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The spontaneous generation of inertia-gravity waves (IGWs) by surface-intensified,
nearly balanced motion is examined using a high-resolution simulation of the primitive
equations in an idealized oceanic configuration. At large scale and mesoscale, the
dynamics, which is driven by baroclinic instability near the surface, is balanced and
qualitatively well described by the surface quasi-geostrophic model. This however
predicts an increase of the Rossby number with decreasing spatial scales and, hence,
a breakdown of balance at small scale; the generation of IGWs is a consequence of
this breakdown. The wave field is analysed away from the surface, at depths where
the associated vertical velocities are of the same order as those associated with the
balanced motion. Quasi-geostrophic relations, the omega equation in particular, prove
sufficient to separate the IGWs from the balanced contribution to the motion. A
spectral analysis indicates that the wave energy is localized around dispersion relation
for free IGWs, and decays only slowly as the frequency and horizontal wavenumber
increase. The IGW generation is highly intermittent in time and space: localized
wavepackets are emitted when thin filaments in the surface density are formed by
straining, leading to large vertical vorticity and correspondingly large Rossby numbers.
At depth, the IGW field is the result of a number of generation events; away from
the generation sites it takes the form of a relatively homogeneous, apparently random
wave field. The energy of the IGW field generated spontaneously is estimated and
found to be several orders of magnitude smaller than the typical IGW energy in the
ocean.
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1. Introduction
A fundamental feature of geophysical fluid dynamics, relevant to both the

atmosphere and ocean, is the separation between balanced motion and inertia-gravity
waves (IGWs). In many regions, the two types of motion are well separated, with the
slow, balanced motion largely unaffected by the much faster IGWs. This separation,
which stems from the large frequency gap between the two types of motion and
is estimated by the (small) Rossby number, is well understood. The separation is

† Present address: Northwest Research Associates, Bellevue, WA 98009-3027, USA. Email
address for correspondence: edanioux@gmail.com

mailto:edanioux@gmail.com


154 E. Danioux, J. Vanneste, P. Klein & H. Sasaki

not complete, however; as a result, balanced motion constantly leaks some energy
to IGWs, thus providing a source of IGW generation through the mechanism known
as spontaneous generation. This mechanism is of interest in particular because it
potentially excites IGWs across the whole spectrum of wavelengths and frequencies.
This contrasts with other sources, such as tidal and wind forcing in the ocean,
or topographic and convective forcing in the atmosphere, which have a determined
frequency.

In recent years, spontaneous generation has been demonstrated in a number of
numerical simulations (e.g. O’Sullivan & Dunkerton 1995; Zhang 2004; Viudez &
Dritschel 2006; Plougonven & Snyder 2005, 2007; Snyder et al. 2007) and in idealized
models (e.g. Vanneste & Yavneh 2004; Ólafsdóttir, Olde Daalhuis & Vanneste 2008).
Theoretical arguments suggest that this generation is exceedingly small when the
Rossby number is small: exponentially so, as asymptotic results indicate (Vanneste
2008b, and references therein). Non-negligible IGW generation is therefore expected
only in regions where the Rossby number is of order one or larger. In the absence
of direct external forcing, large Rossby numbers typically do not emerge in the
interior of geophysical fluids: flows that are balanced initially remain so. This is true
even in the presence of turbulence because the steep energy spectra of the (forward,
enstrophy) cascade of balanced turbulence is associated with Rossby numbers that are
essentially scale-independent. However, the situation changes radically when horizontal
boundaries such as the ocean or Earth’s surface, or the tropopause are taken into
account. In this case, the evolution of the surface (potential) temperature which,
together with the interior potential vorticity, controls the balanced dynamics, leads to
shallow energy spectra, vorticity intensification and hence large local Rossby numbers
at the surface. This is most easily demonstrated using the surface-quasi-geostrophic
(SQG) model (e.g. Held et al. 1995). Indeed simple scaling arguments based on
the surface energy spectrum E(kh) ∼ k−5/3

h predicted in SQG suggest that the Rossby
number scales with the horizontal wavenumber as Ro∼ k2/3

h (see Blumen 1978; Juckes
1994, (7.14)), so that large Rossby numbers always appear at small enough horizontal
scales in near-surface flows even though they are balanced at large scales. Therefore,
as Juckes (1994) argues, balance breaks down at some stage. IGW generation can be
expected at some point in this process.

These scaling arguments are substantiated by process studies which have identified
frontogenesis as a mechanism for IGW generation by surface-intensified flows. The
classical two-dimensional models of frontogenesis driven by vertical shear (Williams
1967) or horizontal strain (Hoskins & Bretherton 1972), which in the semi-geostrophic
approximation predict a finite-time singularity, have been examined using two-
dimensional primitive-equation simulations (Snyder, Skamarock & Rotunno 1993;
Griffiths & Reeder 1996; Reeder & Griffiths 1996, and references therein). These
studies demonstrate that the breakdown of the (semi-geostrophic) balance in these
flows is accompanied by the emission of IGWs whose amplitudes depend strongly
on the speed of the frontogenesis evolution. This mechanism has also been found
in three-dimensional simulations of baroclinic instability where surface fronts develop
(Zhang 2004; Plougonven & Snyder 2007).

While most of the work on the breakdown of balance near horizontal boundaries
was motivated by applications to the atmosphere, the importance of near-surface,
SQG-like motion in the ocean is increasingly recognized (e.g. Lapeyre & Klein
2006). In particular, the formation of fronts that characterize surface motion, and
their subsequent instability in regimes far from geostrophy have been identified as
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sources of submesoscale motion (Capet et al. 2008a,b,c; McWilliams, Molemaker &
Ólafsdóttir 2009), along with possible implications for the energy balance in the ocean
(Molemaker, McWilliams & Capet 2010).

