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Abstract

Smoothed Particle Hydrodynamics (SPH) is a relatively new method for examining the propagation of highly nonlinear and breaking waves.

At Johns Hopkins University, we have been working since 2000 to develop an engineering tool using this technique. However, there have been

some difficulties in taking the model from examples using a small number of particles to more elaborate and better resolved cases.

Several improvements that we have implemented are presented here to handle turbulence, the fluid viscosity and density, and a different time-

stepping algorithm is used. The final model is shown to be able to model breaking waves on beaches in two and three dimensions, green water

overtopping of decks, and wave–structure interaction.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There are a variety of modern numerical methods to describe

near breaking and breaking waves, including boundary element

methods (e.g., Grilli et al., 2000), and methods taken from

computational fluid dynamics: Direct Numerical Simulation

(DNS; Lin and Liu, 1998; Chen et al., 1999), Reynolds

Averaged Navier Stokes (RANS), and Large Eddy Simulation

(LES) models (e.g. Wu (2004)). More recently the Smoothed

Particle Hydrodynamics (SPH) method has been adapted from

astrophysics into a number of fields, including free surface

flows (Monaghan, 1994; Monaghan and Kos, 1999).

SPH offers a variety of advantages for fluid modeling,

particularly those with a free surface. The Lagrangian method

is meshfree; the equivalents of mesh points are the fluid

particles moving with the flow. The free surface requires no

special approaches, such as the volume-of-fluid method or a

Lagrangian surface tracking. Furthermore, the method can treat

rotational flows with vorticity and turbulence.

This paper presents a state-of-the-art review of improve-

ments and enhancements we have made to the basic SPH
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methodology at The Johns Hopkins University (JHU). In the

second part of the paper, we present examples of some of the

basic applications that we have attempted to date.

2. Methodology

Smoothed Particle Hydrodynamics (SPH) can be considered

as computing the trajectories of particles of fluid, which

interact according to the Navier–Stokes equations. An

alternative view is that the fluid domain is represented by

nodal points that are scattered in space with no definable grid

structure and move with the fluid. Each of these nodal points

carry scalar information, density, pressure, velocity compo-

nents, etc. To find the value of a particular quantity at an

arbitrary point, x, we apply an interpolation:

f xð Þ ¼
X
j

fjW x� xj
� �

Vj ð1Þ

Here fj is the value of f associated with particle j, located

at xj, W(x�xj) represents a weighting of the contribution of

particle j to the value of f(x) at position x, and Vj is the

volume of particle j, defined as the mass, mj, divided by the

density of the particle, qj. The weighting function, W(x�xj),

is called the kernel and varies with distance from x. Its form

is an approximation to a delta function. There are a variety

of possible weighting functions (see Liu and Liu, 2003), we
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use a quadratic kernel, which has no inflection in its

derivative:

Wij ¼ W xi � xj
� �

¼ aN q2=4� q� 1
� �

where q ¼ rij=h

ð2Þ

and aN ¼ 3
2ph2 for 2-D, aN ¼ 15

16ph3 for 3-D, rij = |x�xj| and the

factor h is the smoothing length of the kernel.

While the summation in Eq. (1) implies that there is an

interaction between all of the particles in the fluid domain, in

practice the influence of the kernel is restricted to a radial

distance of order 2h. Only particles within this distance of point

x contribute to the summation. In terms of modeling, techniques

such as nearest neighbor lists are used to keep track of the

particle positions, so that the summation above is truncated to

only include the neighbors of the point of interest. This leads to

immense time savings and is essential to the methodology.

The conservation of mass and the conservation of momen-

tum are written in particle form (Monaghan, 1992). These are

dqi

dt
¼
X
j

mj ui � uj
� �

Ili Wij ð3Þ

dui

dt
¼ �

X
j

mj

Pi

q2
i

þ Pj

q2
j

þ Pij

 !
liWij þ g ð4Þ

where uj is the velocity of the particle, Pj is the pressure at the

particle, mj is the mass of particle j, liWij ¼ li W xi � xj
� �

¼
BWij

Bxi
i þ BWij

Byi
j (with i and j being unit vectors in coordinate

directions and the first subscript i after nabla referring to the

derivative of Wij with respect to the coordinates of the particle

i). Pij is an empirical term representing the effects of viscosity

(Monaghan, 1992):

Pij ¼ �
alijc̄ij

q̄ij

; ð5Þ

where a is an empirical coefficient (usually taken as 0.01–0.1),

c̄ij =(ci +cj) / 2, q̄ij =(qi +qj) / 2 and lij =h(ui�uj) I (xi�xj) /

(rij
2+0.01h2).

