
the significant wave (Sverdrup & Munli 1947) or the operational wave (Seiwell1948). 
I ts  value in relation to the mean wave height has been found by measurement of 
wave records to be 1.57 (Seiwell1948), and 1.51 for swell and 1-61 for sea by Harney, 
Saur & Robinson (1949). Barber (1950) has worked out the relative distribution of 
heights in a wave record and finds that y = x/o%esp ( -x"2rr2)* where y dx is the 
probability of the wave having a height between x and z +dx. It can be shown from 
this that the mean height IYm,,,, = 1 . 2 5 ~and that only 1 % of the waves exceed the 
height given by 3.035 = 2.4Hn,,,, which can be talcen as a reasonable estimate of the 
masiinum wave height. It can also be shown that the mean height of the highest 
third of the waves is 1.61 times the niean wave height. Table 1 summarizes the 
definitions and shows approximately how they are related. As the equivalent 
height is one half the maximurn wave height, it  can be related to the other mean 
values. 

TARLE1 

Hmea, mean wave height (average of all waves) 1.0 

Ii equivalent w,ave height (height of simple sine wave having 
the sarne energy conteiit as the complicated wave pattern 

1.2 Hmean 

g, 
Hmax. 

significant wave height (average of one-third highest waves) 

maximum xvave height (highest in 100 waves) 
1.6 Hmean 

According to Barber's distribution formula, approximately 13 :/, of the waves have 
heights greater than the significant height. From (4a) and table 1 using the 
exponential relationship for the effect of fetch 

H,,,, = 0.023IJ~{l- exp ( -0.23xh)) (5) 
H, = 0.0361J"l- exp ( -0-23xh)) (6) 

H,,,. = 0-0541if{l- exp ( -0-23x*)), ( 7 )  

where H, is in feet, U in knots and x in nautical miles. 
Exaniination of wave records and their analyses has shown that the significant 

period corresponds very closely with the period of maxinlum amplitude on the 
analysis so that 

T,= 0.24 LT(l-exp ( -0.23xt)) (Tsee, I; Imots, x nautical miles). (8) 
* The distribution depends on the method used to measure the waves, and on the size 

of the sinallest surface irregularities which are counted as waves. All the statistical exaniina- 
tions made up to tho present have been based on wave pressure records made by instruments 
laid a t  a depth of 40 to 80 ft. and i t  can be assumed that waves with lengths less than twice 
the depth of recording have been ignored. 
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The value given for the fetch in equations ( 5 ) to (S) is usually taken to be the 
distance over which the wind has acted on the waves, and when t,he area of water 
affected is small compared to the t,otal area over which the wind is blowing, it can 
be assumed to be the distance from the weather shore. If the wind acts over part of 
the sea area t,o windward of the observation point, the definition is not so simple; 
the main difficulty being to define t,he outer limit a t  which the wind becomes 
sufficiently strong to generate the waves. According to t,he evidence in figure 4 that 
waves of period T see are not generat,ed till t'he gradient wind speed U knots reaches 
a value such that U > 3T, the fetch will be different for short and long waves. This 
limit is as easy to use as any other if a wave propagation diagram (p. 304) is used, and 
it is not necessary for small sea areas limited by land. 

To obtain an independent check, the expression for significant height and period 
have been applied to the wind and wave data list,ed by Sverdrup & Munk (1947)and 
the predicted and observed wave heights and periods are compared in figures 10a 
and l o b .  The agreement between the wave heights and periods calculated from the 
wind data and the observed values is satisfactory. 

(a)computed wave period (see) (b) computed lieigl~t (ft.) 

FIGURE Munk's10. (a) Comparison of computed and observed wave periods (Sverdrup & 
data). (b) Comparison of computed and observed wave heights (Sverdrup & Munk's data). 

WAVESTEEPNESS 

Wave steepness is usually defined as the ratio of height to length. According to 
equation ( 7 ) ,the maximum height H,,,. is given by 

(H,,,. 

and according to equation ( 8 ) ,the period of the highest waves is given by 

T,= 0.24U(1- exp ( -0.23~3)). 

