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Summary 
It is possible to calculate precisely the theoretical eigen-frequencies of 
any Earth model which is non-rotating, spherically symmetric, and which 
has an isotropic static stress field and an isotropic dynamic stress-strain 
relation. In this paper Rayleigh’s principle is used to provide a formalism 
which allows the approximate computation of the normal mode eigen- 
frequencies of any Earth model which is slowly rotating and slightly 
aspherical and anisotropic. This formalism is used to compute, correct 
to second order, the effects of the Earth’s angular rotation, and correct to 
first order, the effects of the Earth’s ellipticity of figure on the normal 
mode eigenfrequencies. It is found that for an arbitrary poloidal or 
toroidal niultiplet, the central (m = 0) member of the multiplet is shifted 
slightly in frequency and that the other members of the multiplet are split 
apart asymmetrically by the effects of the Earth‘s rotation and ellipticity. 
The results may be used to make a preliminary correction for rotation 
and ellipticity to the Earth’s raw normal mode data. 

1. Introduction 
The elastic-gravitational normal modes of the Earth have been excited by major 

earthquakes and observed on various low-frequency seismological instruments. 
Records of these observations can be used to measure the angular frequencies of 
oscillation of the Earth’s normal modes. In recent years it has also become possible, 
using high-speed computers, to calculate quickly and precisely the theoretical angular 
frequencies of oscillation of the elastic-gravitational normal modes for a large class 
of Earth models; namely, for any model having the following characteristics: 

(1)  the Earth model is spherically symmetric; 

(2) the angular velocity of steady rotation is zero; 

(3) the dynamic stress-strain relation at every point is perfectly elastic, and 

(4) the static stress field in the equilibrium configuration is at every point iso- 

Any such model of the Earth will be called a SNREI (spherical, non-rotating, elastic, 
isotropic) Earth model. For the purpose of computing the theoretical eigen- 
frequencies, a SNREI Earth model of radius a can be completely characterized by 
three functions of r, the radial distance from the centre. These three functions are 
the density po(r), the bulk modulus Ic(r), and the shear modulus p(r),  the latter two 

furthermore is isotropic; 

tropic. 
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330 F. A. W e n  

being the in situ elastic parameters appropriate to the hydrostatically compressed 
state of the material. 

The 'attention of many geophysicists has now turned toward investigations of the 
so-called normal mode inverse problem. In the most general sense, this is the 
problem of enumerating and exploring the collection of all possible, not necessarily 
SNREI Earth models, whose theoretical eigenfrequencies are in agreement with the 
measured eigenfrequencies of the real Earth. Before attempting such a problem it 
is essential to have a knowledge of the precision of the normal mode data. 

Probably the major source of error in the data is the presence in the records of 
various types of noise: instrumental noise, stationary and non-stationary seismic 
noise, and noise introduced by the methods of data analysis. Another possible 
source of error arises from the fact that a time series of the Earth's free oscillations 
is not in general a record of a single impulse response of the Earth, but rather repre- 
sents the response of the Earth to a main shock as well as to a series of foreshocks 
and aftershocks. The manner in which the presence of an aftershock sequence can 
affect the measurement of the eigenfrequency and the Q of a normal mode has been 
investigated by Press (1966, 1967). Press (1967) found that if a record is analysed 
as if it were a single impulse response, then this effect could lead to an error in the 
measurement of the eigenfrequency of a normal mode of about 0.1 per cent. This 
effect should certainly be recognized in future analyses of the data. Another factor 
which could greatly affect the precision of the data is the possibility of mode misidenti- 
fication. Some mode-identifying criteria can be obtained by observing correlations 
among several records at one station (various components of strain, gravity, and 
tilt) (Gilbert & Backus 1965), and these have been utilized (Smith 1966; Nowroozi 
1966). Further mode-identifying criteria would of course be provided by any 
future world-wide array of low-frequency seismological instruments (Gilbert & 
Backus 1965). 

The real Earth is of course not a SNREI Earth model; in fact all of the assumptions 
(1)-(4) are false for the real Earth. However, because of the very large extent of the 
non-uniqueness in the inverse problem (Backus & Gilbert 1967), and because of the 
relative mathematical simplicity, it is customary to include only SNREI Earth models 
in inverse problem calculations. In this case the fact that the real Earth is not a 
SNREI Earth model may be looked upon as one of the factors affecting the precision 
of the raw data. If it is desired to compare the raw normal mode data to the theo- 
retical normal mode data of various SNREI Earth models, then the raw data may be 
looked upon as contaminated by the asphexicity, rotation, and anisotropy of the 
real Earth. It is desirable to try to remove as much of this contamination as is 
possible. At the present time of course, this contamination cannot be completely 
removed because very little is known about the Earth's anisotropies and deep in- 
homogeneities. 

The deviations from sphericity and isotropy of the real Earth are probably small 
enough that they only slightly perturb the theoretical calculations of the normal 
mode eigenfrequencies. As a first step toward a correction of the raw normal mode 
data, it is necessary to gain a general idea of the kind of effect that the Earth's slow 
angular rotation and small asphericities and anisotropies will have on the theoretical 
eigenfrequencies of an arbitrary SNREI Earth model. It is customary to use the 
following notation for the normal modes of a SNREI Earth model: .S;l denotes the 
nth overtone of a poloidal mode characterized by a sphericai harmonic xm of degree 
I and order my while "q"' denotes the nth overtone of a toroidal mode characterized 
by x'". In this paper y;" will denote the fully normalized complex surface spherical 
harmonic 

P;" (cos e) eim* 
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The normal modes of a rotating, elliptical Earth 33 1 

where 0 is the colatitude and 4 is the longitude. This normalization is such that 

where S is the surface of the unit sphere. Here Z and IZ can take on all non-negative 
integral values, while rn takes on all integral values between - I  and 1. For a fixed 
1 and n, all the 21+ 1 poloidal modes $7 of a SNREI Earth model have the same 
angular frequency .of, while all the 21+ 1 toroidal modes ,,T,"' have the same angular 
frequency ,,COT. The angular frequencies ,,up and are said to be 21+ I-degenerate; 
i.e. associated with every eigenfrequency ,,of or of a SNREI Earth model, there is 
a 2Z+ 1-dimensional eigenspace. The 2Z+ 1 modes ,,SF of a SNREI Earth model will 
be called the poloidal multiplet ,,&; the 2Z+ 1 modes .T;" will be called the toroidal 
multiplet ,,T. The effect of slow rotation and small asphericities and anisotropies 
is to remove the degeneracy of a multiplet ,,SI or .T, by selecting certain elements of 
the 21 + 1 dimensional eigenspace and shifting their eigenfrequencies by various small 
amounts. If the deviations from sphericity and isotropy of the red Earth are indeed 
small, then perturbation techniques can be used to compute their effect. In this 
paper, Rayleigh's variational principle governing the small oscillations of an arbitrary 
conservative system about an equilibrium configuration is used for this purpose. 
If a SNREI Earth model is varied slightly to produce small asphericities and aniso- 
tropies, and if it is desired to view the normal mode displacements with respect to a 
coordinate system rotating with the Earth, then Rayleigh's principle can be used to 
compute approximately the normal mode eigenfunctions and the eigenfrequencies of 
the resulting non-sNREi Earth model. As well as allowing corrections to be made 
to the raw normal mode data, the theory of the normal modes of slightly non-sNREr 
Earth models reveals other interesting features which should be visible in the data. 

Investigations of the effects of rotation and asphericity on the normal modes of 
rotating bodies have been made by several authors. Love (1889) and Bryan (1889) 
studied the gravitational modes of a rotating homogeneous, incompressible liquid 
MacLaurin ellipsoid. Cowling & Newing (1949) used a form of Rayleigh's principle, 
and Ledoux (1951) used perturbation theory to investigate the oscillations of rotating 
stars composed of compressible fluid. These authors neglected the aspherical shape 
of the equilibrium configuration caused by the rotation and studied only the effects 
of the Coriolis force on the small oscillations. Chandrasekhar & Lebovitz (1962) 
used a tensor form of the virial theorem to make a study of the small oscillations of a 
rotating mass of compressible fluid about its aspherical equilibrium configuration. 
Their method allowed an investigation only of the normal modes of degree Z < 2. 

Investigations of the effects of the Earth's slow angular rotation on the poloidal 
and toroidal normal modes of a SNREI Earth model were made independently by 
several authors soon after the Chilean earthquake of 1960. Backus & Gilbert 
(1961), MacDonald & Ness (1961), and Pekeris, Alterman & Jarosch (1961) used 
perturbation theories to show that the first order effect of a slow rotation is to shift 
slightly the eigenfrequency ,,of or ,,w? of a normal mode ,SF or ,,Tm of a SNREI 
Earth model. For an Earth model rotating with a steady angular velocity a, the 
modes ,,S;t and ,, Xrn have, respectively, the angular frequencies 

(1) 
nwP+mQB,S)R .w,'+mQ(I,T) c2 1 

where terms of higher order in (R/,w~) and (R/,o;) have been neglected. The 
splitting parameters ,,@ for poloidal modes depend on the SNREI Earth model under 
consideration, but the parameters ,,p,' for toroidal modes are independent of the 
model (see Appendix A). Note in particular that to  first order the rotation of the 
Earth does not alter the eigenfrequency of the m = 0 mode. The second order 
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332 F. A. Dahlw 

rotational perturbation to the eigenfrequencies will produce a relative shift of about 
( S r / , ~ r s ) ~  or (Q/,uI:)~, and for the lower order modes this can amount to about 
0-1 per cent. It can be shown that the second-order rotational correction does act 
to shift the eigenfrequency of the m = 0 mode. A method for computing the second 
order rotational correction is given by Backus & Gilbert (1961), and results of the 
actual computation are presented in the present paper in Tables 1-3 (see Section 3, 
equations (25) and (26)). 

The largest deviation from sphericity of the real Earth is the equatorial bulge; 
the shape of the Earth is very nearly that of an ellipsoid of revolution with an ellipti- 
city equal to 11298.3. It may be expected that this deviation from sphericity will 
produce a relative shift of the eigenfrequencies of a SNREI Earth model by an amount 
of this order, i.e. approximately 0.3 per cent. Usami & Sat6 (1962), using ellip- 
soidal coordinates, computed the first-order effects of small ellipticity on the toroidal 
normal modes of' a homogeneous, elastic, non-gravitating spheroid. Caputo (1 963) 
studied the effects of small ellipticity on the toroidal modes of two simple Earth 
models: one a homogeneous spheroid, the other consisting of a homogeneous shell, 
limited inside by a sphere and outside by a spheroid. In the present paper, it is 
shown how to compute the effects of small ellipticity on the normal modes of an 
arbitrary SNREI Earth model. Another obvious deviation from sphericity of the 
real Earth is the differences between continental and oceanic crustal structures. 
For various reasons, many investigators feel that lateral variations in density and 
elastic parameters extend to depths of hundreds of kilometres into the upper mantle. 
Toksoz & Ben-Menahem (1963) and Toksoz & Anderson (1966) have measured 
phase velocities of mantle Love and Rayfeigh waves and have detected small variations 
(about one to two per cent) between different paths. Their data were partially 
corrected for the effect of the Earth's ellipticity in that they measured path lengths 
on an ellipsoidal rather than on a spherical Earth. If the variations in phase velocity 
for different paths are ascribed solely to regional heterogeneity, then their data reveal 
that for fundamental normal mode multiplets or oT,, with 1 greater than about 
25, the perturbing effect of regional heterogeneities is greater than that of the Earth's 
ellipticity. 