In the present paper, we also consider the oceanic context, but with a different
focus which concentrates on IGW generation. The main aim is to demonstrate that
the argument put forward by Juckes (1994) applies to the ocean and that IGWs
are generated spontaneously by what can be described in the first approximation
as SQG turbulence. While the generation process involved is similar to the frontal
emission of Snyder et al. (1993) and Griffiths & Reeder (1996), our focus is on
the global behaviour of a complex, turbulent, three-dimensional flow as a wave
emitter rather than on single wave emission events. We pay particular attention to
the spectral characteristics of the IGW field. Specifically, we analyse a high-resolution
simulation of an ocean jet driven by baroclinic instability into a regime of statistically
steady, surface-intensified turbulence, and examine how this turbulence spontaneously
radiates IGWs which propagate into the ocean’s interior. The IGW signal is weak
compared with the balanced signal and best inferred at depth since the balanced
signal decays with depth (exponentially so in SQG). We use diagnostic tools based
on quasi-geostrophic theory, the omega equation in particular, in order to separate
IGWs and balanced motion. The analysis shows that spontaneous generation is highly
intermittent both in space and time: wavepackets are produced by a number of
generation events which we associate with the formation of thin filaments of surface
density (here equivalent to potential temperature), with strong vertical vorticity, which
is produced by straining. Although the emission of inertia-gravity wavepackets is
highly intermittent, their subsequent propagation and dispersion leads to what appears
as a random, almost homogeneous IGW field at depth. A spectral analysis of this
field confirms that it consists of free IGWs obeying the dispersion relation. Our
results support the argument that the cascade to small-scale inherent to surface motion
leads to balance breakdown and IGWs generation. However, an estimation of the
energy associated with these spontaneously emitted waves indicates that it is orders of
magnitude smaller than the typical energy for (wind and tidally driven) internal waves.

The plan of the paper is as follows. We briefly describe the numerical model
used and the set-up of the simulation in § 2. Section 3 is devoted to the diagnostic
tools necessary to separate IGWs from the balanced motion. These use the omega
equation and another quasi-geostrophic balance relation, together with a specific
energy-minimizing projection. The IGW field obtained in the simulation is analysed
in § 4. We first examine the physical and spectral characteristics of the entire wave
field, estimate its energy, before describing a typical wave-generation event. The paper
concludes with a discussion in § 5.

2. Model set-up
We analyse a high-resolution simulation of ocean turbulence modelled by the

primitive equations under the Boussinesq and hydrostatic approximations. The
numerical model and parameter set-up employed for this simulation are similar to
those in Klein et al. (2008). We describe them briefly and refer the reader to this paper
for more detail.

The numerical model (the Regional Oceanic Modeling System (ROMS),
Shchepetkin & McWilliams 2005) is a σ -coordinate model used in a periodic channel
configuration, with free-slip boundary conditions at northern and southern walls. The
domain size is 500 km × 2000 km in the horizontal, with a depth of 4 km. The
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FIGURE 1. Horizontally averaged profile of the ratio of the Brunt–Väisälä frequency to the
Coriolis frequency in the simulation.

numerical resolution is 2 km × 2 km in the horizontal and 100 levels in the vertical
(the vertical grid spacing ranges from 3 m near the surface to 200 m near the bottom).
Vertical mixing in the interior is represented by a K-profile parameterization (KPP,
Large, Doney & McWilliams 1994). The numerical dissipation of the model is
sufficient for stability without resorting to explicit viscous damping. Salinity is taken
as constant, so that temperature anomalies are proportional to density anomalies. There
is no atmospheric forcing.

An energetic turbulent mesoscale and submesoscale eddy field is generated through
the baroclinic instability of a balanced, surface-intensified, westerly zonal flow centred
in the middle of the channel. The parameter settings for this flow resemble those
used by Karsten, Jones & Marshall (2002), Rivière, Tréguier & Klein (2004) and
Lapeyre & Klein (2006). The initial vertical profile of the mean Brunt–Väisälä
frequency (figure 1) represents a main thermocline located at a depth of around
600 m, corresponding to a first Rossby radius of deformation of approximately 25 km.
No surface mixed layer is initially present. The zonal flow is maintained throughout
the simulation using a relaxation of the zonally averaged velocity and density fields
to the initial state. The relaxation time is chosen as 50 days. While maintaining the
zonal-mean flow, this forcing does not damp the eddies, leading to a vigorous turbulent
eddy field.

After a spinup of 350 days, the total kinetic energy (integrated over the whole
domain) has saturated, and a statistically steady state is reached. The results described
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FIGURE 2. Horizontal wavenumber spectrum of the surface kinetic energy.

in this paper concern the flow well after this spinup period. The surface energy
spectrum, shown in figure 2, approximately displays a k−2

h dependence for length
scales ranging from 20 to 130 km, and a k−3

h dependence for length scales ranging
from 10 to 20 km. This k−2

h spectrum is substantially steeper than the SQG prediction
E(kh) ∼ k−5/3

h , but in agreement with the results of Lapeyre & Klein (2006). We
refer the reader to that paper for a detailed discussion of the applicability and
limitations of SQG as a model of the near-surface flow. From our viewpoint, what
is important is that this steeper spectrum does not invalidate the argument about
Rossby numbers increasing with kh mentioned in § 1: using the frequency estimate

ω ∼ (∫ khk′2E(k′) dk′)
1/2

(Kraichnan 1971) with E(kh)∼ k−2
h yields Ro∼ ω/f ∼ k1/2

h .
The surface vorticity typically varies between −f and 4f , where f is the Coriolis

frequency. These large values, which arise locally from the straining of small-scale
density filaments, are associated with the generation of IGWs. The asymmetry
between cyclonic and anticyclonic vorticity is marked; as a result, IGW generation
is largely limited to cyclonic flow features. Note that while the mesoscale field
obtained is strongly energetic, there is substantially less activity at the smallest scales
than in the simulations of Capet et al. (2008b) and in particular no evidence of
submesoscale instabilities, presumably as a result of our lower horizontal resolution
(2 km versus 750 m) and larger numerical viscosity.

