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The Role of Breaking Wavelets in Air-Sea Gas Transfer 

G. T. CSANADY 

Department of Oceanography, Old Dominion University, Norfolk, Virginia 

Molecular diffusion sustains the flux of soluble gases on the water side of the air-sea interface. The 
"handover" of this flux to more efficient eddy mixing begins with the smallest eddies, of size l, which 
interact with the surface diffusion boundary layer (DBL), of thickness i5. Owing to the discrepancy of 
the scales, i5 << l, the flow field on the i5 scale consists of horizontal motions of a velocity constant with 
depth and varying horizontally on the I scale. The vertical velocity is proportional to the divergence 
of the horizontal flow and increases linearly with depth. An exact solution of the advection-diffusion 
equation for the simple model of divergent stagnation point flow shows the mass transfer coefficient 
(velocity) k to be proportional to (aD)la and DBL thickness i5 to be proportional to (D/a)1/2, where a 
is divergence, D diffusivity. Over a solid wall a similar model of Hiemenz flow yields a more complex 
relationship, also involving viscosity. These models reveal the mechanism by which the DBL is kept 
thin. The most intense surface divergences on a wind-blown sea surface are associated with rollers on 
breaking wavelets. Vorticity and divergence in the rollers are both proportional to u*2/v, where u* is 
friction velocity and v is viscosity. The mass transfer coefficient resulting from divergences of this 
magnitude is then given by k - const u* Sc -m, where Sc is Schmidt number. Exact solutions of the 
advection-diffusion equation for model rollers reveal the details of the handover process. A thin DBL 
is maintained over divergences by the upward velocity. At convergences, narrow downward plumes 
convey DBL fluid into the turbulent interior. Flux lines (analogous to streamlines) are horizontal over 
divergences and dive down under convergences. Application to the sea surface requires a parameter 
quantifying the surface density of divergences. Laboratory data imply that a substantial fraction of the 
surface is covered by the divergences at higher wind speeds. However, in the open ocean straining by 
the large waves, and especially whitecapping, may significantly reduce the density of divergences and 
with it the area-average gas transfer rate. On the other hand, bubble and droplet production in 
whitecaps may diminish this effect or even reverse it. 

1. INTRODUCTION 

The exchange of gases between the ocean and the atmo- 
sphere is important in various global balances, notably in the 
carbon cycle, influenced by ocean storage of carbon dioxide. 
Henry's law determines the surface concentration of gases 
similar in behavior to CO2, and the exchange is driven by the 
concentration difference from surface to mixed layer inte- 
rior. On account of low gas diffusivity in water, resistance to 
mass transfer in the air is negligible in comparison with that 
in water [Bolin 1960]. The resistance resides in a "diffusion 
boundary layer" (DBL), of which the thickness /i may be 
calculated from standard formulae and observed gas transfer 
rates to be of the order of 10/xm. The detailed mechanism of 
air-sea gas transfer remains, however, obscure. 

In the last decade or so, a number of thorough and 
imaginative investigations on the mechanism of gas to liquid 
mass transfer have been carded out in laboratory flumes. 
Their results have recently been summarized by Jiihne et al. 
[1987]. Some key findings are as follows: 

1. Above an air speed of about 5 m s -• the gas transfer 
rate increases rapidly, in parallel with the increase of mean 
square total wave slope. (The slope of capillary waves 
behaves differently). 

2. In the same speed range the mass transfer coefficient 
varies with the inverse square root of the Schmidt number 
(there is no separate Reynolds number dependence). 

Earlier, Hasse and Liss [ 1980, p. 478] reviewed air-sea gas 
transfer and concluded that "The rather spectacular increase 
of gas exchange observed in wind tunnels with the onset of 
capillary waves has yet to receive a full explanation." In 
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view of the later results, one must interpret the appearance 
of capillaries as a symptom of other changes. Hasse and Liss 
then went on to discuss another major puzzle, the discrep- 
ancy between laboratory and field data on gas transfer. 

The field data come mainly from radon evasion measure- 
ments [Broecker and Peng, 1974; Peng et al., 1979], which 
show no increase of gas transfer rate with wind speed 
beyond about 10 m s -•. Deacon [1981] attempted to recon- 
cile the two data sets by filtering the field data on the basis of 
wind persistence. This is justified by the fact that the radon 
evasion method gives a several-day moving average of the 
gas transfer rate. Deacon concluded that the field data 
judged to originate from steady wind conditions, while 
subject to large scatter, do not conflict with the laboratory 
data up to 14 m s -• wind speed. This may be true as far as 
it goes, but it does not explain some very low observed 
transfer rates in winds up to 19 m s -• steady or not. To 
reconcile those with observation, on the hypothesis that the 
laboratory data remain valid, one would have to suppose 
something to the effect that high present winds are correlated 
with dead calm past winds. Jiihne et al. [1987] pointed out, 
however, that once the importance of waves to gas transfer 
is admitted, there is wide scope for the variation of field gas 
transfer with wave climate. They did not discuss how 
precisely this may come about. 