The existence of mountains on the surface of the Earth gives positive proof that 
the static (or secular) stress field in the Earth is not purely hydrostatic, at least not 
in the upper regions of the Earth. Recent satellite measurements of the low order 
terms in the expansion of the Earth's gravitational potential (King-Hele 1965; 
Guier & Newton 1965; Kaula 1966) reveal that there are small deviations from 
hydrostatic equilibrium in the Earth on an even much larger geographic scale than 
that of mountain ranges (Jeffreys 1963; MacDonald 1966). There is evidence from 
seismic refraction surveys at sea that, at ieast in the upper mantle directly below the 
crust, the dynamic stress-strain relation is slightly anisotropic (Hess 1964; Backus 
1965; Raitt et al. 1968; Morris et al. 1968). At the present time, no detailed informa- 
tion is available concerning the spatial variation in the Earth of either of these devia- 
tions from isotropy. Thus although a theory is provided in this paper which allows 
the computation of the effects of small anisotropies on the eigenfrequencies of a 
SNREI Earth model, no detailed calculations are made. 

Section 2 of this paper uses Rayleigh's principle to provide an explicit formalism 
which can be used to compute to first order the small changes in the eigenfrequencies 
,,or or ,,w,T of any SNREI Earth model due to a slow angular rotation and small but 
otherwise arbitrary deviations from sphericity and isotropy. In Section 3 this 
formalism is used to compute to first order the effects of rotation and ellipticity on 
the normal modes of three realistic SNREI Earth models. Clairaut's theory is used to 
compute the ellipticity of figure of the rotating Earth models. The second-order 
rotational perturbation to the eigenfrequencies is also computed for the same SNREI 
Earth models. Results presented in Section 3 may be used as a preliminary correc- 
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The normal modes of a rotating, elliptical Earth 333 

tion for rotation and ellipticity to the Earth's raw normal mode data. Other interest- 
ing features of the normal modes of non-smEI Earth models are discussed in Sections 
4 and 5. 

2. Theory 

Consider an Earth model which consists of a self-gravitating continuum occupying 
an arbitrary bounded volume V with surface 8K and which has a steady angular 
velocity of rotation !2 about its centre of mass. Assume further that in the equili- 
brium state of steady angular rotation there is a static, in general non-isotropic stress 
field To. Assume further that the continuum comprising the body is perfectly 
elastic but that the dynamic stress-strain relation at every point is not necessarily 
isotropic. Such a body can, of course, undergo small oscillations about the equili- 
brium configuration. Let p o  denote the density and 4o the gravitational potential 
of the body occupying the volume V. Let e'"S(r) be a possible displacement field 
for an elastic deformation of the body, and elot 41 (r) the associated disturbance in 
the gravitational potential, both measured with respect to the reference frame rotating 
with angular velocity 

Then if the displacement is considered small so that terms of second order in S 
may be neglected, the equations of motion for an elastic-gravitational mode of such 
a body may be written, in the rotating coordinate system, as: 

about the centre of mass. 

-V[S. PO V(4o +$)I -f- V .  E + V [ S .  (V . TO)] - V .  (S .VZ,) (2) 

and V2+, = 4nCp1. 

In equations (2), p1 = -V. (po S) is the change in density due to the displacement, 
rl/ is the rotational potential due to the centripetal acceleration 

$(r) = -+[Q2 r2 - (a .r)'], (3) 

and z0 is the static stress deviator 

= To-+(trTo) I 

where I is the second-order identity tensor. The second-order tensor E is the 
(Lagrangian) elastic stress tensor. At any point r in the body and to first order in 
the displacement field S, E is related to S by the linear elastic parameters appropriate 
to the compressed state of the material at r. The components of E relative to an 
arbitrary Cartesian axis system g1, ftz, 2, in the rotating reference frame may be 
expressed in terms of the components of S in the following manner (Biot 1965). 

E i j  = rijkI akl-f~j:(ai  Sl-al  S i ) - 4 ~ i 1 0 ( a j S 1 - a ,  Sj) (4) 

where akl  = $(a, S,+a,  S,), and r i j k l  are the elastic parameters, themselves the com- 
ponents of a fourth-order tensor which will be called the stress-strain tensor. The 
last two terms on the right arise because the displacement field acts to rotate the 
static stress field; they only occur if the static stress field is non-hydrostatic. 

The equations (2) must be solved relative to certain boundary conditions which 
are to be applied on the undeformed boundaries of V, both on the external boundary 
aV and on any internal discontinuities (e.g. a mantle-core discontinuity). These 
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334 F. A. Dahlen 

boundary conditions are (Alterman, Jarosch & Pekeris 1959; Backus 1967): 

S continuous (note: at a solid-liquid discontinuity, only A .  S need be 

A. E continuous, where A is the normal to the undeformed boundary 

& continuous 

A . V$l t S . A 4nGp0 continuous. 

It is first convenient to  note that the second of equations (2) can be integrated 

(5 )  I continuous) 

(note: on dV, A.E = 0) 

immediately in terms of a Green’s function for the volume V, 

+,(r) = G f pl(r’)g(r, r’1dV-G po(r’>g(r,r‘)S(r’).AdS f 
V bV 

where the second integral is over the surface aV of the volume V, and where S(r, r’) 
is the Green’s function 9(r, r’) = l/lr-r’l. 

Now let 9’ be the vector space consisting of all piecewise twice-continuously 
differentiable vector fields on V. On 9, an inner product is defined in the following 
manner. For any two members u, v of 9, (ti, v) is defined as 

(u,v) = J poll” . VdV. 
V 

With this definition, Y becomes an inner product space which can be completed to 
a Hilbert space. The equations of motion for the elastic-gravitational modes of the 
body V can thus be written as an eigenvalue equation for a linear operator in a 
Hilbert space. Written in terms of components in an arbitrary Cartesian axis 
system, this equation takes the form 

where 
po w2 Si-  2ip0 o qjk Qj S,  = H S i  (6) 

H S i  = -aj(r i jkl  ak i ) fa i  [PO s j a j ( $ O + + ) l + p l  a i ( $ O + $ > + P O a i $ l  

where p1 = - a i ( p o  Si)  and where E ,  is defined in equation (4), and 4l is defined in 
equation (6), and where eijk is the alternating symbol in three dimensions. Note 
that the operator H is an integro-differential operator. It can be shown that H as 
defined is a Hermitian operator, i.e. for any two vector fields u, v in Y which satisfy 
the boundary conditions (9,  the following relation holds: 

(u, Hv) = (Hu, v). 
The operator if2 x is also Hermitian, i.e. (u, if2 x v) = (in x u, v). 

one arrives at the equation 
Upon taking the inner product of the displacement vector S and equation (6) 

0 2 ( S ,  S ) - 2 o ( S ,  in x S )  = (S,  p O - l  H S ) .  (7) 
Now any linear operator L defined on an inner product space Y may be associated 
with a unique bilinear functional 9 ( u ,  v) on Y by the relation 9 ( u ,  v) = (u, Lv) 
(Reisz & Nagy 1955). To indicate that the inner product terms in equation (7) are 
in fact bilinear functionals defined on 9, the following notation will be used: 

S) = (S, Po-1 H S )  

Y(S, S) = ts, S) 
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The normal modes of a rotating, elliptical Earth 

W(S, S) = (S ,  iln x S). 

It is also convenient to write X ( S ,  S) as a sum of three bilinear functionals, 

X ( S ,  S) = V ( S ,  S) + B(S, S )  + Y(S, S )  

335 

where B(S, S) includes all terms linear in To(r), Y(S, S) includes all terms linear in 
$(r), and V ( S ,  S )  is independent of To(r) and $(r). Several applications of Gauss' 
theorem with use of the boundary conditions (4.5) allow T(S, S) and Y(S, S) to 
be written as 

and 

V 

where E is all of space. Similarly, several applications of Gauss' theorem with use 
of the boundary condition that 6.To must be continuous everywhere (and thus 
zero on W )  allows B(S, S) to be written as 

p(sy s) = I dV?ijo [ s k * a k a , s i - s i * a j a k  S k - ( T i , a k s , * + ( T i k a j S k * ] .  (10) 
V 

In terms of these bilinear functionals, equation (7) can be written as 

w 2  Y(S, S )  - 2o-/Y(S, S) - Y ( S ,  S) - 9 ( S ,  S) - Y (S, S )  = 0. 

w2 Y(S, S) = Y ( S ,  S) + B(S, S). 

(1 1) 

If the Earth model is non-rotating, then equation (1 1) becomes 

(12) 

Equation (12) is in fact Rayleigh's principle for a non-rotating mechanical system. 
The term w29-(S,S) is twice the kinetic energy of a disturbance S, while 
V ( S ,  S)+B(S, S) is twice the potential energy of the disturbance. The kinetic 
energy of a disturbance is thus equal to the total potential energy. The potential 
energy term V ( S ,  S) includes elastic energy, gravitational energy, and work done 
against hydrostatic pressure, while the term B(S, S) represents the work done against 
the deviatoric part of the static stress field. If equation (12) is regarded as defining 
a bilinear functional o2 of S ,  then Rayleigh's variational principle states that that 
functional is stationary to first order in an arbitrary small variation in S if and only 
if S is the displacement field of a normal mode of oscillation whose angular fre- 
quency is w. Equation (1 1) for a rotating Earth model also expresses an equality 
between kinetic and potential energies, but there are extra kinetic energy terms 
because of the rotation. Also, since the operator isZ x is Hermitian, as is the operator 
H ,  there is a variational principle similar to Rayleigh's principle contained in equation 
(1 1). The bilinear functional of S on the left-hand side of equation (1 1) is stationary 
to first order in an arbitrary small variation in S if and only if S is the displacement 
field of a normal mode of oscillation of the rotating Earth model whose angular 
frequency is o. This can be seen by considering an arbitrary small variation 6s 
in equation (11). In doing so it is necessary to remember that equation (11) is 
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336 F. A. Dahlen 

equivalent to equation (7), and that the operators H and iS2x are Hermitian; it is 
convenient actually to consider a small variation 6 S in equation (7) 
02(S, 6S)+w2(6S, S)-2w(S, i a x  SS)-2~(6S,ir12x S) 

Since H and i a x  are Hermitian operators, this may be reduced to 

or 2(6S, ( u ~ S - ~ ~ W S ~ X S - ~ , - ~ H S ) )  = 0. 

Since 6s is an arbitrary small variation, this implies 

= (S ,  p ,  - HSS)  + (SS, p o -  HS) .  

202(6S, S ) - h ( S S ,  iS2 x S) = 2(6S, p 0 - l  H S )  

o2 S - 2 i d 2  x S = p0-' HS 
which is equivalent to equation (6).  The demonstration of the converse is immediate. 

