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Abstract 

A set of time-dependent vertically-integrated equations is derived to model the horizontally 
two-dimensional transformation of waves on a porous bed. The basic equations, called the 
Boussinesq equations for porous beds, contain the leading orders of nonlinearity and dispersivity. 
A general resistance equation has been used for the porous medium. The applicability bounds of 
the basic equations, limited by weak dispersivity and underestimated porous damping rates in 
deeper waters, have been extended by adding dispersion terms to the momentum equations and 
calibrating the resulting dispersion relation with a linear theory for porous beds. A numerical 
method based on finite differences is employed to solve the equations for two dimensions. The 
extended equations are verified for damped wave propagation on a horizontal bed, wave 
transfomlation on uniform porous slopes and combined refraction, diffraction, shoaling and 
damping around a submerged porous breakwater with an opening. 
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1. Intralduction 

There are numerous situations in the study of wave effects on the coastal environment 
in which one has to deal with a porous bathymetry. Among the many examples, the 
propagation of a broken wave on a permeable beach and wave transformation around 
artificial reefs and submerged porous structures are probably the most common. In order 
to understand the complex physical processes that occur in these enviroments, it is 
necessary to have a mathematical model that reproduces the basic properties of the wave 
field over a conceivable range of wave conditions. 
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Accurate computations of the wave field have become possible with the use of 
mathematical models of varying degrees of limitation on two important wave parame- 
ters: wave nonlinearity and dispersivity. Nonlinearity is a requisite for the generation of 
higher harmonics on regions of constricted depths, such as crowns of submerged 

structures, and dispersivity is necessary for wave celerity dependent on the wave 
frequency. A number of mathematical models to study the transformation of waves over 

impermeable beds have been proposed and verified. In subsequent developments, 

modelling of the wave field on porous beds has been done. Rojanakamthom et al. (1990) 
derived an elliptic-type equation for permeable beds following the derivation of the 
mild-slope equation. This model is fundamentally limited by the use of linear theory. 
Although dispersivity is arbitrary, the absence of the nonlinear component and the 
invocation of the monochromatic wave concept are reasons for the inability to predict 
the decomposition of waves behind submerged breakwaters. Using a perturbation 

method, Isobe et al. (1991) and Cruz et al. (1992) derived a set of time-dependent 
nonlinear equations for one-dimensional transformation. Since these models include the 

leading order of nonlinearity, they are able to generate the higher harmonics on the 

shallow water regions. However, the inherent dispersivity is weak and, consequently, the 
frequency-dependent wave decomposition phenomenon beyond submerged breakwaters 
cannot be reproduced. Kioka et al. (1994) derived one-dimensional shallow water 
equations for porous structures. Although the free water depth is assumed arbitrary, the 
underlying solid bed was assumed horizontal, a basic limitation when simulating the 
combined shoaling and porous damping processes occurring, for instance, in submerged 
porous structures. 

In this paper, we derive a set of Boussinesq equations over a porous bed of arbitrary 
thickness uderlain by a solid bottom at arbitrary depth in two horizontal dimensions after 
determining the governing equations and boundary conditions for the three-dimensional 
wave motion. The leading order of nonlinearity is incorporated. However, the weak 
dispersivity of Boussinesq-type equations is retained. This is corrected by adding 
dispersion terms to the basic momentum equations and matching the resulting dispersion 
relation with that of an appropriate theory. From this, a quantification of the applicabil- 
ity bounds of the new model can be made. This approach follows the idea used by 
Madsen et al. (1991) for impermeable beds. The fundamental properties of the model are 
clarified by results of numerical computations for uniform porous beds, which are 
compared with theory. Then the model is tested for wave transformation on plane porous 
slope and for simultaneous refraction, diffraction, reflection and porous damping around 
a submerged porous breakwater with an opening. Data obtained from physical model 
experiments are used to verify the numerical results. 

2. Governing equations and boundary conditions of wave motion on porous beds 

The variables and domain of interest are shown in Fig. I. The free surface is 
displaced by q( x,y,t) from still water. Free water has a thickness of h( X, y) and the 
porous layer of thickness h,(x,y) is underlain by an impermeable bottom at z = 
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Fig. 1. Definition of variables. 

- hb( X, y). The flow is assumed incompressible and irrotational in both layers. The 
equation of motion inside the porous medium is given by 

h.~f~V,(ps+pgz) +F,+F,=o 
P 

(1) 

where h is the porosity, US = (u~,u,,w,) the seepage velocity vector, pS the pore 
pressure, p the fluid density, g the gravity acceleration, V, = (a/ax,a/ay,a/&~> the 
gradient operator, F, the porous drag resistance term, Fi the inertial resistance term and 
d/dt = a/at + ZJ, . V, denotes the total derivative. In steady flows, F, just balances the 
drop in piezometric head along the flow direction. The head drop is related to velocity 
by the nonlinear resistance equation 

F, = - ;&( p, + pgz) = ff ,us + ff*IUslUs 

where LY, and CT* are coefficients which represent the laminar and turbulent flow 
resistances respectively. In general, these coefficients depend on the properties of the 
medium and the fluid. In unsteady flows, an inertial resistance term Fi is necessary to 
account for the divergence and convergence of streamlines in the presence of the solid 
surfaces. Fi is the product of the displaced fluid mass, the virtual mass coefficient and 
the 1oca.l acceleration in the flow direction. Per unit volume of water, this is expressed as 

F,=(l-A)(1 +c_)z 
where c, is the added mass coefficient. c, can be evaluated for individual regular 
shapes lbut is generally unknown for randomly packed granular solids. After Eqs. (2) and 
(3) are substituted in Eq. (11, the equation of motion becomes 

c,z + ‘V,( p, + pgz) + LY,us + a,lU,IU, = 0 
P 

where CT, is the inertial coefficient: 

c,=A+(l -A)(1 +c,) (5) 
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The mass conservation equation for the porous layer is 

V,.(AU,) =o (6) 

and since the porosity is assumed uniform, this gives 

v, . u, = 0 (7) 

In the overlying free water, the usual equations of motion and mass conservation apply: 

z + $p+pgr) =o (8) 

v,~u=o (9) 

where ZJ = (u,u,w) is the water particle velocity, p the pressure and d/dt = a/at + U. 

b 
At the free surface, the dynamic and kinematic conditions are 

p=o 2=77(x,yJ) (10) 

