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Abstract
The classical water wave equations (CWWEs) comprise
two boundary conditions for the two-dimensional flow
on the free surface of a bulk three-dimensional (3D)
incompressible potential flow in the volume bounded by
the free surface, which itself moves under the restoring
force of gravity. One of these two boundary conditions
provides the kinematic definition of the vertical velocity
of the surface elevation. The other boundary condition
is the dynamic Bernoulli law that governs the evalua-
tion of the bulk velocity potential on the free surface. The
present paper applies these two boundary conditions as
constraints in the action integral for Hamilton’s varia-
tional principle, along with a non-hydrostatic pressure
constraint that imposes incompressible flow on the free
surface. The stationary variations in Hamilton’s princi-
ple then yield closed dynamical equations of free surface
flowwhose divergence-free velocity admits nonzero vor-
ticity and whose nonhydrostatic pressure matches the
pressure of the 3D bulk flow when evaluated on the free
surface. A minimal coupling approach is proposed to
model themutual interactions of thewaves and currents.
The dynamical effects of horizontal buoyancy gradients
are also considered in this context. For any combination
of these model variables, the resulting system of varia-
tional equations admits a Lie–Poisson Hamiltonian for-
mulation. Finally, stochastic versions of these model
equations are derived by assuming that thematerial loop
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for their Kelvin circulation theorem in each case follows
stochastic Lagrangian histories in a Stratonovich sense.

KEYWORDS
free surface fluid dynamics, geometricmechanics, nonlinearwater
waves

The rest . . . is a series of speculations, which we hope to verify eventually.– H. Segur
et al.1

1 INTRODUCTION

1.1 Background

Waves are disturbances in a medium that propagate due to a restoring force, such as gravity. Cur-
rents are flows that transport physical properties, such as mass and heat. When waves propagate
in a moving medium, the motion of the medium can affect the waves, and vice versa, the waves
can affect the motion of the medium, as they both respond to the same force. The primary exam-
ple is wave–current interaction on the free surface of a fluid flow under the influence of gravity.
This mutual wave–current interaction is the province of nonlinear water wave theory. In nonlin-
ear water wave dynamics on a free surface, the distinction between waves and currents is clear:
the vertical velocity and surface elevation are wave variables, whereas the horizontal fluid velocity
components and arealmass density are current variables. This is particularly clear in theHamilto-
nian formulation ofwave–current interaction dynamics, inwhich the symplectic Poisson operator
for the two independent degrees of freedom separates into block diagonal form.
Water waves—waves on the surface of a body of water—have fascinated observers over the

ages, not only because water waves are so easily observed, and not only because they move; but
primarily because they form coherent moving deformations of the water surface that can interact
with each other in a multitude of ways. Any disturbance—even scooping your hand in a narrow
channel of shallow water, for example—will resolve itself into a train of coherent solitary waves
with a few extra ripples that are left behind as the coherent solitary waves propagate away from
the disturbance. The fascination in observing the creation of coherent water waves from arbitrary
disturbances was captured in the famous report by the Victorian engineer John Scott Russell in
August 1834, when he saw a solitary wave create itself from an impulse of current and then start
propagating along a Scottish canal. The wave was considerably faster than the flow in the canal.
As Russell wrote,2

I followed it on a horseback, and . . . after a chase of one or two miles I lost it in the
windings of the channel. Such, . . . was my first chance interview with that singular
and beautiful phenomenon.

Although the classic water wave (CWW) theory introduced in 1847 by Stokes3 now has a long
history, see, for example, Refs. 4, 5, the excitement in the chase for mathematical understanding
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of water waves still continues. In particular, John Scott Russell’s “singular and beautiful phe-
nomenon” is now called a soliton. The word “soliton” was coined in a 1965 paper by Zabusky and
Kruskal6 and this word has more than 6 million Google hits, as of this writing. The sequence of
approximate shallow water equations exhibiting soliton behavior includes the Korteweg-de Vries
(KdV) equation in 1D,7 as well as the Kadomtsev–Petviashvili (KP)8 equation, which extends the
KdV equation to allow weak transverse spatial dependence. Indeed, the solution behavior of soli-
ton water wave equations still inspires mathematical progress in the theory of integrable Hamil-
tonian systems of nonlinear partial differential equations and their discretizations in space and
time. For a good summary of the early developments of soliton theory, see Ablowitz and Segur.9
For historical discussions of water wave theory, see Refs. 4, 5, 10. For modern mathematical dis-
cussions of the CWW theory introduced by Stokes,3 see, for example, Refs. 11–15. A few references
among modern treatments of water wave theory that are similar in spirit to the present work
are12,16–19. A classic review of the various historical formulations of the wave–current interaction
problem is given in Ref. 20.

1.2 Objectives and methodology

Within the framework of wave–current interaction, one notes that “waves” can propagate along
the free surface either with the flow, or relative to the flow as a travelling shift in the phase of the
elevation that does not carry mass as it propagates on the surface of the flow. For example, if one
were to place dyewithin awave elevation, thewave need not carry that dye alongwith it (although
waves with this property certainly can exist). Indeed, the wave reported by Russell in 1834 was
propagating along the canal at a speed that required a horse to keep upwith it, although it is a safe
assumption that the “current” flow velocity in the canal was much slower. In fact, modern water
wave experiments such as those of T.Y.Wu21 report observations of periodic emission ofwaves that
propagate in the opposite direction of the current in shallow-water flow over a submerged obstacle.
In a situation where the free surface elevation follows the currents, the waves would be associated
with mass transport and their rate of propagation would equal the fluid transport velocity. The
present work will develop models in which the free surface waves can either propagate with the
fluid transport velocity as in the CWW theory, or propagate in either direction on the background
flow of the fluid transport velocity.
The CWW equations (CWWEs) for potential flow on a free surface comprise the kinematic

constraint at the free boundary and the horizontal gradient of Bernoulli’s law for potential flow
restricted to the surface. This paper has two primary objectives based on the CWWE.
The first objective is to augment the CWWE to include fundamental physical aspects of wave–

current interaction on a free surface (WCIFS). These physical aspects include vorticity, wave–
current coupling in which the wave activity creates fluid circulation, nonhydrostatic pressure,
incompressibility, and horizontal gradients of buoyancy.
The multiscale, fast–slow aspects of the wave–current interaction comprise a grand challenge

for modern computational simulation. This challenge is particularly important in computational
simulations of global ocean circulation. In ocean physics, the fast–slow aspects of wave–current
interaction tend to introduce irreducible imprecision even beyond computational uncertainty
because of unresolvable, or even unobservable, processes.22 This situation leads to the paper’s
second objective.
The paper’s second objective aims to introduce stochastic transport of wave activity by fluid

circulation that is intended to be used in combinationwith data assimilation tomodel uncertainty
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due to the effects of fast, computationally unresolvable, or unknown effects of WCI on its slower,
computationally resolvable aspects.
To pursue these two objectives, we will begin by using the Dirichlet–Neumann opera-

tor (DNO) for 3D potential flow of a homogeneous Euler fluid to impose the kinematic
and dynamic boundary conditions of CWWE as constraints on the motion of the free sur-
face in the Euler–Poincaré (EP) variational principle for ideal fluids.23 The EP formulation
is an extension of earlier variational principles for the CWWE.24,25 In using the CWWE as
constraints, the EP variational principle introduces additional dynamical equations for the
Lagrange multipliers. The Lagrange multipliers are interpreted as the vertical velocity 𝑤 and the
arealmass density𝐷, arising asHamiltonian variables canonically conjugate to the elevation 𝜁 and
the surface velocity potential 𝜙, respectively. The resulting Hamiltonian equations are referred to
as extended CWWE (ECWWE).
After a discussion of alternative formulations that elicit a variety of properties of the ECWWE

solutions, we use the EP approach to add further aspects of wave–current interaction, which
include vorticity, as well as nonhydrostatic pressure and buoyancy gradients in the free sur-
face flow.
We also introduce a wave–current minimal coupling (WCMC) term into the action integral for

the EP variational principle that generates fluid circulation from wave activity and vice versa.
The EP variational equations are referred to here as WCIFS equations. Finally, to model the
uncertainties associated with the computations of these multiscale fast–slow WCIFS equations,
we introduce stochastic advection by Lie transport (SALT) of the wave activity by the current
flow, again following the EP variational approach, as in Ref. 26. In the analytical sections of
the paper, both the deterministic and SALT versions of our WCIFS equations are shown to be
locally well posed in the sense of existence, uniqueness, and continuous dependence on ini-
tial conditions.

1.3 Plan of the paper

∙ Section 2 reviews the problem statement, boundary conditions, and key relations in the clas-
sical framework of three-dimensional (3D) fluid flows under gravity with a free surface. The
free surface elevation is measured from its rest position, which defines the origin of the verti-
cal coordinate 𝑧 = 0. The elevation, 𝑧 = 𝜁(𝒓, 𝑡), is a function of the horizontal position vector
𝒓 = (𝑥, 𝑦, 0) and time 𝑡. A key relation is stated in Equation (7). Namely, when evaluated on
the free surface, the material time derivative of a function 𝑓(𝒓, 𝑧, 𝑡) and its projection onto
the free surface 𝑓(𝒓, 𝜁(𝒓, 𝑡), 𝑡) are equal. In combination with the kinematic boundary con-
dition, the projection relation in Equation (7) leads to Choi’s relation (9) for the dynamics
of the free surface.17 However, the resulting dynamical system in the motion of the free surface
is not yet closed because: (i) the horizontal pressure gradient on the free surface is still unknown
and (ii) an evolutionary equation for the vertical velocity is still missing.17,19
∙ Section 3.1 reviews the formulation of the CWWEs for free surface dynamics in terms of the
DNO. Section 3.2 then derives the ECWWE that include equations for the vertical velocity 𝑤
and the preserved area measure 𝐷 on the free surface. The derivation of ECWWE proceeds by
regarding the CWWE as constraints imposed by Lagrange multipliers 𝑤 and 𝐷 in a new varia-
tional principle in Equation (37), defined in terms of functions on the horizontal mean level of
the free surface. The Lie–Poisson Hamiltonian form of the ECWWE is derived in Section 3.5.
In Section 3.3, nonhydrostatic pressure is incorporated into the ECWWE and the comparison
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to the key relation in (9) is shown in Theorem 1. The ECWW theory satisfies a sort of time-
dependent nonacceleration theorem, by which the fluid and wave circulations are preserved
separately. Hence, the ECWWE does not really qualify as genuine wave–current interaction,
because the time-dependent flows of real fluids allow exchange of circulation between waves
and currents.
The nonacceleration property of the ECWWE may be rectified by introducing a term into the
Lagrangian that represents the dependence of the kinetic energy on the wave slope. The new
kinetic energy term results in a system where the transport velocity is unaffected and the wave
dynamics creates circulation in the current flow when the gradients of vertical velocity and
surface elevation are not aligned.
∙ Section 4 introduces the augmented CWW system (ACWW) that includes a different wave–
current interaction that rectifies the nonacceleration property of the ECWWE via a minimal
coupling (WCMC) construction. The additional term involved in this construction produces
a shift in the transport velocity for the wave elevation which depends on the wave slope.
The result is that the waves canmove relative to the fluid parcels on the free surface, and hence,
the system can support waves that do not transport mass. The Kelvin–Noether circulation the-
orem for the ACWWmodel in Theorem 3 shows that the wave dynamics of the ACWWmodel
can create circulation, as shown locally in Theorem 4 and Corollary 2. In addition, as shown in
Theorem 5, the ACWWmodel with genuine wave–current interaction preserves the same phys-
ical energy as the ECWWmodel does, for which the fluid and wave circulations are preserved
separately. That is, the ACWW model with its WCMC term preserves the same energy as the
ECWW model. Section 5 includes additional physical properties into the ACWWE to produce
our final model of WCIFS. The WCIFS model is derived by modifying Hamilton’s principle for
ACWWwith its wave–fluid coupling term, to add an advected scalar buoyancy variable 𝜌 with
nonzero horizontal gradients, as well as nonhydrostatic pressure in (99). The Kelvin–Noether
circulation theorem for theWCIFSmodel is given in Theorem 6. After the addition of the buoy-
ancy variable, the integrand of Kelvin’s theorem is no longer given by a potential, and thus the
system admits a potential vorticity formulation.
∙ Section 6 introduces a method of incorporating stochastic noise into this theory that preserves
its variational structure. This is achieved by applying themethod of SALT.26 Within this section,
we derive a stochastically perturbed version of the classical water wave equations, as well as
a stochastic variational models of the ECWW, ACWW, and WCIFS models of wave–current
interaction of free surfaces.
∙ Section 7 lays out the analytical framework for dealing with the compressible and incompress-
ible ECWWE equations discussed in Sections 3.1 and 3.3, respectively.
∙ Section 8 discusses potential future research directions and identifies new problems opened up
by this work.
∙ Appendix A discusses transformation theory for ideal fluid dynamics and derives the Kelvin
circulation theorem by using the Lie chain rule.
∙ Appendix B reviews the 3D inhomogeneous Euler equations for incompressible fluid flow
under gravity with a free upper surface and a fixed bottom topography. This is done by deriving
these equations using a constrained variational principle. In particular, Appendix B reviews the
theory of Langmuir circulations due to Craik and Liebovich28.
∙ Appendix C treats the reduced Legendre transformation from Hamilton’s principle to the
Hamiltonian formulation for ECWWE in the Eulerian fluid representation.
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Abbreviations
• ACWWE augmented CWWE
• CWWEs classical water wave equations

• DNO Dirichlet–Neumann operator
• ECWWE extended CWWE;

• EP Euler-Poincaré
• SALT stochastic advection by Lie transport
• WCI wave–current interaction

• WCIFS wave–current interaction on a free surface
• WCMC wave–current minimal coupling;

2 PROBLEM STATEMENT, BOUNDARY CONDITIONS, AND KEY
RELATIONS

2.1 Problem statement

We study the dynamics of fluid parcels that are constrained to remain on the free surface of a 3D
fluid with coordinates 𝒙 = (𝒓, 𝑧). Here 𝒓 = (𝑥, 𝑦) (respectively, 𝑧) denotes horizontal (respectively,
vertical) Eulerian spatial coordinates in an inertial (fixed) domain. The fluid domain is bounded
below by a rigid bottom at 𝑧 = −𝐵(𝒓) and is bounded above by the free surface of the fluid at
𝑧 = 𝜁(𝒓, 𝑡), which ismeasured from its rest position at 𝑧 = 0 as a function of the horizontal position
vector 𝒓 = (𝑥, 𝑦, 0) and time 𝑡.

2.2 Three-dimensional fluid equations

The fluid moves in three dimensions with velocity 𝒖(𝒙, 𝑡) = (𝒗(𝒙, 𝑡), 𝑤(𝒙, 𝑡)) in which 𝒗(𝒙, 𝑡) and
𝑤(𝒙, 𝑡) denote, respectively, the horizontal and vertical velocity fields. Incompressible and inviscid
fluid motion is governed by the Euler equations of horizontal and vertical momentum dynamics
under the constant acceleration of gravity, 𝑔. The equations are given by

𝒗 ∶= 𝒗𝑡 + 𝒗 ⋅ ∇𝒓𝒗 + 𝑤𝒗𝑧 = −1𝜌∇𝒓𝜋,

𝑤 ∶= 𝑤𝑡 + 𝒗 ⋅ ∇𝒓𝑤 + 𝑤𝑤𝑧 = −1𝜌𝜋𝑧 − 𝑔,
with  ∶= 𝜕𝑡 + 𝒗 ⋅ ∇𝒓 + 𝑤𝜕𝑧 and ∇𝒓 ⋅ 𝒗 + 𝑤𝑧 = 0.

(1)

We denote by 𝜋 the pressure with 3D spatial dependence. The volume element is 𝑑3𝑥 = 𝑑2𝑟 ∧ 𝑑𝑧,
and its measure𝐷𝑑3𝑥 is preserved under the incompressible fluid flow. The mass density is given
by 𝜌 = 𝜌0(1 + 𝑏(𝒙, 𝑡)) > 0, in which 𝑏(𝒙, 𝑡) ∶= (𝜌 − 𝜌0)∕𝜌0 is the fluid buoyancy and 𝜌0 > 0 is the
(constant, positive) reference value of mass density. The mass in each fluid volume element is
given by 𝜌𝐷𝑑3𝑥. The condition 𝜁(𝒓, 𝑡) − 𝑧 = 0, which defines the free surface, is assumed to be
preserved under the flow. This condition ensures that a particle initially on the free surface will
remain on it.
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These three preservation relationships may be expressed as the following three advection rela-
tions:

(𝜕𝑡 + 𝒖)(𝐷𝑑3𝑥) = (𝜕𝑡𝐷 + ∇ ⋅ (𝐷𝒖))𝑑3𝑥 = 0,
(𝜕𝑡 + 𝒖)𝜌 = 𝜕𝑡𝜌 + 𝒖 ⋅ ∇𝜌 = 0,

(𝜕𝑡 + 𝒖)(𝜁(𝒓, 𝑡) − 𝑧) = (𝜕𝑡 + 𝒖 ⋅ ∇)(𝜁(𝒓, 𝑡) − 𝑧) = 0,
(2)

where the operator (𝜕𝑡 + 𝒖) is the advection operator (see Appendix A). Requiring the volume
measure𝐷𝑑3𝑥 to remain constant in the first advection relation in (2) implies that the flowvelocity
remains divergence-free, ∇ ⋅ 𝒖 = 0. The preservation of the divergence-free condition under the
fluid flow then implies a Poisson equation for the fluid pressure 𝜋 in the motion equation (1).
The motion equations in (1) and the initial values for the advected quantities 𝜌(𝒓, 𝑧, 𝑡) and
(𝜁(𝒓, 𝑡) − 𝑧) in the advection relations in (2) provide a complete specification of the initial value
problem for the fluid motion with appropriate boundary conditions in three dimensions.

2.3 Boundary conditions

Although the horizontal boundary conditions are yet to be specified and can be chosen to suit
specific problems, the vertical boundary conditions must be carefully defined.
The kinematic boundary condition on the free surface is given by

𝑤 = ̂𝜁 (̂ = 𝜕𝑡 + 𝒗 ⋅ ∇𝒓), (3)

where the 𝑓 notation in ̂, 𝒗, and 𝑤 is defined for an arbitrary flow variable 𝑓 to represent evalu-
ation on the free surface, namely,

𝑓(𝒓, 𝑡) = 𝑓(𝒓, 𝑧, 𝑡) on 𝑧 = 𝜁(𝒓, 𝑡). (4)

Notice that evaluating on the free surface before taking derivatives is not equivalent to taking the
derivative before evaluating. In particular, 𝜕𝑡𝑓(𝒓, 𝑡) ≠ 𝜕𝑡𝑓(𝒓, 𝑡) and ∇𝒓𝑓(𝒓, 𝑡) ≠ ∇̂𝒓𝑓(𝒓, 𝑡), where

𝜕𝑡𝑓(𝒓, 𝑡) = [𝜕𝑡𝑓(𝒓, 𝑧, 𝑡)]𝑧=𝜁(𝒓,𝑡) and ∇̂𝒓𝑓(𝒓, 𝑡) = [∇𝒓𝑓(𝒓, 𝑧, 𝑡)]𝑧=𝜁(𝒓,𝑡). (5)

Instead, from the chain rule, we have

𝜕𝑡𝑓(𝒓, 𝑡) = [𝜕𝑡𝑓 + 𝑓𝑧𝜕𝑡𝜁]|𝑧=𝜁(𝒓,𝑡) = 𝜕𝑡𝑓 + 𝜕𝑧𝑓𝜕𝑡𝜁,
∇𝒓𝑓(𝒓, 𝑡) = [∇𝒓𝑓 + 𝑓𝑧∇𝒓𝜁]|𝑧=𝜁(𝒓,𝑡) = ∇̂𝒓𝑓 + 𝜕𝑧𝑓∇𝒓𝜁. (6)

Consequently, we have the following remarkable proposition.

Proposition 1 (T.Y. Wu19). The advection operator on the free surface satisfies the identity

̂𝑓 = ̂𝑓, (7)

where ∶= (𝜕𝑡 + 𝒖 ⋅ ∇) and ̂ ∶= (𝜕𝑡 + 𝒗 ⋅ ∇𝒓).
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In words, Equation (7) means that𝑓 (the material time derivative of the function 𝑓 in 3D) is
equal to the material time derivative ̂ applied to the function 𝑓, when all three are evaluated on
the 2D moving surface.