,,,.H 
 = 0.0541/*(1- exp ( -0.23xa)) ft., Ti knots, x miles) 
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This corresponds to a wave-length of g x 0.242U2(1-exp ( from which -0 . 2 3 ~ 4 ) } ~ / 2 ~  
the steepness of the highest waves 6 becomes 

6 = 0.182/[l/*{l- exp ( -0+23x*))] (I/ knots, x nautical miles) (9) 

or in terms of surface wind Ti, assuming V = 21//3 

S= 0.149/[V*(l- exp ( - 0-23x*)}]. (10) 

This empirical relation takes into account losses of energy due to breaking and other 
causes and agrees with the known fact that waves become less steep with increasing 
fetch. It implies a steepness of approximately 00149/V* for fully developed waves 
which have travelled a long distance under the action of the wind. For small values 
of wind speed and small fetches, the formula gives a ratio of height to length greater 
than 1 in 7 but all the measurements that have been made indicate that this is 
probably beyond the limit a t  which waves become unstable and till more is known 
of the factors involved, i t  must be assumed that the values given by the formula must 
not exceed this limit. 

The formula indicates that the steepness is a function of the square root of the 
wind speed as well as of the stage of development of the waves under particular wind 
conditions. Sverdrup & Munk (1947) used all the available data, mostly visual 
observations, to show that wave steepness is a function of the ratio of the wave 
velocity to the wind velocity c/V for which they used the term 'wave age'. Using 
equation (10) and (8) and the relation c (knots) = 3.03T (sec), the steepness 

6 = 0.163/(Va(c/ V)} and if /l= c/ V then 6P = 0.1 631 V*. (11) 

Over a range of 15 to 50 knots which covers the measurements made, the presence 
of Va in the denominator causes the steepness to vary by a factor of less than two, 
and in view of the scatter usually present with data of this sort, the effect of V would 
not be very apparent and there might appear to be a relation between 6 and P. 

Equations (1) and (3a) can be used to estimate the height of each wave com- 
ponent in turn. A transparent sheet on which wave propagation lines are drawn is 
placed over a plan of the gradient wind speeds as outlined in p. 304, to form a wave 
propagation diagram as shown in figure 3. The distance over which the wind speed 
in knots is greater than 3T, where T is each wave period in turn, is used as the fetch 
(x in equation (3a)). If the estimate is made for waves which have been generated 
over a sea area such as the English Channel or the Irish Sea, which is so small that 
the gradient wind can be assumed to be constant, the width of the sea can be taken 
as the fetch. If the fetch for any period is longer than 200 miles, the simpler of the 
two equations is used. The mean gradient wind speed U for each period is taken as 
the mean of the wind speeds that are greater than 3T. For short fetches, the values 
of U are the same for each period. Calculations made for each wave period in turn 
give results such as those plotted in figure 11 which compares predicted spectra 
with those observed a t  Perranporth and Lough Neagh. 
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period (sec) 

(a)Perranporth 24.00 G.X.T. 24 October 1945 (b)  Lough Neagh 11.25 G.RI.T. 12 April 1949 

FIGURE11. Comparison of observed (-) and predicted ( - - -) wave spectra. 

SWELLFROX DISTANT STORnlS 

Before the procedure for waves generated near the recording station can be applied 
to waves generated a large distance away, other factors have to be taken into 
consideration: 

( a )the effect of tides on wave period, and possibly wave amplitude, as the waves 
approach the coast; 

(b) even when the hypothesis that the wind acts on the wave components indepen- 
dently is accepted, i t  is necessary to see how closely the group velocity of wave 
components when under the action of the wind compares with the theoretical value 
for calm conditions; 

(c)accepting the same hypothesis i t  is necessary to see if useful generalizations 
can be made about the attenuation of wave components with time or distance as 
they travel from the generating area. 

Efj'ect of tidal streams on wave periods and amplitudes 

Wave spectra which contain narrow bands of swell reaching the coast of Cornwall 
from very distant storms show that the period of the swell does not decrease regularly 
with the time as would be expected from the classical theory but is subject to an 
oscillation of about 12hours' period. Barber & Ursell ( I  948) and Barber ( I  949) have 
shown that the swell period is reduced during the time of maximum stream in the 
north-east direction at  Perranporth and increased a t  the time of maximum stream 
in the south-west direction and concluded that the oscillation is of tidal origin. If 
the waves enter an area of slack water with a velocity v and the water begins to move 
with velocity u, then the velocity of the waves past a stationary observer will be 
v +u and the wave period will appear reduced by the ratio v/(v+ u).The apparent 
reduction in period will be greatest if the waves enter the area at  the time of maximum 
opposing stream and pass the instrument six hours later when the stream has its 
greatest velocity in the same direction as the waves. Under these conditions u will 
be the algebraic difference of the ebb and flood streams. 