-&)=w-~-u.v~=o z = 77( X,YJ) (11) 

where V = (a/&+/Cry> is the horizontal gradient operator and II = (u,u> the corre- 
sponding velocity vector. At the impermeable bottom, the normal velocity U,, vanishes: 

u,,~u;nlv,(z+hb)l~Us~V3(Z+hb)=U;Vh~+w,=0 z= -hJx,y) 

(12) 

where n is the unit normal vector and U, = (u,,v,) the horizontal seepage velocity. At 
the interface of the two layers, continuity of normal mass flux is prescribed. Across a 

unit bulk area, this is expressed as 

( PU)” = ( PhU,), z = -h( GY) (13) 

wherein the density in the respective layers cancels out because of the incompressibility 
assumption. Written in another way, this becomes 

u.Vh+w=A(u;Vh+w,) z= -h(x,y) (14) 

Finally, there must be equal pressures on both sides of the interface for it to exist: 

P =Ps z= -h(x,y) (15) 

The shear stress on the water-porous layer interface and porous layer-bottom interface 
will set-up boundary layers whose thicknesses may be comparable to the granule size. 
Sawaragi and Deguchi (19921, however, have shown that even for the highly nonlinear 
waves or for the highly porous media, the interface shear stress is small compared to the 
other terms in Eq. (1) or Eq. (4). The interface conditions (14) and (15) do not ensure 
the continuity of tangential velocities on both sides of the interface. We assume, 
therefore, that there is a boundary layer thick enough to equalize the tangential velocities 
yet thin enough not to affect the flows above or below it. 
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Eqs. (4), (7)-(9) describe the interior motions subject to boundary conditions (lo), 
(1 l), (121, (14) and (1.5). In order to reduce the number of unknown variables, the 
following definitions of the velocity potentials ‘P and @ are invoked: 

q, = Q,‘P U = Q,@ (16) 

With these, the continuity equations lead to the Laplace equations: 

Q2P+PZL=0 -hh,<z< -h (17) 

Q2@+@~z=0 -h<z<q (18) 

where the subscripts denote partial differentiation. When Eq. (16) is used in Eqs. (4) and 
(81, the equations of motion can be expressed as follows: 

c, qt+;(Q3W)’ 
[ 1 

+~+pfaP=O 

@~+;(Q3@‘)‘+;+gz=0 

(19) 

With these, the boundary conditions involving the pressures can be expressed in terms of 
?P and (9. The boundary conditions become 

@,+f(Qs@)‘+~n=O z=n (21) 

@;=rlt+Q@.Qv z=q (22) 

?P2= -Q!P.Qh, z= -h, (23) 

Q~z+Q@~Qh=A(Ti’z+QWQh) z= -h (24) 

c, Ft+;(Q$)’ 
[ 1 +aP=@,+;(Qj@)2 z= -h (25) 

The porous resistance coefficient cr is defined as 

a = (Y, + a,lUJ (26) 

such that the porous resistance term in Bq. (19) can be temporarily linearized. 
The problem is now governed by two linear equations constrained by five boundary 

conditions. The free-surface conditions and interface continuity of pressure are nonlinear 
in the new variables !P,@, and 7. The problem itself is nonlinear since q is not known a 
priori. 

3. Derivation of Boussinesq equations for porous beds 

Wave motion is always characterized by three lengths: a water depth h,, a wave- 
length 1 and a surface displacement amplitude a. To discern the relative importance of 
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terms in the equations, we normalize the variables using the relevant characteristic 
length as follows: 

(27) 

(29) 

The characteristic velocity is fi resulting in the characteristic time I/ \Igh, to travel a 
distance 1. Likewise, from the definition of the potentials, the appropriate normalizer is 
afih,/Z. If the above normalization is applied, the terms in the governing equations 
will group according to two nondimensional quantities, namely, 

These are respectively called the nonlinearity and dispersivity parameters. Omitting the 
primes for clarity, we can write the normalized equations as 

p2V2!P+ WZZ=O -h,<z< -h (31) 

p2V2@ + Qzsz = 0 -h<z.<v (32) 

r’(~~+?)+~~[p2(~~+~~)+~:]=0 z=.q (33) 

p2(7J + &V@. VT) = q z = q (34) 

‘Pz= -p2V!P.Vhb z= -h, (35) 

@Z++2V@Vh=A(!PZ+~2WA’h) z= -h (36) 

z= -h (37) 

In these equations, we can see a distinction in the appearance of horizontal and 
vertical derivatives of the potentials. For example, terms containing derivatives in x and 
y are multiplied by p2 while those in z, are not. This suggests that it is possible to 
decouple the horizontal and vertical dependencies by assuming a certain distribution in 
one plane and an arbitrary distribution in the other plane. Here, the potentials are 
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assumed to admit arbitrary distributions +( x,y,t), ~$(x,y,t) in the horizontal direction 
and a power series expansion in the vertical direction as follows: 

*‘( X,Y,ZJ) = c [z + hb( x7Y)]“$n( x7y.t) (38) 
n=O 

@(X,Y,ZJ) = c [x+h(x9Y)1”~n(x7Y~~) (39 
n=O 

This expansion solution is a well-established method (Mei, 1989; Isobe and Kraus, 
1983a,b). 

The :solutions are obtained by solving for (L,,& . . . and then 4,,&. . . . First, by 
using the assumed potentials, the following expressions are obtained: 

W= C(z+UVk+ C(~+l)(z+h,)“(Vh,)~~+, (40) 
n=O n=O 

VI)= C(z+h,)nV2#n+ C(z+hJ[2(n+ Vh,+k+1 
n=O n=O 

+tn + v2ht#“+,] 

+nzo(ZfhJ”(~+ 1>(~+w%)2~n+2 (41) 

~:(n+l>(n+2)(z+h,)“~~+, (43) 
nZi 0 

Similar expressions are obtained for VC$, V24, +Z, +tZ. Substituting Eqs. (41) and (43) 
into Eq. (31) results in 

I:(z+h,){(n+l)(n+2)r~~,+2+(n+1)~2[2vhh.v~~+,+V2hb~~+I] 

n;; 0 

+/.b2v2Jln}=o -h,<z<-h (44) 

?-; = 1 + /A*‘( V&J2 (45) 

Since z is arbitrary, the coefficient of each power of (z + h,) must vanish, that is, 

(au+ 1)(~+q73hn+2 +(n+ 1)P2[2V~b4vn+, + V2h&+ ,] + p2v21+bn = 0 

n=0,1,2,... (46) 

