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ABSTRACT

Nearshore wave predictions with high resolution in space and time are needed for boating safety, to assess

flood risk, and to support nearshore processes research. This study presents methods for improving regional

nearshore predictions of swell-bandwave energy (0.04–0.09Hz) by assimilating local buoy observations into a

linear wave propagation model with a priori guidance from global WAVEWATCH III (WW3) model pre-

dictions. Linear wave propagation, including depth-induced refraction and shoaling, and travel time lags, is

modeled with self-adjoint backward ray tracing techniques. The Bayesian assimilation yields smooth, high-

resolution offshore wave directional spectra that are consistent with WW3, and with offshore and local buoy

observations. Case studies in the Southern California Bight (SCB) confirm that the nearshore predictions at

independent (nonassimilated) buoy sites are improved by assimilation compared with predictions driven with

WW3 or with a single offshore buoy. These assimilation techniques, valid in regions and frequency bands

where wave energy propagation is mostly linear, use significantly less computational resources than nonlinear

models and variational methods, and could be a useful component of a larger regional assimilation program.

Where buoy locations have historically been selected to meet local needs, these methods can aid in the design

of regional buoy arrays by quantifying the regional skill improvement for a given buoy observation and

identifying both high-value and redundant observations. Assimilation techniques also identify likely forward

model error in the Santa Barbara Channel, where permanent observations or model corrections are needed.

1. Introduction

Wind-generated gravity waves drive nearshore pro-

cesses, including beach erosion, along- and cross-shore

material transport, and oceanfront flooding, during high

water levels. High-resolution nearshore wave predictions

support beach and boater safety, coastal risk assessment,

and nearshore process research. Wave prediction errors

in coastal areas sheltered by islands and complex ba-

thymetry are sensitive to details of offshore wave di-

rections that are not well resolved by directional buoy

observations (Ochoa and Delgado-González 1990) or

global wave models (O’Reilly and Guza 1993; Rogers

et al. 2007; O’Reilly et al. 2016). However, observations

sheltered from varying directions can be included to

increase resolution (O’Reilly and Guza 1998), similar to

applications in acoustic and optics of inhomogeneous

media (Borcea et al. 2002). Though current operational

wavemodels—for example, SimulatingWavesNearshore

(SWAN) or WAVEWATCH III (WW3)—do not yet

assimilate local wave observations, progress is being

made. Recent developments (Veeramony et al. 2010;

Orzech et al. 2013) use variationalmethodologies, relying

on an adjoint model to propagate prediction misfits at

local observation sites backward to the model boundary.

An analytical adjoint (Walker 2006), developed originally

for synthetic aperture radar satellite observations, has

been extended to wave spectra (Veeramony et al. 2010);

however, simulations were limited to linear wave pro-

cesses (shoaling and refraction) and stationary conditions

with homogeneous boundary forcing. Numericalmethods

have been developed to estimate an adjoint by linearizing

the SWAN model (Orzech et al. 2013); however, initial

tests are restricted to linear wave processes and stationary

conditions. More recently, adjoint-free techniques have

been developed, though initial testing has been restricted

to synthetic data (Panteleev et al. 2015).

Linear wave propagation assumptions are valid for low-

frequency wave energy in many nearshore regions where

local fetch is limited and dissipation on a narrow shelf is

negligible, for example, the Southern California Bight

(SCB) (O’Reilly and Guza 1993; O’Reilly et al. 2016).Corresponding author: Sean C. Crosby, sccrosby@ucsd.edu

AUGUST 2017 CROSBY ET AL . 1823

DOI: 10.1175/JTECH-D-17-0003.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:sccrosby@ucsd.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


However, in regions as large as the SCB (;350km),

propagation time lags reach 12h and cannot be ignored

(Rogers et al. 2007). Here, we present an alternative

methodology for assimilating nearshore buoy observa-

tions that incorporates propagation time lags in a linear

wave model. The preliminary analysis of O’Reilly and

Guza (1998) (which includes time lags) is extended

to include global wave model (GWM) predictions.

A comparatively more general inversion framework is

developed that incorporates observation uncertainty and

a priori information. In contrast to recent assimilation

work with SWAN, our alternative approach takes ad-

vantage of self-adjoint ray projection. Using historically

underappreciated backward ray tracing techniques

(Dorrestein 1960; Longuet-Higgins 1957), linear transfer

coefficients between offshore and nearshore sites are

generated. The resulting linear model and adjoint for

wave energy propagation greatly reduce computational

expenses comparedwith variational systems (Veeramony

et al. 2010; Orzech et al. 2013) and allow for high spatial,

temporal, and directional resolution. Our case studies

with real buoy observations in the SCB show that in-

verted offshore wave conditions are plausibly smooth in

time and direction, and that the assimilation of nearshore

buoys increases the predictive skill at validation buoy

sites not included in the assimilation.

This linear approach is limited to wave conditions,

frequencies, and distances where dissipation and non-

linear spectral energy transfers are negligible. Offshore

GWM predictions in Southern California (spatial scales

of a few 100km) suggest that linear wave propagation

assumptions are valid for swell frequencies , 0.09Hz,

which contain 60% of the total offshore energy flux

(Crosby et al. 2016, appendixA).Assimilation of higher-

frequency observations requires more sophisticated

techniques, more similar to current variational meth-

odology (Orzech et al. 2013). However, the feasibility of

representing nonlinear wind-wave growth, dissipation,

and spectral energy transfers accurately in a numerically

tractable model adjoint remains to be demonstrated.