If a narrow band of swell is travelling from the south-west with a group velocity 
of 30 knots it would take approximately 6 h to travel from the 100-fathom line, 
through an area in which the tidal streams set north-east and south-west with 
a maximum rate of 1knot. The overall change is then 2 knots and if the swell crosses 
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the 100-fathom line when the south-west stream is strongest, the wave velocity of 
60 knots will be changed at  Perranporth by two parts in 60 and the wave period is 
correspondingly reduced by +sec. This agrees reasonably well with the variations 
observed for swell arriving from this direction. Barber (1949) has extended the 
theory to swells arriving from other directions and in general a variation of 1sec in 
wave period is obtained according to the state of the tide and in the prediction of 
wave spectra due to distant storms; allowance has to be made for this effect. 

There is also some evidence of a small variation in wave amplitude with the state 
of the tide, but not enough is known of this effect at  present to make any allowance 
for it in wave prediction. 

Variation of wave-group velocity 

In  predicting the characteristics of waves caused by distant storms, the wave- 
group velocity becomes an important factor. Barber & Ursell (1948), selecting 
examples of small, intense storms at  a great distance, which produced waves that, 
after leaving the generating area, travelled across the ocean in calm or light winds, 
found that the wave components travelled independently with the group velocities 
appropriate to their period. Their conclusions agreed with the classical hydro- 
dynamical theory which can be reasonably applied under such conditions. The 
present paper extends the investigation to conditions where the waves travel under 
the action of fairly strong winds, and it is assumed that under these conditions the 
wave components still travel independently. As the classical theory may no longer 
be applicable, the values of wave-group velocities appropriate to each period may be 
different and it is necessary to find whether there are significant differences. 

It is one of the implicit assumptions of this paper that wave components travel 
independently without any interchange of energy whether in the generating area 
or not. With this assumption, one can extend the conclusion drawn from figure 4, 
that waves of period T seconds are found after long fetches with a gradient wind 
speed of 3T knots, to infer that waves of period T seconds are formed as soon as the 
gradient wind speed reaches 3T for any fetch and to use this criterion to estimate the 
time of origin of waves of period T in the storm area. 

Accordingly, a contour enclosing that part of the generating area where the wind 
speed in knots was greater than three times the wave period in seconds was drawn 
on a propagation diagram of the type shown in figure 3, and it is assumed that the 
first waves of that particular period to reach the coastal station have travelled along 
a line which joins the nearest part of the wind contour to the point that represents 
the time of arrival a t  the coastal station, and that the slope of the line joining 
them represents the rate of travel. This rate has been conipared with the 
theoretical group velocity in 23 instances, some of which correspond very closely to 
the fundamental conditions of the Cauchy-Poisson hydrodynamical theory con- 
sidered by Barber & Ursell, and others in which the waves were subjected to 
following winds ranging up to 45 knots after they had left the generating area where 
U (knots) was greater than 3T (see). An appropriate allowance up to + I sec is made 
for the effect of tidal streams as indicated above, and the corrected period was used 
as the value T in deciding the place and time at which the wind first exceeded 3T. 
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The rate of travel based on the assumption that waves are generated at  the 
hypothetical place and time a t  which U first exceeded 3T is called the estimated 
velocity or empirical group velocity and the ratio of this estimated velocity to the 
theoretical group velocity is found. The mean gradient wind speed directed towards 
Land's End along the line joining the hypothetical origin of the waves to that 
representing the time of arrival a t  the coastal station, is also determined. The ratio 
of the estimated velocity to the theoretical group velocity is plotted against the 
square of this value of mean gradient wind speed in figure 12 and there appears to 
be a linear relationship between the two. 

square of mean gradient wind speed in region traversed by waves 

FIGURE12. Variation of wave-group velocity with wind strength. 

As far as can be judged from the comparison of calculated and predicted spectra, 
the corrected velocities allow a more accurate prediction of the time of arrival of 
a particular wave period when the waves are acted upon by a following wind. Such 
an example is illustrated by the propagation lines drawn in figure 13 for a narrow 
band of swell which arrived a t  Perranporth with 164 sec period a t  1900 h on 5 May 
1945. The rate a t  which the spectra a t  Perranporth widened towards shorter periods 
showed that this narrow band of swell originated in an area 1600 to 2000 miles from 
the recording station, presumably in the area of the 40-knot winds shown in the 
propagation diagram. To reach Perranporth a t  the measured time the 166 sec waves 
must, have travelled with a velocity which is represented by the full line in the 
diagram; this velocity is smaller than the theoretical group velocity which is 
represented by the broken line. 

There are as yet not sufficient data to investigate the effect of cross-winds and 
opposing winds. It appears that successive measurements on the same train of 
waves as it travels from the generating area will be necessary to further this investiga- 
tion of the variation of wave-group velocity with wind strength under various 
conditions. 