Thus, as Rayleigh (1877) points out, the small shift So imparted to any eigen- 
frequency w by small perturbations Sp,, &$,, 6S2, 6%,, 6 r i j k l  in the static Earth model 
can be calculated directly from equation (1 1) if the eigenfunctions S for the un- 
perturbed body are known. The first order relation among all these perturbations 
can be computed by taking first-order variations in equation (ll),  viewing the left- 
hand side of equation (1 1) as a functional not only of S but also of p, ,  4,, a, %', 

rijkI. A term containing 6s does not appear because of the stationary character of 
the functional relative to small changes in the eigenfunctions. The unperturbed 
body will be taken to be a SNREI Earth model; for such a model eigenfrequencies and 
eigenfunctions are readily computed. Consider the small variations necessary to 
produce a slightly non-sNm Earth model from a nearby SNREI Earth model. The 
rotation vector must be varied away from A2 = 0, and the static stress deviator 
T,, must be varied away from 2, = 0. Small deviations from spherical symmetry 
will give rise to a Sp, and a consequent 84,. The elastic parameters r:jkI of a 
SNREI Earth model are related to the bulk modulus IC and the shear modulus p by 

:jkI = ( K  - + p ( S i k  + Sjk> 

where 6 ,  is the Kronecker delta. The elastic parameters r i j k r  of a nearby slightly 
nOn-SNREI Earth model will, in general, have the form 

r i j k l  = r y j k l + Y i j k l  where Y i j k l  Q K, (13) 
The coefficients y i j k l  are the Cartesian components of a fourth-order anisotropic 
tensor; the components of the isotropic part )(jkl of this tensor will be denoted by 

Y ! j k f  = ( 6 K - 3 6 p ) S i j 6 k l + 6 p ( S , k 6 j f  +Si16jk)* 

Here 6~ = +y i i j j  and Sp = & ( y i j i j - i y i i j j ) .  The remaining anisotropic part of 
yi jkl  will be denoted by yfjkik[ = y i j k l - y f j k l .  The terms in SK and 6 p  can represent 
small variations in the SNREI Earth model from spherical symmetry, while the terms 
in y<jkik[ represent deviations of the dynamic stress-strain relation from isotropy. 
The first-order relation among all these perturbations is, from equation (11) 

6w2 Y(S, S )  = SY(S, S) - o2 SY(S, S) + 2wW(S, S) + B(S, S) + Y (S,  S) (14) 

where W ( S ,  S) = Sp, lSl2dV 
V 

and where 
w s ,  S )  = 1 dV[y,j, ,a,ja$+Sp, SiSj*aiaj$,+p, SjS;*':iajs40 

V 

+ 6 p , a j $ , ( S i a i  sj*-sja, S , * ) + p , a j s ~ , ( s i a i  sj*-s,a, S,*) 

 PO Si* ai 41 +JP, Si ai $I*]* 
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The normal modes of a rotating, elliptical Earth 337 

Equation (14) gives explicitly the first-order change in the angular frequency of 
any normal mode of a SNREI Earth model due to a non-zero angular rotation $2, 
due to a non-zero static stress deviator z0, due to any deviation 6po, &Po, 8 ~ ,  6 p  
from sphericity (the variations 6po,  6&, 6 ~ ,  6 p  can be functions of r alone; they need 
not be deviations from sphericity), and due to a slightly anisotropic stress-strain 
tensor rijal. Note that the small change due to the rotationaf potential $, which 
is really a term of second order in R, has the same form as a perturbation ~34~ .  

The situation is complicated because of the fact that an angular frequency ,,o: 
or of a SNREI Earth model is 21+ 1 degenerate; i.e. there is a 21+ 1-dimensional 
subspace ,9': or ,,9': of 9, any element of which is a possible eigenfunction associated, 
respectively, with ,,of or In order to carry out computations, it is necessary to 
select a particular orthonormal basis of this subspace $': or ,,SPIT. Denote the 
members of the chosen basis by (,,SF, m = -1, . . . , 0, . . . I}. Orthonormality means 
that (,,SF, ,,SF') = J (,, I , ) = d,,,,,,,. At this point it becomes cumbersome to 
retain the subscripts n and 1 and superscripts S or T to indicate which particular 
multiplet is being discussed. For the remainder of Section 2, the discussion will be 
restricted to a single multiplet ,,S, or ,,T, with associated eigenvalue ,,of or JOT. 
The members of the chosen basis will be relabelled simply {S,,,, m = - 1, . . . 0, . . . I }  
and the eigenfrequency or p: will be called o. Any eigenfunction S of a 
SNREI Earth model associated with the degenerate eigenfrequency w may be written 
in terms of the basis vectors 

6 s m  s m '  - 

I 

m = - 1  
S =  C urnsm. 

Now equation (14) was obtained by taking the inner product of equation (6) 
and the displacement vector S and then taking first variations. If instead, one 
takes the inner product of equation (6) with a second arbitrary member S' of the 
21+ 1 dimensional subspace associated with the o in equation (6), then equation (1 1) 
would have taken the form 

0' F(S,  S) - 2WW(S, S') - T(S, S') - B(S, S') -Y(S, S') = 0. (1 1 . 1) 

It is easily shown that, since both S and S' are eigenfunctions associated with o, the 
bilinear functional in equation (1 1 .I)  is stationary to arbitrary small variations in 
either S or S'. Therefore taking first variations in equation (1 1.1) yields 

6c0' Y(S, S) = W ( S ,  S') - wZ 6Y(S, S') + 2wW(S, S') + 9 ( S ,  S') + Y(S, S'). (14.1) 

Now S' may be written in terms of the chosen basis vectors 

I 

m= - I  
S' = C bmSm. (15.1) 

Substituting for S and S' in equation (14.1) their expansions (1 5) and (15. l), equa- 
tion (14. l) reduces to 

b' a' 60' = b' [ 6 V ( S i ,  S,) - o' ~ F ( S ~ ,  Sj) + 2wW(Si, S,) + B(Si, S,) + Y(S, ~ ~ ) ] a ' .  

But the b' are arbitrary, so the perturbation problem for a degenerate multiplet 
,,S1 or "T, reduces to an eigenvalue problem in the 21+ 1 dimensional subspace ,,9': 
or .YT; this may be written in terms of a Hermitian 21+ 1 dimensional matrix R.  

R ,  d = 6w' a' (16) 
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338 F. A. Dahlen 

where 

Rij = 6V(S i ,  Sj ) -026F(S i ,  Sj)+20W(si, S,)+B(S, S,)+Y(S, S,). (17) 

The bilinear functional Y(S, S )  has been retained at this stage even though it is of 

second order in (Q/w) in order to assure that R ,  is Hermitian. For any small 
variations a, T ~ ,  dp, ,  &$o, 6 ~ ,  6 p ,  y&, the (21+ 1). (21+ 1) elements of the Hermitian 
matrix R may be computed in terms of the eigenfunctions {Sm, m = -1, ... 0, ... 1) 
of the SNREI Earth model. Denote the 21+ 1 eigenvalues of the matrix R by 

{(do2),, k = -1,  ..., 0, ... I>, 
and denote the eigenfunctions associated with the eigenvalues by 

I 
{(~k-', ..., ..., ~ k ) ,  k = -1, ... 0, ... 1). 

Then the normal modes of a slightly non-sNm Earth model can be characterized 
in the following way. To zeroeth order in the small variations, the normal mode 
eigenfunctions are 

and to first order in the small variations the associated squared eigenfrequencies are 
wz+ ( 6 0 2 ) k .  The above notation assumes that none of the eigenvalues of R is 
degenerate, which implies that the degeneracy of ,,of or ,,o: is completely removed 
by the perturbations. Backus & Gilbert (1961) showed that the effect of rotation 
alone is sufficient to remove the degeneracy completely. If the degeneracy is not 
completely removed, then the eigenvalues of R in equation (16) will not all be distinct; 
any eigenvalue which is not distinct will have an associated eigenspace with dimension 
greater than one. 

Written out in full, equation (14) is 

6w2 I' dl/ [p ,S2]  
V 

n 
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The normal modes of a rotating, elliptical Earth 339 

Except for the terms in Q, r0, and y&, equation (18) is given by Backus & Gilbert 
(1967). Also the contribution from the term in Q is the same as that derived by 
Backus & Gilbert (1961) using the perturbation theory of Hermitian operators, and 
by Pekeris, Alterman & Jarosch (1961) and MacDonald & Ness (1961). 

If the change in the SNREI Earth model is such that the location of a discontinuity 
in po ,  K, or p is moved, then a term must be added to the right-hand side of equation 
(18) to take account of this. As in Backus & Gilbert (1967, Appendix C), this term 
takes the following form. Suppose that pot K, p have jump discontinuities at r = b 
in the SNREI Earth model. For any functionf(r) which has a jump discontinuity 
a t  r = b, denote by [f]' the limit of [ f ( b + ~ ) - f  (b-E)]  as E approaches zero 
through positive values. Suppose the SNREI Earth model is perturbed so that the 
location of a discontinuity in p o ,  K, or p is moved from r = b to r = b+h(O, 4). 
The resulting change S o z  in any eigenfrequency o is then given, correct to first order 
in h, by 

V 

The surface integral in equation (19) is over the surface Sb defined by r = by and 
is the change in the gravitational potential due to the fact that the discontinuity 

in p o  is moved from r = b to r = b+h. If the perturbation of the SNREI Earth 
model includes the variation of the locations of any discontinuities (including the 
surface aV),  then terms as in equation (19) must be included in the definition of 
6Y(Si ,  S j )  and 6 F ( S i ,  S j )  in equation (17). 

3. Results 

Equations (16) and (17) define an eigenvalue problem which, when solved, allows 
one to compute to first order corrections to the squared eigenfrequencies of the 
normal modes of an arbitrary SNREI Earth model due to a slow angular rotation and 
small asphericities and anisotropies. The main goal is to use this formulation to 
correct the raw normal mode data of the real Earth. The first step in this programme 
will be to compute corrections to the eigenfrequencies of several SNREI Earth models 
which are thought to be fairly good approximations to the real Earth. In this paper 
the SNREI Earth models used as the starting points of the computations all have 
theoretical eigenfrequencies which agree well with the Earth's raw normal mode data. 

By far the largest deviation from sphericity in the Earth is the ellipticity of figure. 
It will be assumed that, at least for low order normal modes, the angular rotation 
and the ellipticity of the Earth are the dominant perturbations. For fundamental 
modes of higher angular order, for which the displacement S is very small in the 
deep interior, this assumption is probably false. Presumably it is the perturbing 
effect of lateral inhomogeneities in the crust and upper mantle which will pre- 
dominate when the displacement S is confined to a region near the Earth's surface. 
Various techniques have been used to estimate the maximum or the average value of 
the static stress deviator within the Earth (Jeffreys 1959; Kaula 1963; MacDonald 
1966), and most investigators feel that stress differences rarely exceed lo* dyne-cm-'. 
If the average stress difference in the upper mantle is on the order of lo8 dyne-cm-2 
(which is about lom4 times the average mantle rigidity modulus of a typical SNREX 
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Earth model), then the perturbing effect of a deviatoric stress on the Earth’s eigen- 
frequencies can probably be neglected with respect to the effect of the ellipticity. 
Almost nothing is known about the presence of an anisotropic stress-strain relation 
in the Earth, so at the present time it must be assumed that this correction is small 
as well. It is partly because of a lack of information about the Earth’s anisotropies 
and deep inhomogeneities, and partly because of the relative mathematical simplicity 
that in this paper only the effects of the Earth’s rotation and ellipticity are computed. 
The effect of the distinctions between continental and oceanic crustal structure could 
also be treated (though it will not be in this paper), but relatively little is known about 
the vertical extent of lateral jnhomogenitiies in the mantle. 

