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A numerical perturbation procedure is presented that generates water waves propagating over a 
vertically varying linear shear current. The water surface profile of these waves may be symmetric about 
the crest, with given height and period, or they may have an irregular water surface profile that has been 
measured in water of known depth. For waves of the same height the effect of the current is to cause a 
change in wavelength and hence the kinematics under the wave. Further, the shape of the wave profile is 
changed significantly. 

The mathematical theories for the description of waves 
propagating on the surface of water have been largely con- 
cerned with irrotational motions in the fluid. Realistically, the 
assumption is not generally valid, since waves seldom 
propagate in quiescent fluids but rather in water that is acted 
upon by winds and other current-generating forces. 

To better represent waves, a model is developed for waves 
on linear shear currents that flow in a direction concurrent 

with the wave direction. The need for better models can be il- 

lustrated in the oil industry, where for the design of offshore 
platforms the effect of ambient currents must be evaluated. 
Further, some present techniques for evaluating forces on a 
structure due to waves on a shear current involve simply 
superimposing the current on an irrotational wave without 
regard to the nonlinear coupling that occurs at the free surface 
[Hall, 1972]. 

Early work in regard to waves on shear currents has been 
done by Dubreil-Jacotin [1934], Daubert [1961], and Gouyon 
[1961] for arbitrary shear currents and by Biesel [1950] and 
Tsao [1959] for linear shear currents. Tsao has obtained a 
third-order analytic solution of the problem. The present work 
allows the computer generation of nonlinear waves of any 
order propagating on a linear shear current, that is, for a fluid 
with constant vorticity. In all of the above works the shear 
current is assumed to have been established, and the effect of 
viscosity is then negligible, at least for a short time. 

BOUNDARY VALUE PROBLEM 

The mathematical boundary value problem is readily for- 
mulated in two dimensions if it is assumed that the wave 

propagates without change in form with celerity C in the x 
direction. By moving the reference coordinate system with this 
celerity the problem is rendered time independent (see Figure l 
for notation). The governing differential equation is deter- 
mined from the Euler equations: 

(V+u-C3(V+u-C).+(r+v) 

ß 1 
ß (u + u- = 

(u + u - + + + v) 

1 
ß (V+v)• = ---p•-- g (2) 

p 

' Formerly at Coastal and Oceanographic Engineering Laboratory, 
University of Florida, Gainesville, Florida 32661. 

Copyright ̧ 1974 by the American Geophysical Union. 

where U and V are the horizontal and vertical velocity com- 
ponents of an ambient current; u and o are the horizontal and 
vertical velocity components of the wave-induced motion; p is 
the pressure; g is the acceleration of gravity; C = L/T, 
where L is the wavelength and T is the wave period; and the 
subscripts denote differentiation. 

If an incompressible fluid is assumed, the continuity equa- 
tion is expressed as 

(U + u- C)• + (V+ v)y = 0 (3) 

A stream function •b(x, y) can now be defined as 

(U + u- C) = -•by (4) 

+ v) = (5) 

Substituting the stream function into (1) and (2) and 
eliminating the pressure term by cross differentiation yield the 
following nonlinear equation: 

a(•,, V"•,)/a(x, y) = 0 (6) 

in Jacobian notation. This equation, which states that the vor- 
ticity of the fluid Vø'• is constant along a streamline, may be 
integrated along a streamline to give the final governing equa- 
tion for the fluid [Lamb, 1945, p. 244] 

V:• = f(•b) (7) 

If the vorticity distribution J(•k) is identically equal to zero, the 
Laplace equation results, giving rise to a class of water wave 
problems investigated by Stokes [1847] and others. Recently, 
computer procedures to extend this case to nonlinear waves of 
any order have been given by Chappelear [ 1961 ] in terms of the 
velocity potential and by Dean [1965] for the stream function 
representation. For a linear shear current, f(•) is equal to a 
constant, say, -w0, giving rise to the Poisson equation 

(8) 

It is this case that is to be examined. 

There are four boundary conditions that must be imposed 
on the fluid to guarantee a unique solution. First, there is no 
flow through the bottom, or 

•x = 0 on y = -h (9) 

For a wavelike solution, periodicity is required such that 

•b(x, y) = •b(x + L, y) (10) 

where L is the length of the wave. 
At the free surface rt(x) the pressure must be a constant, and 
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Fig. 1. Definition sketch for a wave on a current U as sccn by an observer moving with the wave. 

the Bernoulli equation may bc used there, since it is a 
streamline. The dynamic frcc surface boundary condition is 
then specified as 

• + (l/2g)[•ff + •yo.] = Q = const on y = n (11) 

One further condition at the free surface must also be 

prescribed, however, not in the usual kinematic sense of re- 
quiring the free surface to be a streamline, as is already true by 
definition, but rather for the purpose of determining value of 
the free surface streamline. This condition will be discussed 

further in the following sections. 