An assimilation method is developed to estimate off-

shore directional spectra from directional and non-

directional wave buoy spectral observations. The

assimilation treats each frequency band independently,

but it could be extended to use all frequency bands

simultaneously because of the method’s low computa-

tional costs. This would allow for assimilation of bulk pa-

rameters to the extent that non-swell-band energy

is negligible (e.g., satellite altimeter observations and high-

frequency radar during swell-dominated conditions).

Wave buoy observations are discussed in section 2,

followed by details of the linear forward problem in

section 3. The assimilation methodology (section 4) and

applications to synthetic and real observations (section 5)

are followed by a discussion of the model constraints and

implications for buoy array design (section 6). The paper

concludes with a summary (section 7).

2. Observations

Hourly, quality-controlled Datawell low-order energy

and directional buoy observations (Table 1) from the

Coastal Data Information Program (CDIP, http://cdip.

ucsd.edu) are smoothed in time with a 3-h running mean

at each observed frequency. A comparison with a tower-

mounted array of pressure sensors shows Datawell

directional buoys accurately measure energy and four

low-order directional moments (O’Reilly et al. 1996).

At the ith buoy mooring location, at each frequency f,

the observed moments ~y are related to the phase-

averaged wave spectrum E(f , u) by (Longuet-Higgins

et al. 1963)

~y(i, f )5

2
66666664

a
0
(f )
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1
(f )
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ð
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E(f , u) cosu duð
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E(f , u) sin2udu

3
777777777777777775

. (1)

TABLE 1. Deep-water and shallow-water buoys site CDIP and

NOAA identification numbers and mooring depth.

ID

CDIP

ID

NOAA

ID Name

Depth

(m)

Deep water

D1 071 46218 Harvest 550

D2 107 46216 Goleta 182

D3 111 46217 Anacapa 114

D4 028 46221 Santa Monica 363

D5 092 46222 San Pedro 457

D6 096 46223 Dana Point 373

D7 045 46224 Oceanside 220

D8 100 46225 Torrey Pines 550

D9 093 46231 Mission Bay 201

D10 095 46226 Point La Jolla 181

Shallow water

S1 131 — Rincon Point 20

S2 141 46234 Port Hueneme 20

S3 118 — Leo Carillo 20

S4 172 46230 Huntington Beach

nearshore

20

S5 043 46242 Camp Pendleton 20

S6 155 46235 Imperial Beach 20
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These integral moments, ~y, of the directional wave spec-

trum can be transformed into several mean properties, for

example,meandirection um, directional spread, andothers

(Kuik et al. 1988), but they do not define a unique discrete

directional spectrum (Ochoa andDelgado-González 1990;
Crosby et al. 2016). Additionally, observed buoymoments

contain statistical uncertainty owing to finite-length ob-

servation records (Long 1980; see also the appendix).

Buoy locations in the SCB (Fig. 1) were determined

by user needs (e.g., harbor entrances) and logistics (e.g.,

mooring depth constraints). Shallow- (;20m) and deep-

water (.300m) buoys are denoted by S# and D#,

respectively.

3. Forward problem

In the SCB the continental shelf is narrow, and the swell

wave forward model includes island sheltering and

bathymetry-controlled refraction, and neglects wind gen-

eration, spectral energy transfers, wave–current inter-

actions, and dissipation. These assumptions are justified

by observations in the SCB (O’Reilly and Guza 1993;

O’Reilly et al. 2016) and modeling studies in the Pacific

Northwest (García-Medina et al. 2013), where the shelf is

also narrow.Under these assumptions nearshoremoments

are linearly related to the offshore wave spectra E by

y( j, i, f )5

ð
K( j, i, f , u)E( f , u) du , (2)

where K contains transfer coefficients for the observed

moment j, location i, frequency f, and offshore direction u.

Transfer coefficients are estimated by modeling

refraction and shoaling using backward ray tracing

techniques (Longuet-Higgins 1957; Dorrestein 1960).

Ray propagation paths, traced following Snell’s law

as phase velocity changes with depth, are self-

adjoint—that is, both forward and backward tracing

will follow the same path. Advantageously, backward

ray tracing sidesteps issues with caustics (Dorrestein

1960) and allows for rapid analysis for locations of in-

terest. Here, rays are traced from nearshore buoy sites

to deep-water offshore. Rays terminating at the

coastline or offshore islands indicate blocked or shel-

tered directions, while those arriving at deep water

indicate unsheltered directions. Temporarily ignoring

energy travel time lags, from linear theory and geo-

metric optics (Dorrestein 1960), transfer coefficients

are estimated from the relation between initial and

terminating ray angles,

K( f , u(o))5
c(o)g ( f )

c
(n)
g ( f )

ð����Du(n)Du(o)

����b du(n) , (3)

FIG. 1. SCB mooring locations of D and S, and other wave buoys operated by CDIP. Gray contours show 20-, 50-, 200-, and 500-m

isobaths.
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where cg is the group velocity, u are ray directions, and

(o) and (n) indicate offshore and nearshore properties,

respectively. Terms Du(o) and Du(n) indicate the change

in angle for adjacent rays terminating at the offshore and

starting from the nearshore, respectively. The observing

kernel b transforms to observed moments, and for

directional buoy observations [(1)] is

b5

2
666664

1

cosu(n)

sinu(n)

cos2u(n)

sin2u(n)

3
777775 . (4)