Eq. (46) is a recurrence relation for I+!J”+~. Substituting Eqs. (40) and (42) into the 
bottom boundary condition (35) gives 

C(z+U[(n+ 1)&k+, +/L~V~,V$,,] =0 z= -h, (47) 
e:=(J 
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or, when written in full, 

[& +PzVhbV$,] +(z+h,)‘[2r~rlr*+LL2Vh,.V~1] 

+(z+h,)2[3r,z~,+~2vh,.v~2] + . . . =O z= -h, 

Since the terms after the first are all zeroes, the result is 

(48) 

$1 = - 
cL2 Vh, . W, 

d 
(49) 

There are two important implications of Eq. (49). First, by virtue of the recurrence 
relation (46), all odd-numbered I,!J’s appear only when the bottom changes, i.e., the 

even-numbered + ‘s govern the propagation of waves of permanent form. Second, 

because t-i appears whenever Eq. (46) is used, the effect of Vh, will geometrically 

decrease with n greater than 2. With $, determined and I,!+, a free parameter, 
succeeding I/J’s are obtained sequentially through Eq. (46). We show these up to 

o( /-L4): 

tj2= -$V2+0+$‘-(VhJh~V,0)+O(~6) 

I& = ; [2Vh,. V(V2&,) + V2h,V2$, + V’( Vh, . V&,)] + 0( $) 

(50) 

(51) 

k = O( P6ug) 
Boussinesq theory assumes that 

(53) 

O(E) = o( /.L’) < 1 (54) 

implying that only the leading orders of nonlinearity and dispersivity need to be retained 
in 4 and I,!I. There is more practicality in this assumption since the next-order terms in 
Eqs. (50)-(53) contain the operator V to, at least, fourth degree eventually requiring a 
fourth-degree velocity operator, a procedure that is computationally inefficient. Hence, 
we truncate the G’s at o( ,u’>, leading to 

q= I&- $[Z(z+hh)Uha . Wo + (z + hd2V%] + O( p4) (55) 

which shows that only the three leading terms in Eq. (38) were included. It must be 
noted, however, that no assumption on the order of the bottom gradient is necessary 
even up to O( p4). Only when terms of O( p6> are included does an implicit mild-slope 
assumption need to be invoked to simplify the resulting equations. 



E.C. Cruz et al./ Coastal Engineering 30 (1997) 125-156 133 

Since Qi and ?P are related through the interface boundary conditions, we can obtain 
@ by applying either Eq. (36) or Eq. (37). We opted to use Eq. (36) because of its 
simpler form. To the same order, this is written 

E.(z+@[(n+ I)(1 +( kV~)2)+,+, +P*Vh%] 
II=0 

= -/_L*hV+zsVljIo) +0(/P) z= -h 

which gives the solution 

(56) 

4, = - 
P’[V~+#+l+V~(~SV~0)] 

1 -I- ( pvh)* 
(57) 

Using Eq. (32), the following recurrence relation for +‘n+2 can be obtained: 

(n + l)(a +2)&?+2 +(n+l)fL2[2Vh-V+,+, + V%#“, ,] + $v2#n = 0 

n=0,1,2,... (58) 

Using this, we get the final form of @: 

o=~,-~(2~~+h)[vh.v~~+hv.(h~v~~~]+(Z+h)’Vim~}+O(p’) 

(59) 

Just as in !P, only the first three terms in Eq. (39) are included. 
The velocities in each layer can be obtained by applying the three remaining 

boundary conditions, namely, the nonlinear equations. First, the momentum equation in 
the water layer is obtained by applying the dynamic free-surface condition. Eq. (33) is 
first evalluated at z = ~7, then V is applied to the resulting equation to get rid of #+,: 

u,,+E.~.vU~+v1)-~v[~~v.~~~+2hVh.U~r+*~v(~~.~~~~)] 

= o( EP2,P4) (60) 

where the velocities are 

UC, = V& US0 = V& (61) 

The momentum equation for the porous layer is obtained by applying the interface 
continuity of pressure. Eq. (37) is evaluated at z = - h and V is applied to the resulting 
equation to get rid of I,&: 

cr( U,ot + &Us0 . Vuso) + vrl + a us0 - $7[ c,(2h,Vh,. usot f hp. Usor) 

+a(2hSVhb. us0 + hpu,,) + h2V. U(Jt + 2hVh. Ugt + 2AV. ( h,uSot)] 

= o( EP2 ,P4) (62) 

The velocity variables defined by Eq. (61) are defined at the bottom. Other velocities, 
such as those at the interface or at the surface, may be taken as well. The choice of 
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variable is arbitrary. However, different velocity variables lead to different dispersion 
relations (Madsen et al., 1991). In the case of porous beds, the choice of the velocity 
variable influences the porous damping property of the resulting equations. Here, we use 
the depth-averaged velocities, defined as 

for two reasons: first, they lead to a compact vertically-integrated continuity equation; 
second, they are easily identified when prescribing the boundary conditions in a general 
horizontal two-dimensional computation. Eqs. (55) and (59) are substituted in Eqs. (63) 
and (64). The resulting equations can be recast as follows: 

p2 h= 
~,=i+~ 3V(V.~)+hV(Vh.~)+hVhV.~+2VhVh.~ 

[ I 

+${hV[V-(h$] +2VhV(h,<)}+0(p4) (65) 

p2 h: 
u SO =g+- 2 ,V(V.<) +h,V(Vh, 

[ 
.<) + h,Vh,,V .u,+ 2VhJh, .< 

I 

+ o( P4) (66) 

When Eqs. (65) and (66) are substituted into Eqs. (60) and (621, the following equations 
result: 

= o( w2 >F4) (67) 

- ;h:V(V .<) - h,V(Vh,.u,) + h,V( h - h,)V .<+ 2VhVh,.u, 
I 

+‘[V(h2;,)+2hhV(h,u,)] =O(E~=,~~) 

The continuity equation is obtained by substituting Eq. (59) into the kinematic free- 
surface condition (34) and recasting the potentials in terms of velocities: 

77t+V.[(h+~+] +AV(h,u,)=O (69) 
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Unlike the momentum equations, the continuity equation is exact when formulated in 

terms of u, <. A more elaborate equation with truncation error would have been 
obtained if ua, u,c were used instead. 

Eqs. (67)-(69) comprise the set of Boussinesq equations for porous beds in nondi- 

mensional form. 