Proof. Applying the chain rules in (6) leads to

̂𝑓 = 𝜕𝑡𝑓 + 𝒗 ⋅ ∇̂𝒓𝑓 + 𝑤𝜕𝑧𝑓.
By (6) = 𝜕𝑡𝑓 − 𝜕𝑧𝑓𝜕𝑡𝜁 + 𝒗 ⋅ (∇𝒓𝑓 − 𝜕𝑧𝑓∇𝒓𝜁) + 𝑤𝜕𝑧𝑓

= 𝜕𝑡𝑓 + 𝒗 ⋅ ∇𝒓𝑓 + 𝜕𝑧𝑓(𝑤 − 𝜕𝑡𝜁 − 𝒗 ⋅ ∇𝒓𝜁)

= 𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝑓 =∶ ̂𝑓,
in which the final line is implied by the kinematic condition (3). ■

2.4 Choi’s relation at the free surface

One may use the relation (7) to evaluate the horizontal and vertical coordinates of the motion
equation (1) onto the free surface. Hence, one finds for constant buoyancy 𝜌 = 𝜌0 on the free
surface 𝜁(𝑥, 𝑦, 𝑡) − 𝑧 = 0 that

̂𝒗 = −
[
1

𝜌0
∇𝒓𝜋

]|||||𝑧=𝜁 = −
[
1

𝜌0
∇𝒓𝜋 −

1

𝜌0
𝜋𝑧∇𝒓𝜁

]|||||𝑧=𝜁
= −
1

𝜌0
∇𝒓𝜋 − (̂𝑤 + 𝑔)∇𝒓𝜁,

(8)

where, in the last step, we have used the vertical motion equation in (1) to evaluate 𝜋𝑧 for 𝜌 = 𝜌0
and the relation (7) for the vertical acceleration of the free surface, 𝑑𝑤∕𝑑𝑡𝑧=𝜁(𝒓,𝑡) = ̂𝑤 = ̂𝑤. In
conclusion, upon using the kinematic boundary condition 𝑤 = ̂𝜁 in (3), we find Choi’s relation
at the free surface,17

̂𝒗 + (̂2𝜁 + 𝑔)∇𝒓𝜁 = − 1𝜌0∇𝒓𝜋. (9)

Remark 1 (Closing Choi’s relation (9)). The fundamental relation in (9) is not restricted to irrota-
tional flows. However, at this stage, the dynamical system comprising Equations (3) and (9) for the
motion of the free surface is not yet closed because (i) the pressure gradient ∇𝒓𝜋 is still unknown
and (ii) an evolutionary equation for ̂𝑤 is missing.

2.5 Choi’s relation at the bottom boundary

Onemay also consider boundary conditions at either a lower free surface, 𝑧 = −𝐵(𝒓, 𝑡), or at fixed
bathymetry, 𝑧 = −𝐵(𝒓). Denote by 𝑓 the evaluation on the bathymetry, that is,

𝑓(𝒓, 𝑡) = 𝑓(𝒓, 𝑧, 𝑡) on 𝑧 = −𝐵(𝒓, 𝑡). (10)
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The bottom boundary condition is

−̌𝐵(𝒓, 𝑡) = −(𝜕𝑡 + 𝒗 ⋅ ∇𝒓)𝐵(𝒓, 𝑡) = 𝑤̌, on 𝑧 = −𝐵(𝒓, 𝑡). (11)

and we have, by the same chain-rule calculations as on the upper free surface,

̌𝑓 = ̌𝑓. (12)

We may now evaluate Equations (1) onto the lower surface 𝑧 = −𝐵(𝒓, 𝑡) in the same manner as
we have evaluated onto the upper surface 𝑧 = 𝜁(𝒓, 𝑡) to give

̌𝒗 + (̌𝑤̌ + 𝑔)∇𝒓𝐵(𝒓, 𝑡) = − 1𝜌0∇𝒓𝜋̌, on 𝑧 = −𝐵(𝒓, 𝑡). (13)

By the bottom boundary condition (11), we then find

̌𝒗 + (−̌2𝐵̌(𝒓, 𝑡) + 𝑔)∇𝒓𝐵(𝒓, 𝑡) = − 1𝜌0∇𝒓𝜋̌, on 𝑧 = −𝐵(𝒓, 𝑡). (14)

When 𝐵(𝒓, 𝑡) a time-dependent variable, then Equation (14) is not closed. However, when the
bottom boundary is taken to be time-independent, so that 𝑧 = −𝐵(𝒓) and ̌ = 𝒗 ⋅ ∇𝒓 there, then
Equation (14) would be closed, provided that either the bottom pressure 𝜋̌ was prescribed, or the
bottom velocity 𝒗 was taken to be divergence-free.

2.6 Mean continuity relation

Another exact result about the dynamics of the free surface elevation 𝜁(𝑥, 𝑦, 𝑡) should be men-
tioned. This result is the following mean continuity relation for the elevation in terms of the ver-
tically averaged horizontal velocity components.18,29

Proposition 2 (Mean continuity relation). For uniform mass density, 𝜌0, the boundary conditions
(3), as well as incompressibility and Equation (7) for advection of the free surface together imply the
following vertically integrated continuity relation for the wave elevation on the free surface, 𝜁,

𝜕𝑡𝜁(𝒓, 𝑡) + 𝜕𝑥 ∫
𝜁(𝒓,𝑡)

−𝐵

𝑢(𝒓, 𝑧, 𝑡)𝑑𝑧 + 𝜕𝑦 ∫
𝜁(𝒓,𝑡)

−𝐵

𝑣(𝒓, 𝑧, 𝑡)𝑑𝑧 = 0. (15)

In terms of vertically averaged quantities, denoted by

𝑓(𝒓, 𝑧, 𝑡) ∶=
1

𝜁 + 𝐵 ∫
𝜁(𝒓,𝑡)

−𝐵

𝑓(𝒓, 𝑧, 𝑡)𝑑𝑧. (16)

Equation (15) may be written equivalently as a mean (i.e., vertically averaged) continuity equation,

𝜕𝑡(𝜁(𝒓, 𝑡) + 𝐵) + 𝜕𝑥((𝜁 + 𝐵)𝑢) + 𝜕𝑦((𝜁 + 𝐵)𝑣) = 0. (17)
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Remark 2 (Physical interpretation). Essentially, the continuity Equation (17) arises because the
incompressible flow conserves the fluid volume measure, 𝐷𝑑3𝑥. In particular, the vertically inte-
grated continuity relation (17) in Proposition 2 proved below represents volume preservation of
the divergence-free 3D Euler fluid equations in (B2) of Appendix B for the advective boundary
relations in (2) and (9), see, for example, Refs. 16–18.

Proof. By direct computation, using the advection condition for 𝜁 and the vertical integral of the
divergence free condition div𝒖 = 0, and upon noticing that no contribution arises from the flat
bottom boundary, one finds that

𝜕𝑡𝜁(𝒓, 𝑡) + 𝜕𝑥 ∫
𝜁(𝒓,𝑡)

−𝐵

𝑢(𝒓, 𝑧, 𝑡)𝑑𝑧 + 𝜕𝑦 ∫
𝜁(𝒓,𝑡)

−𝐵

𝑣(𝒓, 𝑧, 𝑡)𝑑𝑧

= 𝜕𝑡𝜁(𝒓, 𝑡) + 𝑢(𝒓, 𝑧, 𝑡)𝜕𝑥𝜁(𝒓, 𝑡) + 𝑣(𝒓, 𝑧, 𝑡)𝜕𝑦𝜁(𝒓, 𝑡)

+∫
𝜁(𝒓,𝑡)

−𝐵

(
𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧

)
(𝒓, 𝑧, 𝑡)𝑑𝑧 − 𝑤(𝒓, 𝜁(𝒓, 𝑡), 𝑡) = 0,

(18)

where we have added and subtracted𝑤(𝒓, 𝜁(𝒓, 𝑡), 𝑡) and applied a tangential flow condition at the
bottom boundary. Thus, the boundary conditions and the divergence-free nature of the 3D flow
combine to produce the mean continuity relation in (15). ■

2.7 The route to a closure scheme for (3) and (9) of T.Y. Wu andW.
Choi

The ideas,methods, and problem statements presented in papers17,19 comprise a launchpad for the
present paper, in which we introduce similar principles into a variational framework. The closure
problem for Equations (3) and (9) will be resolved in Section 3.2 in the context of the CWWE,
which will imply ̂𝑤 = −𝑔. In Section 3.5, the pair of wave variables 𝑤 and 𝜁 will be understood
as a canonically conjugate subset of a Hamiltonian system of Eulerian equations for planar fluid
motion. This system will also contain the hydrostatic CWWE introduced in Section 3.1. In Sec-
tion 3.3, nonhydrostatic pressure 𝜋 will be incorporated into the CWW problem to complete the
closure of Choi’s relation in (9). The rest of the paper will then build additional physics into the
resulting system of planar fluid equations, for example, by including horizontal gradients of buoy-
ancy on the free surface. Refer to Figure 1 for more perspective.

3 FREE SURFACE DYNAMICS

3.1 The classic water wave equations

3.1.1 The Dirichlet–Neumann operator

In this section, we consider the much studied potential flow governed by the CWWE. The qual-
itative information obtained here from the CWWE will inspire our derivation of a constrained
variational principle below. The CWWEs are derived from the free surface 3D Euler equations
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F IGURE 1 The figure sketches the relationships among the different models that are derived in the
remainder of this article. Dashed arrows represent connections of these exact models to their stochastic versions
that are not derived explicitly. However, the missing derivations follow the same patterns as that described in full
for the stochastic wave–current interaction model in Section 6.3

via the DNO. The DNO maps the solution of Laplace’s equation in an external domain with a
Dirichlet boundary conditions to its solution on the boundary with a Neumann flux condition
(see, e.g., Refs. 30 and 13). In particular, the CWWEs assume that the flow is incompressible and
irrotational, and thus, there exists some 𝜙(𝒓, 𝑧, 𝑡) such that 𝒖 = ∇𝜙, where 𝒖 is the 3D velocity
field throughout the domain.
In the hat-notation of (4), the variable 𝜙(𝒓, 𝑡) = 𝜙(𝒓, 𝜁(𝒓, 𝑡), 𝑡) evaluates the velocity potential
𝜙(𝒓, 𝑧, 𝑡) on the free surface 𝑧 = 𝜁(𝒓, 𝑡). The action of the DNO 𝐺(𝜁) on 𝜙(𝒓, 𝑡) is defined as the
normal component of the 3D velocity field for the potential flow 𝒖 = ∇𝜙 evaluated at the free
surface 𝑧 = 𝜁(𝒓, 𝑡). Namely,

𝐺(𝜁)𝜙 ∶= (−∇𝒓𝜁, 1) ⋅ ∇̂𝜙 ∶= −∇𝒓𝜁(𝒓, 𝑡) ⋅ ∇̂𝒓𝜙 + 𝑤, (19)

inwhich the horizontal gradient of the velocity potential𝜙(𝒓, 𝑧, 𝑡) is first taken, and then evaluated
at the surface 𝑧 = 𝜁(𝒓, 𝑡), cf. Equation (8).
Thus, the DNO in (19) takes Dirichlet data for 𝜙 on 𝑧 = 𝜁(𝒓, 𝑡), solves Laplace’s equationΔ𝜙 = 0

for 𝜙(𝒓, 𝑧, 𝑡) together with the condition that the velocity 𝒖 = ∇𝜙 have no normal component on
the fixed parts of the boundary of the full domain volume, and then returns the corresponding
Neumann data, that is, the 3D fluid normal velocity on the free surface, 𝑧 = 𝜁(𝒓, 𝑡).



1288 CRISAN et al.

3.1.2 The classical water wave equations

The classical water wave equations (CWWEs), as stated in Ref. 13, can be written in terms of the
DNO as

𝜕𝑡𝜁 − 𝐺(𝜁)𝜙 = 0, (20)

𝜕𝑡𝜙 + 𝑔𝜁 +
1

2
|∇𝒓𝜙|2 − 1

2(1 + |∇𝒓𝜁|2) (𝐺(𝜁)𝜙 + ∇𝒓𝜁 ⋅ ∇𝒓𝜙)2 = 0. (21)

From the chain rules in (6), we have, in the hat notation of Equation (4), that

∇̂𝒓𝜙 = ∇𝒓𝜙(𝒓, 𝑡) − 𝜕𝑧𝜙∇𝒓𝜁, (22)

𝜕𝑡𝜙 = 𝜕𝑡𝜙 − 𝜕𝑧𝜙𝜕𝑡𝜁. (23)

In terms of the DNO, these are expressed as

𝐺(𝜁)𝜙 ∶= −∇𝒓𝜁(𝒓, 𝑡) ⋅ ∇𝒓𝜙(𝒓, 𝑡) + 𝜕𝑧𝜙|∇𝒓𝜁|2 + 𝑤. (24)

We consider (22) together with 𝑤 = ̂𝜁. Observe that in the hat notation 𝒗 ∶= ∇̂𝒓𝜙, 𝑽 ∶= ∇𝒓𝜙,
and 𝑤 ∶= 𝜕𝑧𝜙, we have 1

∇̂𝒓𝜙 = ∇𝒓𝜙 − 𝑤∇𝒓𝜁 ⟹ 𝒗 = 𝑽 − 𝑤∇𝒓𝜁, (25)

and hence,

𝑤 = ̂𝜁 = 𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 = 𝜕𝑡𝜁 + (∇𝒓𝜙 − 𝑤∇𝒓𝜁) ⋅ ∇𝒓𝜁, (26)

which after rearranging is equivalent to

𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 = 𝑤 =
𝜕𝑡𝜁 + ∇𝒓𝜙 ⋅ ∇𝒓𝜁

1 + |∇𝒓𝜁|2 = 𝜕𝑡𝜁 + 𝑽 ⋅ ∇𝒓𝜁1 + |∇𝒓𝜁|2 . (27)

Thus, applying the chain rule in the DNO appearing in the kinematic boundary condition has
implied the alternative expression for 𝑤 in Equation (27). The alternative equations for 𝑤 in (27)
will be used next in Section 3.2 to close the system defined by Choi’s relation (9) by using a vari-
ational principle reminiscent of the approach in Ref. 25 to derive an evolutionary equation for
𝑤. The alternative expressions in (27) obtained from the DNO will also inspire a wave–current
coupling term in Section 4.1.

Remark 3 (Direct derivation of the CWWE). The CWWE (20) and (21) may be derived from the
standard 3D form of the Eulermotion equationwith constant 𝜌 = 𝜌0. In the case of 3D irrotational

1 The distinction between velocities 𝒗 and 𝑽 is standard.12,15
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flow, one finds Bernoulli’s integrated form of the Euler equation

𝜕𝑡𝜙 +
1

2
|∇𝜙|2 + 𝑔𝑧 = − 1

𝜌0
𝜋. (28)

Evaluating (28) on 𝑧 = 𝜁(𝒓, 𝑡) with the boundary condition that the nonhydrostatic pressure van-
ishes on the free surface, 𝜋|𝑧=𝜁 = 0, yields

𝜕𝑡𝜙 − 𝜕𝑧𝜙 𝜕𝑡𝜁 +
1

2
|∇𝒓𝜙|2 + 12𝜕𝑧𝜙2(1 + |∇𝒓𝜁|2) − 𝜕𝑧𝜙∇𝒓𝜁 ⋅ ∇𝒓𝜙 + 𝑔𝜁 = 0. (29)

Upon adding and subtracting 𝜕𝑧𝜙
2|∇𝒓𝜁|2 in the previous equation, one finds

𝜕𝑡𝜙 + 𝑔𝜁 +
1

2
|∇𝒓𝜙|2 + 12𝜕𝑧𝜙2(1 + |∇𝒓𝜁|2) − 𝜕𝑧𝜙(𝜕𝑡𝜁 + ∇𝒓𝜙 ⋅ ∇𝒓𝜁 − 𝜕𝑧𝜙|∇𝒓𝜁|2) − 𝜕𝑧𝜙2|∇𝒓𝜁|2 = 0.

(30)
Considering this in tandem with Equation (26) for 𝑤 yields

𝜕𝑡𝜙 + 𝑔𝜁 +
1

2
|∇𝒓𝜙|2 − 12𝜕𝑧𝜙2(1 + |∇𝒓𝜁|2) = 0, (31)

which one observes is equivalent to (21).

Remark 4. Equation (27) expresses𝑤 in terms of the time derivative of 𝜁 in the frame of reference
movingwith horizontal velocity∇𝒓𝜙 rather thanwith velocity ∇̂𝒓𝜙. We recall the relation (25) and
write

𝑽 ∶= ∇𝒓𝜙 = ∇̂𝒓𝜙 + 𝑤∇𝒓𝜁 =∶ 𝒗 + 𝒔. (32)

Physically, 𝒗 ∶= ∇̂𝒓𝜙may be interpreted as the fluid transport velocity relative to a Galilean frame
moving with velocity 𝒔 ∶= 𝑤∇𝒓𝜁, whereas the quantity𝑽 ∶= ∇𝒓𝜙 is the total fluid velocity in the
inertial frame of the Eulerian fluid description. In fact, the variational formulation taken below
will show that the quantity𝑽 is the momentum per unit mass given by the variational derivative
with respect to transport velocity 𝒗 of the Lagrangian inHamilton’s principle for thewave–current
dynamics. Likewise, the quantity 𝒔 = 𝑤∇𝒓𝜁 will turn out to be the CWW wave momentum per
unit fluid mass derived from Hamilton’s principle.

The surface boundary condition (27) yields the evolution equation for the elevation 𝜁 written
in the two different frames of motion as,

𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 = 𝑤 and (33)

𝜕𝑡𝜁 + 𝑽 ⋅ ∇𝒓𝜁 = 𝑤
(
1 + |∇𝒓𝜁|2) = 𝑤 − 𝒔 ⋅ ∇𝒓𝜁. (34)

Equating 𝑤 in these two expressions then yields

𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 = 𝑤 =
𝜕𝑡𝜁 + 𝑽 ⋅ ∇𝒓𝜁

1 + |∇𝒓𝜁|2 . (35)
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Likewise, Equations (31) and (32) yield the Bernoulli evolution equation for zero nonhydrostatic
pressure in terms of the rotational fluid velocities 𝒗 and 𝑽,

𝜕𝑡𝜙 + 𝑔𝜁 +
1

2
|𝑽|2 − 1

2
𝑤2

(
1 + |∇𝒓𝜁|2) = 0 = 𝜕𝑡𝜙 + 𝒗 ⋅ ∇𝒓𝜙 + 𝑔𝜁 − 12 |𝒗|2 − 12𝑤2. (36)

This completes the direct derivation of the CWWE.

3.2 Imposing CWWE as constraints in Hamilton’s principle

Let us introduce the following dimension-free action integral for a variational principle, 𝛿𝑆 = 0,

𝑆 = ∫ 𝓁(𝒗, 𝐷, 𝜙, 𝑤, 𝜁, 𝜆)𝑑𝑡

= ∫ ∫ (𝜎2𝜆)(𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 − 𝑤) − 𝐷
(
𝜕𝑡𝜙 + 𝒗 ⋅ ∇𝒓𝜙 +

𝜁

𝐹𝑟2
−
1

2
|𝒗|2 − 𝜎2

2
𝑤2

)
𝑑2𝑟 𝑑𝑡

= ∫ ∫ 𝐷
(
1

2
(|𝒗|2 + 𝜎2𝑤2) − 𝜁

𝐹𝑟2

)
+ 𝜎2𝜆(𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 − 𝑤)

+ 𝜙(𝜕𝑡𝐷 + div𝒓(𝐷𝒗)) 𝑑2𝑟 𝑑𝑡.

(37)

In the action integral (37), the two fundamental CWWE conditions (33) and (36) are imposed
as constraints by the two Lagrange multipliers 𝜆 and 𝐷, respectively. From this action integral,
Hamilton’s principle will imply the evolution equations for 𝜆 and 𝐷. The equation for 𝜆 will yield
the equation for the vertical velocity that is missing from the CWWE. An incompressible flow
condition added later to the action integral in (47) will provide the missing equation for the non-
hydrostatic pressure.
For spatial integration by parts, we take natural boundary conditions, so the boundary terms

vanish. The temporal integration by parts introduces a total time derivative, so it also does not
contribute to the equations of motion. In Equation (37), 𝒓 = (𝑥, 𝑦) denotes horizontal Eulerian
spatial coordinates in an inertial (fixed) domain. We have integrated by parts in time and in space
after the second line, dropping boundary terms both times. The constants 𝜎2 and 𝐹𝑟2 here are
squares of the aspect ratio and the Froude number, respectively, which are obtained in making
the expression dimension-free. Finally, we make the distinction between the wave variables 𝑤
and 𝜁, and the current variables 𝐷 and 𝒗. The remaining variables 𝜆 and 𝜙 in the final form of the
action integral (37) are Lagrange multipliers, to be determined from the others.