SYMMETRIC WAVE OF GIVEN HEIGHT AND PERIOD 

As a result of the lincarity of the governing equation (8) a 
linearly varying current profile may be superimposed on an 
irrotational wave field, the following assumed series solution 
for the stream function being the result. 

- Uo- y- 2 
my 2a'(n -- 1)(h q- y) 2a-(n -- 1)x q- • X(n) sinh cos (12) 
•.•. L L 

which is similar to the solution of Dean [1965] with the excep- 
tion of the second term. Note that for a positive value of COo a 
positive current results. In this expression, Uo is a uniform 
(over depth) current component; h is water depth; X(n) is the 
stream function coefficient; NN is the number of stream func- 
tion coefficients; and L is the wavelength, defined later as X (1) 
for convenience, since it is a priori unknown. Here all of the 
variables with the exception of the X(n) are assumed known. 
This form of the solution satisfies the boundary condition at 
the bottom, (9), and also that of periodicity, (10). 

The final form of the stream function follows by deter- 
mining the best values of the X(n) such that the nonlinear free 
surface boundary conditions are best satisfied. The dynamic 
free surface boundary condition (11) may be written in a least 
squares form as 

2 = [O(x) - O] ,ix (13) E• • •o 

where E• would be zero for an exact solution of the problem. 
The • is the Bernoulli constant for the wave, determined by in- 
tegration. 

2 O(x) dx (14) 

Note that here the symmetry of the wave profile is used to limit 
the range of integration to only half of the wavelength. Finally, 
a second free surface boundary condition is specified for the 
determination of •(x, 7) (defined for computer convenience as 
X(NN + 1)), which states that the free surface profile • must 
have a zero mean; i.e., there is no change in the mean water 
level due to the presence of the wave. 

2 r•(x) dx = 0 (15) • .,o 

The water surface profile • is determined by substituting y = • 
into (12) and using the quadratic formula. The • must be deter- 
mined iteratively owing to the presence of the transcendental 
function, sinh [2•r(n - l)(h + rt)/L]. 

Owing to the nonlinearities present in the free surface bound- 
ary conditions, the procedure for determining the stream 
function coefficients is an iterative one. First, a trial set of 
coefficients (X(l), X(2), X(NN + l)) are obtained by the linear 
theory developed by Biesel and Tsao. 

,p(x, y) = -( Uo - C)y - 
COo(h q- 

q--•- (Uo q-COoh-- C) sinh 
2r(n.+ y) 

2a'X/sinh 2q] ß COS • (16) 

with the dispersion relationship 

(Uo q-COoh- C) • 

gL [ COo 2a' 1 q---(Uo +COoh-- C) tanh2a'---•h g L (17) 
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Fig. 2. Wavelength as a function of vorticity -Wo for a wave in deep water, case A. 

Therefore X(1) = L must satisfy the relationship (17), 

H(Uo +woh -- C) 
X(2) -- -•- sinh (2;rh/L) 

by inspection of (12), and •(x, •1) (=X(NN + 1)) is estimated 
from (16) with x = 0 and y = H/2. The remaining coefficients 
(X(n), 3 < n < NN) are set to zero. To obtain a better estimate 
of the X(n), a nonlinear perturbation technique is used to 
minimize the fit to the dynamic free surface boundary condi- 
tion. By including the mean sea level condition (15) and a wave 
height condition, specified as •/(0) - •/(L/2) = H, as constraints 

in the minimization by means of a Lagrange multiplier ap- 
proach [Hildebrand, 1965] a drawback of previous numerical 
wave theories is eliminated; that is, this procedure will con- 
verge directly on wave height. Therefore an objective function 
O may be defined as 

2X• f•/• (Q(x) - 0) 2 dx + -•-.•o rl(x) dx 

+ _ 
O=• 0 

(18) 
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Fig. 4. Dimensionless crest elevation rlc/H as a function of vorticity -•Oo for cases ^ and B. 