3.1. Degenerate cases 

For very long waves such as tides and seiches, p2 approaches zero and E is O(1). 
Then, in physical variables, Eqs. (67)-(69) reduce to 

7)t .t v . [( h + ?j)U] + AV . (h,u,) = 0 (70) 

U-I-U. vu+gvv= o( /_2,&/_2,/2) (71) 

cJ<, +u,. v<) + gvrj + @= o( /L2,&/2./2) (72) 

These are referred to as the nonlinear long wave equations for porous beds. 

In the absence of the porous layer, Eqs. (69) and (67) become, in physical variables, 

?&+v. [(h++] =o (73) 

ii-kU.vii+gV?)+ - ~{~v(v.q-v[v.(h;,)l}=o(&p2,p4) 
which are the Boussinesq equations derived by Peregrine (1967) for impermeable beds. 

4. Extension to deeper waters 

The clispersivity parameter is extremely important when modelling frequency-depen- 
dent phenomena such as wave propagation in deep water, wave grouping, irregular wave 
transformation and wave decomposition. The new equations retain the weak dispersivity 
of Boussinesq-type equations and, hence, cannot be used in deep water. A number of 
approaches have been successful in circumventing this inherent limitation in the case of 
impermeable beds. For example, Witting (1984) used a Pade approximation of the exact 
linear dispersion relation and matched it with the model dispersion relation based on the 
Taylor sieries expansion of the velocity at the free-surface. Madsen et al. (1991) added to 
the momentum equations higher-order terms that vanish in shallow water. By fitting 
with the linear dispersion relation up to the deep water limit, the optimum value of the 

coefficient of the additional terms was determined. Nwogu (1993) derived an alternate 
form of Boussinesq equations using a perturbation approach with the velocity at an 
arbitrary depth as the velocity variable. The vertical location of the velocity is deter- 
mined such that the corresponding linear dispersion relation is a Pade approximation of 
the same order as that obtained by Madsen et al. (1991). In these approaches, the 
dispersion relation of the model equations is forced to comply with the dispersion 
relation of linear theory, which is exact for infinitesimal waves of arbitrary dispersivity. 
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4.1. Extended equations 

In the current paper, we follow the idea used by Madsen et al. (1991) for imperme- 
able beds. There are three important things to consider when applying this idea to porous 

beds. First, there are two fitting factors to obtain, one for each momentum equation. 
Second, dispersivity and porous damping are coupled properties so that these factors 
must be determined jointly. Third, there are two additional parameters introduced: the 

relative porous thickness h,/h and a parameter to describe the property of the porous 

medium. 

We rewrite Eq. (67) in physical variables, expanding the second dispersion term: 

-“$[V.(h,u,,)] =o (75) 

The lowest-order momentum equation is 

u,+gVr)=O(EJ2,...) (76) 

Using this, the dispersion terms containing u are approximated as follows: 

Then 

h2V[V*U,] =h2V[V.(-gvq)] (77) 
hVhV+hVhV+gVq)] (78) 

hV[Vheu,] =hV[-Vh+] (79) 

we obtain the “zero equations” by multiplying Eqs. (771479) by the same small 
factor, say - y, and replacing the approximation by an equality: 

-y[h2V(VLJ+gh2V(V2n)] =0 (80) 

-y[hVhVu,+ghVhV’q] =0 (81) 

-y[hVh.u,+ghV[Vh+)] =0 (82) 

These zero equations can then be added to Eq. (75) without changing either its meaning 
or truncation order: 

ut +UV;;+gvq 

1 
- - [( 1 3 

+y h2V(V.&)+ z+y hVhV u,+ (’ ) .- (;+ y)hV(Vh+] 

-y[gh2V(V2n)+ghVhV2n+ghV(VhVn)] -;hV[V.(hs&,)] =0 

(83) 
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This can be simplified to tire form of the original equation: 

u,+u.V;+gV~+;V(V.y)- ;+y hV[V(hiJ] -rshV[V(hVr))] 
( 1 

-;hV[v.(h,u,)] =o (84) 

Eq. (84:) apparently indicates that only the second dispersion term in Eq. (67) has been 
corrected. However, Eq. (83) reveals that all dispersion terms are, in fact, considered. 
We could have included the factors l/6 and l/2 in Eqs. (80)-(82) but this would 
simply add terms to the resulting extended equation with a resulting different value of y. 
For the porous layer, the lowest-order momentum equation is 

c,~lc,,+gv~+cuu,=o(&,~*,...) (85) 

Of the four bracketed dispersion terms in Eq. (681, we select only the last for extension: 

AV[hV(h,<] =AV (86) 

The zero equation is obtained by multiplying by a small number, say - p: 

-@(V[hV(h,~)] +;V[hV(h,u,)] +;V[hV(h&)])=O (87) 
r r 

When this is added to Eq. (68), the result in physical variables is 

.u,)+h,V(h-h,)V.u,+2VhVh,.u, 1 
- ;V[V(h*U,)] -(I +p)AV[hV(h,u,)] - $V[hV.(hSVq)] 

r 

-;AV[hV(hS<)] =0 
r 

(88) 

Eqs. (84) and (88) are the extended momentum equations which, together with Eq. 
(701, comprise the extended Boussinesq equations for porous beds. 

4.2. Applicability bounds of the new Boussinesq equations 

We (extract the dispersion relation embedded in Eqs. (701, (84) and (88) for a 
horizontal bottom overlain by a uniform porous layer using the conventional one-dimen- 
sional Fourier analysis. The linearized equations are 

T,+ + h& + hh,Kx = 0 (89) 

1 
G + PL - h2i,,,r - ygh2r],,y., - 5hhh,u,,,,r = 0 (90) 
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A linear wave over porous bed is described by 
-- 

(7j,Z,FJ = (a, ,U,UI)ei(‘X-or) (92) 

where w is the angular frequency, k the complex wave number, and a,, 6, and OS are 
the relevant amplitudes. Substitution into Eqs. (89)-(91) leads to 

- o[ 1 + (3 + y)k2h2] - $lwk2hh, gk( 1 + hk2h2) 

- $k2h2 -wcp gk( 1 + $k2hh,) 

kh hkh, --w 1 
where 

(p= (c,+i%)(l +ik2hi) +hk2hhs(l +/3+iE) 

-- 
u 0 

_I [I v, = 0 

a0 0 

(93) 

(94) 

The solution is nontrivial only if the determinant of the coefficient matrix vanishes, 

leading to 

&[l+($+y)k’h’] 

= (1 + yk2h2) + hh, 1 + cph [ (;+,)k2h2][l+$k2hh,. 

