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a b s t r a c t

Many problems in mechanics can be solved by the use of the transfer matrix method. The use of this

method in hydraulics engineering is not widespread and only limited studies are available. In this study,

linearized St. Venant equations were used and the use of transfer matrix in ocean engineering was

investigated for long waves in open channels, and numerical application was carried out. The results

obtained through the transfer matrix method, which is quite easy to use, program and comprehend,

showed similar results obtained from the characteristics method and finite differences method.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

St. Venant equations can be used in solving equations for wave
movements in shallow waters. Since St. Venant equations are non-
linear and second-degree hyperbolic, they cannot be integrated
directly. By linearizing St. Venant equations can be integrated. In
this study, non-linear term is usually neglected and the linearized
version of St. Venant equations was used and the transfer matrix
method (TMM) was considered for the purpose of obtaining a
solution for the long waves in open channels.

In the TMM, which is known as the method of initial values where
the aim is to convert the problem of boundary values into the problem
of initial value to prevent new constant values and to express
equations of the problem by initial constant values (Inan, 1968). With
the help of this method, many problems in mathematics can be solved
(Dimarogonas, 1996). The method can be used essentially for the
solution of 1D linear differential equations; however, after a proper
linearization process it can also be used to solve nonlinear problems.

The application of transfer matrix for the solution of hydraulic
problems is very limited. According to the finite elements method,
matrix dimensions are small, constant and independent of the
number of elements. Computer programing of the method is easy
and practical (Daneshfaraz and Kaya, 2007). The TMM can be used
in determining movements of waves in shallow waters.

When the studies on long wave in literature are viewed, it can
be seen that a series of studies were carried out. However no
ll rights reserved.
study on the solution of long waves using transfer matrix is
available. Studies using other methods and approaches are given
below:

Tsai (2002) conducted theoretical investigations on the
propagation of long waves of one-dimensional, unstable, viscous
and turbulent open canal currents, and discussed the effect of the
Froude number on the formation of channel flows in shallow
waters depending on the location and time. Shi et al. (2005)
investigated the fundamental behavior of long water waves
propagating through branching channels of uniform depth and
width. They carried out numerical simulations based on the
Boussinesq long wave model to verify the effects of width of
channel branches on wave transmission and reflection. Koutitas
(1983) solved the linear long wave equation by using the finite
elements method. In the study, it was accepted that the flow
generated a sinusoidal vibration.

Onzikua and Odai (1998) proposed the Burgers equation model
for unsteady flow in open channels. In this model to simulate slow
transients in wide rectangular open channels of finite length, the
St. Venant equations are approximated by a single Burgers
equation for flow depth. Flow velocity is expressed as a function
of flow depth and its gradient to satisfy the continuity of the flow.
Tsai and Yen (2001) suggested a method for linear analysis of
shallow water wave propagation in open channels. In this study,
the Laplace transform method is adopted to obtain first-order
analytical spatiotemporal expressions of upstream and down-
stream channel response function.

The methods in the discussed studies are numerical methods.
However, the TMM is based on analytical solution. The TMM is
used in studies of Baume et al. (1998) and Litrico and Fromion
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(2006). Baume et al. (1998) expressed a need for using linear
control theory while pointing out the difficulty of complex
hydraulic systems to control. They obtained a reach transfer
matrix by liberation of St. Venant equations near a steady flow
regime. In this study, St. Venant equations were used in a
hydraulic application for the first time. However, the equations
were used between the two given points only. Litrico and Fromion
(2006) investigated the control of oscillating modes occurring in
open channels due to the reflection of propagating waves on the
boundaries. They characterized the effect of a proportional
boundary control on the poles of the transfer matrix by a root
locus which derived to an asymptotic result for high-frequency
closed-loop poles. Baume et al., (1998) and Litrico and Fromion
(2006) have solved linearized equations via the Laplace method.
In these studies, separation of variables method is used.

The proposed method in this study is also extendable and
applicable to study of wave interaction generated by vessels
moving in either parallel or opposite directions (Wu et al., 2001).
2. Equations for long linear waves in open channels

The dynamic behavior can be described by a set of equations
known as the St. Venant equations (Chaudhry, 1993):
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where B is the top water surface width (m), D is the hydraulic
depth (m), y the water depth (m), g the gravity acceleration (m2/s),
x the longitudinal abscissa in the direction of the flow, t the time,
S0 the bottom slope, Sf the energy gradient slope, u the average
velocity (m/s) and q the lateral inflow or outflow per unit length.