Attenuation o f  waves with travel t h e  

Previous studies of the attenuation of waves with distance have shown that there 
is an increase in mean wave period as the swell travels away from the storm area, 
but have ignored the dispersion effect. On the present basis, the increase in period 
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may be attributed partly to the effect of dispersion, because of which the longer 
swell runs ahead of the shorter, and partly to the greater attenuation of the shorter 
swell components. Previous values of the attenuation coefficients inferred from 
changes in the dominant waves must therefore depend on the effect of dispersion 
over a wider area as well as loss of energy. 

distance from Land's End (miles) 
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FIGURE13. Wind data diagram showing path of waves of 16Q see period: 
- - -,theoretical group velocity; -, empirical group srelocity. 

On the assumption that wave components of different periods travel indepen- 
dently, the attenuation due to loss of energy can be isolated, by considering them 
separately as they leave the storm area, regardless of the composite pattern which 
they produce at  any point. 
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To make such a study, values of H, for the spectra of waves arriving a t  the recording 
station at  particular times were calculated from equations (1) and (3a), the wind 
strengths and fetch being obtained from wind data diagrams, using wave propaga- 
tion lines based on the empirical group velocities. Comparison of the calculated 
values with those observed should give a reliable indication of any systematic effect 
of attenuation. The results showed a good deal of variation, probably attributable 
to the uncertain character of the wind data, but some general conclusions could be 
reached: 

(1) The attenuation of waves of all periods is much less when there is a following 
wind. 

(2)  Short waves are attenuated more than long waves. 
(3) Waves of large amplitude are attenuated proportionately more than low 

waves of the same period. 
(4) For distances considered, up to 2000 miles, i t  was found unnecessary to take 

any account for the divergence of the waves as they leave the storm area, i.e. it  can 
be assumed that they continue to travel in the great circle along which they were 
originally generated. 

The first and second conclusions are in accordance with Sverdrup's wind resistance 
theory based on the principle used by Jeffreys (1925, 1926) in his theory of wave 
generation. This theory is discussed more fully in the next section and it can be 
shown that when the wind of speed V a t  the sea surface is less than the wave speed c, 
the attenuation with the time is given by: 

a = t/pc3},a. exp (- gsp'( V -c ) ~  

where a is the amplitude after decay time t , a, the original amplitude, p' density of 
air, p density of sea water and s is a non-dimensional constant which Jeffreys took 
to be 0.27. 

The third conclusion is not in accordance with this theory, but it can be made to 
agree by assuming the sheltering coefficient to be dependent on the wave steepness 
or alh; the modulus of decay will thus be assumed to be proportional to the amplitude 
a t  a particular moment and low waves will be attenuated relatively less than high 
waves. With this assumption, the attenuation formula becomes 

where Salh replaces the original s, i.e. s = Salh. Expressed in terms of wave period 
T, and assuming the speed of the surface wind V is two-thirds of the gradient wind 
speed U , the formula becomes 

l / h- l/ho= const. (2U/3 -3T)2 t/9T6, (13) 

h and h, in feet, U gradient wind speed in knots, T wave period in seconds, t time 
in hours. 

Jeffreys's theory was derived for a simplo sinusoidal wave and it can be applied 
to each harmonic component of a complicated wave pattern only if i t  is assumed 
that the wind acts on each wave component independently. This assumption, 
though somewhat arbitrary, is made throughout this paper and i t  will .be assumed 
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therefore that the attenuation of each wave component is governed by its own 
particular characteristics. Equation ( 1 3 )was therefore applied to separate values 
of H,. 

When U = 0, the right-hand side of the equation reduces to a constant multiplied 
by t/T" and the constant has been evaluated by investigation of values of HT 
measured from spectra of swell which had travelled through areas of calm or 
light winds. 

The observed and predicted values of H, according to equation ( 1 3 ) ,are compared 
in figure 14. There is a good deal of scatter as would be expected because of the many 
uncertain factors involved, but there is sufficient agreement to suggest that the 
assumptions are reasonable. The mean values of the constant in equation (1  3 ) ,  found 
for each unit period interval froni 10 to 15 sec, are 

interval (sec) 10 11 12 13 14 15 

constant 29 32 39 32 27-5  33.5 

Using the average of these, 32.2, the attenuation formula becomes 

Because of the form of equations ( 1 3 ) and ( 1 3 a ) the value of the constant must 
depend on the way in which HT is defined; if H refers to unit wave velocity, or unit 
c / C  instead of unit period, the value of the constant will be different. 

observed HT (ft.) 