Before attempting to explain wave effects on gas transfer, 
it is helpful to examine what the flow field is like on the 
microscopic scale/• of the DBL. This layer is much thinner 
than the smallest eddy or the shortest wave, so that the 
surface appears on this scale as a smooth flat plane (except 
around droplets or bubbles with diameters of the order of/5). 
Horizontal motions within the surface are possible. How- 
ever, variations of horizontal velocity occur on a much 
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longer scale than •i, so that the velocity components u, v are 
very nearly constant with depth in the DBL. The vertical 
velocity vanishes at the surface, and grows linearly with 
depth, 

w = -z(Ou/o x + Ov/dy) 

Where the horizontal flow is divergent, the vertical veloc- 
ity is upward, so that the DBL is squeezed by advection. In 
a region of surface convergence, the vertical velocity is 
downward, and the DBL is pulled down. The discrepancy of 
the scales •i and I makes a simple analysis of the advection- 
diffusion problem possible, as was first demonstrated by 
Fortescue and Pearson [1967]. The analysis shows that if 
some fraction of the surface contains divergent flow, the 
squeezing of the DBL by the upward motion may well 
control the layer thickness & 

The flow structure and other mechanical properties of 
laboratory flume wavelets were investigated in great detail at 
Tohoku University of Y. Toba and his collaborators [see 
Toba, 1985; Ebuchi et al., 1987]. The waves studied were 
typically some 10 cm long and 1 cm high. One of the Tohoku 
studies, due to Okuda [1982], clearly identified flow separa- 
tion (in a wave-following frame of reference) near the steeper 
wavelet crests, and the accumulation of vortical fluid in the 
"roller" (separated flow region). The proximate cause of the 
flow separation may have been a shear stress spike upwind 
of the wave crest, where the local shear stress was several 
times greater than the mean. The surface vorticity of the 
fluid under the shear stress spike was stress divided by 
viscosity (the stress magnitude was inferred from this rela- 
tionship). The fluid in the roller had vorticity of the same 
order. Kinematics of the flow in the roller requires it to be 
divergent at the trailing stagnation point. Observation 
showed the divergence to be rather less than the roller 
vorticity but much higher than the divergence due to wave 
orbital motions. 

The Tohoku University results suggest a possible expla- 
nation for the observed effect of waves on gas transfer: if 
rollers on breaking wavelets generate high surface diver- 
gence, they could be the principal means of maintaining a 
thin surface DBL. If roller divergence is proportional to the 
surface vorticity and therefore varies inversely with viscos- 
ity, a pure Schmidt number dependence should result. This 
scenario is investigated below by constructing a model roller 
and calculating the rate of gas transfer. 

The results indeed show pure Schmidt number depen- 
dence, in accordance with observation. An empirical param- 
eter expresses the surface density of rollers. The magnitude 
of this parameter, fitted to observation, turns out to be 
credible. More important, increasing density of rollers in 
higher winds explains the observed parallel increase of rms 
wave slope and gas transfer. In the open ocean the density of 
short-wave rollers should also depend on long-wave orbital 
motions, long-wave breaking, and whitecapping. The pro- 
duction of bubbles and spray in large breakers is further 
likely to influence gas transfer. A combination of such effects 
may explain the scatter of field gas transfer data and their 
divergence from laboratory results. 

2. THE MECHANISM OF GAS EXCHANGE 

AT THE SEA SURFACE 

The transfer of mass between a flowing gas and an 
underlying liquid, in which the gas is soluble but nonreac- 

tive, has interested chemical engineers for a long time. They 
have recognized for more than half a century that the main 
resistance to mass transfer lies in a thin diffusion boundary 
layer at the top of the liquid, adjacent to the free surface. For 
an excellent review of ideas on this problem originating in 
the chemical engineering literature see Brtko and Kabel 
[1978]. Bolin [1960] pointed out that the air-sea transfer of 
gases such as CO2 is similarly controlled by a DBL. Deacon 
[1977] has reviewed the problem from the point of view of 
turbulent boundary layer theory and developed a gas trans- 
fer model based on a postulated analogy of the flow under 
the free surface with turbulent shear flow over a solid wall. 

He showed that the wall-layer model gives accurate esti- 
mates of gas transfer at low wind speeds but seriously 
underpredicts transfer rates at wind speeds greater than 
about 5 m s-•. 

The wall layer analogy is imperfect because horizontal 
motions at a free surface are possible, while they are 
prevented by a solid wall. This has the consequence that the 
velocity normal to the free surface varies inversely with the 
distance from the surface, rather than with the distance 
squared, as over a solid wall. Ledwell [1984] has allowed for 
this property of free surface flow by setting the eddy flux 
proportional to the surface divergence of the eddying mo- 
tions. Using further scaling arguments, he deduced from this 
the correct Schmidt number dependence of the mass transfer 
coefficient. However, in his detailed model the total flux is 
assumed to consist of a linear superposition of molecular and 
eddy flux, as in many other turbulent flow models. Eddy- 
resolving model calculations demonstrate that the idea of an 
eddy flux independent of molecular diffusion is wrong (see 
Figure 3 below). Ledwell's model is therefore grossly unre- 
alistic at depths of a few DBL thicknesses. Nor does it come 
to grips with the question why wavelets should affect gas 
transfer. 

In an attempt to throw some light on this question, 
Coantic [1986] discussed the interaction of turbulent shear 
flow at the free surface with capillary waves. Coantic's 
arguments are similar to Ledwell's and are subject to the 
same criticism. In any case, capillaries are not the principal 
agents of enhancing free surface gas transfer, as has been 
pointed out above. 

The basic difficulty with conventional eddy flux models is 
the Reynolds analogy: if eddies alone maintain some flux 
near the surface, they should transport all properties, mo- 
mentum, heat, and mass, at the same rate at a given depth, 
as they indeed do in the well-mixed interior of the "mixed" 
layer. The analogy, or the equivalent mixing length argu- 
ments, are valid if the distribution of the transported prop- 
erty is smooth on the eddy length scale. Otherwise the 
inherent nonlinearity of advection comes into play, making 
the "eddy" flux dependent on molecular diffusivity in a 
region of sharp property gradients, just below the DBL in the 
case of free surface fluxes. 