In addition, particles are moved with the following equation:

dri

dt
¼ ui þ e

X
j

mj

ui � uj

q̄i

� �
Wij: ð6Þ

The last term, including the parameter e�0.5, is the so-

called XSPH correction of Monaghan (1989), which ensures

that neighboring particles move with approximately the same

velocity. This prevents particles with different velocities

occupying nearly the same location.

The last equation needed is the equation of state that relates

the pressure in the fluid to the local density.

P ¼ B
q
q0

� �c

� 1

� 	
: ð7Þ

The factor c is taken as 7. This equation implies that the fluid

is compressible, and that there is a speed of sound (Cs
2=flP /flq),

which we set (by changing the value of B) to be approximately
ten times the maximum wave velocity to be modeled. The

correct sound speed is not used as it would require far smaller

time steps for stability of the numerical model. Since the Mach

number, M =umax / c =0.1, and compressibility effects are

O(M2), the changes in fluid density are 1% or less.

The equation of state provides an advantage of giving a direct

relationship between density and pressure, rather than having to

solve, in the incompressible case, a Poisson equation for

pressure (as in the MPS methodology, Koshizuka et al., 1998).

The above equations are solved numerically by time-

stepping. We currently use the Verlet (1967) algorithm that

provides a second-order accurate single step method, rather

than a conventional two-step method (e.g. Monaghan, 1992).

We have found the Verlet algorithm to approximately halve

computation time. To ensure stability, the second-order Verlet

method is replaced by a first-order Verlet method for a single

time step every 40 time steps so that the decoupled second-

order Verlet method does not render the scheme unstable.

2.1. Viscosity

The viscosity term (Eq. (5)) in the equation of motion was

originally used to represent both viscosity and prevent particles

from interpenetrating. For flows with a free surface, it also has

the effect of keeping the scheme stable numerically. However,

in many cases, it is too dissipative and affects the shear in the

fluid. This is particularly important when using SPH to capture

coherent turbulent structures. For viscous fluids, Morris et al.

(1997) provided a discretisation of viscosity that was more

accurate for low Reynolds number flows. At JHU, we have

replaced the standard SPH viscous formulation by introducing

a sub-particle scaling technique (Rogers and Dalrymple, 2004)

using the Large Eddy Simulation method (LES) approach,

similar to that used in incompressible flows (Meneveau and

Katz, 2000). For particle methods, Gotoh et al. (2001) use sub-

grid scaling for their incompressible MPS method, as do Lo

and Shao (2002) for an incompressible SPH method. The basic

methodology is that the governing equations are spatially

averaged over a length scale comparable to the computation

elements. For large-scale eddies, resolved by the grid or

particle sizes, the averaged equations are sufficient to solve for

these. For the smaller turbulent eddies, smaller than the particle

size, a closure scheme is needed to model their effects on the

flow field.

Sub-particle scaling (SPS) for a compressible fluid requires

a special averaging methodology: we use Favre-averaging

(f̃ ¼ qf
;

=q̄), which has the advantage of not introducing new

terms into the conservation of mass equation (where: K denotes

an arbitrary spatial filtering). Applying a flat-top spatial filter to

the governing equations yields (Yoshizawa, 1986):

dq̄
dt

¼ � q̄lIũ ð8Þ

dũ

dt
¼ � 1

q̄
lp̄þ gþ 1

q̄
lIqmo

;
lð Þũþ 1

q̄
lIs4 ð9Þ



Fig. 1. Time history of overtopping of a flat plate by incident wave from the

left. Dots show the position of the SPH particles with time.
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where s* is the sub-particle scale (SPS) stress tensor with

elements (in tensor notation):

si;j4 ¼ q̄ 2mt S̃S ij �
2

3
S̃S kkdij

� �
� 2

3
q̄CID

2dij: ð10Þ

We take CI to be 0.00066, following Blinn et al. (2002). The

Favre-filtered rate of strain tensor is

S̃S ij ¼ � 1

2

Bũui

Bxj
þ Bũuj

Bxi

� �
ð11Þ

We use the standard Smagorinsky model (Smagorinsky,

1963) to determine the eddy viscosity:

mt ¼ CsDð Þ2jS¯ j; ð12Þ

where the Smagorinsky constant, Cs=0.12, D is the initial

particle spacing and the local strain rate is given by

|S̄| = (2S̄ijS̄ij)
1 / 2. The sub-particle-scale stresses are discretized

using the symmetric formulation of Lo and Shao (2002):