At sheltered locations the relationship between u(o)

and u(n) can be complicated, for example, highly shel-

tered buoy D3 and moderately sheltered buoy D8

(Fig. 2a). Owing to refraction over shoals and island

topography, waves with the same offshore direction can

arrive at several nearshore directions (e.g., for D8 when

u(o) 5 2308, u(n) 5 230, 255, 2858). Though u(n) versus u(o)

is not monotonic, careful integration over discrete

u(o) ranges of (3) can yield accurate transfer coefficients

(Dorrestein 1960). For a fixed frequency, K contains

many relatively narrow peaks and valleys (individual

gray curves in Fig. 2b). Transfer coefficients are gener-

ated at fine frequency (0.0005Hz) and directional (,18)
resolutions, and are averaged to 0.005Hz, the buoy

observational bandwidth for swell, and 18, our desired
directional resolution. The remaining finescale features,

often with adjacent peaks and valleys (black in Fig. 2b),

are blurred by the low-order moment-measuring buoys.

Hereinafter, (o) and (n) are dropped and u now refers

only to offshore wave directions. Additionally, the linear

forward problem is solved independently at each fre-

quency, and f is dropped for brevity.Nearshore directional

buoy moments are related to offshore wave spectra by

~y(i)5

ð
K(i, u)E(u) du, (5)

and discretized in direction, in matrix form, the forward

problem becomes

~y5 ~Hx , (6)

where transfer coefficients form the model kernel ~H

with rows indicating buoy locations and measured

moments, and columns indicating directions. The vec-

tor ~y comprises buoy observations at i locations, and

the vector x is the offshore directional spectrum E(u).

Expected forward model error is not treated formally

and will be absorbed into data misfit (section 5b).

The model resolution matrix is res(~H)5 ~H2g ~H, where

~H2g 5 ~HT(~H~HT)21, the generalized inverse of the time-

invariant version of the forward problem (i.e., time lags are

neglected). For a perfectly resolved model res(~H)5 I,

where I is the identitymatrix. Inmost practical systems, the

nonzero off-diagonal elements of res(~H) represent blur-

ring of the true model solution (Parker 1994), while in a

well-resolved system the diagonal values of res(~H) are

near unity. Transfer coefficients for deep-water buoy sites

D1–D8 (Fig. 3a), those with the longest records, are used

FIG. 2. (a) Nearshore ray angle vs offshore ray angle for 0.07Hz.

Rays are traced backward to deep water from buoy sites D3 and D8.

Slope of the u(s) vs u(o) relation (Gray dashed line shows 1-to-1 slope)

indicates focusing (.1) and sheltering (,1). Missing rays indicate

blocked (sheltered) directions. Integration at 18 resolution yields

(b) energy transfer coefficients at buoy sites D3 and D8. Estimates at

finely spaced frequencies (light shading, 0.0675–0.0725Hz at 0.0005-Hz

spacing) are averaged to represent each frequency band (dark lines).
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to estimate res(~H) (Fig. 3b). At 18 resolution, the diagonal
values of res(~H) vary widely, ranging from 0.2 to 0.8, with

low values indicating blurring across directional bands.

The available buoy array (D1–D8) has the highest theo-

retical resolution between 1608–1808 and 2408–2808,
where site transfer functions are most orthogonal.

The theoretical resolution is low at directions .3008 be-
cause only a single buoy site—D1—is exposed.While this

procedure could determine the array with the best the-

oretical resolution, the important effects of observational

uncertainty and forward model error are not captured.

In (5) wave energy travel times are neglected but are as

large as 12h in the ;350-km model domain. Time lags

t(u) are estimated from great circle paths between the

nearshore prediction site and the offshore wave energy

front at buoy site D1 for each arrival direction (Fig. 4a)

following previous studies (O’Reilly et al. 2016, Fig. B1).

Lags are smallest when the line connects observation and

prediction sites, and the wave propagation direction is

parallel. A perpendicular line yields the largest lags. For

southwest arrival directions lags are negative; the more

southerly sheltered buoys lead the offshore buoy D1

(Fig. 4b).Although great circle lag estimates ignore details

of actual ray paths, the differences are typically smaller

than the model time step (1h). Additionally, significant

prediction errors in peak arrival timingwere not observed.

Offshore wave energy is assumed to be homogeneous

in the along-crest (alongfront) direction (Fig. 4a), a val-

idated assumption in the SCB for frequencies ,0.09Hz

(Crosby et al. 2016, appendix A). Though possible to

allow heterogeneous wave conditions in the along-crest

direction, the increase in boundary condition and for-

ward problem complexity does not make a difference

for low-frequency energy where this assumption holds.

Including time lags in (5) and assuming along-crest

homogenous incoming energy fronts, the forward

problem becomes

~y(i, t)5

ð
K(i, u)E[u, t2 t(u)] du. (7)

Predictions at any given time and nearshore location

depend on offshore spectra at many recent times be-

cause waves at each frequency arrive from a range of

directions (t depends on u). The time-dependent for-

ward problem is discretized at 1-h time steps, and similar

to (6) in matrix notation is

Hx5 y , (8)

whereH contains buoy site transfer coefficients. Rows of

H span nearshore locations, buoy-measured moments,

and time steps, while columns span offshore directions

and time steps, lagged appropriately by t(u) (rounded to

the nearest hour). The time-dependent forward problem

[(8)] is that of O’Reilly and Guza (1998), but computa-

tional advances allow for higher estimates of directional

(18) and temporal (1 h) resolution of offshore spectra.