-~[(~+~hkzhh,i-~+(~+~k2h2)] 

This is the linear dispersion relation of the new Boussinesq equations. 

(95) 

When h,=Oand 
y= 0, it reduces to the dispersion relation of the Boussinesq equations derived by 
Peregrine (1967). When h, = 0, it reduces to that of the extended equations derived by 

Madsen et al. (1991). 
To obtain the exact dispersion relation for porous beds, the linearized forms of Eqs. 

(17)-(25) for a horizontal bottom with constant porous thickness are analytically solved. 
The corresponding relation is (Gu and Wang, 1991; Cruz, 1994): 

w2-gktanhkh= -iRtanhkh,(gk- u2tanhkh) (96) 

where R is the nondimensional parameter 

RE”w 

ffl 
(97) 
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Fig. 2. Normalized phase celerities and porous damping rates. R = 0.1, A = 0.5, h, /h = 0.2. 

The linear part cy, of (Y in Eq. (26) is commonly defined as (Sollitt and Cross, 1972): 

VA 
“, Z - 

K 
(98) 

where v is the kinematic viscosity and K the intrinsic permeability. Hence, R = wk/v 

which is the nondimensional permeability. R is 0(10-6>-0(10-2) for sand and 
O(lO-‘) at most, for gravel within the usual ranges of frequencies. For consistency with 

Eq. (961, we use (Y = (Y, and c, = 1.0 in Eq. (95). For a given relative depth 
h/L, = w2h/(2rrg), relative porous thickness h,/h and R, kh can be solved from Eqs. 

(95) and (96). From Eq. (921, 

rl( x,t) = (yOe-k’XeKk,+-wO 
(99) 

so that the real part of the wave number governs the phase celerity component while the 
imaginary part corresponds to the spatial damping rate. 

Figs. 2-4 show the solutions of Eqs. (95) and (96) as a function of h/L, for three 
values Iof the relative porous thickness h,/h. The phase celerities shown in (a) are 
normalized by C, = g/o, while the damping rates shown in (b) are normalized by R/h. 
The dotted curves correspond to the basic Boussinesq equations. There is an upper 
bound of h/L, below which a solution to Eq. (96) exists. This bound decreases with 
increasing h,/h. The original Boussinesq equations for impermeable beds are valid up 
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Fig. 3. Normalized phase celerities and porous damping rates. R = 0.1, A = 0.5, h, /h = 1.0. 

to h/L, = 0.22 if a maximum relative error of 5% is allowed for celerity. In the 
presence of the porous layer, this bound becomes smaller if the damping rate is to be 
strictly satisfied. This more restrictive bound depends on h,/h. The value y= l/15 
which was determined by Madsen and Sorensen (1992) by satisfying both linear 
dispersion and shoaling gradient properties up to the deep water limit of h/L, = 0.50, 
corresponds to the dashed curve. Without extending the dispersion terms in the 
momentum equation for the porous layer, this value underestimates the damping 
property in intermediate waters especially for the thicker porous layers. Setting j? = 1 / 15 
improves the damping significantly. However, there is a noticeable increase of celerity 
in deeper waters. With y = l/18 and j3 = l/l 5, the celerity is well satisfied up to the 
deep water limit and the amount of damping is significantly improved in deeper waters 
compared to the uncorrected equations. 

There are alternative ways of extending the applicability bounds of the extended 
Boussinesq equations for porous beds. By selecting only certain terms in either or both 
momentum equations to use in obtaining the zero equations, we obtained various 
dispersion relations analogous to Eq. (95). Nine such alternative ways are included in 
Cruz (1994). One of these involves additional zero equations to those already shown 
here using the last dispersion terms in Eqs. (67) and (68). This improves the porous 
damping rate in deep water, that is, the damping rate is almost zero as h/L, approaches 
1. However, p needs to be varied according to h,/h and the resulting model equations 
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are more elaborate. The extension scheme presented here is the optimum up to the 

specified bounds in h/L, and h,/h and the most suitable for numerical implementation. 

5. Applications of the Boussinesq equations for porous beds 

5.1. Numerical computations 

For brevity, the overbars in u and & are omitted. The numerical computations were 
carried out using finite differences. The solution utilizes an alternating-direction-implicit 
(ADI) algorithm that solves 7, u and U, then q, u and u, in alternate fashion. The 
variables are defined on the staggered grid in Fig. 5a. The depths h, h, are defined at 
the velocity grids. Spatial staggering is necessary for the discretization of the cross-de- 
rivative terms. Time staggering is needed to time-center the dominant gravity terms in 
the momentum equations; otherwise, artificial gravity would be created leading to 
eventual loss of water in the domain. 77, u and U, are split in time as shown in Fig. 5b. 
In the ADI algorithm, v7”+ ‘I*, u”+ ’ and u:+ l are solved simultaneously in the x-sweep 

for all points, then q”+ ‘, on+312 and ZJ~+~/~ are solved together in the y-sweep. At 

each time level, ad-hoc values 71% or r] * *, needed for the dispersion terms, are 

determined using an explicit discretization of the continuity equation. For concreteness, 
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we illustrate a half-cycle of computations. Spatial differences are space-centered so only 
the time levels (superscripts) are shown. Continuity equation (70) is first discretized 
explicity for r) 

$,,” +[(h+7f)u”],+ 1 (h+++‘/2+Uy I] + (hPu:)x 
Y 

f hp;(~;+i,2+u:-‘,2 
[ )I 

=() ( 100) 
Y 

where h, = Ah,. After the above equation is solved for v *, the calculation enters the 
AD1 stage. Here, the continuity equation is discretized implicitly as 

q,;+ Ii2 - 7; 

At/2 
+ (h + ?I*)++’ I + u”) I 

(h+11*)~(U.t1/2+y”-I/Z 1 

Y 

+ [‘i -(u "f'+u,n) 
p2 s 1 x 

Momentum equation (84) is discretized as 

1 
fE$U n+ ’ + g> = 0 

+ (hp%y2 
x1 1 

( 102) 
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Momentum equation (88) is discretized as 

1 u”+ I 

I, sJk - 'zjk 1 
c, At 

+C~(U.U.~+U.U~y)n+“2+g7):+1’2+(22(U:+l+U:) 