The small variations necessary to produce a rotating, elliptical Earth model starting 
from an arbitrary SNREI Earth model can be easily enumerated. In the rotating 
body, define a spherical coordinate system (r,O, 4), 8 being the colatitude, with 
centre at the centre of mass of the body and the 2 axis along the direction Q of steady 
angular rotation. The equations defining the surfaces of constant density in a 
slightly elliptical Earth model may be written, to first order in the ellipticity, as 

r [ l  -+(b) P20(cos O)]  = b 

where P,o(cos 0) is the Legendre polynomial, and b is the mean radius of the surface 
under consideration. Then E(b) is the ellipticity of the surface of constant density 
with mean radius b. If a is the mean radius of the surface of the Earth model, then 
&(a) is the surface ellipticity. Consider the elliptical Earth model which results from 
the steady angular rotation of a SNREI Earth model. The ellipticities of the surfaces 
of constant density in the interior of the rotating Earth model can be shown to 
satisfy a certain second-order differential equation (Clairaut’s equation), provided 
it is assumed that the rotating and elliptical Earth model is everywhere in hydro- 
static equilibrium (JeKreys 1959; Chandrasekhar & Roberts 1963). The resulting 
ellipticity E (a function of radius) depends only on the value of I Q l  and on the density 
p o  of the initial SNREI Earth model. A clever transformation of variables in Clairaut’s 
equation introduced by Radau and summarized by Jeffreys (1959) allows the depend- 
ence of E upon p o  to be cast in a very simple manner, provided certain approximations 
are valid. A careful comparison of the results of the Clairault and Radau hydro- 
static theory of the Earth’s figure with recent satellite measurements of the Earth’s 
exterior gravitational potential (Jeffreys 1963) reveals that the theory is not quite 
valid for the Earth. The real ellipticity of the geoid E, is 1/298*3, while the surface 
ellipticity the geoid would have if the Earth were in hydrostatic equilibrium is 1/299-8. 
The conclusion is that there must be a small non-hydrostatic stress field (a part of the 
zo in equation (18)) which acts partially to support the Earth’s equatorial bulge. 
Various hypotheses have been put forward to explain the origin of this small stress 
field (Jeffreys 1963; Munk & MacDonald 1960; Wang 1966; McKenzie 1966). For 
the present purpose it is sufficient to know that its magnitude will be small, and that 
the error committed in using the Radau ellipticities for the computation of the shift 
of an eigenfrequency due to ellipticity will also be small (about [1/298*3 - 1/299.8], 
or about 0.0016 per cent). 

Radau’s approximation gives the ellipticity E(r) as a function of depth for an 
Earth model with density po(r), mean radius a, and angular rotation ]Ql = a: let 
Po be the mean density 

and let 
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2 po(x)x4dx 
0 i 

z(r) = r 

34 1 

Let 

0 

and let 

Then the surface ellipticity &(a) is given by the boundary condition 
q(r) = 9 [ 1  -$z(r)]’- 1. 

and ~ ( r )  is given by 

If the SNREI Earth modcl used for this computation has the correct moment of inertia 
about the axis of rotation C/Ma2 = 0.3309, where M is the mass of the Earth (Jeffreys 
1963), then the value of &(a) which results will be the hydrostatic value 1/299.8. 
The ellipticity function actually used in the computations was adjusted to have the 
measured surface ellipticity by multiplying equation (20) by the factor 299q298.3. 
In terms of ~ ( r )  for any rotating, initially SNFW Earth model, the small variations 
6po and 64, in equation (18) can be written (Chandrasekhar & Roberts 1963) 

6Po(r, 0) = [3e(r) rpo‘(r)l p2°(c0s 0) 
e) = [+(r)r+o‘(r)-+CP r2]  p,o(cose), 

, etc. where po’(r) denotes - dpo(r) 
dr 

The expression (21) for 6po is not valid wherever the derivative po’(r) does not exist, 
in particular at any jump discontinuity in po(r). Since $o(r) is continuous and dif- 
ferentiable for any SNREI Earth model, the expression (21) for &jo is valid everywhere. 
The 6+o in equation (21) is only that due to 6po and does not include $, the gravita- 
tional potential. If it is further assumed that the elastic moduli are constant on the 
same elliptical surfaces as the density and gravitational potential (this is the assump- 
tion made in correcting body wave travel time data (Bullen 1963)) then one can also 
write 

6K(r, e) = [@(r) rrc’(r)] P20(cos e) 
6p(r, e) = &(r) rp‘(r)] P,o(cos e). 

If the SNREI Earth model under consideration has a surface of discontinuity in K, 
p, or po at r = by then the ellipticity is such that this surface of discontinuity is moved 
to r = b+h(O) where 

) (22) 

h(e) = -$b&(b) p,o(cos e). 
The effect of moving the discontinuities on the perturbation computation is given 
in equation (19), except that in this case the volume integral in equation (19) is not 
used, as the in equation (21) includes the effect of slightly varying the position 
of any discontinuities in density. 

The small variations in po, +o, JC, p and in the locations of discontinuities necessary 
to produce from an arbitrary SNREI Earth model a rotating, elliptical Earth model are 
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enumerated above, and Rayleigh's principle can be used to find to zeroeth order the 
eigenfunctions and to first order the eigenfrequencies of the more complicated system. 
To do this it is necessary to select an orthonormal basis of every 21 + l-dimensional 
degenerate eigenspace ,,Yf or ,,Y: associated with, respectively, ,,of or ,,a:; it turns 
out that the natural choice of basis is very convenient for the problem of a rotating, 
elliptical Earth. The natural basis of a subspace ,,Yf or ,,9: consists of the 2E+ 1 
vectors .S;t defined so that each is characterized by only one spherical harmonic 
T"'(O, +), defined with the 2 axis along the direction of the angular rotation vector 
S2 (this is also the axis of greatest inertia). This is the basis that arises naturally in 
determining the eigenfunctions of a SNREI Earth model. The basis vectors of a 
poloidal eigenspace ,,9f are (Backus 1967) 

{,,SF = P,,U,(r) xm(O,$)+V, LV,(r) y;"(O,$)] ,  in = - I ,  ..., 0, ... l }  
and the basis vectors of a toroidal eigenspace $7: are 

{,Sr = -PxV, LW,(r) &"'(OYq5)], m = -1, ..., 0, ... 2) 
where 1 - a  - a  v1 = 6- + -+-. 

80 sin0 

These basis vectors ,,ST may also be written in terms of vector spherical harmonics 
(Morse & Feshbach 1953) by defining Pt = Pqm, BY = V, x"', C;t = -Px V, y;". 

With this choice of basis, and with 6po ,  6q50, SK,  6 p  given by equations (21) and 
(22) and I) given by equation (3), the matrix R ,  in equation (17) can be shown to 
be diagonal. The eigenvectors of R ,  are thus the 2Zfl Cartesian unit vectors 
(1,0,0, ..., 0), (0, l,O, ..., 0), ... (0, 0, ..., 0, 1). For this reason it is possible to 
compute the correction due to the rotational potential t,b separately from the correction 
due to the ellipticity. The correction due to t,b will be treated as a part of the second- 
order rotational correction and will be discussed later. Another consequence of the 
fact that R i j  is diagonal is that, to zeroeth order in E, and in (n/,of) or (O/,,o~), 
the eigenfunctions of an elliptical rotating Earth model are characterized by a single 
spherical harmonic x"'. The eigenfunction $7 associated with a poloidal mode 
.S; is of the form ,Sp = P ,,U,(r) yI"+V, [,,V,(r) l7"], and the eigenfunction associated 
with a toroidal mode ,,T,"' is of the form ,,Sp = - 3 x V ,  [,,W,(r) x"']. The new 
eigenfrequency of any normal mode ,,SF or ,,Tm can be written, correct to first order 
in q, and in (Q/,,mf) or (Q/,,m:), in the form no;" = ,,o,+,(Sw);l, where ,,o, is used 
to denote either ,,of or ,,w; and where 

is calculated from Rayleigh's principle (16) in terms of a, Sp,, 6&, 6 s  Sp, and the 
eigenfunctions $3: of the unperturbed SNREI Earth model. 

In Appendix A, it is shown how to evaluate the volume integrals on the right-hand 
side of equation (23) in terms of the scalar functions ,,U,(r), ,,V,(r), and ,,W(r) which 
characterize the eigenfunctions ,,SF. It is found that the combined action of rotation 
and ellipticity completely removes the degeneracy. The term iQ(,,Sr, 2 x ,,SF) on 
the right-hand side of equation (23) represents the first-order effect of rotation alone, 
while the other term represents the first-order effect of the ellipticity. It will be 
recalled that the first-order effect of rotation alone is to remove the degeneracy 
completely by a symmetric splitting of Zeeman type, as in expression (1). The 
ellipticity causes the splitting to be asymmetric; for an Earth model which is ellipsoidal 
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The normal modes of a rotating, elliptical Earth 343 

as well as rotating, the spacing between the eigenfrequencies of a multiplet ,,S, or 
.T, will not be uniform. In fact, it is shown in Appendix A that the eigenfrequency 
,,or of a normal mode ,,S;t or ,,II;'" of a rotating ellipsoidal Earth can be written, 
correct to first order in E,, and (Q/,,o,"> or (Q/,,o,'> as 

The superscript r indicates a parameter depending only on the rotation Q, while the 
superscript e indicates a parameter depending on the ellipticity. The effect of 
rotation alone is of the form 

while the effect of ellipticity alone is of the form 

n(6w);I/nwt = mz n ~ t )  &a* 

Usami & Sat6 (1962) pointed out that ellipticity acts to split a 21+ 1-degenerate 
toroidal eigenspace ,,Ti of a homogeneous, non-gravitating, Earth model into Z+ 1 
lines; this is in agreement with the above result. 