3. Balanced motion and IGWs
Our aim is to examine the IGWs that are generated spontaneously by the near-

surface, balanced turbulence and propagate into the deep ocean. The distinction
between balanced motion and IGWs, or more generally unbalanced motion, is clear in
the limit of small Rossby number Ro� 1. In this limit, it is possible to define balance
relations which relate all dynamical variables to a single one, often potential vorticity.
Geometrically, this is often thought of as the definition of slow manifolds which
are approximately invariant: nearly balanced motion evolves in the neighbourhood
of these manifolds but slowly drifts away as a result of spontaneous generation of
IGWs. Balanced relations are most easily constructed systematically using asymptotic
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series expansions in powers of Ro; this leads to a hierarchy of relations of increasing
accuracy, starting with geostrophic balance (Warn et al. 1995; Vanneste 2008b). Unless
the asymptotic expansions are carried out to optimal truncation, the separation between
balanced and unbalanced motion is always ambiguous: the difference between the full
dynamical fields and those of the corresponding balanced state obtained by projection
on a slow manifold results from the limited accuracy of the balance relation used as
well as from the presence of genuine unbalanced motion.

In what follows, we will only use the leading-order, geostrophic balance. This
is sufficient for our purpose because we concentrate on the fields at depth: in
qualitative agreement with SQG theory, the intensity of the turbulence in the flow
analysed decays rapidly with depth while its typical horizontal scales increase. This
leads to Rossby numbers at depth that are much smaller than at the surface; for
instance, using the ratio of relative to planetary vorticity gives on average Ro < 0.06
at 2500 m. In addition, the characteristics of the unbalanced motion away from the
region of generation are different from those of the balanced motion. They consist
of small-scale IGWs with a clear wavenumber–frequency signature. We now discuss
the methods that we use to extract this IGW signal using the geostrophic balance
relation.

3.1. Vertical velocity

Let us consider the separation of the dynamical fields between a geostrophic, a
balanced ageostrophic and unbalanced contribution. By balanced ageostrophic, we
mean the corrections to geostrophic balance that are obtained using higher-order
balance relations which slave all of the fields to a single one, say the potential
vorticity. As mentioned above, these relations can be obtained systematically using
asymptotic expansions in powers of the Rossby number (Warn et al. 1995); since they
diverge, the expansions must be truncated; conceptually (if not practically), it is useful
to think of the truncation as being an optimal one, near the smallest term (Bender
& Orszag 1999), so that the remainder is dominated by unbalanced motion (Vanneste
2008a,b; Temam & Wirosoetisno 2011).

The decomposition of the horizontal and vertical non-dimensionalized velocities
gives terms of the following orders of magnitudes:

u= ug︸︷︷︸
O(1)

+ ubag︸︷︷︸
O(Ro)

+ uunb︸︷︷︸
O(α)

and w= wbag︸︷︷︸
O(Ro)

+ wunb︸︷︷︸
O(α)

, (3.1)

where α is the amplitude of the unbalanced motion which we aim to determine. Most
fields, the density in particular, obey a scaling comparable to that of the horizontal
velocity u. This makes it clear that the vertical velocity w is better suited for the
identification of IGWs than these other fields (the divergence of the horizontal velocity
field is similar in this respect). The analysis below suggests that α and Ro have
comparable orders of magnitude in the bottom half of our simulation, so that the
unbalanced part of w can be detected in the total field. Note, however, that this is
based on a local Ro whereas the validity of balance relations, which involve non-local
operators, in principle requires that Ro be uniformly small, an assumption that is
clearly not satisfied in the flow we consider.

Although IGWs can be identified in the total vertical velocity w, mainly thanks to
their distinctive spatial structure (see § 4), it is useful to use a balance relation in order
to diagnose wbag and better isolate the IGW contribution wunb. This relation is provided
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FIGURE 3. (Colour online available at journals.cambridge.org/flm) Vertical velocity (in
m s−1) at z = −2500 m: (a) total velocity w; (b) quasi-geostrophic approximation wqg
obtained by solving the omega equation; (c) unbalanced contribution wunb = w − wqg. Note
that absolute values larger than 2× 10−4 m s−1 may occur locally.

by the quasi-geostrophic omega equation (Hoskins, Draghici & Davies 1978)

∇2
hwqg + f 2

N2

∂2wqg

∂z2
= 2g

ρ0N2
∇h ·Q, (3.2)

where ∇h = (∂x, ∂y) denotes the horizontal gradient, and

Q= (∇huh)
T ·∇hρ, (3.3)

with uh = (u, v) the horizontal velocity. Equation (3.2) is solved with the boundary
conditions wqg(z = 0) = wqg(z = −H) = 0. The geostrophic approximation to the
vertical velocity that is obtained, wqg, is the leading order of wbag: wbag = wqg +O(Ro2).
Note that, in quasi-geostrophic theory, Q is defined in terms of the geostrophic
approximation to uh and ρ; instead, we use the full fields since this provide an
estimate of wbag with the same formal accuracy. The use of the quasi-geostrophic
omega equation (3.2), compared with more sophisticated balance relations (e.g.
Muraki, Snyder & Rotunno 1999) or approaches taking into account dissipation in
the surface mixed layer (Nagai, Tandon & Rudnick 2006), is justified a posteriori by
the efficiency of our method (see figures 3 and 4).