1

q
lIs4ji ¼

X
j

mj

si4

q2
i

þ sj4

q2
j

 !
IliWij: ð13Þ

2.2. Shephard filtering

When using the LES description of viscous effects in

slightly compressible SPH, the application of this methodol-

ogy can lead to unphysical behaviour at the free surface due

to slight density variations being magnified by the equation of

state. With the artificial viscosity approach of Monaghan

(1992) such variations are damped out, but when using SPS,

this can lead to unphysical bumpy surfaces. Colagrossi and

Landrini (2003) and Panizzo (2004) showed that, just as the

local velocities are averaged in the XSPH term (Eq. (6)), the

averaging of the densities helps ensure that the free surfaces

are smooth and physically acceptable. We currently perform

this filtering every 40 time steps by reinitialising the density

of each water particle according to:

qi ¼

X
j

qjWijVjX
j

WijVj

: ð14Þ

Even with the filtering operations detailed here, the

nonlinearities of the physics are still captured by the SPH

scheme since the governing equations are not linearised

before being expressed in particle form using the SPH

formalism. The filtering operations described above, are only

conducted within the local region around each particle, and as

shown in the results in the following section, allow the

numerical method to capture highly nonlinear hydrodynamic

processes such as overturning wave fronts, wave impact and

splash-up.
3. Examples

3.1. Green water overtopping

Waves overtopping a ship or offshore platform deck can

cause immense damage, e.g. Buchner (1996a,b). An unbroken

overtopping wave is referred to as Fgreenwater._ Trulsen et al.

(2002) have developed an irrotational model to examine

overtopping, but it is clear that a model should include

vorticity and conveniently model flow separation to be

successful.

Gomez-Gesteira et al. (2005) used a two-dimensional

SPH scheme to examine the overtopping of a flat plate,

following the experiments of Cox and Ortega (2002). Fig. 1
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shows a large wave impinging on a horizontal plate. The

no-flow boundary condition is modelled by using water

particles fixed in space that effectively act as solid particles

within the scheme (Gomez-Gesteira and Dalrymple, 2004).

The wave crest is forced to travel over the top of the

plate. Note that the flows under and over the deck

recombine at the back of the platform, creating a Frooster
tail._
Fig. 2. Weakly plunging breaking wave on a sloping beach. In each subplot, top pan

offshore water particles.
3.2. Waves on a beach

The breaking of a wave on a beach is a complicated

turbulent process with a number of coherent turbulent

structures embedded in the fluid. Nadaoka et al. (1989) discuss

obliquely descending eddies, which appear to descend from the

bubble cloud left behind by breaking waves. Downbursting,

described by Kubo and Sunamura (2001), is a large downrush
el shows particle vorticity, and the bottom panel shows the position of marked
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of water within the water column that impinges on the bed.

They idealize this downbursting as due to reverse breaking of

the incident wave driving fluid towards the bottom. Finally,

there are the presence of wave fingers (or the ropy-looking

apparently vortex structures on the backs of some breaking

waves that resemble the backs of your fingers as you type,

Narayanaswamy and Dalrymple (2002)).

Obliquely descending eddies have been observed in

numerical models by Christensen and Deigaard (2001) and

Watanabe and Saeki (1999). The SPH model at JHU is

currently being used to examine these phenomena with the

intent of examining the mechanisms that drives these flows,

Section 3.3.2.

Here, in Fig. 2, a sequence of 2-D results presented by

Rogers and Dalrymple (2004) are shown for a breaking wave

on a beach of slope 1 :13.5 with an offshore wave height of

0.08 m and a period of 1.4 s. The wave is created by a paddle

and breaks as a weakly plunging breaker. In all, 97,915

particles were used in the simulation.

In each part of Fig. 2, the top panel of the figure is a plot of

each of the particles colored with its associated vorticity, and

the bottom panel displays the fluid divided into two regions

colored to show which particles are associated with the plunger

(dark) and which are associated with the fluid in front of the

wave (light). The vorticity of each particle is defined as

(Monaghan, 1992):

xi ¼
X
j

mj ui � uj
� �

�liWij: ð15Þ

Throughout the process of breaking, several important

features are visible: the formation of the plunger, the initiation

of the vorticity, the splash-up of the plunger, the reverse

breaking that occurs, and the creation of a downburst by the

reverse breaker pounding the vortex generated by the initial

breaking into the bottom—this is the same mechanism for
Fig. 3. Time history of pressure (kPa) associated with breaking waves; pressure
downbursting as described by Kubo and Sunamura (2001).