For the Earth it is found that for a few low-order normal modes, the second-order 
perturbing effect of the Earth's rotation is as important as the first-order perturbing 
effect of the ellipticity. One effect on an eigenfrequency .ol+.(Sw);I which is of 
order (Q/,,mf)2 or (Q/,,O?)~ is the effect of the rotational potential $; another term 
of order (Q/J$)~ or (Q/,o,')' arises from the second-order rotational perturbation 
theory of Backus & Gilbert (1961). This theory is valid even in the case when 
ellipticity as well as rotation is considered, since in either case the degeneracy is 
completely removed to first order. The net effect of all the second-order rotational 
theory is to impart to all eigenfrequencies ,,wl+,,(Sw);t a small additional shift which 
will be denoted by ,,(602)r. As stated above, the effect of the rotational potential 
$ is conveniently treated as a 64, term in Rayleigh's principle, equation (18). The 
small shift ,(SO,~);I in any eigenfrequency ,w, + ,,(Sw)r due to the effect of a rotational 
potential is expressed in terms of the scalars ,,Ur(r), ,,&(r) in Appendix B. The 
additional small shift , , ( S o ~ ) ; '  arising from the second-order perturbation theory 
of Hermitian operators applied to the Coriolis force term is given by Backus & 
Gilbert (1961). 

n ( 6 ~ 2 ' ) ; I  = n(0Zr ) ; I  (Q/nwJ2 (25) 

(26) L(~lrXI2-2n(02')I" = -2i(,SY, 2 x n(S1');t) 

where ,,(clr);t = mQP{) and where ,,(S,');t is the first-order rotational correction to 
the eigenfunction. This correction to the eigenfunction is the unique particular 
solution of the non-homogeneous equation 

( - P O  no,'Z+Ho) n ( S 1 T  = PO n u t 2  [2,(olr);I ,,s;t-2j& x ,,ST] (27) 

such that (,,S]", .(Slr);t) = 0, where Z is the identity operator and where H ,  is that 
Hermitian linear operator such that the equation H ,  S = po o2 S defines the normal 
mode eigenvalue problem in the unperturbed SNREI Earth model. In order to com- 
pute n(6w{)r, equation (27) must first be solved for ,,(S[);t and then the volume 
integral in equation (26) evaluated. The details are straight-forward and will not 
be given. Note that Backus & Gilbert (1961) have two extra terms in their expression 
for ,,(vg);t. One of these terms is identically zero and the other arises because they 
have used a Lagrangian formulation of the equations of motion. 
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The net result of all the second-order rotational theory is that the additional 
frequency shift ,(SwZ)? = ,,(&~~~)f+,,(6w,')," is of the form 

n(6Wz)T" = Gtxr'+ nz2 n r ; )  ( Q / n a J 2 *  (28) 
Thus correct to first order in and to second order in (Q/,,w,S) or (Q/,w;), a normal 
mode ,S," or .T;" of a rotating, elliptical Earth model has an angular frequency of 
oscillation given by 

I I 
f I 

where 

The second-order effect of the rotation contributes to the asymmetry in exactly the 
same manner as does the ellipticity. Tables 1-3 give values of the splitting para- 
meters pl, ,$[ and ,,yI for several low-order poloidal and toroidal modes for three 
SNREI Earth models. The models used are model 1 of Backus & Gilbert (1967), 
and models G1 and Q1 of Gilbert & Backus (1968). All three of these models fit 
the observed raw fundamental normal mode data in the period range 1.4 to 53.9 min 
with an r.m.s. relative error of less than 0.3 per cent. All three of these are conti- 
nental models, and none has a solid inner core; all have the correct mass M and 
moment of inertia C = MaZ. Several other SNREI Earth models which also fit the 
raw normal mode data have been found (Anderson 1965; Landisman, Sat6 & Nafe 
1965; Pekeris 1966; Bullen & Haddon 1967; Press 1968). The splitting parameters 
,p, and are of course dependent upon the properties of the SNREI Earth model 
used. For example, for the three particular SNREI Earth models used in this paper, 
the splitting parameters listed in the tables differ in some instances by as much as 
20 per cent. Fig. 1 gives a schematic representation of the computed asymmetrical 

I 945x10~ rod S 4 279x10 rad s 

"S, multiplet ,S, mulliplet 

6 887xI03rad s' 2 941 x U 3 r a d  s ' 

2S2 multiplat ,S,multiplet 

2~378~10'~ rad s-I 2547x10" rad 5' 

& rnuH@+et ,S, multiple! 

I 1 J 
0 0 . 5 ~ 0 - 4  I.0~10'~ 

rad s-' 

FIG. 1. Schematic indication of line spacing for six low-order multiplets. The 
splitting parameters are those of model 1. The dashed line in each case represents 
the angular frequency "wlS or *uIT of the degenerate multiplet before perturbation. 

Note the relatively close spacing between ow2T and lw,s. 
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line spacing in the spectra of several low-order multiplets for model 1. In the spec- 
trum of the real Earth, all lines appear as broadened peaks because of the dissipation 
(and because of the finite record length). However, for all modes shown in Fig. 1, 
the splitting is sufficiently greater than the broadening that it should be possible to 
completely resolve all the peaks. All but ,,T, and , S ,  have been partially resolved 
by Slichter (1967). 

A few low-order modes have been partially resolved by several investigators, but 
discrepancies between individual measurements are about as great as computed 
asymmetries due to ellipticity and rotation. At the present time, contamination of 
the data by various types of noise seems to limit severely the quality of the measure- 
ments. Fig. 2 shows the results of one of the analyses of data for the ,,SZ quintet 
(spectrum from Smith (1961)). The record used was collected after the Chilean 
earthquake of 1960 on a Benioff quartz strain gauge located at Isabella, California. 
Smith took two relatively long portions of the record (about 15 days and 30 days), 
multiplied by a proper fading function and computed the Fourier transforms of these 
two portions. The shorter record was virtually free of large aftershocks. Fig. 2 
is the result. The three highest peaks can with reasonable certainty be identified 
as, from left to right, m = - 1, m = 0, and m = 1. Note that a measurement between 
the m = If: 1 peaks allows one to determine 2, P I ,  and a measurement of the spacing 
between m = 0 and m = 1 or m = 0 and i n  = - 1 then allows one to determine 

The parameter ,,al cannot be measured from the raw data as it represents the 
amount by which the entire multiplet is shifted; only ,,al (1 +,a,) can be measured. 
If the position of the central m = 0 line is taken to be defined by the solid vertical 
line in Fig. 2, then the computed theoretical positions (using model 1) of the other 
four lines are indicated by the dashed vertical lines. The agreement between 

Angulor frequency (c/min) 

FIG. 2. Fine resolution of poloidal quintet &. Recorded after Chilean earth- 
quake of 1960 on a quartz strain gauge located at Isabella, California. Fourier 
analysis of two lengths of record, 19 100 min and 38 200 min, sample interval 
2 minutes (data from Smith (1961)). The dashed vertical lines represent the 
computed positions (periods designated in minutes) of the rn = rtr 1 and m = 2 

peaks for model 1 (see text). 
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the theory for model 1 and the data is certainly well within probable experimental 
error. The fact that the data is rather severely contaminated by noise may be seen 
from the fact that the three peaks do not have the symmetrical shapes of typical 
resonance peaks. The quintet ,S2 has also been partially resolved by Slichter 
(1965, 1967), using data collected on Lacoste gravimeters after the Alaskan earth- 
quake of 1964. Slichter (1967) lists the positions of the centres of the peaks 
m = - 2, m = - 1 and m = 1 as recorded by two different gravimeters, both located 
at  UCLA. If the means of the values indicated by the two records are taken, it 
appears from this data that there is no measurable asymmetry in the splitting of the 
,S2 multiplet. However, the separate data from the two gravimeters do not agree 
to  better than 0.15 per cent, an amount which is about the same as the theoretical 
asymmetry. The gravimeter data is apparently contaminated by some type of noise. 

The parameter ,al represents the relative amount by which the position of the 
eigenfrequency for m = 0 is shifted. If a multiplet can be resolved and the position 
of the m = 0 peak measured, then ,pl represents the amount by which this measure- 
ment must be corrected before comparison with the theoretical data of SNREI Earth 
models. It is seen that the corrections to the raw normal mode data due to the 
Earth’s rotation and ellipticity are fairly small, on the order of 0.1 per cent. The 
values of ,,al in Tables 1-3 may be used as a first step in correcting the raw normal 
mode dpta. The SNREI Earth models used to compile Tables 1-3 all fit the raw 
normal mode data. If it is desired to make a better correction for ellipticity and 
rotation, it will first be necessary to construct SNREI Earth models which fit the 
partially corrected raw data, and then to compute new splitting parameters for these 
SNREI Earth models which fit the corrected (for ellipticity and rotation) raw Earth 
data. Model 5821 of Backus & Gilbert (1968) was obtained by inverting corrected 
data. The parameters of Table 1 were used. 

The eigenfrequencies of all radial modes ,So are unaffected to first order by 
ellipticity and rotation. For fundamental modes ,S, and oT, of higher angular order, 
the splitting due to ellipticity will completely dominate that due to rotation, since 
(fi/,o;) and (Q/,,w?) decrease as 1 increases. In this case the splitting looks nothing 
at all like Zeeman splitting, but instead the m = 0 member lies at one end of the multi- 
plet while the m = + I  members lie very close together and at the other end. Even 
for extremely high order fundamental modes, there will be a highly asymmetrical 
splitting of this type due to ellipticity. It has been pointed out by Backus (personal 
communication) that in the limit of very large 1 and for ii = 0 (fundamental modes) 
the total spacing between the m = 0 line and the m = + I  lines is related to the 
difference in travel times of surface waves over equatorial and polar paths. The total 
spacing should in fact be A W ~ / ~ W ,  = +E, = 0.17 per cent, where do, = ool-( 
and E, is the surface ellipticity. It is shown in Appendix B that the parameters 
,a; and “7; describing the ellipticity effect are related by 

,,at = - + I @ +  1) ,yf. 

Thus, since the total spacing for very large I is very nearly 

AoJOO~ = 1’ IorfI €a, 

the splitting parameter for very large I will be 

E 2(1+1) 
E, = LZ. - = 0.55.10-3. 

6 l2  
One consequence of the fact that high-order fundamental normal modes are split 
by about 0.2 per cent by the ellipticity is that it will not be possible to measure the 
Q of these modes by merely measuring the width of the unresolved spectral peak. 
This is because most of the broadening of an unresolved peak is due not necessarily 
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The normal modes of a rotathg, elliptical Earth 353 

to dissipation but to splitting. Thus, for these high-order fundamental modes, the 
lower limit of the spin gap introduced by Gilbert & Backus (1965) must be redefined 
to  include perturbations due to  ellipticity. Appendix C of this paper discusses 
further the manner in which the splitting interferes with measurements of the dis- 
sipation. 

It has been pointed out that the surface wave data of ToksGz & Ben-Menahem 
(1963) and Toksoz & Anderson (1966) indicate that for higher order fundamental 
normal modes, the Earth's rotation and ellipticity is no longer the dominant perturbing 
effect. It is most likely that the dominant perturbation for these higher order funda- 
mental modes (for which the displacement is concentrated near the Earth's surface) 
is the effect of lateral inhomogeneities in the crust and upper mantle. A few pre- 
liminary studies of the nature of the lateral inhomogeneities in the Earth's upper 
mantle have been made by utilizing measurements of average phase velocities of 
surface waves over various great circular paths (Toksoz & Ben-Menahem 1963; 
Backus 1964; Toksoz & Anderson 1966). At the present time, however, there is 
probably not sufficient information to write expressions for dp,, 6&,, 6rc and 6 p  due 
to the regional variations in upper mantle structure. Toksoz & Anderson (1966) 
have shown that the surface wave phase velocity data cannot be explained by postu- 
lating just two different types of structure, one under continents and one under 
oceans. They have suggested that the distinction between continental shield areas 
and continental tectonic areas is as important as the more obvious continental- 
oceanic distinction. Even if there were sufficient information about lateral inhomo- 
geneities 6po, S&, drc, dp, to compute the new matrix elements R, for any normal 
mode multiplet ,Sl or ,,T, the problem would still be more difficult than the ellipticity 
and rotation problem, because the matrix R i j  would not in this case be diagonal. 
This means that for those normal mode multiplets significantly affected by the lateral 
inhomogeneities (which includes at least all fundamental modes with I greater than 
about 25, and probably fundamental modes of considerably lower angular order), 
a single normal mode cannot be characterized to zeroeth order by a single spherical 
harmonic xm. The normal modes of an Earth with asymmetrical lateral inhomo- 
geneities will be to zeroeth order of the general form 

I 

with associated eigenfrequencies (The subscripts n and 1 dropped from 
the coefficients ,,a; in Section 2 have been added here.) 