4. Inverse problem

The forward problem [(8)] is underdetermined and

observations are noisy. Solutions are therefore non-

unique (Ochoa and Delgado-González 1990; Parker

1994). A unique solution is obtained by minimizing the

log-likelihood cost function (notation of Ide et al. 1997),

FIG. 3. (a) Time-invariant transfer coefficient vs offshore di-

rection at deep-water SCB buoy sites (labeled) at the 0.07-Hz band

for energy, ao, (black), and directionalmoments: a1 (blue), b1 (red),

a2 (yellow), and b2 (purple). (b) Diagonal values of resolution

matrix, res(~H), vs offshore direction.
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J 5 (Hx2 y)TR21(Hx2 y)1 (x2 x
p
)TB21(x2 x

p
) ,

(9)

and requiring nonnegative energy,

x$ 0. (10)

The solution minimizes the squared sum of the nor-

malized misfit to observations y and the normalized

adjustments to model prior xp (Wunsch 2006; Aster

et al. 2013) under the assumption that observation and

model prior uncertainty are normally distributed. The

first rhs term of (9), the data misfit, is weighted by R21,

the data error covariance inverse. Term R is known

for directional buoy observations (Long 1980;

Borgman et al. 1982); however, off-diagonal data co-

variance terms are set to zero for simplicity (see the

appendix), increasing the assumed observational un-

certainty and likely biasing slightly the least squares

solution. The second rhs term of (9) is the adjustment

to the model prior, where xp denotes the WW3 di-

rectional spectra predictions from the National Oce-

anic and Atmospheric Administration’s 1979–2009

hindcast reanalysis (Tolman 2009; Chawla et al. 2013).

Complete frequency-directional WW3 spectra at

buoy site D1 are linearly interpolated to our model

resolution (18 and 1 h) and are additionally linearly

interpolated from their logarithmic frequency reso-

lution to typical buoy swell-band resolution

(0.005Hz).

We posit that WW3 accurately predicts incoming

wave directions because storm locations are well defined

by satellite wind observations that drive global wave

models. In contrast, model swell energies and detailed

directional properties depend on many modeling ap-

proximations, and they may have significant error.

Therefore, before specifying xp with interpolated WW3

predictions, two adjustments are made using energy

observed at offshore buoy site D1. First, for each 4-day

case study, WW3 predictions are shifted in time to

achieve maximum correlation with observed energy at

buoy D1 (shifts in case examples are #3 h). Second,

WW3 spectra energy at each f are adjusted to D1

observations.

The prior adjustment in (9) is weighted by the prior

uncertainty covariance B, where

B5WCW , (11)

is constructed by weighting the model uncertainty

correlation matrix C with the diagonal matrix W, con-

taining the standard deviations sx of xp uncertainty.

Although the uncertainty inWW3 bulk parameters can

be estimated by comparison with buoy observations—

for example, the RMSE of WW3 offshore um in the

SCB is ;108 for swell-band waves (Crosby et al.

2016)—the uncertainty of xp at each directional bin is

unknown.

The hypothesis of accurate WW3 predictions of peak

wave directions is implemented by specifying sx with the

convolution,

s
x
(u)5a

ð
B(u0)x

p
(u2 u0) du0 , (12)

FIG. 4. (a) Schematic illustrating homogeniety assumption and time lag estimation between sites. (b) Time lag vs

offshore direction for travel time between nearshore buoys D3 andD8 to offshore site D1 for 0.07-Hz energy. Note

directions in Earth-relative compass coordinates.
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where a is a constant O(1) and B(u0) is a boxcar,

B(u0)5
�
1/2L

B
, if ju0j,L

B

0, otherwise
. (13)

In the limit LB 5 18 (the model resolution), the un-

certainty simply scales with the predicted energy level.

However, with LB . 1 the convolution in (12) increases

uncertainty around the predicted peak direction and will

ultimately allow the inversion to increased freedom to

shift energy between directional bins. Values of a5 0:5

and LB 5 258 produced plausible uncertainties, for ex-

ample, see the gray shading around the dotted–dashed

spectrum in Fig. 5.

Model smoothness is specified in C by a Gaussian

decay function,

C(Du,Dt)5 exp

"
2

�
Du

L
u

�2

2

�
Dt

L
t

�2
#
. (14)

The decay constants Lu and Lt define model

smoothness scales in direction and time, respectively,

and likely vary by frequency and storm location

(e.g., distant storms vs local seas). Decorrelation

length scales, estimated from WW3 predictions {best

fit to the Gaussian decay function [Eq. (14)]}, range

from 10 to 30 h and from 168 to 208 with some de-

pendence on frequency band (Fig. 6) but weak cross

correlation between direction and time (not shown).

Ultimately, weak sensitivity to decay constants was

observed in our case examples (sections 5b, 6b).