Remark 5 (Nondimensional parameters). Explicitly, the action integral for free surface motion in
(37) has been cast into dimension-free form by introducing natural units for horizontal length, [𝐿],
horizontal velocity, [𝑉], time, [𝑇] = [𝐿]∕[𝑉], vertical velocity, [𝑊], and vertical wave elevation,
[𝜁]. In terms of these units, we have defined the following dimension-free parameters: aspect ratio,
[𝑊]∕[𝑉] = 𝜎 = [𝜁]∕[𝐿] and Froude number, 𝐹𝑟2 = [𝑉]2∕([𝑔][𝜁]), for typical wave elevation scale
[𝜁].
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Interpreting the two equivalent forms of the action integral in (37)
∙ The second line of the action integral in (37) may be regarded as a variant of the action integral
in Luke.25 An action integral for CWWE in Ref. 25 was derived in terms of vertically integrated
expressions. In contrast, here the action integral in (37) has beenmade two-dimensional (2D) by
using the DNO relation to project out the third (vertical) dimension. The Lagrange multiplier 𝜆
enforces the kinematic boundary condition for the elevation 𝜁 in (33). Likewise, the Lagrange
multiplier 𝐷 enforces the zero-pressure Bernoulli law (36) obtained from the DNO.
∙ In the last line of (37), we rearrange the constraints in the action integral in the second line into
the standard Clebsch advection form for 2D fluid motion, by integrating by parts in time and
(horizontal) space.Wemay then regard the quantity𝐷 𝑑2𝑟 as the areameasure on the horizontal
domain. That is, the area measure 𝐷 𝑑2𝑟 is advected by 𝒗, which is imposed in the last line by
regarding the trace of the velocity potential on the free surface 𝜙 as a Lagrange multiplier.

Remark 6 (The velocity 𝒗 can have nonzero vorticity). The momentum map in Equation (55)
makes it clear that the advective transport velocity 𝒗 has nonzero vorticity

𝜔 ∶= curl𝒓 𝒗 = −𝒛 ⋅ ∇𝒓𝑤 × ∇𝒓𝜁 =∶ −𝐽(𝑤, 𝜁) ≠ 0. (38)

Consequently, the canonical constraint equations appearing in the last line of (37) are not potential
flows. In contrast, Equation (32) shows that 𝑽 = ∇𝒓𝜙 is indeed a potential velocity.

Variational formulas
Taking variations of the action integral (37) yields

𝛿𝒗 ∶ 𝐷𝒗 ⋅ 𝑑𝒓 + 𝜎2𝜆 𝑑𝜁 = 𝐷𝑑𝜙 ⟹ 𝑽 ⋅ 𝑑𝒓 ∶= 𝒗 ⋅ 𝑑𝒓 + 𝜎2𝑤 𝑑𝜁 = 𝑑𝜙,

𝛿𝑤 ∶ 𝐷𝑤 − 𝜆 = 0,

𝛿𝜆 ∶ 𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 = 𝑤,

𝛿𝜁 ∶ 𝜕𝑡𝜆 + div𝒓(𝜆𝒗) = −
𝐷

𝜎2𝐹𝑟2
⟹ 𝜕𝑡𝑤 + 𝒗 ⋅ ∇𝒓𝑤 = −

1

𝜎2𝐹𝑟2
,

𝛿𝜙 ∶ 𝜕𝑡𝐷 + div𝒓(𝐷𝒗) = 0,

𝛿𝐷 ∶ (𝜕𝑡 + 𝒗 ⋅ ∇𝒓)𝜙 =
1

2
(|𝒗|2 + 𝜎2𝑤2) − 𝜁

𝐹𝑟2
=∶ 𝜛.

(39)

Applying the Lagrangian time derivative (𝜕𝑡 + 𝒗) to the first relation in (39) yields the ECWW
motion equation,

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓 + 𝜎2𝑤𝑑𝜁) = (𝜕𝑡 + 𝒗)(𝑽 ⋅ 𝑑𝒓) = (𝜕𝑡 + 𝒗)𝑑𝜙 = 𝑑𝜛. (40)

See Appendix A for more discussion of the Lie derivative notation (as in 𝒗) that is defined by
the Lagrangian time derivative. The quantity 𝑑𝜛 is the spatial differential (i.e., the gradient) of
Bernoulli’s law in the last line of (39).
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Kelvin circulation theorems for ECWWE in their dimensional form
Moving to the dimensional form and continuing to calculate from the ECWW motion equation
in (40), we have

0 = (𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓 + 𝑤𝑑𝜁) − 𝑑𝜛
= (𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓) − 12𝑑|𝒗|2
+ (𝜕𝑡 + 𝒗)(𝑤𝑑𝜁) − 𝑑

(
1

2
𝑤2 − 𝑔 𝜁

)
.

(41)

Remarkably, the (𝑤, 𝜁) equations in (39) imply that the previous equation separates into two trans-
port equations, namely,

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓) − 12𝑑|𝒗|2 = 0,
(𝜕𝑡 + 𝒗)(𝑤𝑑𝜁) − 𝑑

(
1

2
𝑤2 − 𝑔 𝜁

)
= 0.

(42)

Thus, the wave and current circulations are conserved separately, in a mutual nonacceleration
pact,

𝑑

𝑑𝑡 ∮𝑐(𝒗) 𝒗 ⋅ 𝑑𝒓 = ∮𝑐(𝒗)
1

2
𝑑|𝒗|2 = 0,

𝑑

𝑑𝑡 ∮𝑐(𝒗) 𝑤𝑑𝜁 = ∮𝑐(𝒗) 𝑑
(
1

2
𝑤2 − 𝑔 𝜁

)
= 0.

(43)

The separation of conservation laws in (43)means that the twodegrees of freedomdonot influence
each other’s circulation. Actually, this separation is a general feature of wave–current interaction
theories that arise from Hamilton’s principle with a phase-space Lagrangian.31

Reduction of the ECWWmotion equation to the pressureless Euler fluid equation
Because of a cancellation of 1

2
𝑑|𝒗|2 in Equation (42) with the Lie derivative term, the 𝒗-equation

simplifies further to produce the following pressureless Euler fluid equation for the transport veloc-
ity 𝒗 = ∇𝜙 − 𝑤∇𝜁,

𝜕𝑡𝒗 + 𝒗 ⋅ ∇𝒓𝒗 = 0 and 𝜕𝑡𝐷 + div𝒓(𝐷𝒗). (44)

Thus, although the vector 𝒗 transports the density 𝐷, it also transports itself as though it were
an array of two advected scalars, (𝑣1, 𝑣2). This feature further simplifies the interpretation of the
𝒗-equation, because it can now be seen as an inviscid Burgers equation. However, note that the
compressible “Burgers velocity” 𝒗 in (44) has vorticity 𝜔 ∶= 𝒛 ⋅ curlv̂ = −𝐽(𝑤, 𝜁) that does not
vanish, in general. However, the relation 𝒗 = ∇𝜙 − 𝑤∇𝜁 and the second equation in (42) do imply
that

𝜕𝑡𝜔 + 𝒗 ⋅ ∇𝒓𝜔 = 0. (45)
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Hence, if the vorticity 𝜔 vanishes initially, it will remain so. In this case, the pressureless 2D Euler
equation in (45) reduces to the well-studied 2DHamilton–Jacobi equation for 𝜙. See, for example,
Refs. 32, 33 for reviews.

Back to the ECWWE in their dimensional forms
We may restore the ECWWE to their dimensional forms as

𝜕𝑡𝜙 + 𝒗 ⋅ ∇𝒓𝜙 =
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁,

𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 = 𝑤,

𝜕𝑡𝑤 + 𝒗 ⋅ ∇𝒓𝑤 = −𝑔,

𝜕𝑡𝐷 + div𝒓(𝐷𝒗) = 0,

(46)

where 𝒗 evolves according to (44). One observes that the first two equations in (46) are equivalent
to the CWWE discussed in Section 3.1, since 𝒗 = ∇̂𝒓𝜙.

3.3 Derivation of ECWW equations with nonhydrostatic pressure

In the standard derivation of the CWW equations (20) and (21), the 3D pressure 𝜋 is taken to
be zero on the surface, and thus, the resulting equations of motion have no pressure term. In
order for the variational equations, we have derived in Section 3.2 to match Equations (20) and
(21), we have derived compressible equations, and thus, the system also contains the additional
equation for 𝐷. Should we want to model an incompressible flow, and avoid having an equation
for𝐷, we must introduce pressure as a Lagrange multiplier which enforces that𝐷 = 1. Of course,
such a nonhydrostatic pressure would be incompatible with assuming that the pressure is zero
on the surface. We derive the ECWWequations with nonhydrostatic pressure and incompressible
transport velocity by varying the action integral defined in its dimensional form by

𝑆 = ∫ ∫ 𝐷
(
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁) + 𝜆(𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 − 𝑤)

+ 𝜙(𝜕𝑡𝐷 + div𝒓(𝐷𝒗)) − 𝑝(𝐷 − 1) 𝑑2𝑟 𝑑𝑡.

(47)

Proceeding in the same manner as in Section 3.2, and omitting the calculations because they
are very much alike, we derive the following system of equations in their dimensional forms:

̂𝜙 ∶= 𝜕𝑡𝜙 + 𝒗 ⋅ ∇𝒓𝜙 = 12(|𝒗|2 + 𝑤2) − 𝑔𝜁 − 𝑝,
̂𝜁 ∶= 𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 = 𝑤,

̂𝑤 ∶= 𝜕𝑡𝑤 + 𝒗 ⋅ ∇𝒓𝑤 = −𝑔.
(48)

Here, the divergence-free transport velocity 𝒗 satisfies a 2D Euler equation

𝜕𝑡𝒗 + 𝒗 ⋅ ∇𝒓𝒗 = −∇𝒓𝑝, where 𝐷 = 1 implies div𝒓𝒗 = 0. (49)
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We may understand the structure of this problem further by comparing it to Equation (8) with
𝜌0 = 1. Noting that ̂𝑤 = −𝑔, Equations (8) and (49) together imply

̂𝒗 = −∇𝒓𝜋 = −∇𝒓𝑝. (50)

The comparison implies the following remarkable observation. This observation turns out to be
one of our main conclusions about this approach because it provides a closure of the system
defined by Choi’s relation (9).

Theorem 1. The pressure, 𝑝, in the 2D model (48) is equivalent to the pressure of the 3D fluid
evaluated on the free surface, 𝜋, up to the addition of a spatial constant.

3.4 Conservation laws for the compressible ECWW dynamical
system

From here, we return to the compressible ECWW equations by removing the incompressibility
constraint imposed by the pressure.

3.4.1 Eulerian conservation laws for the ECWWE

The system of ECWWE in (44) and (46) possesses the following fundamental Eulerian conserva-
tion laws in a domain Ωwith fixed boundaries.

1. The last equation in (46) implies conservation ofmass, 𝔻 ∶= ∫
Ω
𝐷 𝑑2𝑟,

𝑑𝔻

𝑑𝑡
∶=
𝑑

𝑑𝑡 ∫Ω 𝐷 𝑑
2𝑟 = ∫

Ω

𝜕𝑡𝐷 𝑑
2𝑟 = −∫

Ω

div𝒓(𝐷𝒗) 𝑑2𝑟 = −∮
𝜕Ω

𝐷𝒗 ⋅ 𝒏 𝑑𝑠 = 0,

for 𝒗 ⋅ 𝒏 on the boundary 𝜕Ωwith normal vector 𝒏.
2. Equation (44) and the last equation in (46) imply conservation ofmomentum, defined by

𝑑𝕄𝑗

𝑑𝑡
∶=
𝑑

𝑑𝑡 ∫Ω 𝐷𝑣𝑗 𝑑
2𝑟 = −∫

Ω

𝜕𝑘(𝐷𝑣𝑗𝑣
𝑘) 𝑑2𝑟 = −∮

𝜕Ω

𝐷𝑣𝑗𝒗 ⋅ 𝒏 𝑑𝑠 = 0.

3. Combining the curl𝒓 of Equation (44) and the last equation in (46) implies conservation of
mass-weighted enstrophy, defined by

ℂΦ ∶= ∫
Ω

𝐷Φ(𝜔) 𝑑2𝑟,

for any differentiable function Φ of vorticity, 𝜔, which itself is defined by

𝜔 ∶= 𝒛 ⋅ curl𝒓𝒗 = −𝒛 ⋅ ∇𝒓𝑤 × ∇𝒓𝜁 =∶ −𝐽(𝑤, 𝜁).
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Thus, upon noticing that vorticity 𝜔 is advected as a scalar by the flow of 𝒗, we also find advec-
tion of any function ofΦ(𝜔), by the chain rule and linearity of the advection operator for scalars.
Namely,

(𝜕𝑡 + 𝒗 ⋅ ∇𝒓)Φ(𝜔) = 0.

Thus, we obtain conservation of mass-weighted enstrophy from the continuity equation, the
chain rule and integration by parts, as follows,

𝑑ℂΦ
𝑑𝑡
∶= ∫
Ω

𝜕𝑡(𝐷Φ(𝜔)) 𝑑
2𝑟 = −∫

Ω

𝜕𝑘(𝐷Φ(𝜔)𝑣
𝑘) 𝑑2𝑟 = −∮

𝜕Ω

𝐷Φ(𝜔) 𝒗 ⋅ 𝒏 𝑑𝑠 = 0,

for 𝒗 ⋅ 𝒏 on the fixed boundary 𝜕Ω. Thus, the 𝐷-weighted 𝐿𝑝 norm of the vorticity 𝜔 = curl𝒗 is
controlled.

4. The corresponding conserved energy is given by

𝐸(𝒗,𝑤, 𝜁, 𝐷) = ∫
(
1

2
|𝒗|2 + 1
2
𝑤2 + 𝑔𝜁

)
𝐷 𝑑2𝑟

= ∫
(
1

2
|∇̂𝒓𝜙|2 + 12𝑤2 + 𝑔𝜁

)
𝐷 𝑑2𝑟.

(51)

This expression follows quite easily from the Legendre transformation of the Lagrangian in
(47).

3.4.2 Moment dynamics of a Lagrangian fluid blob under the ECWWE

We rewrite the continuity equation in (46) and its associated motion equation in (44) as
Lagrangian conservation laws for mass and momentum,

(𝜕𝑡 + 𝑣)(𝐷 𝑑2𝑟) = (𝜕𝑡𝐷 + 𝜕𝑘𝑃𝑘) 𝑑2𝑟 = 0 with 𝑃𝑘 ∶= 𝐷𝑣𝑘,

(𝜕𝑡 + 𝑣)(𝑃𝑗 𝑑2𝑟) = (𝜕𝑡𝑃𝑗 + 𝜕𝑘(𝑃𝑗𝑣𝑘)) 𝑑2𝑟 = 0. (52)

Consider a 2D “blob” of fluid mass occupying a Lagrangian domain of fluid Ω(𝑡) that is deform-
ing under the ECWWE flow of the free-surface fluid velocity 𝒗 so that no fluid material enters
or leaves through its moving boundary 𝜕Ω(𝑡). In this situation, we have the following Reynolds
transport relations for the dynamics of the spatial moments of the mass distribution within the
blob.

1. The total mass of a Lagrangian blob is conserved:

𝑑

𝑑𝑡 ∫Ω(𝑡) 𝐷 𝑑
2𝑟 = ∫

Ω(𝑡)

(𝜕𝑡 + 𝑣)(𝐷 𝑑2𝑟) = ∫
Ω(𝑡)

(
𝜕𝑡𝐷 + 𝜕𝑘(𝐷𝑣

𝑘)
)
𝑑2𝑟 = 0.
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2. The rate of change of the center of mass of the blob is its conserved momentum:

𝑑

𝑑𝑡 ∫Ω(𝑡) 𝑟
𝑗𝐷 𝑑2𝑟 = ∫

Ω(𝑡)

(𝜕𝑡 + 𝑣)(𝑟𝑗𝐷 𝑑2𝑟) = ∫
Ω(𝑡)

𝑣𝑗 𝐷 𝑑2𝑟 = ∫
Ω(𝑡)

𝑃𝑗 𝑑2𝑟.

Conservation of the blob momentum is shown by a direct computation,

𝑑2

𝑑𝑡2 ∫Ω(𝑡) 𝑟
𝑗𝐷 𝑑2𝑟 =

𝑑

𝑑𝑡 ∫Ω(𝑡) 𝑃
𝑗 𝑑2𝑟 = ∫

Ω(𝑡)

(𝜕𝑡 + 𝑣)(𝑃𝑗 𝑑2𝑟) = 0.

3. The moment of inertia 𝐼𝑖𝑗 = ∫
Ω(𝑡)
𝑟𝑖𝑟𝑗𝐷 𝑑2𝑟 represents the elliptical shape of the blob. Its rate

of change may be computed as

𝑑

𝑑𝑡
𝐼𝑖𝑗 =
𝑑

𝑑𝑡 ∫Ω(𝑡) 𝑟
𝑖𝑟𝑗𝐷 𝑑2𝑟 = ∫

Ω(𝑡)

(𝑣𝑖𝑟𝑗 + 𝑟𝑖𝑣𝑗)𝐷 𝑑2𝑟.

4. The acceleration of the elliptical shape of the blob is governed by

𝑑2

𝑑𝑡2
𝐼𝑖𝑗 =
𝑑

𝑑𝑡 ∫Ω(𝑡)(𝑃
𝑖 𝑑2𝑟)𝑟𝑗 + 𝑟𝑖(𝑃𝑗 𝑑2𝑟) = ∫

Ω(𝑡)

(𝑃𝑖𝑣𝑗 + 𝑣𝑖𝑃𝑗) 𝑑2𝑟 = ∫
Ω(𝑡)

(𝑣𝑖𝑣𝑗 + 𝑣𝑖𝑣𝑗) 𝐷 𝑑2𝑟.

5. Remarkably, the acceleration of the trace of the moment of inertia tr(𝐼) is positive-definite

𝑑2

𝑑𝑡2
tr(𝐼) = 2∫

Ω(𝑡)

𝐷|𝒗|2 𝑑2𝑟 > 0.
This is a simple version of the tensor virial theorem.34 Here, the tensor virial theorem implies
that under ECWWE flow equations in (52), any initial distribution of mass will expand out-
ward at an acceleration rate proportional to the kinetic energy within its Lagrangian boundary.
Because this result holds for every Lagrangian blob of fluid undergoing this motion, it follows
that the mass density cannot become singular in an infinite flow domain. This means that the
measure 𝐷𝑑2𝑟 cannot become a Dirac measure.

6. Finally, we notice that blob angular momentum 𝐿𝑖𝑗 ∶= ∫
Ω(𝑡)
(𝑣𝑖𝑟𝑗 − 𝑟𝑖𝑣𝑗)𝐷 𝑑2𝑟 is conserved

under the ECWWE flow, because

𝑑

𝑑𝑡
𝐿𝑖𝑗 ∶=

𝑑

𝑑𝑡 ∫Ω(𝑡)(𝑃
𝑖 𝑑2𝑟)𝑟𝑗 − 𝑟𝑖(𝑃𝑗 𝑑2𝑟) = ∫

Ω(𝑡)

(𝑣𝑖𝑣𝑗 − 𝑣𝑖𝑣𝑗) 𝐷 𝑑2𝑟 = 0.