FIGURE14. 	Comparison of predicted and observed values of HTr of 
swell from distant storn1:i. 
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The formula applies in cases where U is appreciably less than 3T. When the terms 
2U/3 and 3T approach equality, the effect of the tangential stress discussed in the 
next section becomes comparable to the effect of wind resistance; this would explain 
why waves of period 3T can be generated by a gradient wind of strength U .  

There is no direct evidence for the effect of opposing winds but as far as can be 
judged a t  present, the attenuation is approximately according to equation (13a) 
when the negative sign is changed into a positive one. 

A comparison of the changes in observed and predicted swell over a period of 
3 days in March 1945, is shown in figure 15. The agreement is satisfactory. 

March 1945 

FIGURE 	 and predicted (- - -) wave period 15. 	Comparison of observed (-) 
an.d height for swell at Pendeen, March 1945 

The formulation of the factors involved in wave generation can only be approxi- 
niate and tentative until more is known about the effect of turbulence, but it appears 
that equilibrium is reached after 200 to 300 miles; after this distance tht: increase 
in wave characteristics is so slow as to be almost negligible. An attempt will now be 
made to fit a physical explanation to the empirical results. 

Equilibrium must be reached when each wave component loses as much energy 
as i t  gains, and it is therefore necessary to consider ways in which waves can gain 
and lose energy. 

Two factors by which the wind energizes the waves have been suggested and both 
will be assumed to act together. 

(1)The first, discussed by Jeffreys and later by Sverdrup is the tangential stress of 
the wind on the sea surface. According to Stokes (1847) (and this has been confirmed 
experimentally), a water particle moves a finite amount after the passage of a wave 
so that there is a small residual drift velocity. It follows therefore that more work 
is done on the water particles when they move forward with the wave than is lost 
hen they move back, so that a finite amount of energy is given to the wave 

particles each wave cycle. 
(2) It has been suggested by Jeffreys that waves can be energized by the normal 

stress of the wind on the sea surface, owing to the formation of an eddy on the 
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leeward side of the wave so that the normal pressure is greater on the windward side. 
A finite amount of work is again done on the water particles after the passage of 
a wave cycle, since more energy is given to the water particles when they move on 
the windward side with a downward velocity than is taken away from them when 
they move on the leeward side with an upward velocity. The waves are only 
energized, however, when they travel slower than the wind; if they travel faster, 
an eddy tends to be formed on the windward side and the process is reversed, the 
waves losing their energy to the wind. 

The last effect would prevent the formation of waves very much faster than the 
wind, and fast waves may lose energy to the wind in this manner. Most of the energy 
must, however, be lost by breaking. Although, theoretically, under calm conditions, 
all waves of steepness less than 1 in 7 should be stable, waves under the action of the 
wind are known to breali when they are much less steep than this, and equation (10) 
shows that on the average they only conserve their energy over a distance of 100 
miles or more if their steepness is less than 0.1491 V*, V being surface wind speed 
in knots. 

All these factors may govern the spectral distribution of waves in the storm area 
and the height of waSes of any period is not likely to exceed the value given by the 
steepness condition. The heights of waves moving faster than the wind would also 
be controlled by the balance between the energy gained due to the tangential stress 
and lost due to normal pressure. If it is assumed that the normal-pressure effect 
depends on a higher power of the wave amplitude value than the tangential effect, 
then it follows that for each wave speed exceeding the wind speed, there is a limiting 
value of wave amplitude at  which the two effects become equal and cancel out and 
the wave is in equilibrium with the wind. 

Two curves can thus be drawn, showing the maximum wave heights in terms of 
wave period (or wave speed) allowed by both the breaking effect and normal- 
pressure-attenuation effect. The curve for the breaking condition will show the 
height increasing indefinitely with the wave period, while the curve showing the 
limitation due to normal pressure will start a t  infinity for wave speeds equal to and 
less than the wind speed and decrease to zero as the wave speed increases. The 
optimum wave height and period will be given by the point of intersection of the 
two curves, waves of this period and height satisfying simultaneously all the 
required conditions. 

These conditions will now be considered in more detail. 

( a )T h e  efiect of tangential s t~ess  

At wind velocities exceeding 12 knots, the tangential stress is often quoted as 
T,, = y2p'V2 where y2, the stress coefficient, is a non-dimensional constant of the 
order of (2 to 3) x p' is the density of air, V surface wind a t  10 to 15 metres. 
This formula is based on the assumption that the aerodynamic roughness, which is 
a function of y2, is constant for wind speeds exceeding 12 knots. Neumann (1948), 
however, states that y2 is not constant for the sea surface and as a result of tilt 
measurements he derived a law T,, = p'xV2, where x = 0.091 V*, c.g.s. units being 
used. 