Matrix C is challenging to invert because it is not di-

agonal, is often poorly conditioned, and is large (O 104 3
104) for a 4-day time span at 1-h and 18 resolution). The
number of model parameters is reduced by transforming

to a truncated orthogonal eigenvalue space. Though not

computationally trivial, the decomposition of C is

performed only once for each set of smoothing param-

eters Lu, Lt needed. Matrix C is valid for any 4-day time

span and is easily scaled by W to form B. Alternatively,

decomposing C in time and direction independently

significantly reduces computational demands (C is sep-

arable in these dimensions), and would allow for addi-

tional smoothness constraints across frequency and the

assimilation of frequency-integrated observations, such

as satellite altimeter Hs observations. In either case the

FIG. 5. Synthetic example of the assimilation technique: (a) energy vs direction at 0.06Hz for plausible bimodal

wave conditions. Synthetic observations are created with true spectra (black) run through the time-invariant for-

ward problem [Eq. (6)] and perturbed by expected uncertainty in a 3-h record (see the appendix). Model prior

(dashed–dotted line) and associated 1s uncertainty (gray shading) are used with various combinations of synthetic

buoys observations (refer to text) to solve for the offshore spectra (colored lines). (b) Prediction errors at validation

sites (D2, D3, D4, D7, S2, S6) for offshore spectra estimates vs the number of buoys included in the estimate [colors

correspond to spectra in (a)]. Shown are energy RMSE (%, solid black line) and um RMSE (8, dashed gray line).
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methodology remains the same: before truncation, the

decomposition of C yields

C5VDVT , (15)

where the diagonal matrix D contains eigenvalues and V

contains the orthogonal eigenvectors. The model co-

variance matrix is now

B5WVDVTW , (16)

with formal inverse,

B21 5W21VD21VTW21 , (17)

where only diagonal matrices need be inverted. With

Lu $ 258 and Lt $ 6 h, solutions truncated after the

largest 500 eigenvalues are accurate and are denoted

with subscript k, where

B21
k 5W21V

k
D21

k VT
kW

21 . (18)

The truncated xk and original models are related by

x
k
5VT

kW
21x and x5WV

k
x
k
, (19)

and truncated model kernel is similarly related,

H
k
5HWV

k
. (20)

The cost function becomes

J 5 (H
k
x
k
2 y)TR21(H

k
x
k
2 y)

1 (x
k
2 x

pk
)TD21

k (x
k
2 x

pk
) , (21)

with the altered nonnegativity constraint,

WV
k
x
k
$ 0. (22)

In equivalent form (Aster et al. 2013) minimization of

�����
"
R21/2H

k

D21/2
k

#
x
k
2

"
R21/2y

D21/2
k x

pk

#�����
2

(23)

is rapid (5min on a Pentium i7 4-core laptop) using

quadratic programming techniques (MATLAB Opti-

mization Toolbox). The numerical accuracy of the so-

lution to (23) without the nonnegativity constraint [(22)]

is confirmed by good agreement to the unconstrained

analytical solution (Wunsch 2006),

x*5BHT(HBHT 1R)21y . (24)

The minimum solution to (21) with (22) was slightly

negatively biased at the offshore buoy site D1 because

event peak energies are consistently underpredicted

owing to the smoothness constraint and proportionality

of observed energy uncertainty to itself (see the appendix).

The bias is corrected with the additional constraint

that the event-averaged offshore inverse and observed

energy (D1) match. This constraint is applied only at

offshore site D1 because forward model errors and

observational uncertainty preclude satisfaction at all

buoy locations.

5. Case studies

a. Synthetic observations

A synthetic case study of the time-invariant forward

problem (for simplicity) demonstrates that the mini-

mum solution to (21) with (22) behaves as expected,

given the forward model assumptions (e.g., linear wave

propagation, along-crest homogeneity, and no wave

reflection) are satisfied. A plausible offshore directional

spectrum (inspired by WW3 predictions) is used to

represent the true offshore energy distribution for an

example frequency band, 0.06Hz (solid black in Fig. 5a).

The forward problem, ~H, is created with the set of

transfer coefficients at a synthetic buoy site using

backward ray tracing. Synthetic buoy observations are

generated using (6) with the true offshore spectrum and

are perturbed randomly by the expected observational

uncertainty for a 3-h buoy record at 0.005-Hz frequency

resolution (see the appendix). Additionally, xp is

FIG. 6.WW3 time (solid line, left axis) and direction (dashed line,

right axis) decorrelation length scales vs frequency. Decorrelation

length scales are determined by best fit toGaussian [Eq. (11)] of the

WW3 autocorrelation function.
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generated by shifting the true directional distribution

(dashed–dotted line in Fig. 5a). The model covariance is

estimated with Lu 5 258, LB 5 258, and a5 0:5, and is

decomposed into an orthogonal eigenvalue space and

truncated. Estimated offshore spectra, minimizing (21)

with (22), are found using various combinations of syn-

thetic buoy observations (and corresponding forward

problem), specifically one buoy: D1; two buoys: D1, D5;

three buoys: D1, D5, D6; and four buoys: D1, D5, D6, D8

(colored lines in Fig. 5a). As additional buoy observations

are assimilated, solutions become increasingly similar to

the true spectrum (despite relatively large directional

error in xp) and prediction errors in energy and um de-

crease compared to xp predictions at nonassimilated

(validation) synthetic buoy sites (D2, D3, D4, D7, S2, S6)

(Fig. 5b).

b. Real observations

Case studies with real buoy observations demonstrate

the assimilation method’s skill in practice, where forward

model assumptions are necessarily violated to some ex-

tent. Six moderate to large Pacific Northwest (NW) wave

events were selected (Table 2), and various combinations

of buoys were used in the assimilation. For simplicity, the

additionally available offshore buoy observations, San

Nicolas Island and Point Loma buoys (Fig. 1), used to

drive CDIP’s operational wave predictions (O’Reilly

et al. 2016), are not included. Each 4-day period, brack-

eting the event, was analyzed at 1-h and 18 resolutions.
The first and last 12h of solutions to (21) are truncated to

allow for complete propagation across the domain (e.g.,

12-h travel time). For each wave event, inverse offshore

spectra (INV) were found that minimize (21) with (22)

using varying sets of regional buoy observations and ad-

justed WW3 predictions at buoy D1.