An approach alternative to the eddy flux models again 
comes from chemical engineering, from early intuitive ideas 
on "penetration," due to Higbie [1935], and on "surface 
renewal" due to Danckwerts [1951]. Higbie postulated that 
eddies occupy the surface for short periods and pick up gas; 
Danckwerts postulated that they periodically renew the 
surface. Higbie represented the resulting gas transfer pro- 
cess by a penetration time O c, during which an eddy is 
charged with gas at the surface; Danckwerts represented it 
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by a surface renewal rate s, or reciprocal age of fluid 
elements occupying the surface. 

While these ideas were illuminating, they shared the main 
weakness of the eddy flux models in that they glossed over 
the details of the important handover process from molecu- 
lar diffusion at the surface to eddy transport below. Penetra- 
tion time or surface renewal rate are no less arbitrary than 
eddy diffusivity: their dependence on molecular diffusivity is 
not taken into account; nor is any effect of wavelets. It is 
also unclear how to reconcile eddy exposure at the surface 
or surface renewal with the kinematics of a fluid continuum. 

Fortescue and Pearson [1967] were the first correctly to 
identify the processes involved in the handover process. 
They analyzed advection and diffusion near the surface of a 
liquid in a regular field of cellular eddies. The implications of 
this work have not been fully assimilated into the oceano- 
graphic literature. The concentration field calculated by 
Fortescue and Pearson clearly shows a thin DBL over the 
ascending branch of the flow. The descending branch, on the 
other hand, carries the surface fluid downward in a plume, 
where the vertical gradients are small. The surface flux 
associated with this eddy field is readily inferred from 
surface gradients: high over the ascending flow, low over the 
descending plume. Concentration isopleths are horizontal 
over a large part of the ascending fluid. In this portion of the 
field the horizontal velocity is divergent. The average mass 
transfer coefficient was calculated by Fortescue and Pearson 
to be 

k = 1.46(uD/L) 1/2 (1) 

where u is eddy velocity amplitude, L is cell size, and D is 
diffn•ivitv: uD/L is the product of diffusivity and typical 
surface divergence. 

Fortescue and Pearson took the cell size to equal the 
length scale of the energy containing eddies in the turbulent 
flow below the surface, the velocity amplitude the rms 
turbulent velocity. Lamont and Scott [ 1970] pointed out that 
the surface divergences so estimated were too feeble to 
account for observed gas transfer rates, and they empha- 
sized the importance of the smaller eddies. In either case, 
however, the divergences were attributed by these authors 
to eddies generated by the shear flow in the liquid. It is 
difficult to account in this manner for the high intensity of 
surface divergence necessary to make (1) fit the data. The 
observed influence of wavelets on gas transfer across the 
air-sea interface suggests instead that at wind speeds greater 
than 5 m s -1 , the important divergences on a wind-blown 
surface are wavelet related. Deacon [1981] has shown that 
the divergences due to orbital motions are not strong enough 
to explain wavelet effects on gas transfer. This then leads to 
the proposition that divergences generated by the rollers on 
breaking wavelets are responsible. That proposition is ex- 
amined here in quantitative detail. 

3. ADVECTION-DIFFUSION IN FREE-SURFACE 

STAGNATION POINT FLOW 

As already mentioned, surface renewal or eddy exposure 
taken literally on incompatible with fluid kinematics. Unless 
the free surface is supposed to fold over in the manner of a 
"plunging" breaker, it remains composed of the same fluid 
particles. If one excludes folding-over as a process signifi- 
cant in gas transfer, on account of infrequent occurrence, 

surface divergence remains the only means of bringing fluid 
from the interior to the proximity of the surface. In order to 
entrain the DBL, eddies must transport well-mixed fluid up 
close to the surface and allow it to dive down again, carrying 
excess or deficiency of concentration acquired in the DBL. 
In the region of surface divergence, vertical advection works 
against downward diffusion to keep the DBL thin and the 
surface flux high. One suspects therefore that a formula 
similar to (1) may apply to mass transfer in a less regular 
eddy field than envisaged in Fortescue and Pearson' s simple 
model. 

The essence of the divergence effect is indeed revealed by 
a model yet simpler than Fortescue and Pearson' s: divergent 
two-dimensional stagnation point flow at a plane free surface 
(with slip allowed, the air being so much less massive than 
water). Viscous effects are in this problem negligible, and the 
flow in the neighborhood of a surface divergence line may be 
described by the stream function 

½ = axz (2a) 

The free surface is the z = 0 line, neglecting the small surface 
displacements associated with pressure variations in the 
fluid (much as in linearized surface wave theory). The 
velocity components in the xz plane are 

u = ax w = -az (2b) 

and a > 0 is the divergence of the horizontal velocity. The 
diffusion of a scalar property X in such a flow field is subject 
to the conservation law: 

u • + w • = D V2X (3) 
Ox Oz 

where D is molecular diffusivity. One expects the upward 
motion along the stagnation streamline x = 0 to squeeze the 
X field close to the surface. In view of the symmetry of the 
flow field about this line, 0X/0 x vanishes here. Because there 
is no reason why sharp horizontal concentration gradients 
should arise, it may be postulated, subject to verification, 
that horizontal diffusion is negligible, D 02X/0 x 2 = 0. The 
distribution of X along the x axis should then be given by the 
solution of the ordinary differential equation 

dx d2x 
w • = D dz 2 (4) 