The objective function, which is comPOsed of nonlinear terms, 
is quasi-linearized by expanding it at iterationj + I in a first- 
order Taylor series 

NN+ 1 

0 i+• = 0 i + • (Oi)x(,)X'(n) (19) 

for each unknown X(n) where the X'(n) are small changes in 
the X(n). The expanded objective function is then minimized 
with respect to all the X(n), X•, and 

(Oi+•)x(,,,) = 0 m = 1, NN + 1 (20) 

(oi+l)x I -- 0 l = 1, 2 

where only the first-order derivatives need be retained. These 
(NN + 3) simultaneous equations can now be solved by matrix 

inversion for the (NN + 1)X'(n), X•, and X•.. The X'(n) are then 
added to the previous values of the XJ(n) to yield the new X j+• 
(n). This direct addition becomes unstable for breaking waves, 
and for those cases only a fraction of the X'(n) is added. This 
procedure is then iterated numerous times until the desired ac- 
curacy of O • (and consequently E•) results. 

The effect of the linear shear current on a wave of a give•n 
height is manifested in a change in wavelength, which in turn 
results in a change of the kinematics within the wave. (A wave 
propagating from a zone of no current into a region of a shear 
current will undergo a change in wave height; in this study, 
these effects are not considered, since the wave height is held 
constant in the comparisons). Two different waves have been 
chosen to illustrate these points. They both have a 10-s period, 
but the case A wave is in 100 feet (30.5 m) of water and has a 
wave height of 50 feet (15.2 m), whereas the case B wave is in 
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Fig. 6. Change in total horizontal acceleration with dimensionless horizontal distance and vorticity -•Oo evaluated 
at middepth for a case B wave. 

/ 

shallow water, 10 feet (3 m) in depth, and has a height of 6.29 
feet (1.92 m). 

When only a linear shear current is present (U0 = 0), the 
effect of the vorticity on the wavelengths of the waves may be 
seen in Figures 2 and 3. The difference between the small 
amplitude theory wavelength, (17), and the higher-order linear 
shear current model is almost due entirely to finite amplitude 
effects, as may be clearly seen by comparing the two theories at 
•o0 = 0, the irrotational case. From the figure the effect of the 
vorticity is to increase the wavelength of a wave on an aiding 
current and decrease it on an opposing current. Sarpkaya 
[1955] proposed a superposition technique for approximating 
the celerity of waves on a current. This procedure assumed 
that the wave celerity was equal to the celerity of the wave in 
still water Cs•o plus the mean value of the current O, or 

C = Csu, + mO (21) 

where rn = 1.0. To examine the validity of this superposition 
procedure, the value of rn was obtained for the wavelengths 
given in Figures 2 and 3, where 0 = oooh/2. These values were 
2.0 and 1.2, respectively, indicating that superposition is not 
generally valid for wave celerity or wavelength, as was also 
concluded by Sarpkaya on the basis of his experiments. 

For the same two waves the change in the maximum crest 
elevation of the waves due to the' vorticity is shown in Figure 4. 
The vorticity due to an aiding current increases the crest 

elevation: Note that for the shallow water wave the crest 

height can approach 90% of the wave height, as compared with 
the 50% predicted by small amplitude theory. 

As an example of the effect Of the vorticity on the water par- 
ticle kinematics within the wave the horizontal velocities and 

accelerations at middepth for the case B wave are shown in 
Figures 5 and 6. 

The errors in the objective function O for these example 
waves were quite small, the indication being that the assumed 
series solution for the stream function and the perturbation 
procedure is valid. As an example, for the case A and case B 
waves for a •o0 = 0.03 s-' the errors after 20 iterations are 

shown in Table 1. The largest errors occur in the convergence 
in the specified wave height, but in both cases this is less than 
0.01 foot (0.003 m). More iterations and more terms in the 
series solution would reduce these errors even more. 

IRREGULAR WAVE FOR MEASURED WAVE DATA 

For an analytic approximation of measured (and digitized) 
water surface elevation data where a linear shear current was 

present an irregular form of the linear shear current model is 
used. The boundary value problem is the same as specified for 
the symmetric wave model, consisting of (8)-(11) with two ex- 
ceptions. First, owing to the digitized nature of the measured 
data, the integral form of the mean value used in obtaining the 
mean squared error E,, (13), and the mean Bernoulli constant, 

TABLE 1. Errors in Linear Shear Current Model Representation of the Case A and B 
Waves for Wo = 0.03 s -1 

Case 

Dynamic Free 
Surface Boundary Mean Sea Level Wave Height 
Condition Error, Constraint Error, Error, Wave Theory 