Tests with Lu 5 258, Lt 5 6 h, LB 5 258, and a5 0:5,

and all available buoy observations generated plausibly

smooth offshore spectra, withmodest adjustments to the

model prior. For example, the INV spectrum at peak

frequency in case 4 (Fig. 7c) is similar to the adjusted

WW3 spectrum (Fig. 7b) but with more directional

asymmetry, increased temporal smoothness, and some

additional features. The misfit between predictions by

INV spectra (INV predictions) and buoy observations

used in the minimization are generally small (right

panels of Fig. 7). Notable exceptions are buoys D2 and

S2, where peak observed wave energy is more than twice

that predicted by INV and WW3.

INV spectra with smoothing constants as above and

all available buoy observations (availability varies with

the case study; Table 2) are generated for all cases at all

swell-band frequencies. Frequency-integrated and time-

averaged observed and INV-predicted energies (Fig. 8)

show good agreement inmany cases, but they highlight a

particularly severe bias (misfits up to three standard

deviations) at buoys D2 and D3, both located in the

eastern half of the Santa Barbara Channel (Fig. 1).

These deep-water buoys are highly sheltered from NW

swell by Point Conception, and we hypothesize forward

model errors are large. Relaxation of smoothness con-

straints—for example, Lu 5 108 and Lt 5 3 h—improved

fits negligibly (not shown) and suggest that no plausibly

smooth spectrum exists that can fit all observations

within their uncertainty. Santa Barbara Channel near-

shore buoys S1 and S2 are also biased low (Fig. 8) and

the persistent negative bias in the region suggests that

additional energy may be directed into the Santa Bar-

bara Channel by diffraction around Point Conception,

reflection off the Channel Islands, or refraction by

surface currents. Additionally, previous studies suggest

waves in the SBC are difficult to model accurately

(Rogers et al. 2007; O’Reilly et al. 2016; Crosby et al.

2016). Buoy S4, located just offshore of Huntington

Beach, is also poorly fit in case 2, but more cases are

needed to determine whether there is systematic for-

ward model error at this site.

6. Discussion

a. Assimilation method skill

Nearshore prediction skill can likely be improved by

corrections to the forward model physics, but only

TABLE 2. Mean RMSE of Hs and um at validation buoy sites for each case study with WW3, INV, and MEM boundary conditions. INV

solutions estimated with buoys D1, D5, D6, and D8 included in the inversion.

Case Dates Validation sites

Peak

Hs (m)

Peak

Freq (Hz)

RMSE –Hs (m) RMSE– um(8)

WW3 INV MEM WW3 INV MEM

1 11–15 Jan 2004 D4, D7, D10, S3 3.0 0.06 0.27 0.13 0.18 6.5 3.0 4.3

2 20–24 Dec 2005 D4, D7, S1, S4 4.9 0.06 0.36 0.21 0.27 7.6 5.9 7.5

3 26–30 Dec 2006 D4, D7, D9, S1, S6 7.0 0.07 0.29 0.23 0.43 5.4 5.3 9.7

4 11–15 Jan 2008 D4, D7, D9, S2, S6 3.1 0.06 0.24 0.19 0.28 7.4 3.9 5.9

5 9–13 Feb 2008 D4, D7, D9, S2, S6 3.2 0.05 0.19 0.13 0.17 12.3 4.6 8.0

6 12–16 Nov 2008 D4, D7, D9, S5, S6 2.2 0.08 0.32 0.21 0.30 7.4 5.7 10.0
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boundary condition corrections are considered here.

Buoys D2 and D3 are excluded from the following

analysis because of large forward model error. Assimi-

lation of these sites may degrade boundary condition

corrections and increase prediction errors at other

locations. The skill of INV solutions with selected as-

similated sites (D1, D5, D6, D8) is assessed with

comparisons of predictions and observations at non-

assimilated (validation) buoy locations. By design,

improvement is expected at assimilated buoy sites

(Fig. 7); however, skill improvement at validation sites

suggests that the INV offshore spectrum is increasingly

accurate and that prediction skill improvement is

regionwide. For all cases, assimilation improves skill for

swell-band-integrated bulk wave parameters,Hs and um
(Table 2). Both Hs and um RMSEs are reduced by

20%–50% relative to WW3 when buoys sites D1, D5,

D6, and D8 are assimilated. Assimilated model skill is

also higher than predictions made with observations at

D1 and the maximum entropy method (MEM; Lygre

and Krogstad 1986), a commonly used technique to es-

timate directional spectra from buoy directional

FIG. 7. (left) Offshore directional spectra and (right) energy observations and predictions at buoy sites vs time at

the 0.06-Hz swell-band frequency for a wave event during January 2008 (case 4). Gray shading indicates obser-

vational uncertainty at the 95% confidence level. (a) WW3 spectra, (b) WW3 spectra are shifted 1 h backward in

time and adjusted to match total energy observed at buoy D1, and (c) INV spectra generated using all buoy

observations (left) and adjusted WW3 spectra in the minimization of (23) with Lt 5 6 h, Lu 5 258, a5 0:5, and

LB 5 25. The largest misfits to buoys D2 and S2 are likely owing to forward model errors in the eastern SBC.
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moments. MEM is currently used in CDIP’s operational

wave but with a heuristic blend of multiple offshore

buoy observations (O’Reilly et al. 2016). Here, INV

predictions are overall most highly skilled, followed by

MEM and WW3 predictions.