Backus & Gilbert (personal communication) have pointed out an important 
consequence of the fact that a normal mode can no longer be characterized by a 
single y;": their statement (Backus & Gilbert 1961) that a low-frequency geophysical 
instrument placed at the Earth's north or south pole would observe only a single 
member of a multiplet (the member with m = 0) is erroneous when continentality 
plays an appreciable role in splitting the multiplet. For fundamental modes of high 
angular order (at least for I > 25) the geographical perturbations appear to be 
dominant; thus every normal mode is to zeroeth order of the form 

+,,(60)~~. 

and in particular every normal mode contains a term of the form .S:. Thus every 
normal mode can have a non-zero amplitude at the Earth's north or south pole, and 
an instrument placed there will observe a broad envelope for every multiplet due to 
the splitting caused by lateral inhomogeneities. It is indeed unfortunate that a 
single instrument at the Earth's north or south pole will not succeed in producing 
high-quality normal mode data for modes of higher angular order. The installation 
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of a world-wide array of low-frequency seismological instruments will be necessary 
if one wishes to resolve the high-order multiplets. For the low-order multiplets for 
which the rotation and ellipticity perturbations are dominant, polar stations should 
observe mainly m = 0 modes. 

4. First-order displacement fields 

In order to compute the second-order rotational perturbation of the eigen- 
frequency of a normal mode ,,SF or ,,Trn, it is necessary to introduce and to compute 
the first-order correction to the eigenfunctions. Correct to first order in (Q/,w;) 
or (Q/,,w;), the displacement field S of a normal mode $7 or ,,Tm of a rotating Earth 
model may be written S = nS;l+(Q,/zf,w,)n(Slr)p. The vector field .(Slr)y is the 
unique solution of the non-homogeneous equation (27). The perturbation technique 
used in this case to determine corrections to the eigenfunctions is the perturbation 
theory of Hermitian operators using an expansion in powers of the perturbation 
(Kato 1966; Messiah 1966). To deal with an Earth model which is ellipsoidal as 
well as rotating, it was decided to use Rayleigh's variational principle rather than 
perturbation theory of Hermitian operators to compute, correct to first order in 
ellipticity as well as rotation, the change in the eigenfrequencies. If the only desire 
is t o  compute the first-order perturbation to the eigenfrequencies, the two methods 
are equivalent. The only reason that the former is more convenient in the present 
case is because it is easier to use the bilinear functional [6-Y(S, S)-wz6F(S, S)] 
than it is t o  use the unique Hermitian operator associated with it. Denote this 
particular Hermitian operator by [6-Y-oz69-]. This operator is related to the 
bilinear form W ( S ,  S) - 0 2 6 T ( S ,  S) by the equation 

([SY - wz 69-1 s, S) = SY(S ,  S) - w 2  69-(S,  S). 
In terms of this operator it is possible to use perturbation theory to compute the 

perturbation to the displacement field to first order in &,, as well as to first order in 
(R/,,wf) or (Q/,w:). If the displacement field S of a normal mode of a rotating 
elliptical Earth can be expanded in the form S = So+ (Q/,,ol)Slr+~, St, then 
So, Sir, and S: can be computed. It has in fact been shown that rotation and 
ellipticity act to remove the degeneracy completely and that So is of the form ,SY, 
an eigenfunction of the unperturbed SNREI Earth model characterized by a single 
spherical harmonic r;l. The associated first-order fields ,,(Sir);" and ,,(SP)p are 
then the unique particular solutions of the non-homogeneous equations 

(PO n a l Z Z - H o )  n(SIr)Y = -PO n O i Z  [2n(o,?;"nS;"-2ifxnSFI, (27) 

(30) 

(PO nwlz I-Ho) n(SP);t 

= -{2p, , , ~ , ~ ( ~ ~ f + d  ,,yf) ,,S?-E,' [6Y-,,0,269-'],,S;"}. 
It is clear that if n(S1r)? is to be a solution of equation (27), then the inner product 
(,,(Sir);", 2 x ,,S;1) must necessarily be non-zero, and similarly if ,,(St);" is to be a solu- 
tion of equation (30), the inner product (,(St)r, [SY -.o12 S F ]  ,,SF) must be non- 
zero. Since equations (27) and (30) are solved in the SNREI Earth model by expanding 
,,(S1');" and "(S,?? in series of vector spherical harmonics, this means that the 
expansion of can contain no vector spherical harmonics not in the expansion 
of 2 x ,,ST and that the expansion of ,,(S;)? can contain no vector spherical harmonics 
not in the expansion of [GY-,,o,ZW].S;". Note that the stipulation that the 
inner product ("(St)?, [SY -,,w12 897 ,,S;(> be non-zero is equivalent to the stipula- 
tion that the bilinear functional SV(,(S,');", ,SY) -,,wF S S ( , ( S ~ ) ~ ,  ,,ST) be non- 
zero. It is thus possible to determine a great deal about the nature of the first-order 
displacement fields n(S,r)y  and ,,(St);" without actually having to solve equations 
(27) and (30). In order to compute ,,(og)y from equation (26), it is however 
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necessary to solve completely equation (27) for .(Sir);". Let a;" denote an arbitrary 
poloidal vector field of degree I and order m and let z;" denote an arbitrary toroidal 
vector field of degree 2 and order m. Then a;" must be of the general form 

GI" = fU2 Km+V1(& 5"') = UlP;"+V;B;", 
and TI" must be of the general form 7;" = - P x V,(W, r;l> = W, C;" where Ul, V,, 
and W, are arbitrary scalar fields. It is easily shown that if .S;" is poloidal of the 
form a;", then 2x.S;" is of the form a;"+z2-, +t2+,, and if .Sf" is toroidal of the 
form TI", 2 x .Sp is of the form z;"+ a;"- +a?+ 1. Hence if .S;" is poloidal of the 
form 07, then ,,(Slr)Y is necessarily of the form .(Slr)7 = z ; " + l + ~ ~ ! l ,  and if .S;" is 
toroidal of the form 27, then .(S1')7 is necessarily of the form .(Sir);" = a;"+ +a;"- 
(Backus 8z Gilbert, personal communication). One can say that to first order, 
rotation acts to couple a poloidal field of order I to toroidal fields of order 2+1 
and to couple a toroidal field of order 2 to poloidal fields of order I* 1. It may 
similarly be shown that for an elliptical Earth model, if the bilinear functional 
S.V(,(S:)fl, $7) -.oil2 SY(n(S:)r, ,,S,?') is to be non-zero, then the nature of 
.(St)? is simply related to that of .S;t. Namely, if .S;l is poloidal of the form 
a;", then ,,(S:)? is necessarily of the form 

.(S:)I" = zy+ 1 +zF- 1 + a;"+2 + ar-2, 

.(S 1")y = a;"+ 1 + 0;"- 1 + t;"+ 2 + TI"- 2 a 

and if .S;t is toroidal of the form z;l, then .(S:)F is necessarily of the form 

Thus one of the first-order effects of the ellipticity is the same as that of the rotation, 
namely to couple poloidal modes of order 1 to toroidal modes of order I &  I, and to 
couple toroidal modes of order I to poloidal modes of order Z+ 1. Note that if 
other perturbations such as lateral inhomogeneities are more important than ellip- 
ticity, the simple relation given above between the zeroeth order and first-order 
displacement fields is no longer valid. The perturbation to the displacement field 
.S? to first order in arbitrary small lateral inhomogeneities Sp,, S4,, SK and 6 p  will 
in general be a much more complicated combination of poloidal and toroidal fields 
of various degrees I and orders m. 

The most important conclusion to be drawn from the above discussion is the 
following fact. A normal mode of a non-SNREI Earth model will not consist of 
purely toroidal or of purely poloidal motion. Thus if one observes the normal 
modes of the real Earth and then somehow effects a separation of the motion into 
poloidal and toroidal motion (for example a gravimeter can observe only a poloidal 
displacement field as there is no perturbation of the gravitational potential associated 
with toroidal motion), then in the spectrum of the poloidal motion there will be 
peaks at toroidal eigenfrequencies, and in the spectrum of the toroidal motion, 
there will be peaks at poloidal eigenfrequencies. The amplitudes of the first-order 
displacement fields will in general of course be small, on the order of (SZ/,o,?) or 
(ll/,,ol'> or E, times the amplitudes of the zeroeth order displacement fields. In 
fact the signal to noise ratio has been so low in all existing data that the first-order 
displacement fields do not seem to have been detected. Nonetheless, their existence 
should not be overlooked in future analyses of the normal mode data. A qualitative 
explanation of the fact that the Coriolis force acts to couple poloidal and toroidal 
motion was given by MacDonald & Ness (1961). 

5. Quasi-degeneracy 
Whenever two degenerate eigenfrequencies .w2 and ,,.o1, of the unperturbed 

SNREI Earth model are so close together that the first-order corrections introduced 
by the perturbations are larger than InoI-,,.mrl, the theory in Section 2 becomes 
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invalid. It is however possible to treat this quasi-degenerate case using perturbation 
techniques (Messiah 1966). Consider a SNREI Earth model which has two eigen- 
spaces ,,9, and ,,.Y,. associated respectively with quasi-degenerate eigenfrequencies 
,,al and ,,,alr, and denote - (JD,)~ by A. Let P' be the orthogonal projection 
operator on the 21'+ I-dimensional space ,,3', defined relative to the inner product 
(u, v) = Jvp, u* . vdV. Define the operator K = H,- AP' where H, is the Hermitian 

operator which defines the normal mode eigenvalue problem in the SNREI Earth 
model, H, S = pow2 S .  Then K has eigenspace ,,Y, 0 ,,,Y,,, the direct sum of 
,,Y, and ,,.Yr with associated eigenfrequency ,,q. Now the normal mode eigenvalue 
problem for the SNREI Earth model may be written in terms of the operator K as 

K S +  AP'S  = po wZ S .  

wZY(S, S)-(S, PO-' K S ) - ( S ,  P O - '  AP'S) = 0. 

(31) 

(32) 

Taking the inner product of equation (31) and the field S yields 

If bilinear functionals X ( S ,  S) and 9(S, S )  are defined by .X(S, S )  = (S ,  p o -  ' KS) 
and 9 ( S ,  S) = (S, po-' P' S) then equation (32) can be written 

o ~ I ( S ,  S) - X(S, S)- A 9 ( S ,  S) = 0. (33) 

If w = ,,q and S is a vector in the (21+ 1)+ (21'+ 1) dimensional space ,,Y, @ ,,.,Y1., 
then the functional equation (33) is stationary to first order in an arbitrary small 
variation in S .  Taking first variations in equation (33) (including a small variation 
in f2 away from SZ = 0), treating A as a small perturbation and retaining the rota- 
tional potential (a term of second order in Q/w) leads to 

do2 9-(S, S )  = SV(S, S) - 0 ~ 6 9 - ( S ,  S) + 2wW(S, S )  +qs, S) 

+ Y(S, S) + A 9 ( S ,  S). (34) 

Now choose an orthonormal basis of the subspace ,,9, @ ,,.9,. consisting of 22+ 1 
orthonormal basis vectors {,,S?, m = - I ,  . . ., 0, . . . I> of ,,9, and 21' + 1 orthonormal 
basis vectors (,,SF, m = -l',  ..., 0, ..., l') of ,,.Y,,. Relabel the elements of this 
basis by S,, ..., S,, where S,, ..., S,, are in ,,Y, and SP+', ..., S, are in ,,3',. Then 
any element S of ,,9, @ ,,.Y,. can be written in the form 

9 

j = 1  
s =  c ajsj .  