If there is not lateral inflow or outflow q ¼ 0, the St. Venant
equation for very wide rectangular cross-section channels. Eq. (1)
can be written as
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For Sf ¼ tb/rgh, Eq. (2) can be written as
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where x is the amplitude, h is the undisturbed flow depth, r is the
mass density of water and tb is shear stress at the base and is a
function of the velocity, and is described with the following
equation:

tb

r
¼ ku (5)

where k is equivalent friction coefficient. If Eq. (5) is substituted in
Eq. (4), Eq. (6) is obtained

qu

qt
þ u

qu

qx
¼ �g

qx
qx
�

ku

h
þ gS0 (6)

For shallow water wave propagation, Eqs. (3) and (6) can be
written. For gradual variations in x(x,t) (propagation of long
waves) and small variations in h(x) the non-linear term u(qu)/(qx)
is usually neglected and the linearized version of Eqs. (3) and (6)
is
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If the two equations above are combined and reorganized, a
second-degree, linear, and hyperbolic equation will be obtained
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If channel bottom slope is invariable, derivate of ‘gS0’ is zero. The
flow domain is discretized into equal elements of length Dx. The
water depth is assumed constant along each element (i),
hi ¼ const. (Koutitas, 1983).
3. Solution by the TMM

In various engineering problems, as the number of constants to
be determined by the use of boundary condition increases, the
calculation becomes more tedious and the possibility of making
errors increases. Therefore, in the formulation of such problems,
ways of reducing the number of constants to a minimum are
sought. The method of transfer matrix makes this possible. The
main principle of this theory, which is applied to problems with
one variable, is to convert all the boundary value problems into
problems of initials values, and thus new constants that may
result from the use of intermediate condition are eliminated.
Therefore, it is a method of expressing the equations in terms of
the initials constants. This method thus makes no distinction
between the so-called determinate and indeterminate problems
of elastomechanics (Inan, 1968).

There are a number of methods for solving the differential
equations, one of which is the TMM. The TMM is ideally suited to
solve mechanical systems, because only successive matrix multi-
plication is necessary to fit the elements together. One of the used
solutions of differential equation is separation of variables (Riley
et al., 1998). The method of separation of variables can be used to
obtain the solution of Eq. (9). Assuming that

xðx; tÞ ¼ xðxÞxðtÞ (10)

and substituting for x in Eq. (9), we obtain

€xðtÞ � xðxÞ � ghix
00
ðxÞxðtÞ þ

k
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_xðtÞxðxÞ ¼ 0 (11)

If simplifications are made, the following equation will be
obtained:
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xðtÞ
¼ ghi
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¼ �a2 (12)

where a is a constant and equals to 2p/7. Thus, we find that x(x)
and x(t) satisfy the ordinary differential equations
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then Eq. (13) can be written as
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The solution of Eq. (15) may be written as follows:
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The first derivative of x(x) can be expressed as
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Fig. 1. Wave propagation in the channel.
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Fig. 2. Results obtained from the solution by using TMM.
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If Eqs. (16) and (17) are written in matrix form
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In the initial points of the ith element Eq. (18) can be written as
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The matrix for coefficient can be obtained by the help of Eq. (20)
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is obtained. Where [T] is element transfer matrix and
[T] ¼ [Ai+1] � [Ai]

�1. An element of transfer matrix can be written as
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and the following equation can be written and values of x(x) can
be determined as follows:
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Eq. (14) can be written as

€xðtÞ þ
k

h
_xðtÞ þ xðtÞa2 ¼ 0 (27)

The solution of Eq. (27) may be written as follows:

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

h
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� 4a2

s ,
2 (28)

xðtÞ ¼ e�ðk=2hÞt½c1 cos ðbtÞ þ c2 sin ðbtÞ� (29)

Assuming the liquid friction free, and taking k ¼ 0, the following
equation can be written:

€xðtÞ þ xðtÞa2 ¼ 0 (30)

The solution of this equation is

xðtÞ ¼ ½c1 cosðatÞ þ c2 sinðatÞ� (31)
where c1 and c2 are the integral constants and can be determined
by using the boundary conditions. Consequently, the final x(x,t)
equation, which is the input of the TMM, can be obtained from
Eqs. (10), (26) and (29 or 31).
4. Numerical examples

Wave propagation problem in a friction free flow (Koutitas,
1983) is handled as the first application example of the method. In
the example, results of TMM and other methods are given and
compared with each other. The second example, on the
other hand, is due to Nas (2006), who reported data of an
experiment on a frictional bed. The results of the TMM solution
are compared with those of the characteristics method (CM),
finite differences method (FDM) and experimental data by means
of this example.
4.1. Example 1

In the open channel given in Fig. 1, wave propagation is solved
by the TMM and the result is given in Fig. 2. The example solved
was taken from Koutitas (1983) and the results were compared
with those obtained by CM and FDM. Results of CM and FDM are
given in Figs. 3 and 4.