For the results reported in § 4, we solve (3.2) on the ROMS grid using the free-
access mudpack solver (multigrid software for elliptic partial differential equations, see
Adams (1989)). Once wqg is obtained, the difference w− wqg = wunb + O(Ro2) gives an
estimate for the IGW contribution to the vertical velocity.

3.2. Horizontal velocity
For comparison, it is also useful to estimate the IGW contribution to dynamical fields
other than w. If a geostrophic approximation is computed, say for the zonal velocity u,

http://journals.cambridge.org/flm
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FIGURE 4. (Colour online) Frequency–horizontal wavenumber spectrum (log-scale) at z =
−2500 m. (a–c) Vertical velocity, w (a), wqg (b) and wunb (c). (d–f ) Horizontal kinetic energy,
total (d), quasi-geostrophic (e) and unbalanced (f ). The dispersion relation ω2 = f 2 + f 2r2

nk2
h

for the first 10 vertical modes is indicated by black curves. Note that the colourbar of (f )
differs from that of (d,e).

then the IGWs may be identifiable by considering u−ug = uunb+O(Ro). The diagnostic
of balanced fields from data raises an issue which appears to be often overlooked, the
need for a projection: a balance relation, geostrophy in our case, defines a slow
manifold, but it does not give a unique means of projecting arbitrary data on this slow
manifold.

A possible projection consists in insisting that the potential vorticity be the same
in the unprojected state (off the slow manifold) and the projected state (on the slow
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manifold). This particular projection does not have a strong motivation, and it does not
necessarily make obvious which potential vorticity (Rossby–Ertel, quasi-geostrophic,
linearized) should be chosen. Here we adopt a somewhat different approach: for given
velocity and density fields u and ρ, we seek the nearest geostrophic state

(ug, ρg)=
(
∇⊥h ψ,−

ρ0f

g

∂ψ

∂z

)
with ∇⊥h = (−∂y, ∂x), (3.4)

where ‘nearest’ is understood in the sense of some norm. The choice of norm is
arbitrary; we choose a norm based on the average energy per unit volume

E = ρ0

2V

∫∫∫ [
u2 + v2 +

(
gρ

Nρ0

)2
]

dx dy dz, (3.5)

where V is the domain volume, which is conserved for the primitive equations in
the absence of forcing and dissipation and for suitable boundary conditions (e.g. no
normal velocity). Specifically, we project any state on the geostrophic state (3.4) by
finding the streamfunction ψ which achieves

min
ψ

(
ρ0

2V

∫∫∫ [
|u− ug |2+

(
g

Nρ0

)2

(ρ − ρg)
2

]
dx dy dz

)
. (3.6)

For the boundary conditions ρg = ρ at z = 0,−H and ug = uh on the lateral
boundaries, a simple variational calculation shows that this minimum is reached when
ψ solves the equation

∇2
hψ +

∂

∂z

(
f 2

N2

∂ψ

∂z

)
= ẑ · (∇h × uh)− gf

ρ0

∂

∂z

( ρ
N2

)
, (3.7)

where ẑ denotes a vertical unit vector.
The left-hand side of (3.7) is the usual quasi-geostrophic potential vorticity, a

quantity that is conserved by the advection in the quasi-geostrophic approximation.
The right-hand side is neither the total potential vorticity nor the linearized vorticity
divided by N2 (in both cases the factor N−2 would be undifferentiated); rather it
resembles the quasi-geostrophic potential vorticity, with the total velocity and density
replacing their quasi-geostrophic approximations ∇⊥ψ and −fρ0∂zψ/g, respectively.
We solve (3.7), similarly to (3.2), on the ROMS grid using the mudpack solver.

3.3. IGW energy
The discussion above indicates that for a similar computational effort (the solution of a
three-dimensional linear elliptic equation) we can obtain either the sum wunb + O(Ro2)

or the sum uunb + O(Ro), where the error terms consist of the balanced part of the flow
not captured by geostrophic balance. It is clear, therefore, that it is advantageous to
express quantities such as the unbalanced energy in terms of w alone when possible.

One way to do so is to project the dynamical fields on suitable vertical normal
modes and exploit results of linear wave theory, namely the IGW dispersion and
polarization relations, to relate all dynamical fields to the projection of w.

Let us define the functions Fn as eigenfunctions of the Sturm–Liouville problem

∂z

(
f 2

N2
∂zFn

)
=− 1

r2
n

Fn, ∂zFn = 0 at z= 0,−H, (3.8)
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where the deformation radii rn are the eigenvalues (e.g. Gill 1982). We define the
additional functions Gn and Hn by

Gn(z)= rnf ∂zFn, Hn(z)=
∫ 0

z
Fn(z

′) dz′ (3.9)

(see Danioux & Klein 2008 and Danioux, Klein & Rivière 2008). It is easy to verify
that these functions are orthogonal in the sense that∫ 0

−H
FnFm dz= δm,n,

∫ 0

−H
N−2GnGm dz= δm,n,

∫ 0

−H
N2HnHm dz= f 2r2

nδm,n. (3.10)

The Fn, Gn and Hn can be used to project the dynamical fields according to

(u, v)=
∞∑

n=1

(un, vn)Fn, w=
∞∑

n=1

wnHn, ρ =
∞∑

n=1

ρnGn. (3.11)