Now, as in Section 2, equation (34) can be readily reduced to an eigenvalue problem 
for a Hermitian matrix f?. The dimension of a in this case is the dimension of 
,,9'$ €D ,,.SPI., that is (21+ l)+(21'+ 1). 

Ri j  aj = (6w2) a' (35) 
where 

Rij = 6Y(Sj, S j ) - - 0 2 6 Y ( S i ,  Sj)+20W(S,, Sj )  

+B(Si, S j )+Y(S,  Sj)+AQ(Si, Sj). (36) 
The inclusion of the rotational potential term Y(S, S )  is necessary in order to assure 
that the matrix f? is Hermitian. 

As before, the eigenvalues of a represent the first-order correction to the eigen- 
frequencies of the perturbed non-smEI Earth model, while the eigenvectors of 
serve to characterize the zeroeth order eigenfunctions associated with the new eigen- 
values. Note that in the case of two quasi-degenerate multiplets ,,Yl and ,,3',, 
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the zeroeth order eigenfunctions of the perturbed non-sNwI Earth model will in 
general be elements of $7, 8 ,,.Yip. The quasi-degenerate theory reduces to the 
ordinary separate theory for the two multiplets unless there is some element S of 
,,YI and some element S' of ,,.YI. such that W(S, S )  # 0 or W ( S ,  S') # 0 or 
b F ( S ,  S') # 0 or B(S, S)  # 0 or Y(S, S') # 0. On an elliptical, rotating Earth 
this means that the quasi-degenerate theory need only be applied to a few cases. 
Not only must A = ,,.wl.' - ,,wl2 be very small compared to spacing between adjacent 
eigenfrequencies, but also if ,,Y, is of the form ,,9'f7 then .9,. must be of the form 
,,&'F*l or. ,,.9'fk2, and if ,,Y1 is of the form ,,Y: then ,,.Y,. must be of the form 
,,.9'& or ,,3'F*2. The most interesting case is the quasi-degeneracy of a poloidal 
multiplet of order 1 with a toroidal multiplet of order 1 +_ 1 since this is affected by 
both rotation and ellipticity to first order. In this case the eigenfunctions to zeroeth 
order are of the form a,+z,,,; each of these eigenfunctions is associated with a 
squared eigenfrequency p12 + ,,(Sw2);1 where ,,(bo2);1 is computed by determining 
the eigenvalues in equation (35). Fig. 3 is a diagram showing the eigenfrequencies 
,,of and ,,w: of SNREI Earth model 1. The same diagram for models G1 and Q1 
would look very similar. It can be seen that there are for this model several pairs 
of multiplets to which the quasi-degenerate perturbation theory must be applied. 
In particular, over a broad range of angular order numbers (from about 1 = 10 to 
about 1 = 25), the fundamental poloidal eigenfrequency is very nearly equal to 
the fundamental toroidal eigenfrequency 1 .  For example the degenerate eigen- 
frequencies owSl and are equal to within 0.15 per cent; the degenerate eigen- 
frequencies and are equal to within 0401 per cent. When the ordinary 
perturbation theory described in Section 3 of this paper is applied to fundamental 
modes & and TI in this range, the second-order rotational splitting parameter 
om; (Q/owl)2 generally turns out to be one or two orders of magnitude larger than 
the first-order parameter o p ~ ( Q / o w I ) .  Also the first-order rotational displacement 
field o(S:)y in general turns out to be of about the same order as the zeroeth order 
displacement field oSy. This was taken as an indication that it would be necessary 
or at least more convenient to use a quasi-degenerate perturbation theory to examine 

0 5 I0 15 20 25 30 
Angular order number 1 

RG. 3. Normal mode eigenfrequencies "wIS and for SNREI Earth model 1 .  
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the effect of rotation and ellipticity on these multiplets. This is the reason that 
Tables 1-3 were not extended to include fundamental modes with angular order 
1 > 10. To zeroeth order in q, and in (Q/oo,?) or the fundamental modes 
for 10 < I c 25 will be of the form G , + T ~ + ~ ,  partly of poloidal nature and partly of 
toroidal nature. Presumably unless the near degeneracy of and is severe 
(as in the case of oS,l, oT12 and oS19, oT20 for this Earth model), any given mode 
will be primarily of one nature, so that one can speak of a primarily poloidal split 
multiplet and a primarily toroidal split multiplet. It can in fact be shown that in 
the limit when A is large compared to the ordinary perturbation parameters ,,al, 
"/I,, "y,, and ,,.al,, ,,./Ilt, ,,.y1., the quasi-degenerate perturbation theory reduces to the 
ordinary theory (which gives rise to a purely poloidal split multiplet and a purely 
toroidal split multiplet, if the first and higher order displacement fields are neglected). 

A forthcoming paper will discuss the results of the application of the quasi- 
degenerate perturbation theory to the fundamental poloidal and toroidal modes in 
the range 10 < 1 < 25. It is likely that the quasi-degenerate theory for rotation and 
ellipticity alone will not suffice for many if not all of the multiplet pairs in this range 
because of the perturbation by the lateral inhomogeneities in the crust and upper 
mantle. If the effect of these lateral inhomogeneities is to be taken into account, 
the computations become much more involved; in general, it will no longer suffice 
to consider individually a single poloidal and toroidal multiplet pair. 

The eigenfrequencies for the modes oT2 and , S ,  have never been accurately 
measured in any of the existing data, presumably because they have never been 
sufficiently excited, but for Earth models 1, G1, and QI, the two degenerate eigen- 
frequencies and lot are within about 10 per cent of each other. For these 
three SNREI Earth models, the spacing is not close enough to necessitate the use of a 
quasi-degenerate theory, but there may be other SNREI Earth models close in some 
sense to models 1, QI, or G1 for which the eigenfrequencies oo2' and lot are almost 
exactly equal. This question is being pursued. Since the modes oT' and lS1 have 
probably never been clearly observed, it is not clear whether a quasi-degenerate 
theory will in fact be necessary for the real Earth. 

Fig. 3 also reveals the close spacing between eigenfrequencies for model 1 of the 
modes I S 3  and $3, (within 0.5 per cent). These modes are coupled to first order by 
ellipticity but not by rotation. It can however be shown that in the second order 
approximation, rotation also will act to couple these two modes. Slichter (1967) 
has resolved three peaks near the theoretical eigenfrequencies of 1S3 and $, which 
he identifies as belonging to m = -2, m = - 1 and m = +2 of multiplet 1S3. A 
quasi-degenerate theory, correct to first order in the ellipticity and to second order 
in rotation, for poloidal modes of order 1 and 1+2 is also presently being pursued, 

The fact that many normal modes (in particular fundamental modes in the range 
1 = 10 to 25) will not be even to zeroeth order of a purely poloidal or a purely toroidal 
nature will certainly tend to hamper the problem of mode identification. 

6. Summary and conclusions 

Before attempting to use the Earth's normal mode data to investigate the interior 
properties of the Earth, it is essential to consider the various factors which may 
affect the precision of the data. Because of the very large extent of the non-unique- 
ness in the inverse problem and because of the relative mathematical simplicity, it is 
customary to include only SNREI Earth models in inverse problem calculations. In 
this case the fact that the real Earth is not a SNREI Earth model may be looked upon 
as one of the factors contaminating the raw data. It is necessary to correct the 
contaminated raw data for variations away from zero angular rotation, sphericity 
and isotropy. In this paper, Rayleigh's principle is used to provide an explicit 
scheme for computing first-order corrections to the theoretical eigenfrequencies of 
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an arbitrary SNREI Earth model due to slow angular rotations and small asphericities 
and anisotropies. For the lower order fundamental normal modes, it is expected 
that the Earth's rotation and ellipticity are the dominant perturbing effects. The 
computed rotational and elliptical splitting parameters depend upon the properties 
p,,, IC, p of the unperturbed SNREI Earth model. In this paper, the eigenfrequencies 
,,to; and ,,to: and the associated 21 + 1 dimensional eigenspaces were computed for 
three different SNREI Earth models, and then Rayleigh's principle and second-order 
rotational perturbation theory were used to determine the corrections to the eigen- 
frequencies, correct to first order in the ellipticity E, and to second-order in the rota- 
tion. The degeneracy of any multiplet ,,Sl or "T, is in general completely removed; 
to zeroeth order the eigenfunctions of a rotating elliptical Earth without geographical 
variations in properties can be characterized by a single spherical harmonic r;l. 
The first-order effect of ellipticity and the second-order effect of rotation not only 
act to shift the entire multiplet but also cause the splitting of a multiplet to be asym- 
metrical. It is pointed out that another effect of rotation, ellipticity and lateral 
inhomogeneities is to give rise to the presence of small amplitude first-order dis- 
placement fields. In particular there will be poloidal fields at toroidal eigen- 
frequencies and toroidal fields at poloidal eigenfrequencies. 
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APPENDIX A 

First-order computation of eigenfrequency shift due to ellipticity and rotation 

eigenfrequency ,,of or 
as 

Correct to first order in E, and in (sZ/,cof) or (sZ/,o?), the shift .(6w);" in the 
associated with a normal mode .S;l or T'" may be written 

If the mode is poloidal, then ,S;l may be written 

nS;l = PnUl(r) rl"+V, [nV,(r) T ' I  

3 
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and if the mode is toroidal, then .S;l may be written 

.S;t = -Pxv,[nwf(r) YY]. 

Backus & Gilbert (1961), and Pekeris, Alterman & Jarosch (1961) have evaluated 
iQ(.S;t, 2x  .S;t) and have shown that for a rotating, spherical Earth model (for 
which BVLS;", ,SY) = SS(,S;t, .S;l) = 0) n ( B ~ ) ; t / n ~ i  = m .p; (i2/,uf) where for a 
toroidal mode ,,P; = - ' and for a poloidal mode 

l( l+ 1) ' 

where 

a 

,Mi= j" r2 po(r> [n~,(r)l'dr 
0 

a 

nQI = 1 r2  PO(^) [nui(r> nV,(r) l  dr. 
0 

It  remains to evaluate the ellipticity contribution. For convenience in what 
follows, the subscripts n and 1 and superscript m will be dropped from ,,al, .S;t, 
nUl(r)y ,,F(r), and ,,W(r), and it is to be understood that a single normal mode ,S;l 
or .T;" is under consideration. The frequency shift 60 due to the ellipticity may be 
written, in terms of components in a Cartesian axis system, as 

dl '  [6rcK+6pM+6po Si Sj* di 8, = -1 1 
2u 

+po ~ ~ ~ ~ * a ~ a ~ s ~ ~ + ~ p ~ a ~ ~ ~ ~ s ~ a ~  sj*-sjaisi*) 
+ P O  djd4o(Sid i  S j*-Sjd i  Si*)+Bpo(Si* d i 4 1  + S i d i  4 1 * ) - 0 ~ 6 p o  Sz] (41) 

where Bp,, &#I~, B K ,  611 are given in equations (21) and (22). 
symmetric for a SNREI Earth model, equation (41) may be reduced to 

Since c$o is spherically 

6w J [PoSZ1dV 
V 

d1/[6rcK+BpM+4~ Gp, S,' 
1 

2 0  
V 

+ Aa,. $0 6po + 2 6 ~ 0  S*y V$l + po S.  V(S", V640) - po(V. S)(S*, VB40) - uZ dpo Sz] 

where S, is the f component of S, and where 

A = S . V S , * - S r V . S * - 2 r - ' S ?  