It is convenient to solve first for the molecular flux F 

F - -D • (5) 
dz 

which is subject to the equation 

dF azF 

dz D 
(6) 

It is important to stipulate that the solution describes only 
the DBL, where molecular diffusion dominates. Outside this 
layer the concentration gradient and the molecular flux are 
vanishingly small. Correspondingly, the boundary condi- 
tions on (6) are 
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F=Fo z=0 

F=0 z•-o• 
(7) 

surprising that it should be larger than the stagnation point 
result. 

with the magnitude of F 0 remaining to be determined. The 
solution is: 

F = F0 exp -•-•,] (8) 
The concentration distribution is now found by integra- 

tion. Of interest is the concentration excess or deficit in the 

DBL. Putting therefore X(-o•) = 0, 

Føf_zoo ( az2• [ (a) '/2] X=-7 exp -•-•,] dz=xoerfc z •-• 

where 

(9a) 

X0 = -F0 (9b) 

is the surface concentration. The value of X0 is prescribed by 
Henry's law. The magnitude of the surface flux then follows 
from the last expression. The result shows that the concen- 
tration changes from its surface value to the value prevailing 
in the body of the fluid within a depth of the order of 
(2D/a) v2. For small diffusivity and large divergence, this 
concentration boundary layer can become very thin. 

The mass transfer coefficient (velocity) is by definition k = 
-Fo/Xo; from (9b) this is found to be 

k = (2aD/rr)•/2 (10a) 

The solution at this stage applies to the z axis, which 
coincides with the 6 - 0 streamline. However, ,y given by 
(9a) also satisfies the full differential equation (3), so that it is 
an exact solution at any x, given the flow field assumed. This 
verifies that horizontal diffusion may be neglected in the 
stagnation point region. In reality, of course, the horizontal 
extension of the divergent surface flow region is limited, and 
horizontal gradients must appear somewhere. What the 
results demonstrate is that under a line of surface divergence 
the diffusion boundary layer thickness is controlled by the 
divergence. Referring back to Fortescue and Pearson's 
model, one notes that the long plateau of the X contours in 
the region of the surface divergence conforms to the stagna- 
tion point solution. 

For later convenience, the usual nondimensional form of 
the mass transfer coefficient may also be written down here. 
Dividing by the friction velocity u* (=(r/p) •/2, where r is 
wind stress and p is water density), one finds for k + = k/u* 

k + = 0.80 Pe - •/2 (lOb) 

where the Peclet number is 

Pe = u* 2/aD 

The peak divergence in the Fortescue and Pearson model 
was rru/L, so that the result in (1) is almost identical with 
(10a), the constant in the former being somewhat larger. 
Because the numerically calculated constant in (1) applies to 
the average mass transfer over the cell, it is somewhat 

4. COMPARISON WITH THE SMOOTH SOLID SURFACE 

It is instructive to repeat the above calculations for the 
case of a solid surface, over which a viscous boundary layer 
develops. The flow field around a stagnation point in that 
case is known as "Hiemenz flow" [Schlichting, 1960, p. 78]. 
Because the horizontal velocity has to vanish at the solid 
surface, so does Ou/O x and therefore by continuity Ow/Oz. 
Outside a thin boundary layer, however, the velocity com- 
ponents are as in the case of the free surface just discussed. 
Within the boundary layer the velocity and length scales are 
(va) •/2 and (v/a)•/2, respectively, where a is the divergence 
outside the boundary layer and v is viscosity. Schlichting 
gives the vertical velocity component as 

w = (va)1/2•b(r/) (11) 

where •r/) is a tabulated function of r/= -z(a/v)1/2 increas- 
ing at first quadratically with r/, then approaching a linear 
asymptote. 

The advection-diffusion problem is the same as before, 
except that w is now a more complicated function. The flux 
is found by the integration of the equivalent of (6): 

In (Fo/F)= Sc cb(r/) dr/ (12) 

where Sc = v/D is the Schmidt number. A second integra- 
tion yields the concentration distribution 

Xo - X(z) = -(Fo/D) 

dr/} dr/ (13) 

D(a/v) •/2 
k = -Fo/Xo = • (14) 

•(Sc) 

qo(Sc) = exp -Sc cb(r/) dr/ dr/ 

where 

(15) 

giving a somewhat more complex relationship, which in- 
cludes viscosity as well as diffusivity. 

For the case of large Schmidt number, the quantity defined 
in (15) may be evaluated explicitly. The expansion of the 
profile •r/) starts with 

c2 2_1 
•(r/)___,•_r/ • r/3... (16) 

Schlichting gives the value of the second derivative, c2, as 
1.2326. The first term in the expansion is accurate enough as 
long as r/<< 3c2 = 3.7, say, up to r/- 0.4. Integration of & 
to this value of r/yields about 0.13, so that the argument of 
the exponential in the integrand in (15), for Schmidt number 
of the order of 100 or higher, is already large compared with 

Putting again X(o•) = 0 and defining the mass transfer 
coefficient as before, one has 
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unity. The integrand is then vanishingly small for this value 
of r/and higher. With the upper limit taken to be infinity the 
integral can be evaluated explicitly, with the following 
result: 

where 

k = [3 Sc -2/3(va) 1/2 (17) 

3(c2/6) 1/3 
/3 = • = 0.66 (18) 

F(1/3) 

The nondimensional version of (17) is then 

k + = 0.66 Sc-2/3Re -1/2 (19) 

where the Reynolds numbers if Re = u*2/av. For compari- 
son, (10) may be rewritten as: 

k + = 0.623 Sc-1/2Re -1/2 (20) 