While reverse breaking might appear unusual, a dramatic

example is shown in the solitary wave breaking experiments of

Li and Raichlen (2003).

One aspect of the compressibility of the fluid in the SPH

model is that there are sound waves within the fluid domain.

While the speed of sound has been slowed in the model, the

generation of acoustic-like waves by breaking waves still

occurs. Fig. 3 shows the time history of fluid pressure as

measured by at a point within the surf zone. Three breaking

events are clearly shown. The wave train was the same wave

and beach as used in the previous simulation, except that three

waves propagate through the domain.

3.3. Three-dimensional modeling

The formulation of SPH permits easy extension from two to

three dimensions. Here are two examples of three-dimensional

SPH applications.

3.3.1. Dam break and structure

Gomez-Gesteira and Dalrymple (2004) examine the Fbore-
in-a-box_ problem. A rectangular box contains a fixed

structure, resembling a building. The box is fitted with a dam

near one end, which retains water. The dam is rapidly removed

and the fluid rushes out to strike the building and the back wall.

The experiments were conducted by Yeh and Petroff at the

University of Washington. A previous comparison to these data

with a numerical model was carried out by Raad, using his

three-dimensional Eulerian–Lagrangian Marker and Micro

Cell method and the data and comparisons are given at

http://engr.smu.edu/waves/solid.html.

One of the interesting aspects of the experiments is that the

bottom of the box was often wet prior to the dam break. This

was due to the difficulty in drying out the box between dam
record at a point in the surf zone. The spikes occur when breaking occurs.

http://engr.smu.edu/waves/solid.html


Fig. 4. Time history of the dam break wave in the bore-in-the-box experiment.
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break events. The consequences of a wet bed however are

significant (see Toro, 2001). While a dry bed dam break

behaves like theoretical computations, a wet bed is more

complicated as the advancing jet from the dam break pushes up

the fluid on the wet bed, forcing it into a backwards moving

Fwave._ Fig. 4 shows a time history of the dam break. The

number of particles used in the simulation was 35,000, with

15,000 of them being used to form the fixed boundaries.

3.3.2. Waves on a beach

Extending the method in Section 3.3 into three dimensions

following Gomez-Gesteira and Dalrymple (2004) and then

applying it to the same breaking waves on a beach gives us the
Fig. 5. Three-dimensional weakly breaking wave. Top figure shows the view thro

vorticity, with two counter rotating vorticies located at approximately x =1.78. A w
results in Fig. 5. The resolution in 3-D is about half that in 2-D

unfortunately.

One of the interesting features of the 3-D results is the

occurrence of vertical vorticity appearing as a pair of counter

rotating vortices. These vorticies persist after breaking and

appear to behave like obliquely descending eddies. The full

confirmation of this conclusion awaits a higher resolution run

of the model.

4. Conclusions

The SPH technique, with its Lagrangian formulation,

provides a methodology for the detailed examination of water
ugh the side of the basin. The lower figure shows the vertical component of

avemaker is located at x =0.0.
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waves. It is particularly suited to those cases where there is

splash, or flow separation, as the determination of the free

surface is not difficult. Improvements conducted at Johns

Hopkins such as sub-grid scaling, Shephard filtering, and a

new time stepping algorithm are detailed here.

For the examples shown here, realistic results are shown.

The development of the JHU SPH model is still ongoing and

the results shown are at the Fproof of concept_ stage requiring

further analysis and detailed comparison with other numerical

models and experimental data. For the case of waves breaking

on the beach, there are hints that downbursting and obliquely

descending eddies have been obtained by SPH. Higher

resolution results will soon be able to verify this.

The methodology does require a large number of particles in

the simulation for resolution. Further, since the fluid is

compressible, there is a sound speed in the model. The result

of both of these considerations is that the time steps in the

model are dictated by the particle size and the speed of sound

so that the time steps are often of O (10�5 s). Clearly the

method is good for close-up examinations of relatively small

regions, where the number of particles can be held to a

reasonable number. It is not suitable to model large areas,

which are more efficiently modeled by extended Boussinesq

codes for example.
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