(Backus & Gilbert 1967). 
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For a toroidal mode, V . S  = 0 and S, = 0, thus A = 0. In fact for a toroidal 
mode, equation (42) reduces to 

6wS [ p o S 2 ] d V  = 2w ‘ s  d V [ 6 p M + 6 p o ( - w ’ S 2 ) ] .  (43) 

Recall that + p M  is the shear energy density in a SNREI Earth model and that 

M = 3tr [ (A)+.  (All, 
where A is the strain deviator tensor 

A = +[(VS) + (VS)”j - i ( V  . S) I 

and where the dagger t denotes the conjugate transpose. Denote for simplicity 

611 = pl(r) P,o(cosO), 

6~ = rcl(r) P20(cosO), 

6p, = p l ( r )  P20(cosO), 

6b0 = g l ( r )  PZo(cos8); 
then 

pl(r) = 4r4l.i ~ ‘ ( 4 ,  p l ( r )  = W r ) ~ o ’ ( r ) ,  ~ ~ ( 4  = W r ) ~ ’ ( r ) ,  
and gI(r) = $ r E ( r ) ~ O ’ ( r ) - + ~ ’ r Z .  

The evaluation of the integrals in equation (43) is vastly simplified by making use 
of the tangent tensor representation theorem (Backus 1966) and many consequent 
formulae from Backus (1967). Some applications of Gauss’ theorem as well as 
several formulae from Backus (1967) show that equation (43) can be reduced to 

where 

,,Ml(r) = A;” [ - l ’ ( l +  I)’r-’ W’]+B;” [r-’(rW’- W)’+ (2l(l+1)-8) r - z  W’]  

= B;“ [-w’ W ’ ]  

n J l =  f . 2  Po(r)[nW2(r)ldr 
0 

and where 

1(1+ 1) - 3m2 
P z o  r;l Y;”*ddR = 

(21 - 1)(2l+ 3) 

1 PzoBy.B;”*dR = BY = PzoC;”.C;”*di2 = [1(1+1)-3]A;“. s 
S S 

If a discontinuity in K, p or po located at r = b is moved to I’ = b+h(Q) where 
h(8) = -3b~(b)  P,o(cosO), then similar methods may be used to show that the 
effect on an eigenfrequency of a toroidal mode is given by 

(45) 
1 

n(Sw)Y “ ( 1  + 1) ~ J I I  = - b3 ~ ( b )  [ P  + P O  nRlI 2 
3, W I  

where for any function f (r) ,  the symbol [ f ] ?  denotes the limit as E tends to zero 
through positive values of [ f (b + E )  - f ( b  - ,511. 
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The volume integrals in equation (42) for a poloidal mode are more difficult to 
compute, but similar methods may be used to show that equation (42) reduces to 

.(SCo);" [nL, + l(Z+ 1) ,MI] = - lp r2 dr[lc, (r) ,,Kl(r) + 
2, Wl 

PI (r) nMj(r) + P 1 (r) nRt(r) + g, (r) nG,(r)l (46) 
where 

,,KJ(r) = A;"(U'+F)' 

, , ~ ~ ( r )  = A;" [ ~ ( 2 ~ ' - ~ ) ' - ~ ' ( 1 + 1 ) ' r - ~  v'] 
+B;" [r-'(rV'-V+U)'+ (2l(l+1)-8) r-' V ' ]  

,,Rl(r) = A;" [8nGpo U 2 - + o r  U(F+2r-' U)+2U4, '  

+B;" [ r - l  ~ ( ~ 4 , ' + 2 4 , ) - 0 '  v'+ - 4nG j d r r z p ,  U V ]  
r3 

0 

,,GJ(r) = po A;" [1(1+ I)(r-' UP''-- lor-' U V ) +  18r-' U' 

+P(l+ 1)' r-' v'-Z(Z+ 1)r- l  v(u'+F)] 
+ p , ~ ; "  [ - l ( l+I)r- '  V2+r-'  v ( u ' + F ) + ~ ~ - ' u v - ~ - '  UV'] 

where 

1 
r 

F(r)  = - [2U-l(l+ 1) V ] .  

If a discontinuity in K, p or p o  located at r = b is moved to r = b+h(B) the effect 
on a poloidal eigenfrequency is similarly given by 

1 
n(Jw>;" [nLl + 1(l+ 1 )  nM,I = - b3 ~ ( b )  [xn K J  + P ,MI + PO n a l I  9 

3, wt 
where 

,,fil(r) = A;" [ -wz U ~ - + ~ ' U ( F + ~ ~ - ~  u)]+B," [-o2 y2+r-'  ~ ( ~ & , ' + 2 4 , ) ] .  

In equations (45) and (47), U ,  4oy 4or, are continuous at r = b while V, W, U', 
V ' ,  W' and 

Note that since A;" and Bf" are both proportional to the quantity &I+ 1)-3mZ, 
the frequency shift ,,(Sw);"/,,wt may be written in the form (,&+m' ~ f )  ea and that 

may be discontinuous. 

,a: = - +l(l + 1 )  Jl". 

APPENDIX B 
Evaluation of the effect of a rotational potential 

1c, as a 66, term in Rayleigh's principle, equation (41) 
The perturbing effect of the rotational potential can be computed by treating 

1 
2w 6w dV [po S'] = - I dV [po  Si Sj* di aj 1c, + p o  ai $(S,  ai Sj* - Sj ai S,*)] (48) 

V V 
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where I), the rotational potential, is equal to 

I)@) = -$[a2 r2 - (a. r)'] = -+a2 r2 sin%. (3) 

This may be reduced, using Gauss' Theorem, to 

6w d V [ p o S Z ]  = s d V [ S . V p o + 2 p , V . S ]  [(2xr).(2xS:g)]. (49) 
Y s V 

For a toroidal mode, the frequency shift ,,(6wZp);" due to the rotational potential 
is zero, as expected. For a poloidal mode, the expression (49) for ,,(6oZp);1 is easily 
evaluated. 

where AT is given in equation (M), and where 

2[1(1+ 1)- 1 + mZ] cp = 
(21- 1)(2Z+3) 

and where 
a 

.Pi = ! dr r2 U [rp,' U + 2r pOD] 
0 

,,Sr = dr r z  V [rp,' U + 2r p, D] 
0 i 

where 2u Z(l+ 1) I/. D(r) = U'+ - - - 
r r2 

If the SNREI Earth model pol K, p is such that there is a discontinuity in p, at r = b, 
then a surface integral contribution of the following form must be added to equation 
(50) 

Note that n(6w,p)fI is of the form 

APPENDIX C 
Interference with measurements of dissipation 

by giving the Q of each normal mode. The Q of a normal mode is defined as 
The observed dissipative properties of the Earth may be conveniently described 

Q-' = - 1 (-) AE 
2n E 

where AEIE is the fraction of the total energy of oscillation which is dissipated as 
heat in a single cycle. Equation (52) may be used to measure Q;  an alternative 
method of measurement is to utilize an amplitude spectrum of the decaying signal. 
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In an amplitude spectrum whose peaks are broadened only by the dissipation, the 
Q of a free oscillation whose angular frequency is w may be given by 

where Aw is the width of the peak at the half-power level. Measurements of the Q’s 
of some of the Earth’s normal modes have been attempted by both methods and 
by several investigators (Benioff, Press & Smith 1961; Alsop, Sutton & Ewing 1961; 
Nowroozi 1968). 

The rotation and ellipticity of the Earth interfere with both types of measure- 
ments; with the first by introducing beats due to the interference of the 21+ 1 modes 
in a single multiplet, and with the second by broadening the spectral peak of a multi- 
plet because of splitting. It is easiest to see the effect of ellipticity and rotation by 
considering the second method of measurement, the measurement of spectral peak 
widths at the half-power level. 

I n  an Earth in which the dissipation process is not spherically symmetric, the 
individual Q’s of the members of any given multiplet will not all be the same. At 
the present time, however, the errors and uncertainties in the measurement of Q are 
so great that it is still convenient to speak of the Q of a multiplet (by this one means 
some kind of average over the individual 0’s in the multiplet). Consider a spectral 
peak, produced by an unresolvable multiplet and centred at angular frequency w. 
It is clear that one cannot determine the Q of this multiplet by merely measuring the 
spectral peak width since part of the width is produced by the splitting. However, 
if the splitting is known for a given multiplet, then it is possible to assign bounds to 
the actual Q of the multiplet in terms of the measured Q. In fact the Q which one 
determines by a direct application of formula (53) is a lower bound Qlb to the actual 
Q of the multiplet since it may be that only one element of the multiplet is excited. 
On the other hand, if all members of the multiplet (or at least both end members) 

n 
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FIG. 4. Graphs for four poloidal modes showing how the upper bound on Q is 
related to the measured Q.  Splitting parameters and ,,y1 used are those for 

model 1 .  Qb is given by QS- ’ = ( A W ) ~ / W .  
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FIG. 5.  Schematic indication of line spacing for the four poloidal multiplets of 
Fig. 4. The splitting parameters are those of model 1. 

are excited to about the same level, then the measured width includes the total 
splitting width; it is thus possible to assign an upper bound Q,,, to the actual Q of 
the multiplet. If (Am), is the total splitting due to rotation and ellipticity, and if 
(Am), is the measured spectral peak width at the half-power level (the measured 
Q is Q = (Aw),/u), then an upper bound Qub is given by (Backus & Gilbert, personal 
communication) 

The total splitting of a given multiplet may be computed from the coefficients in 
Table I .  

In Fig. 4, graphs are provided which allow the determination for four funda- 
mental poloidal modes of Q,, in terms of the measured Q (the measured Q = (Au),/w 
is &,). The rotational and elliptical splitting parameters of model 1 were used in 
preparing these graphs. The total width was not assumed to be merely Z21,y;l E,, 
as is the case for the higher order modes. Fig. 5 is a schematic indication of the line 
spacing for model 1 for the same four multiplets. Note that as 1 increases the splitting 
looks less and less like a Zeeman type splitting as the effect of ellipticity begins to 
dominate that of rotation. Similar graphs for other modes listed in Tables 1-3 
could of course be easily constructed. 

It is seen that the effects of ellipticity and rotation can cause a serious uncertainty 
in the estimation of the Q's of the Earth's normal modes. The actual bounds are 
not exact since the computed splitting parameters for rotation and ellipticity depend 
upon the Earth model used, and since splitting due to effects other than rotation and 
ellipticity was neglected. 
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