The two formulae are almost identical, the only significant 
difference being in the power of the Schmidt number. Note, 
however, that the formulation according to (20) is artificial: 
there is no viscosity dependence in (10). As Deacon [1981] 
points out, the Sc -2/3 dependence has been well established 
by laboratory measurements in flow over solid surfaces. 
Surface renewal models have, on the other hand, suggested 
a Sc -m relationship, and this has been the accepted method 
of converting data on heat and mass transfer across gas- 
liquid interfaces taken at different Prandtl and Schmidt 
numbers [Jiihne et al., 1985]. The surface divergence models 
for a free and a solid surface clearly show how the difference 
arises. 

lets, the breaking of which was induced by the shear stress of 
the wind (Okuda's classes II and III; see Table 1 of Csanady 
(1990)). In a wave-following frame, the surface velocity 
changed from about 40 cm s- • in one direction to 10 cm s- 1 
in the other within about 2 cm distance, an average diver- 
gence of 25 s-l. This occurred at a friction velocity of about 
u* = 1 cm s -l on wavelets of about 12 cm wavelength and 
at celerity near 50 cm s-l. The peak divergence due to wave 
motion was only about 8 s -l' wave divergence was much 
less near the crest where the stagnation points were located. 
Therefore the most intense divergences were certainly asso- 
ciated with the rollers on breaking wavelets. The depth of 
the vortical fluid at wave crests was of the order of a 

millimeter, its vorticity of order u*2/v = 100 s -l. 
In a first approximation the roller may be envisaged as a 

two-dimensional flow structure. Its intense internal vorticity 
originates from the viscous boundary layer on the upwind 
side of a wavelet, where a shear-stress spike is exerted by 
the wind. The surface vorticity in this region is 3'u*/v, where 
u '2 is the average kinematic wind stress and 3' is an 
amplification factor empirically found to be about 6 [Okuda, 
1982]. The vorticity within the roller was not much less, as 
was already mentioned (the peak vorticity could not be 
directly observed). If the volume of vortical fluid per span- 
wise length (the cross-sectional area of the roller) is b 2, the 
circulation around the roller is of the order of F = 3'b2u*2/v. 
Velocities induced by the vorticity of the roller are then 
proportional to F/b, and the divergence is proportional to 
F/b 2, i.e., to the vorticity again. Substitution into (10) now 
yields for the nondimensional mass transfer coefficient at a 
line of divergence 

k + = olS½ -1/2 (21) 

5. THE ROLE OF BREAKING WAVELETS 

As already mentioned, several studies have demonstrated 
that wind waves in laboratory flumes decisively influence 
free surface gas exchange [Broecker et al., 1978; Jiihne et 
al., 1985, 1987]. Furthermore, Jiihne et al. [1987] also 
showed that it was not the capillary waves that were 
involved. Earlier, Deacon [1981], upon careful analysis, 
concluded that the convergences and divergences associated 
with wave orbital velocities are too weak to affect gas 
transfer to a significant extent. This points then to the 
vortical motions involved in wave breaking as the likely 
conduits of DBL fluid downward. In breaking short waves 
the surface divergences are likely to be especially intense. 

Toba and his collaborators have shown [Toba, 1985; 
Ebuchi et al., 1987] that short wind waves generated in the 
laboratory carry accumulations of vortical fluid near the 
crest, collected in the steeper wavelets into a separation 
bubble or "roller." In a wave-following frame, the roller lies 
above a stagnation streamline surface, which intersects the 
free surface at the loci of convergence and divergence. 
Elsewhere (C. T. Csanady, Momentum flux in breaking 
wavelets, submitted to Journal of Geophysical Research, 
1989, hereinafter referred to as Csanady (1989)) I have 
discussed the physical properties of these rollers and their 
role in air-sea momentum transfer. Of interest to gas transfer 
are the intensity of the divergence and the dimensions of the 
rollers. 

Okuda's [1982] observations provided direct evidence on 
the intensity of the surface divergence in the steeper wave- 

where a is a constant. The "pure" Schmidt number depen- 
dence of the nondimensional mass transfer coefficient in (21) 
arises from the postulate that the vorticity in the roller is 
inversely proportional to the viscosity. This should be true if 
the rollers, or more precisely the divergences they give rise 
to, occur on account of viscous stress variations at the 
surface. 

Suppose now that the divergences on breaking wavelets 
provide the principal conduit for gas transfer. Because only 
a fraction of the surface can be covered by divergences, the 
average mass transfer coefficient will be less than the last 
result: 

k + = otESc -1/2 (22) 

where e is the fraction of the surface effective in gas transfer, 
that fraction actually covered by divergences and the sur- 
rounding areas, where the DBL is comparably thin. The 
effective fraction e is likely to change with wind speed, as 
short wavelets are raised, steepen, and perhaps saturate the 
surface. To sum up the physics underlying (22), the most 
intense divergences control gas transfer rate, and the inten- 
sity of those comes from variations of viscous stress exerted 
by the wind. 