1 

( 

U 
n+l ” 

_ -_& sxx 

3 
-usxx +u:.;+;c$,j[h~X( “:‘kr”:)lX 

At 

+(k7yu,,):+1’2 
1 

+ ;c,h,VX - &XI 
[(u::,.,) +“;;*,*I 

+ &[ I&( ““‘kJ + (~~Y~,J~+l~*] 

1 
--a/z: ;(u:;X 

1 
+ u:,,) + u:,+y”* 

1 

3 1 1 - 2 ah, h,, 2 A(,:+1 + IQ, 

1 + ;ah,(h, - h,,) $:: + u,.,) + usny+“* 1 
+ ah, h&+’ [ + u:) + ( hbytJJn+ I’* 1 

- e(h[(h,rl:)x + (h,7&+),]),- F 
r r ii ( h +:tl/* + 4) ] 

x ,y 

+[h(h,u,)y]:+“Z =O 1 ( 103) 

The last term in Eq. (102) is the boundary damping term in the absorption region needed 
to enforce the open boundary condition. 

The nonlinear convection terms are discretized so that they are space-centered at 
(j,k) and time-centered at n + l/2; for example, 

(fiU.Y) 
IIf l/2 _ = ;(4y* 

2Ax 

( 104) 
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The nonlinear advection terms are discretized using the angular derivative method 

(Kowalik and Murty, 1993, pp. 50-52). In a single equation, this can be generalized as 

(“UJ+ “2 

f, = 1 f2 = 0 increasing y 

f, = 0 f2 = 1 decreasing y 

The cross-derivative dispersion terms in the momentum equations must be defined at 
time level n + l/2. We employed an extrapolation method similar to Madsen and 
Sorensen (1992) using values at the three most recent time levels. For example (see Fig. 
5b): 

3(hu):.;“2-4(hu)n,y”2+(hU);y3’2 
= 

2At 

Similar discretizations are employed for terms like uF1; ‘I*, ( $,u~~);: ‘I*, etc. 

( 107) 

5.2. Damped wave propagation on uniform porous bed 

The basic properties of the new Boussinesq equations are illustrated by testing for 
one-dimensional propagation of a plane wave. The computational domain is shown in 
Fig. 6c. Regular wave trains enter from the left and exit at the right where a sponge 
layer is placed to enforce the open boundary condition. The boundary damping 
represented by E(X) in Eq. (102) is distributed parabolically for incident waves with 
h/L, > 0.10 and linearly for h/L, < 0.10. The optimum values of the maximum 
damping coefficient for a given damping width have been determined from graphs in 
Cruz and Isobe (1994) for regular waves, assuming no porous layer. At the left 
boundary, u(t) and the spatial gradient of 71. evaluated from an arbitrary-order Stokes 
wave theory (Horikawa, 1988, pp. 26-30) and U, = 0 were prescribed. At the other end, 
Sommerfeld radiation conditions for 77 and u with the celerity \lgh and U, = 0 were 
enforced. The nonlinear terms in the model equations, except for the a2 component of 
the resistance equation, were all included. In the following results, the relative porous 
thickness h,/h was set at 1.0 and the porosity h is 0.50. We verify the new Boussinesq 
equations by varying the incident wave conditions and the porous medium property R. 

In Fig. 6, a linear wave with intermediate dispersivity and small permeability is 
incident at x = 0. As shown by the wave profile in Fig. 6b, the model equations agree 
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Fig. 6. Wave propagation on uniform porous bed. h, /h = 1.0, R = 0.1, Hi, /h = 0.02, h/L, = 0.10. 

almost completely with theory. The amount of porous damping, indicated by the 
normalized wave height distribution in Fig. 6b, is also well reproduced, disregarding the 
persistent oscillation caused by the expedient use of U, = 0 at the boundaries. The 
velocity profiles are also shown and a comparison with theory is indicated for u(t). 
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Fig. 7. Wave propagation on uniform porous bed. h, /h = 1.0, R = 0.1, Hi, /h = 0.02, h/L, = 0.50. 

These are normalized by UamP = CHi,/2h where C is the linear celerity and H, is the 
incident wave height. The profiles suggest that U, = 0 is not realistic when the porous 
layer extends to the ends. These profiles also show that the seepage velocities are small 
compared to the free water velocities. However, u, is partially off-phase with U, 
indicating a friction-type damping action that is compatible with the use of (Y = czyI in 
the linear case. 

In Fig. 7, the deep water limit h/L, = 0.50 is used. The incident wave travels at the 
free wave celerity without being damped. Since the particle velocities below the 
interface do not penetrate the porous layer, the seepage velocities (not shown) are 
negligibly small, precluding wave energy dissipation through the porous medium. 

In Fig. 8, the incident wave is a second-order Stokes wave with a nonlinearity index 
one order of magnitude higher than that in Fig. 6. Fig. 8b shows that for intermediate 
dispersivity, the damping rate is unchanged although the vertical asymmetry in the wave 
profile is already prominent. The seepage velocities remain small relative to the 
velocities in the free water. In Fig. 9, the porous medium is more permeable while the 
incident wave nonlinearity is very small. The absolute amount of damping per wave- 
length is considerably increased. There is excellent agreement of wave and velocity 
profiles between computation and theory. The computed seepage velocities are increased 
by one order of magnitude that resulted in the decayed wave heights shown. 

5.3. Wave transformation on plane porous slope 

The new Boussinesq equations have been used to simulate the damped shoaling wave 
transformation on a plane porous slope. Experiments were conducted in a 0.30 X 0.20 X 
11 .O m wave flume at the University of Tokyo. The set-up is shown in Fig. IOb. The 
physical model of the triangular porous bar has side slopes of 1: 20 and 1: 6.67 and was 
built from 0.67 cm natural gravel. Measured porosity was 0.44. The maximum h,/h is 
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2.9 at the apex of the bar. Eight capacitance-type wave gauges were placed to record the 
surface Idisplacements and two gauges (not shown) were used to resolve the incident and 
reflected waves using the two-point method of Goda and Suzuki (1976). In the 
experiment, incident waves were generated by a flap-type wave paddle at x = 0 and 
absorbed at the other end by a meshed screen. The following resistance equation of 
Sollitt and Cross (1972) is used for aI and (Y* in Eq. (26): 

( 108) 

where Y is the kinematic viscosity and C, the turbulent friction coefficient. The values 