Here un, vn, wn and ρn are functions of x, y and t. Their Fourier transforms with
respect to these three independent variables, denoted by a hat, satisfy

un =
∫∫∫

ûn(k, l, ω)ei(kx+ly−ωt) dk dl dω (3.12)

and similar. Introducing (3.11)–(3.12) into the linearized hydrostatic–Boussinesq
equations leads to the dispersion relation

ω2 = f 2 + f 2r2
n(k

2 + l2), (3.13)

for each mode n with frequency ω and horizontal wavenumbers (k, l). The
corresponding polarization relations read

ûn =
(

f l

ω(k2 + l2)
− i

k

k2 + l2

)
ŵn, (3.14a)

v̂n =−
(

fk

ω(k2 + l2)
+ i

l

k2 + l2

)
ŵn, (3.14b)

ρ̂n = i
ρ0rnf

gω
ŵn. (3.14c)

Note that, for a given mode n and horizontal wavenumber (k, l), the energy is
concentrated on two opposite frequencies which are solution of (3.13).

Using (3.13) and (3.14), the vertical profile of the energy (3.5) averaged in time
becomes

Ez(z)= ρ0

2VT

∑
n

∫∫∫ (
ω2 + f 2

ω2(k2 + l2)
F2

n(z)+
ω2 − f 2

ω2(k2 + l2)

G2
n(z)

N2(z)

)
|ŵn |2 dk dl dω, (3.15)

assuming that the domain size and duration T of the simulation are much larger than
the wavelengths and periods of the energy-containing IGWs.

The first and second terms on the right-hand side of (3.15) represent the kinetic and
potential energies, respectively. One can integrate this equation over the depth of the
domain using the orthogonality relations (3.10), and find the following equation for the
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total energy per volume unit:

E =
∫ 0

−H
Ez(z) dz= ρ0

VT

∑
n

∫∫∫ |ŵn |2
k2 + l2

dk dl dω. (3.16)

This formula is useful to estimate the IGW contribution to the total energy from the
unbalanced vertical velocity only.

4. Results
4.1. Extraction of the wave signal

We apply the two methods of extraction of the IGW vertical and horizontal velocities
described in §§ 3.1 and 3.2 to our numerical simulation and examine the results both
in the physical and the frequency–wavenumber domains. We use model data sampled
every 1.5 h; this high temporal resolution and the relatively long sample used (120 h)
make it possible to resolve frequencies in the range 0.15f –6f .

A typical snapshot of the vertical velocity field at z=−2500 m is shown in figure 3:
the total field w (figure 3a) is compared with the solution wqg of the omega equation
(figure 3b) and with the unbalanced contribution wunb = w − wqg (figure 3c). At this
depth, the total vertical velocity appears to be a superposition of a large-scale balanced
motion and a small-scale unbalanced motion. Both types of motion have similar
amplitudes, with a root-mean-square (r.m.s.) value of ∼3 × 10−5 m s−1. However, the
unbalanced velocity displays much stronger extrema with values reaching 10−3 m s−1,
while the balanced velocity does not exceed 2 × 10−4 m s−1. The depth of 2500 m
is intermediate in our simulation: below 2500 m the unbalanced vertical velocities
dominate the balanced ones (the ratio of their r.m.s. tends to 4 close to the bottom),
while above 2500 m balanced vertical velocities dominate (the ratio of their r.m.s. is
0.25 at z = −1000 m for instance). The comparison of figure 3(a–c) highlights the
effectiveness of the omega equation as a tool to separate the balanced and unbalanced
components of the flow: the balanced wqg is free from traces of the small-scale IGWs,
while the unbalanced w− wqg is dominated by IGWs, with only a weak remnant of the
large-scale balanced motion.

The overall picture of the unbalanced vertical velocity at 2500 m is one of roughly
(horizontally) isotropic interfering waves. The amplitude of these waves is largely
homogeneous, with r.m.s. values of 2 × 10−5 m s−1 on most of the domain. However,
at any one time, a few regions display a much stronger wave activity, characterized
by much higher local r.m.s. values (up to 5 × 10−4 m s−1). At the time chosen for
figure 3, regions of this type appear for instance around (x, y) = (210 km, 1150 km)
or (x, y) = (70 km, 630 km). The strong curvature of the crests and troughs in these
regions suggest that the waves there have just been emitted. Another interesting region
extends from x = 0 to 250 km and y = 700 to 900 km. The shape of the waves in
this region strongly suggest a prior emission around (x, y)= (80 km, 450 km); this has
been verified on plots of the three vertical velocities at earlier times (not shown).

The picture that emerges from the simulation, especially when examining animations
of the vertical velocity data, is of a generation of IGWs that is highly intermittent in
space and time. After each generation event, the waves emitted propagate, disperse, are
refracted and interfere to create a complex time-dependent wave field.

A view of the unbalanced motion complementary to that given by the representation
of the field in physical space is provided by power spectra in the horizontal
wavenumber–frequency domain. Figure 4 displays several such spectra: (a–c) shows
the spectra of the vertical velocities w, wqg and w − wqg (figure 4a–c); (d–f ) shows
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the kinetic energy spectra corresponding to the total horizontal velocity, the balanced
horizontal velocity obtained by solving (3.7) and the unbalanced horizontal velocity
derived by substraction (figure 4d–f ). These spectra have been obtained at a depth
z = −2500 m by first calculating the horizontal Fourier transform φ̃(k, l, z, t) of
each variable φ(x, y, z, t) (where φ is the total, balanced and unbalanced vertical
or horizontal velocity), then Fourier-transforming in time to obtain the horizontal
wavenumber–frequency transform φ̂(k, l, z, ω) and finally summing the values of
|φ̂(k, l, z, ω) |2 over the wavenumbers (k, l) such that

√
k2 + l2 ∈ [kh, kh + dkh].