6. ROLLER MODEL 

To estimate the magnitude of the constant a in (21), a 
crude model of the roller will be constructed by supposing 
the vorticity concentrated into a line vortex of circulation F 
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MODEL ROLLER STREAMLINES 

-5.00 -4.00 -,3.00 -2.00 - 1.00 0.00 1.00 2.00 3.00 4.00 5.00 

l, -0.5 ----- 

Fig. 1. Streamlines in and around two-dimensional roller model, generated by a line vortex placed a unit distance 
below the surface, in a stream of unit velocity. The vortex is made stationary by choosing its circulation to be 4z-. 
Leading and trailing stagnation points are at x = +-31/2, where the convergence or divergence is 31/2/2. Stream function 
contours are in unit distance times unit velocity; the zero contour outlines the roller. 

at a distance b below the surface. A far-field velocity has to 
be added to make the vortex stationary. The streamline field 
of such a vortex is, in a vortex-following frame [Lamb, 
19571, 

½ - • In (23) 
where r• and r 2 are radii from the vortex and its image above 
the surface. After some elementary calculations, one finds 
for the approach velocity far from the vortex, U, and the 
surface divergence at the divergence line, a, 

F 
U - • (24) 

4•rb 

31/2F 3 V2U 

a 8•'b 2 2•rb (25) 
Figure 1 illustrates the streamlines given by (23), with 
distances made nondimensional using the scale b, the stream 
function by Ub. 

The average vorticity in the roller is circulation divided by 
area, or about 0.55 F/b 2. The divergence a is therefore only 
about 13% of the originating vorticity. In Okuda's case II 
and III waves, the peak vorticity was yu*2/v = 6• s -• , the 
average vonicity in the roller of order 100 s -• . The observed 
divergence of 25 s -1 was thus also much less than the 
vonicity. If crude, the roller model gives the right order of 
magnitude for the divergence. 

Using (25), the constant a in (22) turns out to be 

a • • 31/4y •/2 = 0.513 (26) 
2• 

J•hne et al. [1987], in their thorough essay on the mass 
transfer coe•cient, have emphasized that the inverse square 
root dependence on Schmidt number remains valid when 
viscosity and diffusivity are varied independently. In other 
words, there is no separate Reynolds number influence, and 

(22) covers all the molecular effects. This has been deduced 
here by attributing the divergence to viscous stress varia- 
tions. 

Extrapolated back to a Schmidt number of unity, Jfihne et 
al. found k + = 0.1, at a friction velocity of u* = 0.01 m s -• . 
The effective surface fraction s in (22) would have to be 
about 0.2 to simulate this result. At higher friction velocity 
the fraction would have to be higher still. The comparison 
with observation thus suggests that a relatively large fraction 
of the surface carries divergences, or more precisely that the 
DBL is not much thicker than over the divergences, over a 
large fraction of the surface. This is somewhat surprising and 
calls for a detailed investigation of the flux distribution near 
a roller. 

7. DIFFUSION IN THE ROLLER 

To explore the interplay of advection and diffusion in and 
around the roller, the high Peclet number of the problem is 
advantageously exploited. The circulation around the roller, 
F is measured in tens of square centimeters per second, 
while the diffusivity D is typically a million times smaller. 
The ratio of the length scale of the roller, b, to the boundary 
layer thickness over the divergence, • = (2D/a)v2, is then 

3 1/2 ) 1/2 tr = b/lJ = •, l'•--ff• Pe (27) 
which has a typical value of 300. Here Pe = F/D is a Peclet 
number, and the value of a has been substituted from (25). 
When interest centers on a surface layer only a few times 
deeper than/J, it is legitimate to neglect the small change of 
velocity with depth. The near-surface advection field will 
therefore be described by 

4b 2 ) u= u(x) = U 1 b2 + x2' (28a) 

du 
w = -z -- (28b) 

dx 
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Fig. 2. Streamlines in a model with horizontal velocity constant with depth, equal to the surface velocity in the 
previous model. Horizontal distances have been slightly squeezed to make roller width a rational number, 3 distance 
units instead of 2(3) ]/2, with the roller extending from x = - 1.5 to x = 1.5. In a very thin layer near the surface the two 
models are otherwise equivalent. 

4' = zu(x) (28c) 

The boundary condition remains as in the simpler prob- 
lems discussed before: X = X0 at the surface, vanishing X at 
depth. At the line of divergence, x = 31/2 b, earlier results 
suggest a smooth variation of the concentration with x, on 
the b scale, so that horizontal diffusion may be neglected: 

a2x a2x 
• << • (29) 
ax 2 az 2 

This then leaves a parabolic equation to be solved: 

az a2z du ax 
u -- = D • + z (30) 

a x az 2 dx az 

Such an equation can be solved step by step in the direction 
of the velocity u, beginning at a line of divergence and ending 
at a convergence. The calculations are best carried out in 
terms of nondimensional variables, defined by the following 
assignments' 

x -• ax/U z -• zi15 

X • xlxo F -•> F/a•ixo 

where i5 = (2D/a)•/2, the diffusion boundary layer thickness 
over the divergence, and a = Idu/dx I a is the value of the 
divergence, at the line of divergence. In terms of these 
variables, (30) takes on the form 

ax a2x du OX 
u--= K•+Z (31) 

a x az 2 dx az 

where K = 1/2 is a nondimensional diffusivity. The vertical 
diffusive flux is 

ax 
F = -Km (32) 

Oz 

and the streamlines are described by 

4z 

½ = z - 1 + 4x2/'••--= zu(x) (33) 

a result easily reconciled with (23) by expanding the loga- 
rithm near z 0. Owing to the different choice of horizontal 
scale, the line of divergence is now located at x = 3/2, 
instead of 31/2, as in Figure 1. Figure 2 shows the streamline 
field according to (33). While at depths of the order of 1 
(dimensional b) the flow pattern differs greatly from the 
roller model of Figure 2, it is the same at depths of order i5, 
which is all that counts. The point these figures demonstrate 
is that the details of the eddy flow pattern at depth are 
irrelevant, only the convergence and divergence matters. 