3.5 Three Hamiltonian formulations of the ECWWE using
free-surface variables

This section derives three equivalent Hamiltonian formulations of the system of ECWWE in (44)
and (46). To set the stage, let us first remark on the previous literature concerning Hamiltonian
formulations of fluid dynamics with free boundaries.
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Remark 7 (Previous Hamiltonian formulations of fluid dynamics with free boundaries). The
ECWWEmodel extends the CWWmodel to permit rotational flow. Before investigating its Hamil-
tonian formulation, we recall here the result of Zakharov35 that the CWWEs also have a Hamilto-
nian structure with similarities to the Hamiltonian (124). Indeed, the water wave equations have
canonical variables 𝜁 and 𝜙, and a Hamiltonian defined by

1

2 ∫ ∫ |∇𝜙|2 𝑑2𝑥 𝑑𝑧 + 𝑔
2 ∫ 𝜁2 𝑑2𝑥,

in the case of zero surface tension. There are some similarities between this Hamiltonian struc-
ture of the water wave equations and the full system of equations we have derived. However, the
Hamiltonian for the water wave equations and one of the canonical variables are vertically inte-
grated compared to (51), which is evaluated on the free surface.
Lewis et al36 generalized the previous canonical structure of Zakharov35 for irrotational flow to

obtain Hamiltonian structures for 2D or 3D incompressible flows with a free boundary. The Pois-
son bracket in Ref. 36 was determined using reduction from canonical variables in the Lagrangian
(material) description. The corresponding Hamiltonian form for the equations of a liquid drop
with a free boundary having surface tension was also demonstrated, as was the structure of the
bracket in terms of a reduced cotangent bundle of a principal bundle was explained. In the case
of 2D flows, a vorticity bracket was determined and the generalized enstrophy was shown to be a
Casimir function.
A Hamiltonian description of free boundary fluids has also been studied in Mazer and Ratiu.37

In Ref. 37, the Hamiltonian formulation of adiabatic free boundary inviscid fluid flow using only
physical variables was presented in both the material and spatial formulation. By using the sym-
metry of particle relabeling, the noncanonical Poisson bracket in Eulerian representation was
derived as a reduction from the canonical bracket in the Lagrangian representation. When the
free boundary of the fluid was specified as the zero level set of an array of advected functions (e.g.,
Lagrangian labels carried by the fluid flow), the formulation of Ref. 37 recovered the Lie Pois-
son bracket of Ref. 38, as well as the corresponding PV and other conserved quantities found in
Ref. 39.
In a tour-de-force, Gay-Balmaz et al40 carried out Lagrangian reduction for free boundary fluids

and deduced both the equations of motion and their associated constrained variational principles
in both the convective and spatial representations. To follow up, Gay-Balmaz and Vizman41 con-
structed dual pairs for free boundary fluids
Finally, we mention that Castro and Lannes12 present a set of vertically integrated free surface

equations that include vorticity in the bulk of the fluid and they prove well-posedness conditions
for their equations, provided that a certain time scale is long enough. This extension of CWWEdif-
fers from the present work by combining vertically integrated variables with free-surface variables
possessing a what they called a “formal” noncanonical Poisson bracket. Although they expressed
reservations about whether their formal Poisson bracket would satisfy the Jacobi identity and they
cited,42 which describes potentially problematic technical pitfalls in this regard, the “formal” Pois-
son bracket in Castro and Lannes12 actually does satisfy the Jacobi identity. This is because their
Poisson bracket is equivalent to that in Lewis et al,36 which does satisfy the Jacobi identity for
admissible functionals 𝐴 such that for every triple of functionals 𝑓, 𝑔, ℎ ∈ 𝐴, the bracket of any of
two of them lies in 𝐴.
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None of the previous Hamiltonian formulations of fluid dynamics with free boundaries
described above have represented the free-boundary dynamics in terms of projection/evaluation
properties of the DNO representation of CWW theory, as is done in the present approach.
In contrast, the late Walter Craig and his collaborators in Refs. 43, 44 used asymptotic expan-

sions of the DNO for CWWE to derive Hamiltonian formulations of certain soliton equations.
The efforts of Craig et al43,44 took advantage of the DNO representation of the CWWE to formu-
late Hamiltonian equations that do not involve vertically integrated variables. These Hamiltonian
equations also enabled the study of interesting bathymetry by introducing a more general DNO.
See also Ref. 45 for a review and bibliography of previous work in Hamiltonian formulations of
the wave–current interaction based on the DNO. In contrast, the present work uses the DNOmap
to extend the CWWE to ECWWE.

3.5.1 Canonical Hamiltonian formulation of the ECWWE

To consider theHamiltonian formulation of this problem,we define a third formof the Lagrangian
(37) by performing a Legendre transform as follows:

𝑆 = ∫ ∫ (𝜎2𝜆)(𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 − 𝑤) − 𝐷
(
𝜕𝑡𝜙 + 𝒗 ⋅ ∇𝒓𝜙 +

𝜁

𝐹𝑟2
−
1

2
|𝒗|2 − 𝜎2

2
𝑤2

)
𝑑2𝑟 𝑑𝑡

= ∫ ∫ (𝜎2𝜆)𝜕𝑡𝜁 + 𝜙𝜕𝑡𝐷 −
(
1

2𝐷
(|𝐷𝒗|2 + (𝜎𝜆)2) + 𝐷𝜁

𝐹𝑟2

)
𝑑2𝑟 𝑑𝑡,

(53)

where, to go from the first line to the second, we have integrated by parts in time and made use
of the first two relations in (39).
We have now expressed the Lagrangian within the action integral (37), 𝓁(𝒗, 𝐷, 𝜙, 𝑤, 𝜁; 𝜆), as a

phase-space Lagrangian, by rewriting it as a Legendre transform. The phase-space form of the
Lagrangian immediately identifies the canonically conjugate pairs of field variables (𝜙, 𝐷) and
(𝜎2𝜆, 𝜁) and determines the Hamiltonian as

𝐻(𝜙,𝐷; 𝜆, 𝜁) = ∫
1

2𝐷
(|𝐷∇𝜙 − (𝜎2𝜆)∇𝜁|2 + (𝜎𝜆)2) + 𝐷𝜁

𝐹𝑟2
𝑑2𝑟. (54)

The variation of the Lagrangian in any of its equivalent representations in (37) with respect to the
vector-field velocity 𝒗 yields the momentum density relation

𝒎 ∶= 𝐷𝒗 = 𝐷∇𝜙 − 𝐷𝑤∇𝜁 = 𝐷∇𝜙 − (𝜎2𝜆)∇𝜁. (55)

This expression provides a (cotangent lift) momentum map from the canonically conjugate pairs
of field variables (𝜙, 𝐷) and (𝜎2𝜆, 𝜁) to the momentum density 𝒎 ∶= 𝐷𝒗 that is in concert with
Equation (25).
Restoring the dimensions, in the canonical Hamiltonian field variables for currents (𝜙, 𝐷) and

for waves (𝜆, 𝜁), the Bernoulli function𝜛 in (39) is expressed as

𝜛 ∶=
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁 = 1

2

||||∇𝜙 − 𝜆𝐷∇𝜁||||
2

+
𝜆2

2𝐷2
− 𝑔𝜁. (56)
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The corresponding energy Hamiltonian in these variables is given by

𝐻(𝒗,𝑤, 𝜁, 𝐷) = ∫
(
1

2

||||∇𝜙 − 𝜆𝐷∇𝜁||||
2

+
𝜆2

2𝐷2
+ 𝑔𝜁

)
𝐷 𝑑2𝑟. (57)

The canonical Hamiltonian equations for ECWWE in terms of the two degrees of freedom com-
prising wave variables (𝜆, 𝜁) and current variables (𝜙, 𝐷) are given by

𝜕

𝜕𝑡

⎡⎢⎢⎢⎢⎣
𝜙

𝐷

𝜆

𝜁

⎤⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎣
0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝛿𝐻∕𝛿𝜙 = −div𝒓(𝐷𝒗)

𝛿𝐻∕𝛿𝐷 = 𝒗 ⋅ ∇𝒓𝜙 − 𝜛

𝛿𝐻∕𝛿𝜆 = −𝒗 ⋅ ∇𝒓𝜁 + 𝜆∕𝐷

𝛿𝐻∕𝛿𝜁 = div𝒓(𝜆𝒗) + 𝑔𝐷

⎤⎥⎥⎥⎥⎦
. (58)

One observes that the symplectic Poisson operator for the two independent degrees of freedom in
(58) appears in the canonical block-diagonal form. The wave–current interactions between these
two independent degrees of freedom (waves (𝜆, 𝜁) with 𝜆 = 𝐷𝑤 and currents (𝜙, 𝐷)) are deter-
mined by the Hamiltonian in (57).

3.5.2 Entangled Hamiltonian formulation of the ECWWE

In terms of the canonical Hamiltonian field variables (𝜙, 𝐷) and (𝜆, 𝜁), the total momentum den-
sity of the fluid 𝒎̂ ∶= 𝐷𝒗 is defined as the sum

𝒎 = 𝐷𝒗 = 𝐷∇𝜙 − 𝜆∇𝜁, (59)

of both wave and current variables.
The Legendre transform with respect to both pairs of canonical wave variables defining the

momentum density𝒎 leads to the following Hamiltonian:

ℎ(𝒎,𝐷, 𝜆, 𝜁) = ∫ 𝒎 ⋅ 𝒗𝑑2𝑟 − 𝓁(𝒗, 𝐷, 𝜙, 𝑤, 𝜁; 𝜆)

= ∫
1

2𝐷
|𝒎|2 + 𝜆2

2𝐷
+ 𝑔𝐷𝜁 𝑑2𝑟.

(60)

The corresponding conserved energy was already mentioned in (51) as

𝐸(𝒗,𝑤, 𝜁, 𝐷) = ∫
(
1

2
|𝒗|2 + 1
2
𝑤2 + 𝑔𝜁

)
𝐷 𝑑2𝑟

= ∫
(
1

2
|∇̂𝒓𝜙|2 + 12𝑤2 + 𝑔𝜁

)
𝐷 𝑑2𝑟.

(61)
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This change of variables leads to the following Lie–Poisson Hamiltonian formulation:

𝜕

𝜕𝑡

⎡⎢⎢⎢⎢⎣
𝑚𝑖
𝐷

𝜆

𝜁

⎤⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎣
𝜕𝑗𝑚𝑖 + 𝑚𝑗𝜕𝑖 𝐷𝜕𝑖 𝜆𝜕𝑖 −𝜁,𝑖
𝜕𝑗𝐷 0 0 0

𝜕𝑗𝜆 0 0 1

𝜁,𝑗 0 −1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝛿ℎ∕𝛿𝑚𝑗 = 𝑣

𝑗

𝛿ℎ∕𝛿𝐷 = −𝜛

𝛿ℎ∕𝛿𝜆 = 𝜆∕𝐷

𝛿ℎ∕𝛿𝜁 = 𝑔𝐷

⎤⎥⎥⎥⎥⎦
, (62)

where 𝜛 is defined in Equation (56). Here, the Poisson operator is the direct sum of the usual
semidirect-product Lie–Poisson bracket for ideal fluids23 and a symplectic Poisson bracket for the
canonical wave variables, (𝜆, 𝜁).
The Poisson operator in (62) is said to entangle the dynamics of the wave variables (𝜆, 𝜁) with

the combined variables (𝑚𝑖, 𝐷). Next, we will untangle the entangled Poisson operator to put it
back into block-diagonal form as before in (58) by considering only the momentum density cor-
responding to the potential part of the fluid flow.

3.5.3 Untangled Hamiltonian formulation of the ECWWE

The momentum density of only the purely potential part of the fluid flow is given in terms of the
canonical wave variables and the transport velocity 𝒗 ∶= ∇̂𝒓𝜙 by

𝑴 = 𝐷𝒗 + 𝜆∇𝒓𝜁 = 𝐷∇𝜙 = 𝐷𝑽. (63)

The Legendre transformwith respect to only the𝐷 and 𝜙 variables corresponding to the potential
part of the flow leads to the following Hamiltonian:

ℎ(𝑴,𝐷, 𝜆, 𝜁) = ∫ 𝑴 ⋅ 𝒗 + 𝜆𝜕𝑡𝜁 𝑑2𝑟 − 𝓁(𝒗, 𝐷, 𝜙, 𝑤, 𝜁; 𝜆)

= ∫
1

2𝐷
|𝑴 − 𝜆∇𝒓𝜁|2 + 𝜆22𝐷 + 𝑔𝐷𝜁 𝑑2𝑟 = 𝐸(𝒗,𝑤, 𝜁, 𝐷).

(64)

where the energy 𝐸(𝒗,𝑤, 𝜁, 𝐷) is defined in (68). Thus, the Hamiltonian in (64) is yet another
representation of the conserved energy for the ECWWE system in (20) and (21).

Variations of the Hamiltonian in (64)
In the Hamiltonian variables, the Bernoulli function𝜛 in (39) is denoted as

𝜛 ∶=
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁 = 1

2𝐷2
|𝑴 − 𝜆∇𝒓𝜁|2 + 𝜆2

2𝐷2
− 𝑔𝜁. (65)

After evaluating the corresponding variational derivatives of the Hamiltonian in (64), the system
of equations in (62) may be written in block-diagonal form, as

𝜕

𝜕𝑡

⎡⎢⎢⎢⎢⎣
𝑀𝑖
𝐷

𝜆

𝜁

⎤⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎣
𝜕𝑗𝑀𝑖 + 𝑀𝑗𝜕𝑖 𝐷𝜕𝑖 0 0

𝜕𝑗𝐷 0 0 0

0 0 0 1

0 0 −1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝛿ℎ∕𝛿𝑀𝑗 = 𝑣

𝑗

𝛿ℎ∕𝛿𝐷 = −𝜛

𝛿ℎ∕𝛿𝜆 = −𝒗 ⋅ ∇𝒓𝜁 + 𝜆∕𝐷

𝛿ℎ∕𝛿𝜁 = div𝒓(𝜆𝒗) + 𝑔𝐷

⎤⎥⎥⎥⎥⎦
. (66)
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This untangled form of the Poisson operator comprises a direct product of the standard Lie–
Poisson bracket for fluid variables (𝑴,𝐷) and a symplectic Poisson bracket for the canonical wave
variables, (𝜆, 𝜁).

Remark 8 (Physical meaning of the model). The dual entangled and untangled forms of the
Lie–Poisson brackets seen in (62) and (66) are familiar in Hamiltonian formulations of wave–
current interactions and other compound Eulerian–Lagrangian fluid systems, as well as body-
space mechanical systems. These dual formulations are particularly well known in the investi-
gations of systems whose dynamics is governed by variational principles that are averaged over
time, phase, or some other fluctuating or stochastic parameter. See, for example, Ref. 46 for a
recent review and bibliography relevant to the current investigation.

The nonacceleration theorem for ECWWE
The Lie–Poisson Hamiltonian structure in (66) provides insight into the physical interactions
occurring in the ECWWE. Namely, the Eulerian fluid variables are Lie-Poisson in the total
momentum in (63) and the area element 𝐷, whereas the canonically conjugate wave vari-
ables undergo symplectic dynamics in the elevation 𝜁 and its canonical momentum density
𝜆 = 𝐷𝑤. As the Poisson structure block-diagonalizes for the two types of fields, both fields
are seen to contribute on the same footing to the Hamiltonian formulation of the combined
motion.
This dual wave–current contribution is already clear from the coordinate-free form

of the motion equation in (40), because it immediately implies conservation of a two-
component Kelvin circulation integral involving both types of fields present in the momentum
density,

𝑑

𝑑𝑡 ∮𝑐(𝒗)(𝒗 ⋅ 𝑑𝒓 + 𝑤𝑑𝜁) = ∮𝑐(𝒗)(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓 + 𝑤𝑑𝜁)

= ∮
𝑐(𝒗)

(𝜕𝑡 + 𝒗)(𝑽 ⋅ 𝑑𝒓) = ∮
𝑐(𝒗)

(𝜕𝑡 + 𝒗)𝑑𝜙 = ∮
𝑐(𝒗)

𝑑𝜛 = 0,

(67)

where 𝑐(𝒗) denotes a closed material loop moving with the fluid transport velocity, 𝒗. However,
a closer look at the separate equations of motion for 𝜆 and 𝜁 in the Hamiltonian form in Equa-
tion (66) shows that the wave dynamics takes place independently in the moving frame the fluid
flow, without actually influencing the flow. Indeed, a closer look at the circulation dynamics in
(67) verifies that the two components of the circulation are conserved separately, as we already
know from Equation (42). In particular, this means that in solutions of ECCWE, the waves can-
not generate circulation of the currents. This is known in the literature as the “nonacceleration
theorem.”47

Modifying the ECWWE to rectify the nonacceleration theorem
The nonacceleration theorem arises in time-dependent solutions of ECCWE because the model
has no dependence on the combination of wave slope∇𝜁 and vertical velocity𝑤 that would char-
acterize a wave-slope dependence of the energy of the wave field. One natural proposal for recti-
fying this situation would be to introduce an additional energy density as in the last term in the
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following:

𝐸(𝒗,𝑤, 𝜁, 𝐷) = ∫
(
1

2
|∇̂𝒓𝜙|2 + 12𝑤2 + 𝑔𝜁 + 𝜖2 |∇𝒓𝜙 − ∇̂𝒓𝜙|2

)
𝐷 𝑑2𝑟

= ∫
(
1

2
|𝒗|2 + 1
2
𝑤2 + 𝑔𝜁 +

𝜖

2
|𝑽 − 𝒗|2)𝐷 𝑑2𝑟

= ∫
(
1

2
|𝒗|2 + 1
2
𝑤2 + 𝑔𝜁 +

𝜖

2
|𝑤∇𝜁|2)𝐷 𝑑2𝑟.

(68)

Physically, this would mean that the wave-field energy density 𝜖𝐷|𝑤∇𝜁|2∕2 would increase with
mass density𝐷, wave slope∇𝜁, and vertical velocity𝑤. The multiplier 𝜖 could be varied 0 ≤ 𝜖 ≤ 1
to test the sensitivity of the model solutions to the proposed wave-field energy cost.
In nondimensional form, the wave-field energy cost could be included in the action integral as

𝑆 = ∫ 𝓁(𝒗, 𝐷, 𝜙, 𝑤; 𝜁, 𝜆)𝑑𝑡

= ∫ ∫ 𝐷
(
1

2

(|𝒗|2 + 𝜎2𝑤2 + 𝜖𝜎4|𝑤∇𝒓𝜁|2) − 𝜁𝐹𝑟2
)
+ 𝜎2𝜆(𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 − 𝑤)

+ 𝜙(𝜕𝑡𝐷 + div𝒓(𝐷𝒗)) 𝑑2𝑟 𝑑𝑡.

(69)

Stationarity of the modified action integral in (69) yields the variational equations,

𝒗 ∶ 𝐷𝒗 ⋅ 𝑑𝒓 + 𝜎2𝜆 𝑑𝜁 = 𝐷𝑑𝜙 ⟹ 𝑽 ⋅ 𝑑𝒓 ∶= 𝒗 ⋅ 𝑑𝒓 + 𝜎2(𝜆∕𝐷) 𝑑𝜁 = 𝑑𝜙,

𝛿𝑤 ∶ 𝐷𝑤 − 𝜆 + 𝜖𝜎2𝐷𝑤|∇𝒓𝜁|2 = 0 ⟹ (𝜆∕𝐷) = 𝑤
(
1 + 𝜖𝜎2|∇𝒓𝜁|2),

𝛿𝜆 ∶ 𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 − 𝑤 = 0,

𝛿𝜁 ∶ 𝜕𝑡𝜆 + div𝒓(𝜆𝒗) = −
𝐷

𝜎2𝐹𝑟2
− div𝒓

(
𝜖𝜎2𝐷𝑤2∇𝒓𝜁

)
,

𝛿𝜙 ∶ 𝜕𝑡𝐷 + div𝒓(𝐷𝒗) = 0,

𝛿𝐷 ∶ (𝜕𝑡 + 𝒗 ⋅ ∇𝒓)𝜙 =
1

2

(|𝒗|2 + 𝜎2𝑤2(1 + 𝜖𝜎2|∇𝒓𝜁|2)) − 𝜁𝐹𝑟2 =∶ 𝜛̃.

(70)

The previous wave system in (39) is recovered when one sets 𝜖 = 0.