The total vertical velocity spectrum (figure 4a) displays two distinct energetic
regions: the first region is characterized by low frequencies (ω . f /2) and relatively
large scales (kh . 1 × 10−4 m−1), while the second region is characterized by high
frequencies (ω & f ) and small scales (kh & 1 × 10−4 m−1). The first region is
associated with the balanced motion, as is confirmed by the spectrum of the balanced
velocity wqg (figure 4b); the second region is associated with the unbalanced motion
(figure 4c). The power integrated over these two regions in the (ω, kh) spectrum
has been computed and give similar values (∼3 × 10−5 m s−1), consistent with the
r.m.s. associated with the two types of motion in physical space. Note that although
most of the power of the unbalanced vertical velocity in figure 4(c) is contained
at frequencies higher than f , some remains at lower frequencies because the omega
equation provides only a first-order approximation to the balanced velocity. Note also
that the balanced velocity spectrum is absolutely depleted of energy in the region
(ω & f , kh & 2 × 10−4 m−1): this shows that the omega equation efficiently filters out
IGWs.

The dispersion relation for the first few IGW modes, given by ω2 = f 2 + f 2r2
nk2

h
(see (3.13)) is also plotted in figure 4. The unbalanced vertical power (figure 4c)
follows the dispersion curves well, confirming that the unbalanced activity consists
mainly of free linear IGWs. A striking feature in the figure is that the vertical-velocity
spectrum is almost constant along the dispersion curves; in particular, there is no
marked decay as the frequency increases. This provides some information about the
spontaneous-generation mechanism which we discuss further in §5.

The horizontal wavenumber–frequency spectra of the horizontal kinetic energy
plotted in figure 4(d–f ) indicate that the inversion (3.7) is less efficient to recover
the unbalanced component of the horizontal velocity than the omega equation for
the vertical velocity. Figure 4(f ), in particular, shows only a weak concentration of
the energy associated with u − ug along the dispersion curve. This energy decreases
rapidly as frequency and wavenumber increase, unlike the vertical-velocity spectrum
in figure 4(c); this is consistent with the polarization relations (3.14), which predicts
a decrease of the kinetic energy |ûn |2+|v̂n |2 in k−2

h as frequency and wavenumber
increase for a constant |ŵn |2. In any case, most of the energy associated with u− ug is
at frequencies lower than f and large scales, indicating that the inversion method (3.7)
is not sufficiently accurate to separate IGWs from the balanced part of the flow. The
omega equation performs substantially better, unsurprisingly since its error is O(Ro2)

while that of the inversion (3.7) is only O(Ro).

4.2. IGW energy
Even though the amplitudes of IGWs excited by spontaneous generation are very
small, it is of interest to estimate the energy E and vertical flux of energy punbwunb for
the IGW field in our simulation. Owing to the limitations of the inversion (3.7) for
the small wave amplitudes we have to deal with, it is not possible to obtain a reliable
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reflection at the intersection of the dispersion curve for n = 1 with the upper boundary of (a)
results from an aliasing effect that could be eliminated by improved sampling.

estimate of the vertical energy flux. We therefore concentrate on the energy itself and
use (3.15) and (3.16) to infer the vertical profile of the IGW energy density Ez and
total IGW energy E from wunb approximated as w− wqg.

A first step is to compute the horizontal wavenumber–frequency spectrum of each
mode n. Figure 5(a,b) display the spectra of modes 1 and 3, respectively. Both spectra
clearly show a concentration of energy along the dispersion relation of the mode
considered, with an almost-constant amplitude as figure 4(e) already suggested. (Note
that some mode 1 energy is localized near the dispersion relation of mode 2; this is
unsurprising since the hypothesis of free linear IGWs propagating in a fluid at rest is
not satisfied exactly.) The energy at ω . f apparent in figure 5(a,b) is associated with
the part of the balanced velocity not resolved by the omega equation and cannot be
attributed to IGW motion. Note that this effect is much stronger when separate vertical
modes are considered than for the full vertical velocity at z=−2500 m (see figure 4e);
this is because the calculation of a component n according to

wn = 1
f 2r2

n

∫ 0

−H
N2(wunb + O(Ro2))Hn dz (4.1)

involves an integral over the whole depth of the domain, including surface regions
where the O(Ro2) error terms are important (since Ro can be large locally) and where
N2 is large. (Typical profiles of the functions Hn can be found in figure 1c in Danioux
et al. (2008).) In order to estimate the IGW energy as accurately as possible, we have
therefore restricted the domains of integration in (3.15) and (3.16) to regions around
the dispersion relation of each mode: for example, for mode 3, the energy located
beyond the dispersion relations of neighbouring modes 2 and 4 is removed.

The vertical profile of energy Ez is plotted in figure 6(a), where we restricted
our calculation to the first 20 vertical modes (thick black line). The figure also
displays the cumulative contribution of the first 5, 10 and 15 modes and shows that
most of the energy is contained in modes 1–10, with a substantial contribution of
relatively high modes (5 < n 6 10). Also represented in figure 6(b) is the energy
profile associated with the IGWs of frequency higher than 2f ; as expected, for these
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waves, the convergence is faster with more than 98 % of the energy being in modes
610. The energy profile of figure 6(a) displays similarities with the profile of N shown
in figure 1. This can be understood in the context of the geometric–optics (or WKB)
approximation, which applies strictly to high modes only but qualitatively to all but
the gravest modes n= 1, 2, 3. In this approximation and ignoring Doppler-shift effects,
the dispersion relation