148 E.C. Cruz et al./Coastal Engineering 30 (1997) 125-156 

0.8 

0.4 

g 0 

-0.4 

-0.8 

1 

s 
s 0.5 

- Linear theory 0 Computation . . . . . . . . . . . . . . . . ..______________________ ~... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I I , I I 1 0 

1 

P 
s 0 
s 

-1 

0.2 

3 0.1 

s 0 

s -0.1 

-0.2, 

- Linear theory 0 Computation 

0 2 4 6 8 10 

XILI 

(a> 

w 

(4 

(d) 

Fig. 9. Wave propagation on uniform porous bed. h, /h = I .O, R = 1 .O, Hi, /h = 0.02, h/L, = 0.10. 

used are: Y = 8.9 X 1O-3 cm2/s (at 25”C), c, = 0, K = 2.5 X 1O-4 cm2 and C, = 0.40. 
K and C, were extrapolated from the tabulated data of Sollitt and Cross (1972) using the 
measured gravel size. Computations were carried out under the same boundary condi- 
tions as in the preceding section, except that now the condition U, = 0 models the actual 
conditions at the ends of the domain. Results were obtained after the profiles have 
steadied. 

Results for three cases are shown in Figs. 10-12. Fig. 10 shows the measured and 
computed wave heights and profiles for an incident wave with small nonlinearity and 
intermediate dispersivity. In order to verify the phase property, the reference time t = 0 
for all stations was taken by lapping the measured and computed profiles at Station 1. 
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Fig, 10. Wave transformation on plane porous slope. H, = 2.2 cm, T = 1.02 s, Hi, = 0.125, h/L., = 0.108. 

The general trend of the damped wave height is predicted quite well by the model. The 
phase relation between the stations is well reproduced as the dispersivity of the incident 
wave is within the applicability bound of the basic equations. 

In Fig. 11, the incident wave nonlinearity is roughly doubled so that measurements 
indicated breaking around x = 5.8 m. In the calculation, the rear face of the bar was 
moved seaward as shown in (b) so that the minimum depth h at the apex allowed the 
wave to pass without breaking. The measured and computed profiles agree well at all 
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Fig. 11. Wave transformation on plane porous slope. Hi, = 4.3 cm, T = 1.00 s, Hi, /h = 0.246, h/L, = 0.115. 

stations except the last two which are nearest the breaking location. Measurements show 
that energy in the higher frequencies is released by the breaking process which seemed 
to have sltiwed down the primary wave. The wave height distribution is predicted well 
especially the rapid dissipation measured at stations on thicker porous layer, although 
this appears to be at the expense of underestimation of the initial shoaling effect. 

In Fig. 12, the incident dispersivity is small and the nonlinearity is high. Measure- 
ments at the resolution gauges indicated the presence of significant amplitude in the 
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Fig. 12. Wave transformation on plane porous slope. Hi, = 3.1 cm, T = 1.72 s, H, / h = 0.188, h/L, = 0.038. 

secondb harmonic (see profile at Station 1) caused by the nonlinear boundary conditions 
at the reflective wave paddle which were not simulated in the computations. This 
harmontic persists up to a distance from the toe, corrupting the profiles as far as Station 
5. From there, the damping effect of the porous bar dominates and efficiently damps the 
higher harmonic out of the domain Wave heights based on envelopes of measured 
profiles indicate that shoaling commences only after Station 4 while computation 
indicates that it began early on. The difference is explained by the fact that the shoaling 
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and damping elements in the model equations operate on different. freqnencies with 
different degrees and the existence of the higher harmonic seems to complicate which 
element is dominant in the initial stage. The distribution of wave height is still predicted 
quite well by the model. 

5.4. Wave transformation around submerged porous breakwater with an opening 

A practical application of the Boussinesq equations for porous beds is the simulation 
of the wave field around submerged porous breakwaters. To test the applicability of the 
equations, we conducted experiments on a 2.9 X 6.0 X 0.25 m wave basin at the 
University of Tokyo. The breakwater model consists of two 0.84 m wide trapezoidal 
mounds built from 0.67 cm gravel symmetrically disposed along the centerline. The 
bathymetry, normalized by the uniform depth to bottom, is shown in Fig. 13. The mound 
sides were sloped at 1 : 2 all around allowing a maximum opening of 0.74 m at the 
crown. The depth of water on the horizontal bottom was 14 cm and the porous thickness 
at the crown was 8 cm. Regular waves were generated by a flap-type paddle at the left 
end and absorbed by a meshed screen at the other end. The hydraulic properties of the 
porous medium are as they were in the preceding wave flume experiments. The sides of 
the basin were solid vertical walls where waves are completely reflected. Wave profiles 
were taken at 136 points in the symmetrical half around the lower mound. By assuming 
that these profiles are duplicated in the other half, the wave height distribution in Fig. 
14a, normalized by the incident wave height Hi,, was obtained for one non-breaking 
case. To resolve the incident and reflected waves, the method of Goda and Suzuki 
(1976) was used, aware of the fact that multi-directional waves existed everywhere in 
the basin. 

Fig. 13. Submerged porous breakwater bathymetry. 



E.C. Cruz et al./ Coastal Engineering 30 (1997) 125-156 153 

-80 

-120 

0 100 200 300 400 X (cm) 

Fig. 14. H/H, distribution. (a) Experiments. (b) Computation. 

Absorption of waves at the absorber end of the basin was implemented by attaching a 
transverse strip of energy-absorbing region beginning at x = 460. The properties of the 
absorber are: relative damping width F/h, = 10, maximum damping coefficient t9 = 
0.40, and damping distribution: linear. For a maximum reflection of 3%, the rough range 
of absorbable frequencies is h/L, = 0.04-1.0 which is sufficient even when wave 
decomposition occurs at the lee. Preliminary computations were carried out assuming 
that all sea-bound waves were completely radiated out of the domain. 

Fig. 14b shows the computed normalized wave heights for one trial run where the 
incident wave height and period were 1.48 cm and 0.82 s, respectively. The computed 
seaward wave field indicates the coexistence of oblique waves scattered by the opening, 
normal waves reflected by the mounds, and multi-directional outgoing waves reflected 
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Fig. 15. Sectional distributions of H/H,,. 

by the side walls. On the shallow crowns, the combined effects of mound-induced 
refraction, diffraction, depth-reflection, shoaling and porous damping, and wall-induced 
multi-reflection have resulted in the complicated wave pattern shown. The shoreward 
wave field is dominated by effects of diffraction and refraction by the mound and 
reflection from the walls. When compared with the measured wave height distribution, 
the computed result reproduces the gross features of the wave field quite well. The 
spatial distributions of wave heights along longitudinal and transverse sections are 
shown in Fig. 15. 