Theorem 2. The system of equations in (70) implies the following Kelvin theorem for the fluid cir-
culation:

𝑑

𝑑𝑡 ∮𝑐(𝒗) 𝒗 ⋅ 𝑑𝒓 = 𝜖𝜎
4 ∮
𝑐(𝒗)

1

𝐷
div𝒓(𝐷𝑤2∇𝜁)𝑑𝜁 + |∇𝒓𝜁|2𝑑𝑤2∕2, (71)

in which 𝑐(𝒗) is a closed loop moving with the material velocity 𝒗.
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Proof. The proof follows by first integrating the 𝛿𝒗 equation (70) around a material loop 𝑐(𝒗)
moving with velocity 𝒗 to find,

𝑑

𝑑𝑡 ∮𝑐(𝒗)(𝒗 + 𝜎
2𝜆∇𝜁) ⋅ 𝑑𝒓 = ∮

𝑐(𝒗)

(𝜕𝑡 + 𝒗)((𝒗 + 𝜎2𝜆∇𝜁) ⋅ 𝑑𝒓) = ∮
𝑐(𝒗)

𝑑𝜙 = 0,

upon using the well-known identity

𝑑

𝑑𝑡 ∮𝑐(𝒗) 𝒗 ⋅ 𝑑𝒓 = ∮𝑐(𝒗)(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓).

One then computes

𝑑

𝑑𝑡 ∮𝑐(𝒗) 𝒗 ⋅ 𝑑𝒓 = −𝜎
2 ∮
𝑐(𝒗)

(𝜕𝑡 + 𝒗)((𝜆∕𝐷) 𝑑𝜁)

= ∮
𝑐(𝒗)

(
1

𝐹𝑟2
+
1

𝐷
div𝒓(𝜖𝜎4𝐷𝑤2∇𝜁)

)
𝑑𝜁 + 𝜎2(𝜆∕𝐷)𝑑𝑤

= 𝜖𝜎4 ∮
𝑐(𝒗)

1

𝐷
div𝒓(𝐷𝑤2∇𝜁)𝑑𝜁 + |∇𝒓𝜁|2𝑑𝑤2∕2.

■

Corollary 1. The modified CWW model of wave dynamics arising via Hamilton’s principle from
the action integral in (69) with its additional wave energy creates circulation in the fluid whenever
the gradients of the wave variables are not aligned.

Proof. The proof follows by applying the Stokes theorem to the right-hand side of the material
loop 𝑐(𝒗) in Equation (71) in Theorem 2. ■

Remark 9 (Wave propagation velocity). Although the modification made to the energy here does
rectify the nonacceleration theorem so that the wave evolution can affect the circulation of the
current, the equation in (70) corresponding to the variation in 𝜆 indicates that the surface eleva-
tion remains a Lagrangian coordinate. This feature does not allow for waves of phase that do not
carry mass.
In Section 4, we will introduce a different coupling which will allow for waves that propagate

at a speed different to the Lagrangian parcels on the fluid surface. For this purpose, we will make
use of the two distinct 2D velocities on the free surface which appear in the energy equation in
(68), 𝒗 = ∇̂𝜙 and𝑽 = ∇𝜙. The first of them, 𝒗, is the transport velocity of Lagrangian parcels on
the fluid surface. The second of them,𝑽, is the phase velocity of a level set of the velocity potential
𝜙 evaluated on the free surface.
The couplingwewill introduce in the next sectionwill include a homotopy coefficient 0 ≤ 𝜖 ≤ 1

that will provide the option to set the Eulerian transport velocity of the wave elevation to a value
anywhere between 𝒗 = ∇̂𝜙 for 𝜖 = 0 and 𝑽 = ∇𝜙 for 𝜖 = 1. For 0 < 𝜖 ≤ 1, the wave propagation
velocity will no longer be equal to the material velocity.
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4 AUGMENTED CLASSICALWATERWAVE EQUATIONS (ACWWE)

4.1 Variational derivation of the ACWWE

Let us propose a less severe modification of the action integral in Equation (37) than the energy
modification introduced in (69). This proposal will not introduce any change in the wave energy.
Instead, it will allow a slip in the phase of the wave velocity relative to Lagrangian mass transport
velocity that will be imposed by the following constraint in the Lagrangian:

𝑆 = ∫ 𝓁(𝒗, 𝐷, 𝜙, 𝑤; 𝜁, 𝜆)𝑑𝑡

= ∫ ∫ 𝐷
(
1

2
(|𝒗|2 + 𝜎2𝑤2) − 𝜁

𝐹𝑟2

)
+ 𝜎2𝜆(𝜕𝑡𝜁 + (𝒗 − 𝜖𝜎

2𝑤∇𝜁) ⋅ ∇𝒓𝜁 − 𝑤)

+ 𝜙(𝜕𝑡𝐷 + div𝒓(𝐷𝒗)) 𝑑2𝑟 𝑑𝑡.

(72)

Here, we have retained the same nondimensional parameters as in Remark 5 and the nondi-
mensional constant parameter 0 ≤ 𝜖 ≤ 1 is the homotopy coefficient mentioned in Remark 9.
According to Remark 5, each wave variable is multiplied by the aspect ratio 𝜎 relative the fluid
variables.
In Equation (72), we have introduced a term that is intended to model WCMC.48 The WCMC

term modifies the transport velocity of the wave momentum density, to allow genuine wave–
current interaction, so the free-surface water waves will no longer be passively advected by the
fluid velocity. However, it leaves the wave energy unchanged.
Stationarity of the augmented action integral in (72) now yields the variational equations,

𝛿𝒗 ∶ 𝐷𝒗 ⋅ 𝑑𝒓 + 𝜎2𝜆 𝑑𝜁 = 𝐷𝑑𝜙 ⟹ 𝑽 ⋅ 𝑑𝒓 ∶= 𝒗 ⋅ 𝑑𝒓 + 𝜎2𝑤 𝑑𝜁 = 𝑑𝜙,

𝛿𝑤 ∶ 𝐷𝑤 − 𝜆
(
1 + 𝜖𝜎2|∇𝒓𝜁|2) = 0 ⟹ 𝜆 =

𝐷𝑤

1 + 𝜖𝜎2|∇𝒓𝜁|2 =∶ 𝐷𝑤,
𝛿𝜆 ∶ 𝜕𝑡𝜁 +

(
𝒗 − 𝜖𝜎2𝑤∇𝒓𝜁

)
⋅ ∇𝒓𝜁 − 𝑤 = 0,

𝛿𝜁 ∶ 𝜕𝑡𝜆 + div𝒓
(
𝜆
(
𝒗 − 𝜖𝜎2𝑤∇𝒓𝜁

))
= −
𝐷

𝜎2𝐹𝑟2
+ div𝒓

(
𝜖𝜎2𝜆𝑤∇𝒓𝜁

)
,

𝛿𝜙 ∶ 𝜕𝑡𝐷 + div𝒓(𝐷𝒗) = 0,

𝛿𝐷 ∶ (𝜕𝑡 + 𝒗 ⋅ ∇𝒓)𝜙 =
1

2
(|𝒗|2 + 𝜎2𝑤2) − 𝜁

𝐹𝑟2
=∶ 𝜛.

(73)

Notice that the 𝜖 coupling term in the modified Lagrangian in (72) does not affect variations in
the fluid variables, (𝒗, 𝐷, 𝜙). However, it changes the previous relationship between 𝜆 and 𝑤 by a
term proportional to 𝜖, which changes the relationship between 𝒗 and 𝑽, as seen in the first and
second lines of (73). Of course, the previous wave system in (39) is recovered when one sets 𝜖 → 0.
Specifically, we will see in the Kelvin circulation theorem that the total momentum per unit mass



CRISAN et al. 1305

has been modified, and is now given by

𝒗 + 𝑤∇𝒓𝜁 = 𝒗 +
𝑤

1 + 𝜖|∇𝒓𝜁|2 ∇𝒓𝜁
= 𝒗 + 𝑤∇𝒓𝜁 −

𝜖𝑤|∇𝒓𝜁|2
1 + 𝜖|∇𝒓𝜁|2 ∇𝒓𝜁.

(74)

4.1.1 ACWWmotion equation

We may write out the ACWW motion equation obtained by substituting the variational results
into the application of the advective time derivative (𝜕𝑡 + 𝒗) on the first line of the system (73),
to find in the notation 𝜆 = 𝐷𝑤 that

𝐷(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓 + 𝜎2𝑤 𝑑𝜁) = 𝐷𝑑(𝜕𝑡 + 𝒗)𝜙 = 𝐷𝑑𝜛. (75)

Recall from (73) that Bernoulli function𝜛 and vertical wave momentum density 𝜆 are defined as

𝜛 ∶=
1

2
(|𝒗|2 + 𝜎2𝑤2) − 𝜁

𝐹𝑟2
, 𝜆 =

𝐷𝑤

1 + 𝜖𝜎2|∇𝒓𝜁|2 =∶ 𝐷𝑤. (76)

At this point, let us collect the ACWWE in terms of (i) fluid variables, comprising velocity 𝒗
and area density 𝐷, and (ii) wave variables, comprising surface elevation 𝜁, and vertical wave
momentum density 𝜆. Namely, the ACWWEs are given by

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒙 + 𝜎2𝑤 𝑑𝜁) = 𝑑𝜛,
𝜕𝑡𝐷 + div𝒓(𝐷𝒗) = 0,

𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 = 𝑤(1 + 𝜖𝜎
2|∇𝒓𝜁|2),

𝜕𝑡𝑤 + 𝒗 ⋅ ∇𝒓𝑤 = −
1

𝜎2𝐹𝑟2
+
2𝜖𝜎2

𝐷
div(𝐷𝑤𝑤∇𝒓𝜁).

(77)

The equation set (77) recovers theECWWEequations (46)when 𝜖 → 0. The first of these equations
implies Kelvin’s circulation theorem for the ACWWmodel, as follows.

Theorem 3 (Kelvin–Noether theorem for the ACWWmodel). For every closed loop 𝑐(𝒗), moving
with the ACWW transport velocity 𝒗 for the system of ACWWE in (77) the Kelvin circulation relation
holds. Namely,

𝑑

𝑑𝑡 ∮𝑐(𝒗)(𝒗 ⋅ 𝑑𝒙 + 𝜎
2𝑤𝑑𝜁) = ∮

𝑐(𝒗)

𝑑𝜛 = 0. (78)
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Proof. From the first ACWWE in (77), we have

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒙 + 𝜎2𝑤𝑑𝜁) = 𝑑𝜛, (79)

and the result (78) follows from the standard relation for the time derivative of an integral around
a closed moving loop, 𝑐(𝒗),

𝑑

𝑑𝑡 ∮𝑐(𝒗)(𝒗 ⋅ 𝑑𝒓 + 𝜎
2𝑤𝑑𝜁) = ∮

𝑐(𝒗)

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓 + 𝜎2𝑤𝑑𝜁) = ∮
𝑐(𝒗)

𝑑𝜛 = 0.

■

Remark 10 (Transport of wave dynamics relative to the fluid velocity). A slight rearrangement
of the last two equations in (77) demonstrates that the wave dynamics is no longer transported
passively by the fluid velocity 𝒗. Instead, a shifted transport velocity appears; namely,

𝒗 − 𝜖𝜎2𝑤∇𝒓𝜁 = 𝒗 − 𝜖𝜎
2𝒔. (80)

This shift in wave velocity introduces wave dynamics into the transport velocity of the wave vari-
ables, as follows:

𝜕𝑡𝜁 +
(
𝒗 − 𝜖𝜎2𝑤∇𝒓𝜁

)
⋅ ∇𝒓𝜁 = 𝑤,

𝜕𝑡𝜆 + div𝒓
(
𝜆
(
𝒗 − 𝜖𝜎2𝑤∇𝒓𝜁

))
= −
1

𝜎2𝐹𝑟2
+ 𝜖𝜎2div𝒓(𝜆𝑤∇𝒓𝜁),

(81)

where one recalls that the canonical momentum density 𝜆 conjugates to the elevation 𝜁 is defined
in terms of the other wave variables in (76).

Remark 11. The difference in the wave momentum transport velocity relative to the fluid velocity
in Equation (80) will turn out to produce an important effect by which the waves will generate
fluid circulation. To compute this effect on the circulation of the fluid, we subtract the fluid trans-
port of the wave momentum from the total momentum transport by the fluid in (79). The fluid
velocity transport of the wave momentum is found from the wave dynamical equations in (81), as

(𝜕𝑡 + 𝒗)(𝜎2𝑤𝑑𝜁) = 𝜎2
(
−
1

𝜎2𝐹𝑟2
+
2𝜖𝜎2

𝐷
div(𝐷𝑤(𝑤∇𝜁))

)
𝑑𝜁 +

𝜎2𝑤

1 + 𝜖𝜎2|∇𝒓𝜁|2 𝑑(𝑤(1 + 𝜖𝜎2|∇𝒓𝜁|2))
= 𝜎2

(
−
1

𝜎2𝐹𝑟2
+
2𝜖𝜎2

𝐷
div(𝐷𝑤(𝑤∇𝜁))

)
𝑑𝜁

+
1

2
𝜎2𝑑𝑤2 + 𝜎2𝑤2𝑑

(
log((1 + 𝜖𝜎2|∇𝒓𝜁|2)).

(82)

Upon subtracting Equation (82) from the total fluidmomentum transport equation in (79), a short
calculation yields

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓) = 12𝑑|𝒗|2 − 𝜎22 𝑤2𝑑(1 + 𝜖𝜎2|∇𝒓𝜁|2)2 − 2𝜖𝜎4𝐷 div(𝐷𝑤(𝑤∇𝒓𝜁)) 𝑑𝜁. (83)
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Theorem 4. The corresponding Kelvin theorem for Equation (83) is given by

𝑑

𝑑𝑡 ∮𝑐(𝒗) 𝒗 ⋅ 𝑑𝒓 = ∮𝑐(𝒗)
1

2
𝑑|𝒗|2 − 𝜎2

2
𝑤2𝑑

(
1 + 𝜖𝜎2|∇𝒓𝜁|2)2 − 2𝜖𝜎4𝐷 div(𝐷𝑤(𝑤∇𝒓𝜁)) 𝑑𝜁. (84)

Proof. The proof follows by integrating Equation (83) around a material loop 𝑐(𝒗) moving with
velocity 𝒗, then using the well-known identity

𝑑

𝑑𝑡 ∮𝑐(𝒗) 𝒗 ⋅ 𝑑𝒓 = ∮𝑐(𝒗)(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓).

■

Corollary 2. The ACWW model of wave dynamics creates circulation in the fluid whenever the
gradients of the wave variables are not aligned.

Proof. The proof follows by applying the Stokes theorem to the right-hand side of the material
loop 𝑐(𝒗) in Equation (84) in Theorem 4. ■

Theorem 5 (Total energy conservation is independent of 𝜖). The energy conserved by modified
equations (82) and (83) is independent of 𝜖.

Proof. The modified constrained action integral in Equation (72) may be rewritten equivalently
as a phase-space Lagrangian, upon rearranging as follows:

𝑆 = ∫ 𝓁(𝒗, 𝐷, 𝜙, 𝑤; 𝜁, 𝜆)𝑑𝑡

= ∫ ∫ 𝐷
(
1

2
(|𝒗|2 + 𝜎2𝑤2) − 𝜁

𝐹𝑟2

)
+ 𝜎2𝜆(𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 − 𝑤)

+ 𝜙(𝜕𝑡𝐷 + div𝒓(𝐷𝒗)) − 𝜖𝜎4𝑤𝜆|∇𝒓𝜁|2 𝑑2𝑟 𝑑𝑡.
= ∫ ∫ 𝜙𝜕𝑡𝐷 + 𝜎2𝜆𝜕𝑡𝜁 − 𝐷

(
1

2
|𝒗|2 + 1
2
𝑤2 +
𝜁

𝐹𝑟2

)
𝑑2𝑟 𝑑𝑡.

(85)

The last term in this equation agrees with the definition of energy for the unmodified Lagrangian
in Equation (68) obtained by setting 𝜖 = 0 in the modified Lagrangian in Equation (72). Thus, the
modified and unmodified system conserve the same physical energy. ■

Theorem 5 shows that the equations resulting from the modified Lagrangian in (72) conserve
the same energy as for the unmodified Lagrangian in (37). Thus, the modification in (72) that was
obtained by introducing the 𝜖 term produces the wave–current interaction in Equations (82) and
(83) while also preserving the original physical energy density.What depends on 𝜖 is the definition
of the vertical wave momentum density 𝜆 canonically conjugate to the elevation 𝜁 depends on 𝜖,
as well as the definition of the velocity 𝑽 in terms of the wave variables, as seen in the first and
second lines of (73).
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Remark 12 (Tensor virial theorem for a Lagrangian fluid blob under the ACWWE). Although
the conserved energy remains the same for the ECWW and ACWW models for any value of the
coupling constant 𝜖, the tensor virial theorem for a Lagrangian fluid blob under the ACWWE is
considerably more intricate than in Section 3.4.2 for the ECWWmodel.

4.2 Lie–Poisson Hamiltonian formulation of the ACWWE

As discussed in Appendix C, the Legendre transformation of the augmented Lagrangian in the
action integral (72) with respect to the sum of the fluid and wave momentum densities

𝑴 = 𝐷𝒗 + 𝜆∇𝒓𝜁= 𝐷𝑽 (86)

leads to the ECWWHamiltonian defined now in dimensional units by

ℎ(𝑴,𝐷, 𝜆, 𝜁) = ∫
1

2𝐷
|𝑴 − 𝜆∇𝒓𝜁|2 + 𝜆22𝐷 (1 + 𝜖|∇𝒓𝜁|2)2 + 𝑔𝐷𝜁 𝑑2𝑟,

= ∫
(
1

2
|𝒗|2 + 1
2
𝑤2 + 𝑔𝜁

)
𝐷 𝑑2𝑟,

= ∫
(
1

2
|∇̂𝒓𝜙|2 + 12𝑤2 + 𝑔𝜁

)
𝐷 𝑑2𝑟.

(87)

The Hamiltonian in (87) is also the conserved energy (68) for the system of ECWWE in (46), as
proven in Theorem 5.

Variations of the Hamiltonian in (87)
In the Hamiltonian variables, the Bernoulli function𝜛 in (73) is denoted as

𝜛 =
1

2𝐷2
|𝑴 − 𝜆∇𝒓𝜁|2 + 𝜆2

2𝐷2
(1 + 𝜖|∇𝒓𝜁|2) − 𝑔𝜁. (88)

After evaluating the corresponding variational derivatives of the Hamiltonian in (87), the system
of equations in (77) may be written in the untangled block-diagonal form, as

𝜕

𝜕𝑡

⎡⎢⎢⎢⎢⎣
𝑀𝑖
𝐷

𝜆

𝜁

⎤⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎣
𝜕𝑗𝑀𝑖 + 𝑀𝑗𝜕𝑖 𝐷𝜕𝑖 0 0

𝜕𝑗𝐷 0 0 0

0 0 0 1

0 0 −1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

𝛿ℎ∕𝛿𝑀𝑗 = 𝑣
𝑗

𝛿ℎ∕𝛿𝐷 = −𝜛

𝛿ℎ∕𝛿𝜆 = −(𝒗 − 𝜖𝑤∇𝒓𝜁) ⋅ ∇𝒓𝜁 + 𝑤

𝛿ℎ∕𝛿𝜁 = div𝒓(𝜆(𝒗 − 2𝜖𝑤∇𝒓𝜁)) + 𝑔𝐷

⎤⎥⎥⎥⎥⎦
. (89)

Remark 13 (Consequences of introducing the WCMC term). The consequences of introducing
the slip velocity 𝒔 ∶= 𝑤∇𝒓𝜁 in (32) into the variational principle in (72) as a WCMC term are
evident in the Bernoulli function in (88) and in the transport velocities of the wave dynamics
in (89), upon comparing them with (65) and (66), respectively. In contrast to the complexity of
the separate relations for wave and current circulation laws in (82) and (83), the simplicity of the
conservation of the total circulation in Equation (78) for ACWW dynamics seems to be a more
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meaningful statement about WCI than in the ECWWE, where the wave and current circulations
are conserved separately in Equation (43), as amutual nonacceleration pact.
In the next section of the paper, we will explore the further ramifications of introducing the

WCMC term, by adding nonhydrostatic pressure, buoyancy and other physics to the ACWW sys-
tem.

5 HAMILTON’S PRINCIPLE FORWAVE–CURRENT INTERACTION
ON A FREE SURFACE (WCIFS)

5.1 Adding buoyancy and other physics to the ACWW system

This section further augments the ACWWE set (77) to add more physical aspects to the WCIFS
(WCI FS). These physical aspects include wave–current coupling, nonhydrostatic pressure,
incompressibility, and horizontal gradients of buoyancy.