ω2 = f 2 + N2 k2 + l2

m2
, (4.2)

where m is the (local) vertical wavenumber, applies (e.g. Gill 1982, chap. 8), and the
energy density, Exyz say, is conserved:

∂Exyz

∂t
+∇ · (cgExyz)= 0, (4.3)

where cg = (cgx, cgy, cgz) is the group velocity (e.g. Bühler 2009, p. 83). Averaging over
time and the horizontal coordinates, this reduces to

∂

∂z
(Ezcgz)= 0. (4.4)
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Since, according to (4.2),

cgz = ∂ω
∂m
=± (ω

2 − f 2)
3/2

ωk
× 1

N(z)
, (4.5)

where the first factor is independent of z, it follows that Ez ∝ N(z) for high modes.
Integrating the profile Ez in figure 6 over the depth of the domain, we find

the average energy per volume unit of the IGWs generated spontaneously in our
simulation to be E = 1 × 10−5 J m−3. To put this into perspective, we can compare
this result with the energy of the oceanic IGW field as described by the empirical
Garrett–Munk spectrum. This yields the much larger estimate of E = 1 J m−3 (e.g.
Thorpe 2005). Thus, the source of IGWs provided by spontaneous generation appears
to be orders of magnitude weaker than the main sources namely generation by
wind and by tides and their interactions with topography. Although the energy of
IGWs in our simulation is probably diminished by the artificially large dissipation
of the numerical model, this conclusion is certainly robust; it is also confirmed by
comparison with the energy of wind-generated inertial waves in a model with similar
configuration (compare figure 3 with figure 1d in Danioux et al. (2011)).

It should be remarked that the hydrostatic approximation, employed for the
numerical model as well as for the analysis leading to (3.13) and (4.2) and which
assumes IGW frequencies significantly smaller than N, is invalidated near the bottom
where N ≈ f . The approximation is however well justified near the surface where the
spontaneous emission occurs. In addition, it holds for waves with frequencies ω . 2f ,
which contain most of the energy (see figure 6), for depth down to 3500 m so that the
vertical propagation process is also largely described faithfully.

4.3. Generation and evolution of a wavepacket
In this section, we examine the generation and early stage of development of a specific
IGW packet. It is typically difficult to extract information on the structure of IGWs, as
the motion at a given point is the sum of different wavepackets generated at different
times/places which have propagated. However, immediately after the generation of a
wavepacket, the associated vertical velocities are sufficiently large that they dominate
the background of interfering waves. Thus, the sites and times of generation can be
identified easily by large values of the local r.m.s. of w. In figure 3(c), for example,
the region around (x, y)= (210 km, 1150 km) is such a generation site.

Figure 7 focuses on the generation of a particular wavepacket by juxtaposing
plots of the unbalanced vertical velocity at z = −2500 m and every 12 h with
the corresponding plots of the surface relative vorticity. The vertical velocity plots
(a,c,e,g) clearly show the generation of an IGW wavepacket which emerges from
the background field. Its amplitude gradually increases until it reaches values ∼10
times larger than the background values in figure 7(g). In the subsequent evolution
(not shown), the wavepacket propagates and disperses, and its amplitude decreases
slowly to the background value. The generation of the wavepacket coincides in time
and space with the appearance of a strong relative vorticity filament at the surface
(figure 7b,d,f,h), with values of vorticity reaching 3×10−4 s−1. The increase in vorticity
results from the straining of a filament of surface density, a process well understood in
the SQG approximation (e.g. Held et al. 1995). A significant feature in the evolution
of the vorticity is that it is more complex than the simple straining of a front or even
a straight filament, with filament curvature and displacement of the vorticity maximum
expected to play a role in the process of spontaneous generation. The spatial scale
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of both the filament and the wavepacket that emanates from it is quite close to the
model resolution but these features are nonetheless well resolved, and we expect they
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would remain mostly unchanged in simulations with higher resolution but the same
level of dissipation. The situation might be different for higher-resolution simulations
with significantly lower dissipation, however; we comment further on this point in § 5.

We have checked in our simulation that the generation scenario just described
is typical of all wavepacket generation events observed. This demonstrates that
spontaneous IGW generation is intimately linked to the dynamics of the surface:
more precisely, the generation sites are associated with strong stretching events,
which lead to large values of the surface relative vorticity, with the local Rossby
number reaching values of 3–4. Below these values, little or no wavepacket generation
appears to happen. The strong sensitivity to the local Rossby number is consistent
with theoretical models predicting IGW amplitudes depending exponentially on Ro−1

(Vanneste & Yavneh 2004; Ólafsdóttir et al. 2008; Vanneste 2008b). As a result,
spontaneous generation is a highly localized and intermittent source of IGW activity.

A more detailed picture of the propagation of wavepackets is provided by the
vertical structure of the unbalanced vertical velocity. Although the omega equation
best extracts the unbalanced vertical velocity at depth (because of a better ratio
of unbalanced to balanced vertical velocities), it is sometimes possible to identify
the waves up to the surface during or immediately after a generation event thanks
to their comparatively strong amplitude. Figure 8 displays vertical (ai–aiv) and
horizontal sections (bi–biv in subsurface; ci–civ at depth) of the unbalanced vertical
velocity during and after the generation of a wavepacket at four instants separated
by 7.5 h intervals. The phase lines associated with the wavepacket are identified by
the alternating stripes. The large amplitude patches of approximately 10 km scale
concentrated near the surface in the (ai)–(aiv) and (bi)–(biv) are submesoscale features
poorly filtered out by our method of extraction of the unbalanced signal: recall that
what is represented here is the sum of the IGW vertical velocity plus a balanced
residual of order O(Ro2) (see § 3.1): at surface this residual can become large.