b. Model prior, B

The model prior and model covariance uncertainty

select a solution from a theoretically infinite set by im-

posing desired characteristics, for example, smoothness

and similarity to a preferredmodel. Smoothness is set by

C, parameterized by a Gaussian decay function [(14)],

with two adjustable parameters, Lu and Lt. WW3 spec-

tra predictions suggest that decorrelation length scales

in time and direction increase slightly with frequency

and range from 10 to 28h and from 168 to 218 (Fig. 6).
The trend in temporal decorrelation scale may appear

counterintuitive, as low-frequency energy from distant

storms may persist for days, whereas local-generated

seas vary over hours. However, owing to the dispersion

of low-frequency energy over long travel distances, en-

ergy at very low frequency (e.g., 0.05Hz) decorrelates

more quickly than high frequencies (e.g., 0.09Hz).

INV solutions were generally insensitive to variations

over the following parameter ranges: 108#Lu # 408,
3 h#Lt # 18 h, 0:25#a# 1, and 258#LB # 508. Ulti-

mately, Lu 5 258 was chosen because it yielded slightly

higher prediction skill, Lt 5 6 h because it agreed well

with time scales in regional buoy observations, and

LB 5 258 and a5 0:5 because the specified model prior

uncertainty appeared plausible (e.g., Fig. 5). Optimal

parameter values vary by frequency and event, and

variable parameter values were also considered; Lu was

set on an event-by-event, frequency-by-frequency basis

to the directional decorrelation of WW3 predictions.

However, changes in INV skill were small.

The model prior uncertainty sx controls the influence

of WW3 predictions in the INV solution. Previous

studies, with an effectively constant sx, were plagued

with spurious directional peaks from unlikely directions

(Long and Hasselmann 1979; Crosby et al. 2016). The

present sx parameterization [(12)] harshly penalizes

energy far from peak energy in WW3 predictions (note

the lack of spurious energy in Fig. 7c). Improved esti-

mates of sx would undoubtedly help constrain offshore

wave conditions in regional assimilations but require a

high-resolution ground truth.

The assumption of Gaussian statistics throughout the

inversion framework makes the search for a solution

within a large model space computationally feasible.

Although buoy-measured moments [(1)] are x2 distrib-

uted, for the present high degrees of freedom (196 given

3-h 0.005-Hz data; see the appendix) the x2 distribution

is well approximated as Gaussian. Gaussian uncertainty

is formally inconsistent with the nonnegativity on the

INV solutions (e.g., gray shading of uncertainty in

Fig. 5). However, the effect is likely small because

solutions without the nonnegativity constraint in (24)

contained relatively small amounts of negative energy

(;10%).

c. Implications for buoy array design

Anoptimal operational array balances buoy value and

cost. Buoy costs depend on ease of servicing, mooring

depth, exposure to shipping and fishing, and other fac-

tors. Buoy value depends on site-specific local factors

(e.g., nearby port), and more generally on the im-

provement in local and regional model skill. Offshore

buoys are of primary importance to regional prediction,

providing unsheltered deep-water observations free

from forward model errors and several hours before

waves arrive at the coast. Energy travel time lags in the

SCB vary with wave direction, and both a southerly lo-

cated buoy (e.g., Point Loma) and a northerly located

buoy (e.g., Harvest) are needed to provide nowcast and

short-term forecast predictions (O’Reilly et al. 2016).

In smaller regions one offshore buoy may be sufficient.

Nearshore buoy locations have historically been de-

termined by funding sources and local community

needs. Assimilation methods estimate the overall added

predictive skill and help assess optimal buoy placement.

FIG. 8. Predicted vs observedE, integrated across swell frequency

bands and temporally averaged, for each case study. Predictions

with INV solutions use all available buoy observations. Some ob-

servations are not well fit by the INVmethods and indicate forward

model errors, e.g., D2, D3, S1, S2, and S4.
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Our case studies are not comprehensive, but initial

analysis suggests that assimilation of nearshore buoy

D8 yields the largest improvement in overall swell

prediction (mainly Hs), given that offshore buoy D1

is included (Fig. 9a). Both Hs and um RMSE are

reduced at validation sites as additional buoy obser-

vations are assimilated (Fig. 9a), and these in-

cremental improvements help quantify the value of

each additionally buoy. Here, Hs RMSE reduction is

negligibly small after buoys D1 and D8 are assimi-

lated, and um RMSE reduction is negligible after D1

is assimilated.

Accurate unbiased directional buoy observations

have historically been difficult and expensive to ac-

quire. Some buoy directional moments contained bias

(e.g., the National Data Buoy Center 3-m discus;

O’Reilly et al. 1996). More recently inexpensive GPS

sensors have been shown to yield accurate energy

spectra and second-order directional moments but

poorly resolve vertical motions, resulting in biased first-

order directional moments (Herbers et al. 2012). While

the high value of accurate offshore directional mo-

ments for regional swell prediction is clear (O’Reilly

et al. 2016; Crosby et al. 2016), our analysis suggests less

value for nearshore directional information. RMSE

errors for INV predictions generated with and without

assimilation of nearshore directional buoy observa-

tions are similar (Fig. 9a). Note that directional ob-

servations from offshore buoy D1 are included in both

inversions. Regional skill is most efficiently improved

by D1 energy and directional observations, and D8

energy observations. The negligible improvement in

regional skill by nearshore directional information may

be attributed to 1) the lack of shoreline reflection in the

forward model (shoreline incident energy is assumed to

completely dissipate) that affects directional observa-

tions significantly more than energy (Herbers et al.