323 The generation of waves by wind 

This equation implies that the aerodynamic roughness of the sea surface decreases 
with the wind strength. This suggested dependence of y2 on the reciprocal of the 
square root of the wind speed corresponds to the empirical result that the limiting 
wave steepness is inversely proportional to the square root of the wind speed. The 
two results would be consistent if the aerodynamic roughness of the sea surface were 
to be determined by the steepness of the dominant sea waves. It is scarcely justifiable 
to use Neumann's value, derived from measurements on a different scale and 
including some terms due to vertical stresses, but providing the constant is changed 
it leads to results in accordance with those derived empirically in this paper. 

Consider a single wave train of length A. The average work done by tangential 
stress in unit time per unit area 

= (I/A) 1 rx.(u +4n2a2ch-2) dx, 
0 

where u is the horizontal component of the particle velocity and is equal to ga cos 8 
where 8 is the slope angle of the wave surface a t  any point x, c is the wave velocity 
and a the wave amplitude. The second term in the bracket corresponds to the mass 
transport velocity which represents the resultant motion of the water particles on 
the surface after the passage of a wave. Stokes showed that this term was necessary 
if the waves were to satisfy the irrotational condition and its existence has been 
verified experimentally by the Beach Erosion Board in An~erica (1941). 

On integration, the oscillatory term disappears and the expression becomes 
r,,4n2a2~h-2. Using Neumann's ideas for the relation between the wind and the 
tangential stress, the average rate of work done per unit area per second is 
lcp'V*4n2a2ch-2; but h = 2nc2/g, where r,, = IcpVg. Therefore, the average rate of 
work done by tangential stress is 

(b) The eflect of normal stress 

If the normal wind stress on the waves is r,,, then the rate of work done per unit 

area per second = ( l lh )1: r,,wOdx, where w, is the vertical component of the 

particle velocity a t  the surface and is given by 2nh-lac cos 2nh-l(x -ct). Jeffreys 
consideredr,, to be equal to -p, -Ap, wherep, is the constant atmospheric pressure 
and Ap, caused by the formation of an eddy on the leeward side of the wave, is 
considered to be the sum of a series of harmonic terms of wave-length A, 2h, 3h, etc., 
of which the one with the same frequency and phase as w,does a finite amount of 
work per wave-length. 

Jeffreys thus assumed the variable part of the normal pressure to be effectively 
Ap = spf(V-c)* av/ax, where avjax represents the slope of the wave, and s is a non- 
dimensional constant called the sheltering coefficient. Now 

Therefore, Ap = sp'(V - 2nah-1 cos Zn-h-l(x -ct) and the rate of work per unit area c ) ~  

per second = (l lh) sp'( V -c)2 4n2h-2a2 cos2 2nh-l(x -ct) dx = +sp'(V- a2g2r3.c ) ~  
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This holds when the waves are travelling slower than the wind. When tlie wave 
velocity exceeds the wind velocity, Ap becomes out of phase with the slope of the 
wave and energy is lost to the air so that in general the rate of work per unit area 
per second is +spt I V -c I ( 8-c) a2g2~-3. I n  view of the evidence mentioned on 
p. 319, that high waves are attenuated more than low waves of the same period, 
it will be assumed that s is not constant but is proportional to a /h so that s = Salh, 
then the rate of work per unit area per second becomes 

(c) De~ivation of energy equation 

The energy per unit area in a wave is &gpa2,p is the density of water. Therefore, 
from equations (14)and (15),considering the work done by tangential stress and 
normal stress, 

d(igpa2)/dt= $&Spf( V-C )  I V -c 1 g3a3/2nc5kpt V*g2a2~-3 

and d(a2)/dt a2[2kptV$g/pc3 I V -c I ( V-c) g2a/2nc5]. ( 1 6 )= +Sp f  

Conditions for a wave to be i n  equilibrium with the wind 

If c > V ,the second term in equation (16)is negative and d(a2)/dt;willbe zero when 

2kpt V*g/pc3 = -c ) ~apt(  V ag2/2npc5 

i.e. when a = = = V Y ( c / V ) .  (17)4 n k V * ~ ~ / S g ( V - c ) ~4nkV*/Sg(l-  V / C ) ~  

This equation determines the limiting height permitted by the wind resistance 
conditions when c > V .  