The difference in the computed and measured wave fields, particularly in the seaward 
region, is due to the neglect of the actual reflective condition at the wave generator that 
forced the sea-bound waves to return into the interior without substantial loss of energy. 
To properly simulate this condition, we have used an interior wave generation method 
together with an absorption region of minimal damping to induce the waves to propagate 
back into the domain. The quantitative improvements in the wave fields (not shown 
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here), especially at the seaward region, are considerable. Results and details that discuss 
this boundary treatment will be reported in a separate paper. 

6. Conclusions 

The main conclusions from this study are summarized as follows: 
A set of vertically-integrated time-dependent equations of continuity and momentum 

is derived to model the horizontally two-dimensional transformation of waves over 
porous beds on uneven bottoms. The equations incorporate the leading orders of wave 
nonlinearity and dispersivity and are applicable to weakly nonlinear, weakly dispersive 
waves. The form of the resistance equation of the porous medium has been generalized 
to include possible application to flows of high turbulence in field conditions. 

The applicability bounds of the basic Boussinesq equations for porous beds have been 
extended by improving the linear dispersion and spatial damping properties up to the 
deep water limit, By adding dispersion terms obtained from the lowest-order momentum 
equations and determining the two extension factors y and p thereby introduced such 
that the linearized equations significantly match the dispersion relation and damping 
rates o:f the linear theory for porous beds, the new Boussinesq equations can be used 
with y = l/18, /3 = l/l5 up to a relative depth h/L, = 0.50 and relative porous 
thickness /2,/h = 5. 

A numerical procedure for the two-dimensional implementation is discussed. The 
basic properties of the model are verified by performing computations for wave 
propagation on horizontal bottom of uniform thickness and comparing the results with 
theory. Under compatible conditions, the agreement is very good. The model is also 
tested for the simulation of damped shoaling wave transformation on plane porous slope 
and of the wave field around a submerged porous breakwater with an opening. The good 
agreement with the wave heights and profiles of the experiments verifies the applicabil- 
ity of the model. 

References 

Cruz, E.C., 1994. Modelling of nonlinear, dispersive wave transformation around submerged porous breakwa- 

ters. Doctoral dissertation. Dept. Civil Eng., Univ. Tokyo, 133 pp. 

Cruz, EC. and Isobe, M., 1994. Numerical wave absorbers for short and long wave modelling. In: hoc. Int. 

Symp. on Waves - Phys. and Num. Modelling, Univ. British Columbia, Vol. 2, pp. 992-1001. 

Cruz, E.C., Isobe, M. and Watanabe, A., 1992. Nonlinear wave transformation over a submerged permeable 

breakwater. In: Proc. 23rd Int. Conf. Coastal Eng.. Venice. ASCE, pp. 1101-l 114. 

Goda, Y. and Suzuki, Y., 1976. Estimation of incident and reflected waves in random wave experiments. In: 

Proc. 15th Int. Conf. Coastal Eng., Honolulu, HI. AXE, pp. 828-845. 
Gu, Z. and Wang, H., 1991. Gravity waves over porous bottoms. Coastal Eng., 15: 497-524. 

Horikawa. K. (Editor), 1988. Nearshore Dynamics and Coastal Processes. Univ. Tokyo Press, 522 pp. 

Isobe, M. and Kraus, NC., 1983a. Derivation of a third-order Stokes wave theory. Technical Report No. 83-l. 

Hydraulics Lab., Dept. Civil Eng., Yokohama National Univ., 37 pp. 

Isobe, h4. and Kraus, N.C., 1983b. Derivation of a second-order cnoidal wave theory. Technical Report No. 

83-2.. Hydraulics Lab., Dept. Civil Eng., Yokohama National Univ., 43 pp. 



156 E.G. Cruz et al./ Coastal Engineering 30 (1997) 125-156 

Isobe, M., Shiba, K., Ctuz, E.C. and Watanabe, A., 1991. On the nonlinear deformation of waves due to 

submerged permeable breakwaters (in Japanese). Proc. Coastal Eng. JSCE, 38(l): 551-555. 

Kioka, W., Kai, H. and Hiraoka, S., 1994. Nonlinear shallow water waves over a porous structure (in 

Japanese). hoc. Coastal Eng. JSCE, 41(l): 71 l-715. 

Kowalik, Z. and Murty, T.S., 1993. Numerical Modelling of Ocean Dynamics. World Scientific, Singapore, 

481 pp. 
Madsen, P.A. and Sorensen, O.R., 1992. A new form of the Boussinesq equations with improved linear 

dispersion characteristics. Part 2: a slowly-varying bathymetty. Coastal Eng., 18: 183-205. 

Madsen, LA., Murray, R. and Sorensen, O.R., 1991. A new form of the Boussinesq eqnations with improved 

linear dispersion characteristics. Coastal Eng., 15: 37 I-388. 

Mei, CC., 1989. The Applied Dynamics of Ocean Surface Waves. World Scientific. Singapore, 740 pp. 

Nwogu, 0.. 1993. Alternate form of Boussinesq equations for nearshore wave propagation, J. Waterw. Port 

Coastal Ocean Eng. ASCE, 119(6): 618-638. 

Peregrine, D.H., 1967. Long waves on beaches. J. Fluid Mech., 27(4): 815-827. 

Rojanakamthom, S., Isobe, M. and Watanabe, A., 1990. Modeling of wave transformation on submerged 

breakwater. In: Proc. 22nd hit. Conf. Coastal Eng., Delft, 1990. ASCB, pp. 1060-1073. 

Sawaragi, T. and Deguchi, I., 1992. Waves on permeable layers. In: Proc. 23rd Int. Conf. Coastal Eng., 

Venice. ASCE, pp. 1531-1544. 

Sollitt, C.K. and Cross, R.H., 1972. Wave transmission through permeable breakwater. In: Proc. 13th Int. 

Conf. Coastal Eng., Vancouver, B.C. ASCB, pp. 1827-1846. 

Witting. J.U., 1984. A unified model for the evolution of nonlinear water waves. J. Comp. Phys., 56: 203-236. 