At the line of divergence, the horizontal velocity vanishes, 
and (31) becomes an ordinary differential equation for which 
a solution is easily obtained and the boundary conditions 
satisfied, as has already been demonstrated. In the neighbor- 
hood of this line one may expand the solution X(x, z) and the 
velocity u(x) in terms of the distance • = x - 3/2 as follows: 

x = co(z) + c(z)i + ... (34a) 

2 

tt = •--• •2 q_ ... (34b) 
Substituting into (31), and collecting the zero- and first-order 
terms separately, one finds the two equations 

c• + 2zc• = 0 (35a) 

ci' + 2zc• - 2c• = 2zc6 (35b) 

where primes denote differentiation with respect to z. For 
boundary conditions, one must prescribe c o = 1, c l = 0 at 
the surface and both vanishing at great depth. The solutions 
may be found by standard methods and are: 

Co = erfc (-z) (36a) 
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Fig. 3. Contours of constant concentration in the roller and downstream, scaled by the concentration difference 
across the DBL. Horizontal distances are the same as in the previous figure, but the vertical coordinate has been 
stretched; the depth unit is now the DBL thickness under the divergence line at x = 1.5. The contours cross the 
divergence line smoothly, but under the convergence line there is a singularity where a downwelling plume carries 
surface fluid into the interior. 

1/2 

cl = -•- z exp (-z 2) (36b) 
the first one being the nondimensional version of (9). 

Given this start, one could now calculate a solution to (31) 
numerically. A more efficient method is, however, available, 
based on the von Mises transformation [Schlichting, 1960, p. 
136]. Where the velocity u is nonzero, the vertical coordi- 
nate z may be replaced by the stream function ½. The 
advection-diffusion equation (31) transformed to x, ½ coor- 
dinates is (see, for example, Levich [1962, p. 79]): 

--= K u (37) 
ax a0 

The surface is understood to be the ½ - 0 streamline, and the 
boundary condition X = X0 is prescribed here. Because u is 
a function of x alone, it may be absorbed in the horizontal 
variable as follows: 

r= udx 

/2 

(38) 

which results in 

OX 02X 
--= t< (39) 
Or Oz 2 

For this simple form of the heat conduction equation it is 
necessary to prescribe initial conditions, in addition to the 
boundary conditions already mentioned. In the present case, 

X( f = O, z) = co(z) (40) 

One solution of (39) satisfying the boundary conditions is 

x=erfc 2(t<r)•/2' -=erfc - (41) 

where •' = 2(• r) •/2/u is a local depth scale, ½ = zu(x) having 
been substituted in the second equality. The presence of the 
velocity in the denominator of • may seem odd; it comes 
about because diffusion time t varies as x/u, while r is ux, or 
u 2 t. The square root of this cancels u in the denominator and 
leaves •' --• (•t)•/2 as one expects. 

Both u and r tend to zero at • = 0. Putting u - Idu/dx 10• 
near the line of divergence, using the definition of r in (38) 
and noting that • = 1/2, one finds that •' • 1 at •- 0. This 
result is independent of the specific form of the surface 
velocity distribution away from the line of divergence. A 
value of •' = 1 means that the solution Co of (36a) is 
recovered. Remarkably enough, then, the solution written 
down in (41) satisfies the initial condition, (40), and so 
constitutes an exact solution of the advection-diffusion prob- 
lem posed, for arbitrary u(x). 

For the specific choice of the velocity in the roller model, 
integration of u(x) yields the distance variable r in closed 
form' 

r x + 2(31/2) rr = - - tan -1 (42) 
2 3 

With the aid of this expression, the concentration field of the 
roller model may be calculated on both sides of the diver- 
gence line. At large positive x, one finds r = x - 3/2 - 
rr/3 •/2. Over the roller itself, r rises monotonically to r = 
4rr/3 •/2 _ 3 - 4.26 at the convergence line, x = -3/2. At still 
greater negative x the advection-diffusion problem cannot be 
solved without specifying some entry profile for the concen- 
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Fig. 4. Surface flux Fs and DBL thickness s r over the roller and 
downstream. Under the convergence line at x = - 1.5, s r is singular, 
tending to infinity, while the flux vanishes, being proportional to 
•-l. Minimum • and maximum flux occur on the divergent side of 
roller center; here the flux is considerably higher than over the 
divergence line at x 1 5 (where it is Fs = 1/rrl/2). • , 

tration. Figure 3 shows the concentration field for x > -3/2. 
The scale of nondimensional z is the same as of nondimen- 

sional x, but this of course amounts to a stretching of the z 
coordinate in the ratio U/a$. The descending plume and the 
slow growth of the DBL in the direction of positive x are 
clear. 

Figure 3 illustrates the fallacy of regarding eddy flux 
independent of molecular diffusion in the vicinity of the free 
surface. Consider conditions at z = -3•, for example. The 
horizontally averaged concentration gradient, Ox/Oz, is van- 
ishingly small, the flux is essentially the same as at the 
surface, F = F0. The eddy diffusivity is then much larger 
than molecular diffusivity, as in the well mixed fluid below. 
For gas diffusion, this occurs at a depth of some 30/am. For 
heat diffusion in the same eddy field at the same depth, the 
flux is mostly molecular, and the eddy flux and eddy diffu- 
sivity are small. Thus neither eddy flux nor eddy diffusivity 
is a property of the eddies alone. 