5.1.1 Hamilton’s principle for WCIFS

Let usmodify the action integral (72) for the system of ACWWE in (77) to encompass the following
aspects ofWCIFS. As in (72), we will impose the surface boundary condition (35) and the continu-
ity equation for the areal density variable 𝐷 as constraints. We will also include the WCMC term
via the slip velocity, as in Section 4.1. In addition, we will introduce an advected scalar buoyancy
variable 𝜌 with nonzero horizontal gradients. Finally, we will allow nonhydrostatic pressure, 𝑝.
To determine the pressure, 𝑝, we will constrain the 2D fluid transport velocity 𝒗 to be divergence-
free.2 To include these various physical effects, we will apply Hamilton’s principle with the fol-
lowing dimension-free action integral:

𝑆 = ∫ 𝓁(𝒗, 𝐷, 𝜌, 𝜙, 𝑤, 𝜁; 𝜇, 𝑝)𝑑𝑡

= ∫ ∫ 𝐷𝜌
(
1

2
(|𝒗|2 + 𝜎2𝑤2) − 𝜁

𝐹𝑟2

)
+ 𝜎2𝜇(𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝜁 − 𝑤) − 𝜎

4𝜖𝒔 ⋅ (𝜇∇𝜁)

−
1

𝐹𝑟2
𝑝(𝐷 − 1) + 𝜙(𝜕𝑡𝐷 + div(𝐷𝒗)) + 𝛾(𝜕𝑡𝜌 + 𝒗 ⋅ ∇𝜌) 𝑑2𝑟 𝑑𝑡.

(90)

Here, we recall that the quantity 𝒔 ∶= 𝑤∇𝒓𝜁 is the slip velocity, defined in Equation (32).

Remark 14. Note that by including only certain terms in the above action integral, we may derive
equations for the dynamics of subsystems with any combination of these additional properties
(wave–current coupling, nonhydrostatic pressure, incompressibility, and buoyancy).

2We will reserve the hat notation for aspects of velocity (𝒗, 𝑤, 𝜙) evaluated on the free surface. Hence, we will refrain from
gratuitously adding hats to the pressure 𝑝 and the buoyancy 𝜌, because it is understood that they are evaluated on the
free surface. The meaning for pressure 𝑝 and the buoyancy 𝜌 will always be clear from the context. The assumption of
incompressibility of the fluid flow will enable the Bernoulli law to admit finite nonhydrostatic pressure.
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The passive wave case, 𝜖 = 0
Taking variations of the dimensional version of action integral in (90) with 𝜖 = 0 yields

𝛿𝒗 ∶ 𝐷𝜌𝒗 ⋅ 𝑑𝒙 + 𝜇 𝑑𝜁 = 𝐷𝑑𝜙 − 𝛾𝑑𝜌,

𝛿𝑤 ∶ 𝐷𝜌𝑤 − 𝜇 = 0,

𝛿𝜇 ∶ 𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝜁 = 𝑤,

𝛿𝜁 ∶ 𝜕𝑡𝜇 + div(𝜇𝒗) = −𝐷𝜌𝑔,

𝛿𝜌 ∶ (𝜕𝑡 + 𝒗)
( 𝛾
𝐷

)
=
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁 =∶ 𝜛,

𝛿𝐷 ∶ (𝜕𝑡 + 𝒗)𝜙 = 𝜌𝜛 − 𝑝,
𝛿𝜙 ∶ 𝜕𝑡𝐷 + div(𝐷𝒗) = 0,

𝛿𝑝 ∶ 𝐷 − 1 = 0 ⇒ div𝒗 = 0,

𝛿𝛾 ∶ (𝜕𝑡 + 𝒗)𝜌 = 0.

(91)

Applying (𝜕𝑡 + 𝒗) to the first relation in (91) yields
(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓 + 𝑤𝑑𝜁) = 𝑑𝜛 − 1𝜌𝑑𝑝, (92)

so we obtain the following Kelvin circulation theorem,

𝑑

𝑑𝑡 ∮𝑐𝑡 𝑽 ⋅ 𝑑𝒓 = ∮𝑐𝑡 (𝜕𝑡 + 𝒗)(𝑽 ⋅ 𝑑𝒓) = −∮𝑐𝑡
1

𝜌
𝑑𝑝. (93)

As expected, the momentum per unit mass in the motion equation is 𝒗 + 𝑤∇𝜁 =∶ 𝑽. The result
has the same right-hand side as for the 2D inhomogeneous Euler equation. Here, the total
momentum now is the sum of the fluid momentum and the wave momentum, whose evolu-
tion is obtained as a separate degree of freedom appearing in the third and fourth lines of the
equation set (91).
However, continuing to calculate from (92) yields a nonacceleration result as in Equation (42),

in the sense that the wave momentum evolves passively with the flow of the fluid,

(𝜕𝑡 + 𝒗)(𝑤∇𝜁) = −𝑔 𝑑𝜁 + 12𝑑𝑤2,
and the fluid momentum evolves independently of the wave variables,

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓) = 𝑑
(
1

2
|𝒗|2) − 1

𝜌
𝑑𝑝.

Thus, the momentum equation in the passive wave case is simply a 2D Euler equation to be
considered in tandemwith the remaining identities from (91). Note that if∇𝜌 ≠ 0, then the right-
hand side of the previous equation generates circulation in 𝒗; so, in this case, 𝒗 cannot produce
potential flow.
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Next, we will pursue the implications when the WCMC parameter 𝜖 does not vanish and the
wave variables do not interact passively.

5.2 Derivation of the WCIFS equations for active waves

To derive aWCIFSmodel system of equations for themotion of free surface with active waves and
spatially varying buoyancy, we will apply the free-surface condition (35) and incompressibility of
the 𝒗-flow as constraints in the action integral, while also including the minimal coupling term
withnondimensional parameter 𝜖 ≠ 0 in the action integral (90). Then, upon restoring dimension-
ality to the variables in (90), we obtain the following action principle for the free-surface motion:

𝑆 = ∫ 𝓁(𝒗,𝑤, 𝐷, 𝜌, 𝜁; 𝜇, 𝑝)𝑑𝑡

= ∫ ∫ 𝐷𝜌
(
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁) + 𝜇(𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝜁 − 𝑤) − 𝜖𝑤∇𝜁 ⋅ (𝜇∇𝜁)

− 𝑝(𝐷 − 1) + 𝜙(𝜕𝑡𝐷 + div(𝐷𝒗)) + 𝛾(𝜕𝑡𝜌 + 𝒗 ⋅ ∇𝜌) 𝑑2𝑟 𝑑𝑡.

(94)

The Lagrangemultipliers 𝜇, 𝑝, 𝜙, and 𝛾 apply, respectively, the free-surface condition (35), incom-
pressibility of the 𝒗-flow, mass preservation, and buoyancy advection.
Hamilton’s principle, 𝛿𝑆 = 0, for the restricted free-surface action integral in (94) yields the

following independent relations:

𝛿𝒗 ∶ 𝐷𝜌𝒗 ⋅ 𝑑𝒙 + 𝜇 𝑑𝜁 = 𝐷𝑑𝜙 − 𝛾𝑑𝜌,

𝛿𝑤 ∶ 𝐷𝜌𝑤 − 𝜇 (1 + 𝜖|∇𝜁|2) = 0,
𝛿𝜇 ∶ 𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝜁 − 𝑤(1 + 𝜖|∇𝜁|2) = 0,
𝛿𝜁 ∶ 𝜕𝑡𝜇 + div(𝜇𝒗) = −𝐷𝜌𝑔 + 2𝜖 div(𝑤 𝜇∇𝜁),

𝛿𝜌 ∶ (𝜕𝑡 + 𝒗)
( 𝛾
𝐷

)
=
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁 =∶ 𝜛,

𝛿𝐷 ∶ (𝜕𝑡 + 𝒗)𝜙 = 𝜌𝜛 − 𝑝,
𝛿𝜙 ∶ 𝜕𝑡𝐷 + div(𝐷𝒗) = 0,

𝛿𝑝 ∶ 𝐷 − 1 = 0 ⇒ div𝒗 = 0,

𝛿𝛾 ∶ (𝜕𝑡 + 𝒗)𝜌 = 0.

(95)

Before enforcing the pressure constraint𝐷 = 1, wewrite out the fluidmotion equation obtained
by substituting the variational results into the application of the advective time derivative (𝜕𝑡 +𝒗) on the first line of the system (95), to find, upon writing 𝜇 = 𝐷𝜌𝑤

𝐷𝜌(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒙 + 𝑤 𝑑𝜁) = 𝐷𝑑(𝜕𝑡 + 𝒗)𝜙 − 𝐷
(
(𝜕𝑡 + 𝒗) 𝛾𝐷

)
𝑑𝜌

= 𝐷𝜌

(
𝑑𝜛 −
1

𝜌
𝑑𝑝

)
.

(96)
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Recall that the Bernoulli function𝜛 and vertical wave momentum density 𝜇 are defined as

𝜛 ∶=
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁, 𝜇 ∶=

𝐷𝜌𝑤

(1 + 𝜖|∇𝜁|2) = 𝐷𝜌𝑤. (97)

At this point, let us collect theWCIFS equations in terms of (i) fluid variables, comprising veloc-
ity, 𝒗, area density, 𝐷, and buoyancy, 𝜌, and (ii) wave variables, comprising surface elevation, 𝜁
and vertical wave momentum density 𝜇. The WCIFS equations are

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒙 + 𝑤 𝑑𝜁) = 𝑑𝜛 − 1𝜌𝑑𝑝,
𝜕𝑡𝐷 + div(𝐷𝒗) = 0,

𝜕𝑡𝜌 + 𝒗 ⋅ ∇𝜌 = 0,

𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝜁 = 𝑤(1 + 𝜖|∇𝜁|2),
𝜕𝑡𝑤 + 𝒗 ⋅ ∇𝑤 = −𝑔 +

2𝜖

𝐷𝜌
div(𝑤 𝜇∇𝜁).

(98)

In its role as a Lagrange multiplier in the action integral (94), the pressure 𝑝 enforces the con-
straint 𝐷 = 1. In turn, persistence of the condition 𝐷 = 1 along the flow implies that the fluid
motion generated by 𝒗 is incompressible. In particular, setting 𝐷 = 1 in the continuity equation
in (98) above implies that the free surface fluid velocity 𝒗 is divergence-free, div𝒗 = 0. The pres-
sure 𝑝 is then determined by requiring that 𝒗 remain divergence free, which implies the following
elliptic equation for 𝑝,

−(∇ ⋅ 𝜌−1∇)𝑝 = div

(
𝒗 ⋅ ∇𝒗 +

𝑤

1 + 𝜖|∇𝜁|2 ∇(𝑤(1 + 𝜖|∇𝜁|2))
− 𝑤∇𝑤 +

2𝜖

𝜌
div(𝜌 𝑤2(1 + 𝜖|∇𝜁|2)∇𝜁)∇𝜁). (99)

Thus, the pressure 𝑝 depends on the horizontal flow velocity 𝒗 of the surface current and fluid
buoyancy 𝜌, as well as the wave elevation 𝜁 and the vertical velocity 𝑤. We stress that the flow
variables, (𝒗, 𝜌), and thewave variables, (𝜁, 𝑤), comprise two separate Eulerian degrees of freedom
at each point 𝒓 = (𝑥, 𝑦) in the 2D domain of flow.

Remark 15 (Making the action integral stochastic in Section 6). In Section 6, the action integral
(90) will be made stochastic, following,26 and we will to derive a stochastic generalization of the
water wave equations.

5.3 Comparison of WCIFS system to other known systems

Remark 16 (Comparison of system (98) to the John-Sclavounos (JS) model equations 33,50). The
JS model comprises a dynamical system of ordinary differential equations for the motion of a sin-
gle particle that is constrained to remain upon the free surface 𝜁(𝑥, 𝑦, 𝑡) − 𝑧 = 0, with prescribed
𝜁(𝑥, 𝑦, 𝑡). This dynamical system has recently been derived from a variational principle using the
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Euler–Lagrange methodology.51 This variational principle raises the question of whether the par-
ticle dynamics of JS model may be associated with Lagrangian fluid trajectory dynamics in the
present continuum framework.
The JS equations give the horizontal fluid particle trajectories 𝒓(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) driven by the

free surface 𝑧 = 𝜁(𝒓, 𝑡). The equations can be expressed as

(1 + 𝜁2𝑥)𝑥̈ + 𝜁𝑥𝜁𝑦𝑦̈ + (𝜁𝑡𝑡 + 𝜁𝑥𝑡𝑥̇ + 𝜁𝑦𝑡𝑦̇ + 𝜁𝑥𝑥𝑥̇
2 + 2𝜁𝑥𝑦𝑥̇𝑦̇ + 𝜁𝑦𝑦𝑦̈ + 𝑔)𝜁𝑥 = 0, (100)

(1 + 𝜁2𝑦)𝑦̈ + 𝜁𝑥𝜁𝑦𝑥̈ + (𝜁𝑡𝑡 + 𝜁𝑥𝑡𝑥̇ + 𝜁𝑦𝑡𝑦̇ + 𝜁𝑥𝑥𝑥̇
2 + 2𝜁𝑥𝑦𝑥̇𝑦̇ + 𝜁𝑦𝑦𝑦̈ + 𝑔)𝜁𝑦 = 0. (101)

Note that

𝜕𝑡(𝜁𝑡 + 𝜁𝑥𝑥̇ + 𝜁𝑦𝑦̇) + 𝑔 − 𝜁𝑥𝑥̈ − 𝜁𝑦𝑦̈ = 𝜁𝑡𝑡 + 𝜁𝑥𝑡𝑥̇ + 𝜁𝑦𝑡𝑦̇ + 𝜁𝑥𝑥𝑥̇
2 + 2𝜁𝑥𝑦𝑥̇𝑦̇ + 𝜁𝑦𝑦𝑦̈ + 𝑔.

Hence, the JS equations can be rewritten in more concise vector notation as

𝒓̈ + ((𝜕𝑡 + 𝒓̇ ⋅ ∇)(𝜕𝑡𝜁 + 𝒓̇ ⋅ ∇𝜁) + 𝑔)∇𝜁 =∶ 𝒓̈ +

(
𝐷

𝐷𝑡

(
𝐷𝜁

𝐷𝑡

)
+ 𝑔

)
∇𝜁 = 0, (102)

with 𝐷∕𝐷𝑡 ∶= 𝜕𝑡 + 𝒚̇ ⋅ ∇.

Choi’s relation
One may immediately make the connection between the JS equations (102) and Choi’s relation
(9). Naturally, as the JS equations represent a single particle’s motion, whereas Choi’s relation is a
statement about continuum flows, (9) features a pressure term on the right-hand side. However,
the two equations are otherwise strikingly similar.

Comparison with the JS equations
To make the comparison between the system of equations derived in this paper with the JS equa-
tions in vector form (102), we combine the last two equations of the system (98) to write,

𝑔 −
2𝜖

𝐷𝜌
div(𝐷𝜌𝑤2(1 + 𝜖|∇𝜁|2)∇𝜁) = −(𝜕𝑡 + 𝒗 ⋅ ∇)( 𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝜁

(1 + 𝜖|∇𝜁|2)2
)
= −(𝜕𝑡 + 𝒗 ⋅ ∇)𝑤. (103)

Consequently, the motion equation in system (98) may be expressed as

𝜕𝑡𝒗 + 𝒗 ⋅ ∇𝒗 + ((𝜕𝑡 + 𝒗 ⋅ ∇)𝑤 + 𝑔)∇𝜁 = −
1

𝜌
∇𝑝 + 𝑤∇𝑤 −

𝑤

1 + 𝜖|∇𝜁|2 ∇(𝑤(1 + 𝜖|∇𝜁|2)). (104)

Thus, the present form of the WCIFS fluid equations (104) does seem to have some kinematic
resemblance to the JS equations, although the two types of dynamics also have major physical
and mathematical differences in their interpretations.
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For example, one may write the WCIFS motion equation (104) equivalently in more compact
form, as

𝜕𝑡𝒗 + 𝒗 ⋅ ∇𝒗 + ((𝜕𝑡 + 𝒗 ⋅ ∇)𝑤 + 𝑔)∇𝜁 = −
1

𝜌
∇𝑝 −
1

2
𝑤2∇(1 + 𝜖|∇𝜁|2)2. (105)

In this compact form, which is also reminiscent of Choi’s relation (9), the geometric, coordinate-
free nature of theWCIFS equation begins to emerge upon writing (104) equivalently as the advec-
tive Lie derivative of a 1-form, which also arises in the Kelvin circulation theorem below, cf. (110),

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒙 + 𝑤𝑑𝜁) = 𝑑𝜛 − 1𝜌𝑑𝑝. (106)

In one dimension with constant buoyancy 𝜌 = 𝜌0 and 𝑝 = 𝑝𝑠 = 𝜌0𝑔𝜁, this formula becomes

(𝜕𝑡 + 𝑣)(𝑣𝑑𝑥 + 𝑤𝑑𝜁) = 𝑑𝜛 − 𝑔𝜌0 𝑑𝜁, (107)

where𝜛 is defined in (97). In this geometric form, the JS andWCIFSmodels look rathermore dis-
tant.

5.4 Balance relations, Kelvin theorem, and potential vorticity

Remark 17 (Dimension-free form of motion Equation (106)). In terms of the parameters in
Remark 5, the dimension-free form of the motion Equation (106) is given by

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒙 + 𝜎2𝑤𝑑𝜁) = 𝑑
(
1

2
(|𝒗|2 + 𝜎2𝑤2) − 𝜁

𝐹𝑟2

)
−
1

𝐹𝑟2
1

𝜌
𝑑𝑝, (108)

where 𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝜁 = 𝑤(1 + 𝜖𝜎2|∇𝜁|2)2 = 𝑤(1 + 𝜖𝜎2|∇𝜁|2).
Balance relations required for significant wave–current interaction
For small Froude number, 𝐹𝑟2 ≪ 1, Equation (108) approaches hydrostatic balance, and for small
aspect ratio𝜎2 ≪ 1, Equation (108) suppresseswave activity.WhenFroudenumber𝐹𝑟2 and aspect
ratio 𝜎 are both of order 𝑂(1), then Equation (108) admits order 𝑂(1) significant nonhydrostatic
wave activity.
Likewise, the 𝑤 equation in (98) in dimensionless form for the same scaling parameters

becomes

𝜎2(𝜕𝑡𝑤 + 𝒗 ⋅ ∇𝑤) = −
1

𝐹𝑟2
+
2𝜖𝜎4

𝐷𝜌
div(𝐷𝜌𝑤𝑤∇𝜁). (109)

The balance between current and wave properties in the dimension-free 𝑤 Equation (109) also
requires both Froude number𝐹𝑟2 and aspect ratio𝜎 to be of order𝑂(1) for significantwave activity
to occur.
Only the motion equation and the𝑤 equation in (98) change their coefficients for these scaling

parameters. The coefficients of the others remain unchanged.
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Remark 18. To prove the following Kelvin–Noether circulation theorem for the system of WCIFS
equations in (98), it is convenient to return to the variational equations in (95) and the notation
introduced in (96) and (97).

Theorem 6 (Kelvin–Noether theorem for the WCIFS model). For every closed loop 𝑐(𝒗) moving
with the WCIFS velocity 𝒗 for the system of WCIFS equations in (98), the Kelvin circulation relation
holds,

𝑑

𝑑𝑡 ∮𝑐(𝒗)
(
𝒗 ⋅ 𝑑𝒙 +

𝜇

𝐷𝜌
𝑑𝜁

)
= ∮
𝑐(𝒗)

𝑑𝜛 −
1

𝜌
𝑑𝑝. (110)

Proof. From the variational equations in (95), we have

(𝜕𝑡 + 𝒗)(𝐷𝜌𝒗 ⋅ 𝑑𝒙 + 𝜇𝑑𝜁) = 𝐷𝑑(𝜕𝑡 + 𝒗)𝜙 − 𝐷
(
(𝜕𝑡 + 𝒗) 𝛾𝐷

)
𝑑𝜌

= 𝐷𝑑(𝜌𝜛 − 𝑝) − 𝐷𝜛𝑑𝜌.