In this example, the fluid was assumed to be friction free
(k ¼ 0), the period (T) was taken as 60 s, x0 ¼ 1 m, and channel bed
slope 1%.
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Fig. 3. Results obtained by the characteristics method.
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Fig. 4. Results obtained by the FDM.
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Fig. 5. Comparison of the results obtained by TMM, CM and FDM for t ¼ 80 s.

Table 1
Differences between TMM and other methods

X (m) 0 100 200

TMM–CM 0.0000 0.0137 0.0790

TMM–FDM 0.0000 0.0072 0.0113

X (m) 700 800 900

TMM–CM �0.1108 �0.0978 �0.0313

TMM–FDM �0.0084 �0.0073 0.0005
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Initially, the surface of water was horizontal. For the entrance
cross-section (x ¼ 0), x is given as initial boundary condition
(open sea boundary) using the following equation:

xð0; tÞ ¼ x0 sin ð2pt=TÞ (32)

where t is the time and T is the period. Using Eq. (31), Eq. (32) is
rewritten as follows:

xðtÞ ¼ x0 sin 2pt=T (33)

For the last cross-section, qx/qx ¼ 0 is given as boundary
condition.

The results obtained for t ¼ 80 s by using the TMM, CM and
FDM are compared in Fig. 5. As it can be seen from Fig. 5 the
results are very close to each other. Differences between TMM and
other methods are given in Table 1.

When TMM is used, the matrix to be solved is in 2�2 size. The
size of the matrix is independent from the number of solution
points. In finite differences methods, the coefficient matrix is in
big size. The matrix size is dependent on numbers of calculation
points for a suitable solution. The big size of the matrix lengthens
the process time and increases the mistakes as a result. In TMM,
the size of the matrix being constant makes the method
preferable. Computational elapsed times for TMM, FDM and CM
are found as 0.0056, 0.0151 and 0.0266 s, respectively. The TMM
has been found as a much faster solution scheme as demonstrated
by these results. Besides, to achieve a stable solution, courant
condition must be followed in CM and FDM. There is no obligation
in TMM.
4.2. Example 2

The experimental setup of Nas (2006) is used as a second
numerical example. In the problem, Nas (2006) has investigated
the variation of the water level at the inlet cross-section of a
channel. The experimental results are compared with the out-
comes of characteristics, explicit and implicit FDM. The variation
of water depth value at the first cross-section, namely the
boundary condition at the beginning of the channel, is given in
Fig. 6. In this example, the fluid was assumed to be Strickler
friction coefficient as 100, the channel width was taken as
15.8 cm, the channel length was taken as 801 cm, the channel
slope S0 ¼ 0 and initial water depth h0 ¼ 8.6 cm.

The results of implicit finite difference method (IFDM), explicit
finite difference method (EFDM) and CM, in comparison with the
TMM outcomes and experimental observations at 6.1 m from the
beginning of the channel are given in Fig. 7. It can be clearly
observed from Fig. 7 that TMM results are thoroughly convergent,
in comparison with the other methods. Besides, it can be seen that
experimental results are in accordance with the model outcomes.
300 400 500 600

0.1382 0.1356 0.0599 �0.0450

0.0114 0.0078 0.0006 �0.0072

1000 1100 1200 1300

0.0104 �0.0411 �0.1696 0.0000

0.0037 0.0129 0.0339 0.0000



ARTICLE IN PRESS

Fig. 6. The variation of water depth value at the first cross-section (boundary condition).

Fig. 7. The results of experimental observations, TMM and other methods.
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5. Conclusion

In this study, the application of TMM to solve the equations of
long waves that are formed in open channels was investigated. For
this purpose, the propagation of waves having a sinusoidal
character in entrance cross-section was examined using TMM.
This method is an efficient and easily computerized method and
also provides a fast and practical solution, because the dimension
of the matrix explaining the 1D flow never changes. The TMM
solution can be applied to solve of various 1D flow systems
possessing different boundary conditions. Besides, it can be seen
that experimental results are in accordance with the model
outcomes. In the case of the TMM; independent from the number
of nodes and the computation time the problem may be always
solved by using a matrix of 2�2, which is a noticeable advantage.
The results obtained by this method were found to be close to
those obtained by characteristic method and finite differences
method.
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