, The second condition is that the waves of all periods must not be too steep for 
them to travel for a long distance under the action of the wind without losing much 
energy by breaking. This condition cannot be expressed precisely at  present, but 
it is probably of the same form as the empirical result for the steepness of the highest 
waves expressed in equation (10)i.e. a / h  = K/V*  where the value of li has to be 
determined. Therefore a/2nc2= K/g V*, so that 

a = 2nKc2/g V* = 2nK V+c2/q V 2= V*$(C/ V ) .  ( 1 8 )  

This gives the limiting height as far as wave steepness is concerned. 
It follows that the highest wave to satisfy the conditions for both wind resistance 

and steepness is one having a wave period corresponding to a value of c that 
satisfies the equation f( c / V )= = 2nKV+c2/gV2$(c /V)i.e. when 4nkV3/Sg(l- V / C ) ~  
or 2kjSli = (1- V/c)"c2/ V 2 ) .  

The value of c / V corresponding to the dominant wave is determined by the values 
of the constants; it can be shown from equation (8),which gives the value of the 
period of this wave, that c/ V = 1.1, assuming that V = 2U/3 where U is the 
gradient wind speed. 

Application to wave spectrum 

The foregoing analysis refers to a single train of waves of a definite wave-length 
and i t  may not be strictly applicable to a complex mixture of waves of various 
periods, although no great error is likely to be introduced when it is applied to 
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determine the conditions for the dominant wave. With regard to its application to 
waves of other periods, the heights which the waves present to the wind are relevant 
i.e. the mean height of the waves of each period as seen by a visual observer over 
a suitable time interval. It has been shown on p. 309 that this height distribution 
can be inferred from the spectrum formula for H, or H,,, which gives a maximum 
value of H, very close to the maximum recorded wave height. Accordingly, it will 
be assumed that 

H, = 2a = 4nKV*c2/gV2, when c/V < 1.1, 

i.e. when wave height is limited by steepness, and 

H, = 2a = 8nl<V*/Xg(l- V/C)~, when c/V > 1.1, 

i.e. when wave height is limited by wind resistance. The relation between H, and 
HTcan be found as before: E,dT = E,d,u; therefore, 

H",T = Hid(c/ V), H, = HE(1/V) (dc/dT), 

but as c = gT/2n then dc/dT = g/2n 

and HT = HPJ(g/2gV). 

Substituting this in the expression obtained for H, 

HT = 2K V(c2/ V2) J(2n/g), when c/ V < 1.1, 


HT = {4kV/X(l- V/C)~) when c/V > 1.1,
J(2n/g), 
so that 

HT/T = HT/(2nc/g)= (gKVc2/ncV2)J(2nlg) = (gKc/n-8) 2/(2n/g) for c/'V< 1.1 

and HT/T = 2/(2n/g)[{2k(V/c) g)/{nX(l- V/C)~)] for C/ V > 1.1. 

Thus, as shown empirically in equation ( I ) ,  there is some rational basis for regarding 
HT/T as a function of c/ V only. According to equation ( l ) ,  HT/T should equal 0.44 
a t  c/ V = 1.1 and this result enables the values of the constants to be determined :for 

solution of these equations gives K = 0.088 and k/X = 4.3 x This value 
of K would give a /h  = 0.088/V* where V is in ft./sec and therefore the steep- 
ness = 2ah = 0.1761V+and expressing V in knots, this becomes 6 = 0.136/ V+which, 
as might be expected, is slightly less than the value given by (10) which refers to 
the maximum wave height. 

I n  terms of the wave height H,, the spectrum is given by 

H, = 4n x 0.088c2 V*/g V2 = 0.034(c2/ V2) 8%for c/ V < 1.1 (19) 

and H, = SnkV*/Sg(l- V /C)~  = 3.37 x 10-*V)/(l- V / C ) ~  for c/V > 1.1. (20) 

Curves representing (19) and (20) showing variation of H with c/V are shown in 
figure 16, the two curves intersecting a t  cl V = 1.1. When c/ V = 1.5 corresponding 
to the case where the gradient wind is equal to 3T ( U  linots, T seconds) the height is 
one-fourteenth of the maximum value; this agrees very closely with the result 
obtained from equation (1 a).  To obtain a value for the equivalent wave height, the 