Hence, we find

(𝜕𝑡 + 𝒗)
(
𝒗 ⋅ 𝑑𝒙 +

𝜇

𝐷𝜌
𝑑𝜁

)
= 𝑑𝜛 −

1

𝜌
𝑑𝑝, (111)

and the result (110) follows from the standard relation for the time derivative of an integral around
a closed moving loop, 𝑐(𝒗),

𝑑

𝑑𝑡 ∮𝑐(𝒗)
(
𝒗 ⋅ 𝑑𝒙 +

𝜇

𝐷𝜌
𝑑𝜁

)
= ∮
𝑐(𝒗)

(𝜕𝑡 + 𝒗)
(
𝒗 ⋅ 𝑑𝒙 +

𝜇

𝐷𝜌
𝑑𝜁

)
= ∮
𝑐(𝒗)

𝑑𝜛 −
1

𝜌
𝑑𝑝. ■

Remark 19 (Interpretation of WCIFS as a compound fluid system). The compound circulation of
the WCIFS wave–fluid system in (98) obeys the same dynamical equations as the planar incom-
pressible flow description of a single-component flow with horizontal buoyancy gradient, except
for two features associated with the wave degrees of freedom. First, the presence of the wave field
contributes to the solution for the pressure from the condition that the velocity of the fluid compo-
nent remains incompressible. Second, the presence of the wave field is a source of circulation for
the fluid component of this compound system. Both of these features are due to the momentum
of the waves, defined using the notation 𝑤 defined in (98) as 𝜇∕(𝐷𝜌)∇𝜁 = 𝑤∇𝜁, which is pro-
portional to the wave slope, ∇𝜁. In particular, the momentum 𝑤∇𝜁 appears in both the pressure
equation in (99) and the Kelvin–Noether integrand in (110).

Corollary 3 (Total wave–fluid PV for WCIFS). The evolution equation for the total wave–fluid PV
follows by taking the exterior derivative of Equation (111) in the proof of the Kelvin circulation theorem
for WCIFS. Namely,

(𝜕𝑡 + 𝒗)(curl𝒗 + ∇𝑤 × ∇𝜁) ⋅ 𝑑𝑺 = −∇𝜌−1 × ∇𝑝 ⋅ 𝑑𝑺. (112)

If we introduce a stream function 𝜓, so that 𝒗 = 𝒛 × ∇𝜓, then the previous equation can be written
formally in terms of the 2D LaplacianΔ and the Jacobian 𝐽(𝜓, 𝜌) ∶= 𝒛 ⋅ ∇𝜓 × ∇𝜌 = 𝒗 ⋅ ∇𝜌 between
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functions 𝜓 and 𝜌, then we have

𝜕𝑡𝑞 + 𝐽(𝜓, 𝑞) = −𝐽(𝜌
−1, ∇𝑝), with PV defined as 𝑞 ∶= Δ𝜓 + 𝐽(𝑤, 𝜁). (113)

Remark 20. Note that advancing the PV quantity 𝑞 in time in Equation (113) requires one to
advance the entire system of WCIFS equations in (98), as well as the solution of the following
elliptic Equation (99) for the pressure 𝑝 to complete the evolution algorithm.

5.5 Integral conservation laws for theWCIFS equations

5.5.1 Spatially varying specific buoyancy

The system of equations for the PV and specific buoyancy (𝑞, 𝜌−1) is given by

𝜕𝑡𝑞 + 𝐽(𝜓, 𝑞) = − 𝐽(𝜌
−1, ∇𝑝), 𝜕𝑡𝜌

−1 + 𝐽(𝜓, 𝜌−1) = 0. (114)

This system of equations implies that the following integral quantity is conserved under the
(𝑞, 𝜌−1) dynamics:

𝐶Φ,Ψ ∶= ∫ Φ(𝜌−1) + 𝑞Ψ(𝜌−1) 𝑑2𝑥, (115)

for arbitrary differentiable functions Φ and Ψ.

5.5.2 Spatially homogeneous specific buoyancy

In the case that the specific buoyancy is initially constant, 𝜌−1 = 𝜌−10 , then it will remain constant,
and∇𝜌−1 = 0will persist throughout the WCIFS domain of flow. In this case, the (𝑞, 𝜌−1) system
(114) will reduce to a single equation, 𝜕𝑡𝑞 + 𝐽(𝜓, 𝑞) = 0, describing simple advection of the PV
quantity, 𝑞. Hence, the conserved integral quantities are the familiar vorticity functionals from
the 2D Euler equations, or PV functionals from the quasi-geostrophic (QG) equation. Namely, for
a spatially homogeneous initial specific buoyancy, the WCIFS system in (114) will conserve the
following class of integral quantities:

𝐶Φ ∶= ∫ Φ(𝑞) 𝑑2𝑥, (116)

for an arbitrary differentiable function Φ. Thus, the WCIFS integral conservation laws for PV in
Equations (115) and (116) depend on whether the specific buoyancy gradient (∇𝜌−1) vanishes at
the initial time.

Energy
The conserved WCIFS integrated energy is given by

𝑒(𝒗, 𝜌, 𝜁, 𝑤) ∶= ∫
𝜌

2
(|𝒗|2 + 𝑤2(1 + 𝜖|∇𝜁|2)2) + 𝑔𝜌𝜁 𝑑2𝑥. (117)
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Although the energy conservation law may be proven directly from the WCIFS equations in
(98), it may be more enlightening to discover this energy via the Legendre transformation of the
Lagrangian in the action integral 𝑆 in (94) and thereby determine the Hamiltonian formulation
and its remarkable properties for the WCIFS system. In particular, the Lie-Poisson bracket in the
Hamiltonian formulation of the WCIFS system in the next section will explain the source of the
WCIFS conservation laws and their relationships among each other from the viewpoint of the
Hamiltonian structure for the WCIFS system.

Remark 21 (WCI FS with constant buoyancy). The simplest form of the WCIFS equations in
(98) arises when the buoyancy is constant, that is, 𝜌 = 𝜌0. In that case, the WCIFS equations
reduce to

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒙 + 𝑤𝑑𝜁) = 𝑑𝜛 − 1𝜌0𝑑𝑝,
(𝜕𝑡 + 𝒗)𝜁 = 𝑤(1 + 𝜖|∇𝜁|2) =∶ 𝑤(1 + 𝜖|∇𝜁|2)2
(𝜕𝑡 + 𝒗)𝑤 = −𝑔 + 2𝜖 div(𝑤2(1 + 𝜖|∇𝜁|2)∇𝜁),
with 𝒗 = 𝒛 × ∇𝜓,

and (𝜕𝑡 + 𝒗)(1 + 𝜖|∇𝜁|2) = 2𝜖∇𝜁 ⋅ (∇(𝑤(1 + 𝜖|∇𝜁|2)) − 𝜁,𝑗∇𝑣𝑗),
with 𝜛 ∶= 1

2
|𝒗|2 + 1
2
𝑤2(1 + 𝜖|∇𝜁|2)2 − 𝑔𝜁.

(118)

5.6 Hamiltonian formulation of the WCIFS equations

Legendre transformation
By considering the Lagrangian function in the action integral (94), 𝓁(𝒗, 𝐷, 𝜌, 𝜁, 𝑤; 𝑝), one
may define the Legendre transformation as the variation with respect to the velocity 𝒗 in
(95). Namely,

𝛿𝓁

𝛿𝒗
= 𝐷𝜌𝒗 + 𝜇∇𝜁 − 𝐷∇𝜙 + 𝛾∇𝜌, where 𝜇 ∶=

𝐷𝜌𝑤

1 + 𝜖|∇𝜁|2 = 𝐷𝜌(𝜕𝑡 + 𝒗)𝜁(1 + 𝜖|∇𝜁|2)2 .
Upon defining the fluid momentum as𝒎 = 𝐷𝜌𝒗, the Hamiltonian in these variables is obtained
via the following calculation:

ℎ(𝒎,𝐷, 𝜌, 𝜁, 𝜇; 𝑝) ∶= ⟨𝒎,𝒗⟩ + 𝜇𝜕𝑡𝜁 − 𝐷𝜕𝑡𝜙 + 𝛾𝜕𝑡𝜌 − 𝓁(𝒗, 𝐷, 𝜌, 𝜁, 𝑤; 𝑝)
= ∫

|𝒎|2
2𝐷𝜌
+
𝜇2

2𝐷𝜌
(1 + 𝜖|∇𝜁|2)2 + 𝑔𝐷𝜌𝜁 + 𝑝(𝐷 − 1) 𝑑2𝑥. (119)

Conserved energy
The Hamiltonian in (123) is also the conserved energy for the system of equations in (96).
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Variations of the Hamiltonian
In the Hamiltonian variables, the Bernoulli function𝜛 in (97) is denoted as

𝜛̃ =
|𝒎|2
2𝐷2𝜌2
+
𝜇2(1 + 𝜖|∇𝜁|2)2
2𝐷2𝜌2

− 𝑔𝜁. (120)

The corresponding variational derivatives of the Hamiltonian in (123) for the system of equations
in (96) are given by

⎡⎢⎢⎢⎢⎢⎣

𝛿ℎ∕𝛿𝑚𝑗
𝛿ℎ∕𝛿𝐷

𝛿ℎ∕𝛿𝜌

𝛿ℎ∕𝛿𝜇

𝛿ℎ∕𝛿𝜁

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝑚𝑗

𝐷𝜌

−𝜌𝜛̃ + 𝑝

−𝐷𝜛̃
1

𝐷𝜌
𝜇(1 + 𝜖|∇𝜁|2)2

𝐷𝜌𝑔 − 2𝜖 div(𝜇𝑤∇𝜁)

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

𝑣𝑗

−𝜌𝜛̃ + 𝑝

−𝐷𝜛̃

𝑤(1 + 𝜖|∇𝜁|2)2
𝐷𝜌𝑔 − 2𝜖 div(𝜇𝑤∇𝜁)

⎤⎥⎥⎥⎥⎥⎦
. (121)

The system of equations in (96) may now be written in Lie–Poisson form, augmented by a sym-
plectic 2-cocycle in the elevation 𝜁 and its canonical momentum density 𝜇 in its entangled form
as

𝜕

𝜕𝑡

⎡⎢⎢⎢⎢⎢⎣

𝑚𝑖
𝐷

𝜌

𝜇

𝜁

⎤⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎣

𝜕𝑗𝑚𝑖 + 𝑚𝑗𝜕𝑖 𝐷𝜕𝑖 −𝜌,𝑖 𝜇𝜕𝑖 −𝜁,𝑖
𝜕𝑗𝐷 0 0 0 0

𝜌,𝑗 0 0 0 0

𝜕𝑗𝜇 0 0 0 1

𝜁,𝑗 0 0 −1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝛿ℎ∕𝛿𝑚𝑗
𝛿ℎ∕𝛿𝐷

𝛿ℎ∕𝛿𝜌

𝛿ℎ∕𝛿𝜇

𝛿ℎ∕𝛿𝜁

⎤⎥⎥⎥⎥⎥⎦
. (122)

Remark 22 (Physical meaning of the model). The Lie–Poisson structure in (126) reveals the physi-
calmeaning of theWCIFS systemof equations. Namely, the fluid variables sweep thewave degrees
of freedom along the fluid Lagrangian paths, whereas the wave subsystem evolves and acts back
on the fluid circulation as an internal force.

Remark 23 (Transformation to the potential flowmomentum). The Poisson operator in the previ-
ous formula is block diagonalized by the transformation𝒎 →𝑴 = 𝒎+ 𝜇∇𝜁, which separates it
into a direct sum of a Lie–Poisson bracket in𝑴,𝐷, 𝜌 and a canonical (symplectic) Poisson bracket
in 𝜇 and 𝜁. Consequently, the system of equations in (96) may now be written equivalently as a
direct sum of a semidirect-product Lie–Poisson bracket in the fluid variables (𝒎,𝐷, 𝜌), plus a sym-
plectic 2-cocycle in the wave variables (𝜇, 𝜁) in its untangled form, as

𝜕

𝜕𝑡

⎡⎢⎢⎢⎢⎢⎣

𝑀𝑖
𝐷

𝜌

𝜇

𝜁

⎤⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎣

𝜕𝑗𝑀𝑖 + 𝑀𝑗𝜕𝑖 𝐷𝜕𝑖 −𝜌,𝑖 0 0

𝜕𝑗𝐷 0 0 0 0

𝜌,𝑗 0 0 0 0

0 0 0 0 1

0 0 0 −1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝛿ℎ∕𝛿𝑀𝑗
𝛿ℎ∕𝛿𝐷

𝛿ℎ∕𝛿𝜌

𝛿ℎ∕𝛿𝜇

𝛿ℎ∕𝛿𝜁

⎤⎥⎥⎥⎥⎥⎦
. (123)

Thus, the Poisson bracket block-diagonalizes when it is written in terms of the total fluid plus
wave momentum,𝑴 = 𝒎+ 𝜇∇𝜁.
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The Poisson structure in Equation (126) yields the following motion equation:

(𝜕𝑡 + 𝒗)(𝒎 ⋅ 𝑑𝒙 ⊗ 𝑑2𝑥) = −𝐷𝑑(−𝜌𝜛̃ + 𝑝) ⊗ 𝑑2𝑥 − (𝐷𝜛̃)𝑑𝜌 ⊗ 𝑑2𝑥 − 𝜇𝑑(𝑤(1 + 𝜖|∇𝜁|2)2) ⊗ 𝑑2𝑥
+ (𝐷𝑔𝜌 − 2𝜖 div(𝜇𝑤∇𝜁))𝑑𝜁 ⊗ 𝑑2𝑥.

(124)

If we divide through by 𝐷𝜌, using (𝜕𝑡 + 𝒗)(𝐷𝜌𝑑2𝑥) = 0, then we obtain the following motion
equation, which agrees with that previously obtained in (98):

(𝜕𝑡 + 𝒗)𝒗 ⋅ 𝑑𝒙 = −1𝜌𝑑𝑝 + 𝑑𝜛̃ − 𝑤𝑑(𝑤(1 + 𝜖|∇𝜁|2)2) + 𝑔𝑑𝜁 − 2𝜖𝐷𝜌div(𝜇𝑤∇𝜁)𝑑𝜁
= −
1

𝜌
𝑑𝑝 + 𝑑

(|𝒗|2
2
+
𝑤2

2

)
− 𝑤𝑑(𝑤(1 + 𝜖|∇𝜁|2)2) − 2𝜖

𝐷𝜌
div(𝜇𝑤∇𝜁)𝑑𝜁.

5.7 A one-dimensional WCIFS equation

We begin by deriving the one-dimensional equation by applying Hamilton’s principle to the fol-
lowing action integral, which is the one-dimensional version of (94),

𝑆 = ∫ ∫ 𝐷𝜌
(
1

2
(𝑣2 + 𝑤2) − 𝑔𝜁

)
+ 𝜇

(
𝜕𝑡𝜁 + 𝑣𝜕𝑥𝜁 − 𝑤

(
1 + 𝜖|𝜕𝑥𝜁|2))

+ 𝜙(𝜕𝑡(𝐷𝜌) + 𝜕𝑥(𝐷𝜌𝑣)) 𝑑𝑥𝑑𝑡,

(125)

where 𝜁(𝑥, 𝑡), 𝑣(𝑥, 𝑡), and 𝑤(𝑥, 𝑡) are scalar functions of one-dimensional space and time, (𝑥, 𝑡),
and we consider the volume form 𝐷𝜌 to be a single variable. Taking variations with respect to
each variable gives

𝛿𝑣 ∶ 𝐷𝜌𝑣 ⋅ 𝑑𝑥 + 𝜇𝑑𝜁 = 𝐷𝜌𝑑𝜙,

𝛿(𝐷𝜌) ∶ (𝜕𝑡 + 𝑣)𝜙 = 𝜕𝑡𝜙 + 𝑣𝜕𝑥𝜙 = 12𝑣2 +
1

2
𝑤2 − 𝑔𝜁 =∶ 𝜛,

𝛿𝜙 ∶ (𝜕𝑡 + 𝑣)(𝐷𝜌) = 𝜕𝑡(𝐷𝜌) + 𝜕𝑥(𝐷𝜌𝑣) = 0,
𝛿𝑤 ∶ 𝐷𝜌𝑤 − 𝜇

(
1 + 𝜖|𝜕𝑥𝜁|2) = 0,

𝛿𝜇 ∶ (𝜕𝑡 + 𝑣)𝜁 = 𝜕𝑡𝜁 + 𝑣𝜕𝑥𝜁 = 𝑤(1 + 𝜖|𝜕𝑥𝜁|2),
𝛿𝜁 ∶ (𝜕𝑡 + 𝑣)𝜇 = −𝐷𝜌𝑔 + 2𝜖𝜕𝑥(𝜇𝑤𝜕𝑥𝜁).

(126)

These relations imply a fluid motion equation

𝐷𝜌(𝜕𝑡 + 𝑣)𝑣 = 𝐷𝜌 𝑑(𝜕𝑡 + 𝑣)𝜙 − (𝜕𝑡 + 𝑣)(𝜇 𝑑𝜁)
= 𝐷𝜌 𝑑𝜛 − 𝜇𝑑

(
𝑤
(
1 + 𝜖|𝜕𝑥𝜁|2)) + 𝐷𝜌𝑔𝑑𝜁 − 2𝜖𝜕𝑥(𝐷𝜌𝑤2(1 + 𝜖|𝜕𝑥𝜁|2)𝜕𝑥𝜁)𝑑𝜁,
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or,

(𝜕𝑡 + 𝑣)𝑣 = 𝑑𝜛 − 𝑤

1 + 𝜖|𝜕𝑥𝜁|2 𝑑(𝑤(1 + 𝜖|𝜕𝑥𝜁|2)) + 𝑔𝑑𝜁 − 2𝜖𝐷𝜌𝜕𝑥(𝐷𝜌𝑤2(1 + 𝜖|𝜕𝑥𝜁|2)𝜕𝑥𝜁)𝑑𝜁
= 𝑑

(
1

2
𝑣2
)
−
1

2
𝑤2𝑑

((
1 + 𝜖|𝜕𝑥𝜁|2)2) − 2𝜖𝐷𝜌𝜕𝑥(𝐷𝜌𝑤2(1 + 𝜖|𝜕𝑥𝜁|2)𝜕𝑥𝜁)𝑑𝜁.

where 𝜇 = 𝐷𝜌𝑤. Thus, we have

𝜕𝑡𝑣 + 𝑣𝜕𝑥𝑣 = −
1

2
𝑤2𝜕𝑥

((
1 + 𝜖|𝜕𝑥𝜁|2)2) − 2𝜖𝐷𝜌𝜕𝑥(𝐷𝜌𝑤2(1 + 𝜖|𝜕𝑥𝜁|2)𝜕𝑥𝜁)𝜕𝑥𝜁, (127)

and this equation is to be considered together with

𝜕𝑡𝐷 + 𝜕𝑥(𝐷𝑣) = 0,

𝜕𝑡𝜌 + 𝑣𝜕𝑥𝜌 = 0,

𝜕𝑡𝑤 + 𝑣𝜕𝑥𝑤 = −𝑔 +
2𝜖

𝐷𝜌
𝜕𝑥
(
𝐷𝜌𝑤2

(
1 + 𝜖|𝜕𝑥𝜁|2)𝜕𝑥𝜁).

These one-dimensional WCIFS equations are of interest in their own right and they will be inves-
tigated elsewhere.