8. FLUX LINES 

The most important predictions of the roller model con- 
cern the flux of the substance exchanged at the surface, and 
how this flux is disposed of within the body of the fluid. 
From the solution in (41) one finds at once for the vertical 
diffusive flux: 

F- 1/2 exp - (43) 

The surface value of this, Fs = 2•/(½r•/:•), is the flux 
entering the fluid, which is seen to vary as •'-•. Figure 4 
illustrates the variation of the diffusion boundary layer depth 
•' and of F•. On the downstream side, •' increases, and F• 
decreases monotonically and fairly sluggishly on the b scale. 

Over the roller the boundary layer depth at first decreases 
toward negative x, (surprisingly perhaps) bottoms out, and 
becomes very large at the convergence line. The surface flux 
mirrors this behavior. 

In interpreting the solution near the convergence line one 
must remember that it describes molecular diffusion and 

advection by a specific eddy, at depths on the • scale. Where 
the boundary layer depth grows large on this scale, the flow 
and the concentration field merge into the well-mixed turbu- 
lent interior. On the vertical streamline ½ = 0 under the 
convergence, (41) shows the concentration to equal its 
surface value, ,y = 1 (dimensional X0). Here a plume of 
boundary layer fluid is descending into the interior, to be 
mixed by eddies at depths on the b scale. 

The fate of the boundary layer fluid is exhibited particu- 
larly clearly by "flux lines," analogous to streamlines, of the 
total flux vector (molecular plus advective flux). The diffu- 
sion equation states that the total flux is nondivergent, so 
that it can be described by a flux function &(x, z), analogous 
to a stream function, the derivatives of which equal the 
components of the total flux' 

ox 
• = ux = -wx + •: • (44) 
Oz Ox Oz 

Integrating the first of these equations, with (41) substituted 
for X, one finds at once 

& = u•' ierfc (-•) = _+2(K•) 1/2 ierfc (-•) (45) 
the flux function being negative over the roller, positive 
downstream. Figure 5 illustrates the pattern of flux lines. 
Under the convergence line the flux function has a value of 
-2(Kr/•r) 1/2, which equals -1.65 in the present case. The 
average flux over the roller, three nondimensional units long, 
is thus -0.55, almost the same as the flux over the diver- 
gence line, - 1/rr 1/2 = -0.56. 

As already remarked, the solution written down in (41) is 
valid for any u(x), so that the qualitative features of the 
concentration and flux fields remain very similar if other 
eddy models are used, as long as the eddy scale remains 
large compared with the DBL scale. Fortescue and Pear- 
son's model, for example, is described in terms of the 
present scaling by 

u = sin (x) (46) 

This yields r = 1 - cos (x), which grows from zero to 2 
between the divergence and the convergence. The flux 
function correspondingly varies at the surface between zero 
and 2 ierfc (0) = 1.1284. This is the value of the constant 
given by the exact solution for (1), replacing Fortescue and 
Pearson's 1.46 obtained by numerical integration. 

9. CONCLUDING REMARKS 

A case has been made above for the proposition that the 
most intense surface divergences, responsible for what was 
called in the early literature surface renewal, are caused on 
a wind-blown surface by viscous surface stress variations 
associated with breaking wavelets. Gas transfer is controlled 
by these divergences as they keep the diffusion boundary 
layer thin. The combination of two very simple ideas, 
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Fig. 5. Flux lines (lines parallel to the total flux vector, analogous to streamlines) in the roller and downstream. The 
flux lines within the roller are all collected by the downwelling plume, while the flux lines originating beyond the roller 
follow the divergent flow downstream. Units are the concentration difference across the DBL times the velocity scale; 
the flux in these units integrated over the roller is 1.65. The minimum flux line contour, coinciding with the vertical line 
under the convergence, has thus the label -1.65. 

interaction of diffusion with advection in divergent stagna- 
tion point flow, and shear layer-fluid accumulation on a 
breaking wavelet, allowed the construction of an eddy- 
resolving analytical model of gas transfer. The results were 
in qualitative and quantitative agreement with laboratory 
observations. One parameter is left free by the model, 
expressing the fraction of the surface covered by diver- 
gences, or rather by a DBL not much thicker than one finds 
over the divergences. A detailed examination of the diffusion 
and flux fields also showed that the DBL remains thin and 

that the flux remains high over a moderately broad region 
around the rollers. 

Clearly, the free parameter e, gauging the fraction of the 
surface effective in gas transfer, is a likely cause of differ- 
ences between laboratory and open ocean. While with 
increasing wind speed the surface coverage of divergences 
should saturate and stay constant in the laboratory, orbital 
motions of large waves may suppress the short wavelets in 
wave troughs and reduce e. When large waves break, they 
have been shown to eliminate small wavelets altogether near 
the large wave crest [Banner et al. 1989]. This should reduce 
e, but of course bubbles and spray produced in breaking 
waves would tend to increase gas transfer, and the net effect 
of large wave breaking on k is uncertain. 

If e did drop with wind speed on account of the effects just 
mentioned, the increase of k with u* would be reduced or 
eliminated. This might be a partial explanation of low 
transfer rates observed in the open ocean. At any rate, the 
gross variations of wave climate over the open ocean should 
result in major changes in e, a possible reason for the large 
scatter of field gas transfer data as a function of u*. Perhaps 
the radar signature of the wave surface, in a band tuned to 
the short wavelets, would be a better predictor of gas 
transfer than u* alone. Recent work by Banner and Fooks 

[ 1985] indeed suggests that the radar return in the 4-cm wave 
band is mainly due to surface perturbations on rollers. In 
view of the possibility of global monitoring, the connection 
between gas transfer and radar return would certainly be 
worth exploring in detail. 
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