El, ft 2 (m 2) ft (m) ft (m) Order 

1.08 x 10 -3 -1.77 x 10 -4 -1.46 x 10 -3 
(1.00 x 10 -4 ) (-5.39 x 10 -5 ) (-4.45 x 10 '4 ) 
2.06 x 10 -7 1.28 x 10 -3 8.26 x 10 -3 

(1.91 x 10 -8) (3.90 x 10 -4 ) (2.51 x 10 -3 ) 19 
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(14), is replaced by the arithmetic means 

(Q, - O) E1 = • •=• 

and 

- 1 •Oi 
where I is the number of data points within the wave. The 
terms E• and 0 now correspond to Dean's [1965] definitions. 
Second, the free surface constraint, (15), is altered to require 
that the predicted water surface elevations •,• at time i coin- 
cide in a least squares sense to the measured values •,•. This 
requirement then is expressed as 

-- (22) E2 =• i=1 
Further, the series solution to the boundary value problem is 
then assumed to be of the following form. 

wo(h q- Y)2 
•p(x, y) = --( Uo -- C)y -- 2 

NN-1 (n -- 2)a'(]t q- y) [ X(n)cos + • sinh (n- 2)•'x ,=4.0... L L 

q- X(n+l)sin(n-•.2)•'X 1 (23) 

Note that this states that the wave form is periodic in space 
and travels without change in form, an assumption that would 
best be satisfied by ocean swell. The form of •p(x, y) satisfies the 
governing differential equation exactly and all of the boundary 
conditions but those at the free surface r/,•. The predicted free 
surface rh, t is found by substituting r/•,t into (23) for y and solv- 
ing the quadratic equation iteratively. As the wavelength L, 
the wave period T, and the free surface streamline value •p(x, rt) 
are unknown, it is convenient to define them as X(1), X(2), and 
X(3), respectively. The final soiution of the problem follows by 
finding values of the X(n) coefficients that minimize the total 
error Er ( = E• + EO. 

The initial step in the perturbation procedure for the X(n)is 
to obtain a trial set of the coefficients. One procedure is to ob- 
tain them by minimizing the error E•. with the assumption of 
zero vorticity. This procedure, used by Dean, results in a linear 
set of equations that may be solved for the initial X(n). These 
initial values, which were determined without considering the 
dynamic free surface boundary condition and the vorticity, are 
then improved by determining the incremental changes, X'(n), 
found by minimizing the total error Er. The Er at a particular 
iteration j + 1 may be approximated by a first-order Taylor 
series in the X(n) at iteration j. 

NN 

E•, i+' = E•, i + • (E•,•')x(,•) X'(n) 

By minimizing Er with respect to all the X(n), NN equations 
result for the NN unknowns, which are solved for the perturba- 
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tion corrections X'(n), which are then added to the previous 
X(n). This procedure then iterated until Er became suitably 
small. 

In this development it was assumed that the wave profile 
was measured spatially. More often, the wave profile is 
measured as a function of time, and thus a change of variables 
must be made in this formulation. The change is accomplished 
by replacing the argument [(n - 2),rx]/L with [-(n - 2)•rt]/T. 

As an example 'of the usage of this model a wave with a 
height of 38.8 feet (11.8 m) was measured in the Gulf of Mex- 
ico during hurricane Carla in 1961. The water depth was ap- 
proximately 98 feet (29.9 m). The measured water surface 
profile is shown in Figure 7 [corresponds to Dean, 1965, 
Figu. re 5] along with the predicted profile obtained with the 
stream function wave theory and the linear shear current 
model. The predicted profiles of both wave theories are the 
same •despite the assumption of Wo = 0.025 s -• for the linear 
shear current theory. The error in the dynamic free surface 
boundary condition was also the same. The horizontal velocity 
profiles calculated under the wave crest for each theory are 
also shown in the figure. 

CONCLUSIONS 

A finite amplitude wave model has been presented that 
represents, to any order, water waves propagating on a linear 
shear current, that is, on a fluid that has a constant vorticity. 
The model can represent either symmetric waves, when the 
wave h.eight, water depth, wave period, and vorticity are 
specified, or an irregular wave with a measured profile and an 
assumed linear shear current. 

The {,alidity of the model in representing the actual natural 
phenomena is assured in the analytical sense in that the errors 
in the boundary conditions O r can be made as small as desired. 
However, this only guarantees that the wave model is a solu- 
tion to the prescribed boundary value problem. Experimental 
validity must still be sought. 
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