Figure 8 indicates northward propagation (i.e. to right on the figure) of the
wavepacket energy, corresponding to a group velocity cg = (cgx, cgy, cgz) with cgy > 0.
This, along with the slope of the phase lines, indicates downward propagation of
the wave energy, that is, cgz < 0 (e.g. Gill 1982). This is consistent with our
interpretation as IGWs spontaneously generated by dynamics near the surface. This
is also confirmed by the fact that the wavepacket appears at z = −200 m before
z = −2500 m (compare figure 8bi,ci, and later on bii,cii). The phase and group
velocity vectors are indicated in figure 8(aii). Values for the horizontal and vertical
wavenumbers near the thermocline are l = 8 × 10−4 m−1 and m = 1.2 × 10−2 m−1,
respectively.

Another feature of the wavepacket is the decrease of the vertical wavenumber with
depth, reaching a near-zero value between z = −2000 m and z = −4000 m. This can
be understood using the geometric–optics approach for wavepackets in a variable
medium (e.g. Bühler 2009, p. 74). At short times after the wavepacket generation,
advection by the balanced flow can be neglected, so that the horizontal wavenumber
remains constant following the wavepacket. This can be verified from figure 8 which
shows that the horizontal wavenumber in the subsurface is approximately the same
as at depth. This property, along with the conservation of the frequency ω in (4.2),
implies that the ratio N m−1 is kept constant as the wavepacket propagates downwards.
This argument predicts a vertical wavenumber at z=−3000 m

m(−3000 m)= N(−3000 m)
N(−600 m)

× m(−600 m)' 1.9× 10−3 m−1, (4.6)
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which corresponds to a wavelength of the order of the depth of the domain, hence
the almost vertically homogeneous waves in depth as observed. Note that a slight
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reflection on the bottom surface is visible in figure 8(aiv) in the form of phase lines
with slope opposite to that of the main wavepacket.

At large times, the advection by the balanced flow cannot be neglected: the
wavepacket propagates and is deflected by the flow. The wavenumber can change
as a result of advection, explaining why, as observed in figure 4(e), there is a broad
range of horizontal scales in the IGW field, while the scales at generation are rarely
larger than 5–10 km.

5. Discussion
The analysis reported in this paper demonstrates that the evolution of near-surface

turbulence, which at large scales at least is well modelled by the SQG theory, is
accompanied by the emission of IGWs propagating into the fluid interior. This
emission is an example of spontaneous generation of IGWs by time-dependent
balanced flows, a phenomenon that is generic to all flows described by the primitive
equations. What makes surface motion particulary interesting, however, is that the
associated scale cascade leads naturally to large Rossby number at small scales (Juckes
1994) and, as a result, to increased IGW generation. Because this generation occurs at
small scales, their simulation in a flow that is forced at large scales only requires a
very high resolution.

In the simulation described here, IGW generation is found to be highly localized
in space and time. This is consistent with the exponential dependence in the
Rossby number that is predicted for idealized models using asymptotic methods
(Vanneste 2008b, and references therein): the exponential dependence is extremely
sharp and implies that a relatively smooth spatial distribution of local Rossby
number corresponds to highly intermittent wave generation. The small-Rossby-number
asymptotic results are only indicative, however, since the IGW generation events
identified in the simulation take place in regions where the Rossby number is well
above 1. It is in fact difficult to see how wave generation in this regime can be
analysed by means other than direct simulations: at the generation sites, there is no
separation of either time or spatial scales between balanced and unbalanced motions.

Nonetheless, because the balanced motion is localized near the surface, the Rossby
numbers are small in the fluid’s interior, and the separation between balanced and
unbalanced motions is well justified there. This is why we are able to isolate IGWs
successfully at depth using nothing more sophisticated than the quasi-geostrophic
relations to approximate the balanced motion. One of the interesting features that
emerge from the analysis is that the IGW vertical-velocity spectrum is approximately
constant along the branches of the IGW dispersion relation in the (kh, ω)-plane.
This corresponds to a total IGW energy that decays like k−2

h or, equivalently, like
(ω2 − f 2)

−1. It is tempting to relate the k−2
h behaviour to the energy spectrum

E(k) ∼ k−2
h of SQG-like turbulence, but this may be misleading since the strength

of the balanced motion as a source of IGWs is unlikely to depend specifically on the
balanced-motion energy. For example, it may be argued that it is the matching between
the frequencies of the balanced motion and those of gravity waves that matters;
in this case, the frequency spectrum of the balanced motion Ẽ(ω) = E(kh) dkh/dω
is relevant. Arguments based on WKB theory in fact suggest that the Lagrangian
frequency spectrum should be considered (Aspden & Vanneste 2010).

The amplitudes of the IGWs generated spontaneously in the simulation analysed
here are very small when compared with typical amplitudes of oceanic IGWs: indeed,
their energy is found to be smaller by a factor of ∼105 than the energy inferred
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from the Garrett–Munk spectrum. It can be argued that the limited resolution of the
numerical model reduces substantially the efficiency of spontaneous generation. In
SQG-like turbulence, frequencies increase as spatial scales decrease, so that the Rossby
numbers, and hence presumably IGW generation, are the largest at the smallest scales.
Submesoscale instabilities as described in Capet et al. (2008b), which are smoothed
in our simulation, are also likely to play a significant role for spontaneous generation.
However, in view of the comparatively much larger amplitudes of IGWs generated
by other processes (wind, tides), we have to conclude that spontaneous generation is
unlikely to be a significant contributor to the total IGW energy in the ocean. A similar
conclusion cannot be drawn for the atmosphere, however, simply because there are in
this case no clear alternative sources of non-stationary IGWs.
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