21-2 
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expressions for H ,  are squared and integrated from 0 to infinity and the square root 
of the result found. This gives H = 0.211i5 where U is the gradient wind speed in 
knots; this is a significantly lower result than that found from equation ( 2 )which 
was 0.027U3. This is due to the area enclosed by the theoretical curve of H, plotted 
against c / V  = 1.1 and c / V  = infinity which is much less than that enclosed by the 
empirical curve based on ( 1  a ) .  This discrepancy can be attributed to the assumption 
that the wind is steady, made in deriving ( 1 9 )and (20) .The wind observations from 
which the empirical rule was deduced were rarely steady but varied about a mean 
value. This would modify the expressions obtained for the spectrum, making the 
result inore like the empirical expression. 

c lv 
FIGURE116. Theoretical wave spectrum curve: 

The valzce of the sheltering coeficient 

It will be shown later that if in equation (16) ,  V < c ,  the numerical value of the 
first term, which is due to tangential stress, is much less than the second, which is 
due to normal stress, and then the equation is reduced to 

d(a2) ld t= -a3Sp'(V -c)2  g2/2rpc5, 

and by integration one obtains the relation 

l / a- l l a ,  = S p ' ( V  y2t/4rpc5,-c ) ~  

where a ,  is the initial height, and a the final height after time t .  This gives the 
attenuation of the waves when they travel in regions where there is a light following 
wind. The equation is identical with equation (13)and the value of S can be deter- 
mined from the value of the constant in ( 1 3 )which is 32.2. It is found that S = 10.9, 
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but since equation (13) refers to H, values, 5' must depend on the definition of $IT,, 
and will be denoted by 8,. This is because s the sheltering coefficient is equal to 
STNT/h, and since s must be independent of the way HT is defined, it follows that 
there must be a relation between X, and HT,. As discussed above, H, values express 
more closely than Ely,values bhe mean observed height of waves of given period in 
the storm area and this will be true for swell as well as waves if the V applies to the 
speed of the wind that generated the waves originally. Thus 

2sh = H,X, = &ST and Sp= 10.9 2/(g/2nV). 

Since only the square root of the windespeed is involved, no great error is introduced 
by assuming the mean surface wind to be always 36ft./sec (gradient wind speed 
32 knots); then 5'p = 4.1. With a value of alh between 1/20 and 1/14, corresponding 
to the steepest waves possible, the value of the sheltering coefficient s would be 
between 0.20 and 0.29 which agrees closely with the value of 0.27 obtained by 
Jeffreys. He deduced this value from measurements of the least wind required to 
maintain waves and was presumably dealing with short steep waves. If so, this 
theory is in agreement with his observations. Sverdrup obtained a value of 0.013 
from the decay of swell and this is again in agreement if the steepness is of the order 
of 11150th which is of the right order for swell waves. 

Value of k (the stress constant) 

Substituting S = 4.1 in the expression k/S = 4.3 x found above, gives 
I% = 1.76 x in the f.p.s. system of units. k has the dimensions of the square root 
of a velocity, so in the c.g.s. system of units its value becomes 

This value is appreciably lower than Neumann's value of 9 x lo-=, which might be 
expected since only horizontal stresses are taken into account. The low value of 
k justifies the assumption made in the last paragraph that the first term in the 
right-hand side of equation (16) is usually much less than the second. 

Assuming that there is no energy exchange between wave components of different 
period, and that they are acted upon independently by the wind, rules are obtained 
giving the relative amplitude of the various components generated by a wind of 
given strength. These agree reasonably well with the results of wave observations in 
storm areas. With these rules as a basis and making the same basic assumptions, it 
is possible to estimate the speed of each wave componer;t from a distant storm to 
the wave recording station and to study the attenuation of each wave component 
with time of travel. The additional rules so derived are again fairly satisfactory. 

Equations which agree more or less with the empirical results can be derived by 
considering first the tangential and normal stress exerted by the wind on the water; 
the normal stress is assumed 'co be due to the mechanism suggested by Jeffreys but 
the sheltering coefficient is taken to be proportional to the wave steepness. Secondly, 
i t  is assumed tha% a t  the end of a long fetch there is an equilibrium value of wave 
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steepness in which the gain of energy is balanced by the loss due to breaking and 
other factors. Attempts to produce a quantitative physical explanation involve 
using the empirical values of constants such as the sheltering coefficient or stress 
constant, but this is inevitable in the present state of knowledge. 

The author expresses his gratitude to the Director of the Meteorological Office 
for the use of wind observations at  Aldergrove; to the Director of the Naval Weather 
Service for the use of meteorological charts; and to Dr G. E. R. Deacon, F.R.S., 
a d o t h e r  members of the staff of the National Institute of Oceanography for advice 
and assistance in preparing the paper. 
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