1999; Crosby et al. 2016); and/or 2) increasingly shel-

tered regions’ directional observations becoming

nearly redundant to energy observations because

waves arrive from a single known direction. The only

useful information is the magnitude and timing of ar-

riving energy; the arrival direction is already known.

Although adding relatively little to regional swell pre-

diction (given the nonreflective, linear forward model),

directional nearshore observations may provide useful

local wave information, for example, providing robust

estimates of local radiation stress (Longuet-Higgins

and Stewart 1964).

Theoretically, additional buoy observations add the

most skill to regional swell prediction when their

offshore transfer functions (Fig. 3) are most unique,

providing additional constraints on the offshore

spectrum. The mean array resolution (Fig. 9b) is es-

timated by averaging the res(~H) diagonal weighted by

the 2000–09 WW3 offshore spectra climatology (re-

solving power is needed most at the most common

arrival directions). Perhaps fortuitously, the mean

resolution indicates the largest theoretical improve-

ment from buoy D8 given D1, the same result ob-

served in the case studies with real observations. This

analysis focuses on existing buoy sites, applicable to

identifying redundant observations and regions of

significant forward model error. If the forward model

is trusted, then ideal buoy sites could be determined

by the added theoretical resolution, similar to

O’Reilly and McGehee (1994). However, the forward

model fails in some locations (e.g., east end of SBC).

Short-term buoy deployment (e.g., 1–2 years) at se-

lected sites could identify regions where the forward

FIG. 9. The (a)Hs (black, left axis) and um (red, right axis) RMSE

of INV predictions at specified validation sites (Table 2) averaged

across all cases vs varying combinations of assimilated buoy obser-

vations (Lt 5 6 h, Lu 5 258, a5 0:5, and LB 5 25). ‘‘None’’ corre-

sponds to the unadjusted WW3 prediction and has the largest errors.

Solid lines show assimilation of nearshore buoy observations, in-

cluding directional moments, while dashed lines show assimilation

of only nearshore buoy energy observations. Overall error is reduced

with additional buoy observations, and assimilation of nearshore

directional observations haveminimal impact. (b)Mean of the res(~H)

diagonal weighted by the 2000–09WW3 offshore spectra climatology

for the given buoy array (x axis).
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model succeeds and fails, and where local observa-

tions add the most value to swell prediction region-

wide. This application of our inverse methods is

preliminary; the incorporation of multiple offshore

buoy sites, the addition of shoreline reflection

(Ardhuin and Roland 2012), and the comprehensive

analysis of additional observations are needed.

7. Summary

We developed methods to improve nearshore swell-

band wave prediction by assimilating nearshore di-

rectional buoy observations of frequency spectra and

offshore global wave model (GWM) spectra pre-

dictions. Assimilation yields accurate high-resolution

(direction and time) offshore wave spectra and accurate

high-resolution (space and time) coastal wave pre-

dictions. Methods use linear (shoaling and refraction)

wave propagation assumptions, valid on narrow conti-

nental shelves—for example, the U.S. West Coast—at

swell-band frequencies (0.04–0.09Hz). The linear wave

energy propagation model, generated with backward

ray tracing techniques, requires minimal computation

and enables relatively rapid assimilation (compared

to 4DVAR techniques). Regional prediction skill

improvements are relatively insensitive to user-

determined constraints. Nearshore buoy observations

poorly fit by assimilated offshore spectra identify sites

where significant wave physics are likely missing from

the linear forward model. Overall, regional swell pre-

diction errors are reduced by approximately 30% when

observations are assimilated, and incremental im-

provements become insignificant after two to three

buoys are assimilated. Varying the buoy observations

included in the assimilation provides insight into optimal

array design for regional nearshore swell prediction.

The Bayesian framework of the assimilation advanta-

geously incorporates prior information easily, for

example, offshore GWM spectra predictions. Future

improvements to GWM predictions, and an improved

understanding of their uncertainty, will ultimately

improve regional prediction skill. Though methods are

restricted to regions and frequencies where wave prop-

agation is approximately linear, these computationally

rapid methods could be incorporated into a larger

assimilation scheme, providing estimates for low-

frequency energy and/or a first guess for more sophisti-

cated nonlinear techniques.
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APPENDIX

Observation Uncertainty

Buoy observations ~y are derived from cross spectra

of vertical and horizontal translations. Typically, di-

rectional moments (a1, b1, a2, b2) are normalized to

reduce instrument gain errors (Long 1980); however,

here unnormalized moments are used such that
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where S, C, Q are power spectra, cospectra, and quad

spectra of buoy translations in vertical (z) and horizontal

(x, y) motions, respectively (Longuet-Higgins et al. 1963).

The variance of ~y is then (Bendat and Piersol 1971)
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where 23 nd 5 degrees of freedom and g is the signal

coherence. At 0.005-Hz frequency resolution and 3-h

smoothed temporal resolution, nd 5 48. Onboard

Datawell buoy processing slightly smooths observations

across frequencies, increasing the degrees of freedom

(nd 5 96). Note, however, the neighboring frequency-band

observations are no longer statistically independent.

Covariances between buoy moments are known (Long

1980; Borgman et al. 1982), but they are ignored for

computational simplicity. This simpler diagonal R tends

to overestimate actual observational uncertainty.
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