6 STOCHASTICWAVEMODELLING

6.1 Stochastic advection by Lie transport (SALT)

SALT26 provides a methodology of stochastically perturbing a continuum model at the level of
the action integral. As a result, SALT both preserves the Kelvin–Noether circulation theorem and
provides a platform for stochastic wave-current interaction.52 Consider first the 3D case where
we have a 3D fluid velocity field, evaluated on the free surface, denoted by 𝒖̂. For a deterministic
(unconstrained) Lagrangian, 𝓁(𝒖̂, 𝑞), depending on the velocity field 𝒖̂ and advected quantities
𝑞, we constrain the advected quantities to follow a stochastically perturbed path via a Lagrange
multiplier. For models where we are considering incompressible flow, the pressure must act as
a Lagrange multiplier to enforce the advected quantity 𝐷, the volume element, to be constant.
More specifically, the advection constraint enforces that the advected quantities obey a stochastic
partial differential equation given by

(d + d𝒙𝑡 )𝑞 ∶= d𝑞 + 𝒖̂𝑞 𝑑𝑡 +
∑
𝑖

𝝃𝑖 𝑞◦𝑑𝑊𝑖𝑡 = 0, (128)

where the vector field 𝒖̂ has been perturbed in the following way:

d𝒙𝑡 = 𝒖̂ 𝑑𝑡 +
∑
𝑖

𝝃𝑖◦𝑑𝑊
𝑖
𝑡. (129)

After this introduction of this stochastic transport constraint, the action integral becomes a semi-
martingale driven variational principle.53 Consequently, the pressure Lagrange multiplier must
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be compatible with the noise introduced in the advection. This is required because one cannot
enforce a variable in a stochastic system to remain constant without also requiring the Lagrange
multiplier to also be a semimartingale, to control both the deterministic part of the system as well
as the random fluctuations. With these constraints, the action integral takes the form

𝑆 = ∫ 𝓁(𝒗, 𝑞) 𝑑𝑡 + ⟨d𝑝,𝐷 − 1⟩ + ⟨𝜆, d𝑞 + d𝒙𝑡𝑞⟩. (130)

The application of Hamilton’s principle implies an EP equation and, as in Ref. 26, we have a
Kelvin–Noether circulation theorem for the stochastic system that is analogous to that of the deter-
ministic system.
For the purposes of our variational wave models, we need a notation for 2D advection as well

as 3D. We recall the notation for the 2D velocity field and introduce a new notation for the first
two components of the stochastic perturbation as follows:

𝒖̂ = (𝒗, 𝑤), and 𝝃𝒊 = (𝝃𝒊, 𝜉3𝑖). (131)

The perturbation of vector field 𝒗 is therefore given by

d𝒓𝑡 = 𝒗(𝒓𝑡, 𝑡) 𝑑𝑡 +
∑
𝑖

𝝃𝒊(𝒓𝑡)◦𝑑𝑊
𝑖
𝑡. (132)

6.2 Stochastic ECWWE

First, we derive the free surface boundary condition (3) in the stochastic case by applying the
operator d + d𝒓𝑡 to 𝑧 − 𝜁(𝒓, 𝑡) to obtain

0 = (d + d𝒓𝑡 )(𝑧 − 𝜁(𝒓, 𝑡)) = 𝑤(𝒓, 𝑡) 𝑑𝑡 +
∑
𝑖

𝜉3𝑖(𝒓)◦𝑑𝑊
𝑖
𝑡 − d𝜁(𝒓, 𝑡) − d𝑟𝜁(𝒓, 𝑡),

and hence

d𝜁(𝒓, 𝑡) + d𝒓𝑡 𝜁(𝒓, 𝑡) = 𝑤(𝒓, 𝑡) 𝑑𝑡 +
∑
𝑖

𝜉3𝑖(𝒓)◦𝑑𝑊
𝑖
𝑡, (133)

where the notation d𝒓𝑡 in (136) is the path of a Lagrangian coordinate.Whenwewrite dependence
on 𝒓, we mean that 𝒓 is an Eulerian point that is the pullback of the path defined by (136). In more
informal language, 𝒓 is an Eulerian point along the Lagrangian path 𝒓𝑡.
We may derive the stochastic ECWW equations by considering the dimensional version of the

action integral (37) where the transport velocity 𝒗 has been perturbed as in (136). The stochastic
action integral is then

𝑆 = ∫ ∫ 𝐷
(
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁) 𝑑𝑡 + 𝜆(d𝜁 + d𝒓𝑡 𝜁 − 𝑤 𝑑𝑡 −∑

𝑖

𝜉3𝑖◦𝑑𝑊
𝑖
𝑡

)
+ 𝜙(d𝐷 + d𝒓𝑡𝐷) 𝑑2𝑟.

(134)
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Taking variations of the action integral (138) yields

𝛿𝒗 ∶ 𝐷𝒗 ⋅ 𝑑𝒓 + 𝜆 𝑑𝜁 = 𝐷𝑑𝜙 ⟹ 𝑽 ⋅ 𝑑𝒓 ∶= 𝒗 ⋅ 𝑑𝒓 + 𝑤 𝑑𝜁 = 𝑑𝜙,

𝛿𝑤 ∶ 𝐷𝑤 − 𝜆 = 0,

𝛿𝜆 ∶ d𝜁 + d𝒓𝑡 𝜁 = 𝑤 𝑑𝑡 +
∑
𝑖

𝜉3𝑖◦𝑑𝑊
𝑖
𝑡,

𝛿𝜁 ∶ d𝜆 + d𝒓𝑡𝜆 = −𝑔𝐷 𝑑𝑡 ⟹ 𝜕𝑡𝑤 + d𝒓𝑡 ⋅ ∇𝒓𝑤 = −𝑔,

𝛿𝜙 ∶ d𝐷 + d𝒓𝑡𝐷 = 0,
𝛿𝐷 ∶ d𝜙 + d𝒓𝑡𝜙 = d𝜙 + d𝒓𝑡 ⋅ ∇𝒓𝜙 = 12(|𝒗|2 + 𝑤2) 𝑑𝑡 − 𝜁 𝑑𝑡 =∶ 𝜛 𝑑𝑡.

(135)

We may therefore write the stochastic ECWW equations as

d𝜙 + d𝒓𝑡 ⋅ ∇𝒓𝜙 =
1

2
(|∇̂𝒓𝜙|2 + 𝑤2) 𝑑𝑡 − 𝑔𝜁 𝑑𝑡,

d𝜁 + d𝒓𝑡 ⋅ ∇𝒓𝜁 = 𝑤 𝑑𝑡 +
∑
𝑖

𝜉3𝑖◦𝑑𝑊
𝑖
𝑡,

d𝑤 + d𝒓𝑡 ⋅ ∇𝒓𝑤 = −𝑔 𝑑𝑡,

d𝐷 + d𝒓𝑡𝐷 = 0.

(136)

As in the deterministic case, these equations imply a Kelvin–Noether theorem as follows:

d∮
𝑐(d𝒓𝑡)

(𝒗 ⋅ 𝑑𝒓 + 𝑤𝑑𝜁) ⋅ 𝑑𝒓 = ∮
𝑐(d𝒓𝑡)

(d + d𝒓𝑡 )(𝒗 ⋅ 𝑑𝒓 + 𝑤𝑑𝜁)

= ∮
𝑐(d𝒓𝑡)

(d + d𝒓𝑡 )(𝑽 ⋅ 𝑑𝒓) = ∮
𝑐(d𝒓𝑡)

(d + d𝒓𝑡 )𝑑𝜙 = ∮
𝑐(d𝒓𝑡)

𝑑𝜛 𝑑𝑡 = 0.

(137)

6.3 Stochastic WCIFS equations

Similarly to the stochastic ECWWequations,wemaydefine stochastic versions of any of thewave–
current models we have derived, including theMCWWequations. Here, we will demonstrate this
for our most complete wave–current model corresponding to the action integral (94). We may
again define the equivalent action integral featuring SALT to derive the corresponding stochastic
system of equations.
In the stochastic case, to couple thewaves and currents,we consider the insertion of the stochas-

tic vector field d𝑥3∇𝒓𝜁, where d𝑥3 = 𝑤 𝑑𝑡 +
∑
𝑖 𝜉3𝑖◦𝑑𝑊

𝑖
𝑡, into the 1-form 𝜇∇𝒓𝜁.
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The stochastic version of the action integral (94) is therefore given by

𝑆 = ∫ ∫ 𝐷𝜌
(
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁) 𝑑𝑡 − d𝑝(𝐷 − 1) + 𝜙(d𝐷 + d𝒓𝑡𝐷) + 𝛾(d𝜌 + d𝒓𝑡𝜌)

𝜇

(
d𝜁 + d𝒓𝑡 𝜁 − 𝑤

(
1 + 𝜖|∇𝒓𝜁|2𝑑𝜁)𝑑𝑡 −∑

𝑖

𝜉3𝑖
(
1 + 𝜖|∇𝒓𝜁|2)◦𝑑𝑊𝑖𝑡

)
𝑑𝑥𝑑𝑦.

(138)

Similar to the application of Hamilton’s principle to (94), variations of (142) are given by

𝛿𝒗 ∶ 𝐷𝜌𝒗 ⋅ 𝑑𝒓 + 𝜇 𝑑𝜁 = 𝐷𝑑𝜙 − 𝛾𝑑𝜌,

𝛿𝑤 ∶ 𝐷𝜌𝑤 − 𝜇
(
1 + 𝜖|∇𝒓𝜁|2) = 0,

𝛿𝜇 ∶ d𝜁 + d𝒓𝑡 𝜁 = d𝑥3
(
1 + 𝜖|∇𝒓𝜁|2) = 𝑤(1 + 𝜖|∇𝒓𝜁|2) 𝑑𝑡 +∑

𝑖

𝜉3𝑖
(
1 + 𝜖|∇𝒓𝜁|2)◦𝑑𝑊𝑖𝑡,

𝛿𝜁 ∶ d𝜇 + d𝒓𝑡𝜇 = −𝐷𝜌𝑔 𝑑𝑡 + 2𝜖 div𝒓(d𝑥3 𝜇∇𝒓𝜁)
= −𝐷𝜌𝑔 𝑑𝑡 + 2𝜖 div𝒓(𝑤 𝜇∇𝒓𝜁) 𝑑𝑡 +

∑
𝑖

2𝜖 div𝒓(𝜉3𝑖 𝜇 ∇𝒓𝜁)◦𝑑𝑊
𝑖
𝑡,

𝛿𝜌 ∶ (d + d𝒓𝑡 )
( 𝛾
𝐷

)
=
1

2
(|𝒗|2 + 𝑤2) 𝑑𝑡 − 𝑔𝜁 𝑑𝑡 =∶ 𝜛 𝑑𝑡,

𝛿𝐷 ∶ (d + d𝒓𝑡 )𝜙 = 𝜌𝜛 𝑑𝑡 − d𝑝,
𝛿𝜙 ∶ d𝐷 + d𝒓𝑡𝐷 = 0,
𝛿𝑝 ∶ 𝐷 − 1 = 0 ⇒ div𝒓𝒗 = 0,

𝛿𝛾 ∶ (d + d𝒓𝑡 )𝜌 = 0.

(139)

We apply the operator d + d𝒓𝑡 to the first line in (143) to find
𝐷𝜌(d + d𝒓𝑡 )(𝒗 ⋅ 𝑑𝒓) = 𝐷𝑑(d + d𝒓𝑡 )𝜙 − (d + d𝒓𝑡 )𝛾𝑑𝜌 − (d + d𝒓𝑡 )(𝜇𝑑𝜁)

= 𝐷𝜌𝑑𝜛 𝑑𝑡 − 𝐷𝑑(d𝑝) − 𝜇𝑑
(
d𝑥3

(
1 + 𝜖|∇𝒓𝜁|2)) + 𝐷𝜌𝑔 𝑑𝜁 𝑑𝑡

− 2𝜖 div(d𝑥3 𝜇∇𝒓𝜁)𝑑𝜁,

(140)

and thus,

(d𝑡 + d𝒓𝑡 )(𝒗 ⋅ 𝑑𝒓) = −1𝜌𝑑(d𝑝) +
[
𝑑
|𝒗|2
2
−
1

2
𝑤2𝑑

(
1 + 𝜖|∇𝒓𝜁|2)2]𝑑𝑡

−
2𝜖

𝐷𝜌
div𝒓(d𝑥3 𝜇∇𝒓𝜁)𝑑𝜁

− 𝑤
∑
𝑖

𝑑
(
𝜉3𝑖(1 + 𝜖|∇𝒓𝜁|2))◦𝑑𝑊𝑖𝑡.
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Remark 24 (A stochastic Kelvin–Noether theorem). We have, from calculations analogous to the
deterministic case performed similarly to the above, a stochastic version of the Theorem 3 In the
stochastic case, this takes the form:

d∮
𝑐(d𝒓𝑡)

(
𝒗 ⋅ 𝑑𝒙 +

𝜇

𝐷𝜌
𝑑𝜁

)
= ∮
𝑐(d𝒓𝑡)

𝑑𝜛 𝑑𝑡 −
1

𝜌
𝑑d𝑝. (141)

We may collect the WCIFS SALT equations of motion in (143), as follows:

d𝒗 + (d𝒓𝑡 ⋅ ∇𝒓)𝒗 + (∇𝒓d𝒓𝑡)
𝑇 ⋅ 𝒗 = ∇𝒓

|𝒗|2
2
𝑑𝑡 −
1

𝜌
∇𝒓d𝑝 −

1

2
𝑤2∇𝒓

(
1 + 𝜖|∇𝒓𝜁|2)2 𝑑𝑡

−
2𝜖

𝐷𝜌
div(d𝑥3 𝜇∇𝒓𝜁)∇𝒓𝜁

− 𝑤
∑
𝑖

∇𝒓
(
𝜉3𝑖(1 + 𝜖|∇𝒓𝜁|2))◦𝑑𝑊𝑖𝑡,

(d + d𝒓𝑡 )(𝐷 𝑑2𝑥) = 0,
(d + d𝒓𝑡 )𝜌 = 0,
(d + d𝒓𝑡 )𝜁 = d𝑥3

(
1 + 𝜖|∇𝒓𝜁|2),

(d + d𝒓𝑡 )(𝜇 𝑑2𝑥) = (−𝐷𝜌𝑔 𝑑𝑡 + 2𝜖 div𝒓(d𝑥3 𝜇∇𝒓𝜁)) 𝑑2𝑥.

(142)

The properties of these equations will be studied in detail, elsewhere.

7 ANALYTICAL REMARKS ABOUT VARIATIONALWATERWAVE
MODELS

Recall the equations in (39), found by varying the action integral (37). These equations may be
written in the form

𝜕𝑡𝜙 + 𝒗 ⋅ ∇𝒓𝜙 =
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁,

𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 = 𝑤,

𝜕𝑡𝑤 + 𝒗 ⋅ ∇𝒓𝑤 = −𝑔

𝜕𝑡𝐷 + div𝒓(𝐷𝒗) = 0,

where

𝒗 = 𝑽 − 𝑤∇𝒓𝜁

= ∇𝒓𝜙 − 𝑤∇𝒓𝜁, in the irrotational case. (143)

Recall that the transport velocity 𝒗 evolves according to (44), that is,

𝜕𝑡𝒗 + 𝒗 ⋅ ∇𝒗 = 0, (144)
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Of course, (148) can be identified as the 2D inviscid Burger’s equation. Under certain conditions
on the initial velocity 𝒗0, it has unique solution (possibly only local in time). We sketch below the
classical argument for showing this using the method of characteristics. Define the characteristic
equation given by {

𝑑𝒓𝑡

𝑑𝑡
(𝒓) = 𝒗(𝒓𝑡(𝒓), 𝑡), 𝑡 > 0,

𝒓𝑡(𝒓) = 𝒓.
(145)

Provided that 𝒗 is sufficiently smooth, the system (149) will have a unique solution. Moreover,
from (149) and (148), we deduce, by the chain rule, that

𝜕

𝜕𝑡
[𝒗(𝒓𝑡(𝒓), 𝑡)] =

𝜕𝒗

𝜕𝑡
(𝒓𝑡(𝒓), 𝑡) +

𝑑𝒓𝑡
𝑑𝑡
(𝒓) ⋅ ∇𝒓𝒗(𝒓𝑡(𝒓), 𝑡) = (𝜕𝑡𝒗 + 𝒗 ⋅ ∇𝒓𝒗)(𝒓𝑡(𝒓), 𝑡) = 0,

so 𝒗 = (𝑣1, 𝑣2) is constant along the characteristics. Thus, the characteristic curves corresponding
to (148) are straight lines determined by the initial conditions, given by

𝒓𝑡 = 𝜑𝑡𝒓 ∶= 𝒓 + 𝒗0(𝒓)𝑡, (146)

and therefore the follow pull-back relation holds,

𝜑𝑡
∗𝒗𝑡(𝒓) ∶= 𝒗𝑡(𝜑𝑡𝒓) = 𝒗0(𝒓), (147)

so that

0 =
𝑑𝒗0
𝑑𝑡
=
𝑑

𝑑𝑡
𝜑∗𝑡 𝒗𝑡(𝒓) = 𝜑

∗
𝑡

(
𝜕𝑡𝒗𝑡(𝒓) +

𝜕𝒗𝑡(𝒓)

𝜕𝒓
⋅ 𝒗𝑡(𝒓)

)
. (148)

Equations (150) and (151) enable us to give an explicit description of the (classical) solution of (148)
up to first time 𝜏 at which the characteristic lines cross. The time 𝜏 is the first time when ∇𝒓(𝜑𝑡𝒓)
degenerates, in other words the Jacobian of 𝜑𝑡𝒓 has determinant equal to 0. Note that Equation
(148) may have a weak solution beyond 𝜏. The time 𝜏 can be explicitly described in term of the
eigenvalues of the Jacobian∇𝒓𝒗0 of the initial velocity 𝒗0. Wewill denote by 𝜆𝑖(𝒓), 𝑖 = 1, 2, the two
eigenvalues of∇𝒓𝒗0(𝒓). We introduce the (possibly empty) subset 𝑆 of the fluid domainΩ (which
we assume to be a closed bounded set of ℝ2) defined as

𝑆 = {𝒓 ∈ Ω ∶ 𝜆1(𝒓) < 0, or 𝜆2(𝒓) < 0}.

Define 𝜏 ∶= ∞ if 𝑆 is the empty set, otherwise 𝜏 = −1∕𝜆̄ where3

𝜆̄ = min

{
min
𝒓∈𝑆
𝜆1(𝒓),min

𝒓∈𝑆
𝜆2(𝒓)

}
,

then 𝜑𝑡 ∶ Ω → Ω is a diffeomorphism for any 𝑡 ∈ [0, 𝜏). This statement is immediate after observ-
ing that the eigenvalues of ∇𝒓(𝜑𝑡𝒓) are given by (1 + 𝑡𝜆1(𝒓), 1 + 𝑡𝜆2(𝒓)) and cannot become zero

3 Note that the set Ω is compact; therefore, the two minimamin𝒓∈𝑆 𝜆1(𝒓) as well asmin𝒓∈𝑆 𝜆2(𝒓) are well defined.
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before time 𝜏. In other words, the Lagrangian flow is well defined and differentiable in both the
spatial and temporal variable. Let 𝜑−1𝑡 ∶ Ω → Ω be the inverse of the Lagrangian flow. From (151),
we deduce that (148) has a (unique) solution given by the push-forward of the initial velocity
𝜑𝑡∗𝒗0(𝒓), that is,

𝒗(𝒓, 𝑡) = 𝒗0(𝜑
−1
𝑡 𝒓) =∶ 𝜑𝑡∗𝒗0(𝒓), 𝒓 ∈ Ω𝑡, 𝑡 ∈ [0, 𝜏).

From (39), we also deduce that

𝑑

𝑑𝑡
𝜙(𝜑𝑡𝒓, 𝑡) = 𝑒(𝜑𝑡𝒓, 𝑡),

𝑑

𝑑𝑡
𝜁(𝜑𝑡𝒓, 𝑡) = 𝑤(𝜑𝑡𝒓, 𝑡),

𝑑

𝑑𝑡
𝑤(𝜑𝑡𝒓, 𝑡) = −𝑔,

𝑑

𝑑𝑡
(𝐷(𝜑𝑡𝒓, 𝑡)𝑑

2(𝜑𝑡𝒓)) = 0,

(149)

where 𝑒(𝜑𝑡𝒓, 𝑡) =
1

2
((|𝒗|2 + 𝑤2) − 𝑔𝜁)(𝜑𝑡𝒓, 𝑡). It follows that the solution for the full systemof vari-

ables is obtained by integrations along the characteristics, as

𝜙(𝒓, 𝑡) = 𝜙(𝜑−1𝑡 𝒓, 0) + ∫
𝑡

0

𝑒(𝜑𝑠−𝑡𝒓, 𝑡) 𝑑𝑠, where 𝜑𝑠𝜑−1𝑡 = 𝜑𝑠−𝑡,

𝑤(𝒓, 𝑡) = 𝑤0(𝜑
−1
𝑡 𝒓) − 𝑔𝑡,

𝜁(𝒓, 𝑡) = 𝜁(𝜑−1𝑡 𝒓, 0) + ∫
𝑡

0

𝑤(𝜑𝑠−𝑡𝒓, 𝑡) 𝑑𝑠,

𝐷(𝒓, 𝑡)𝑑2𝒓 = 𝜑𝑡∗
(
𝐷(𝒓, 0)𝑑2𝒓

)
= 𝐷(𝜑−1𝑡 𝒓, 0)𝑑

2(𝜑−1𝑡 𝒓), since 𝜑0 = Id.

(150)

Thus, the explicit solution for 𝒗 corresponding to the characteristics also provides an explicit solu-
tion for the full system of variables.

An Eulerian approach
For an alternative Eulerian approach, notice that taking the curl𝒓 of the evolution equation (44)
for the transport velocity 𝒗 defined in Equation (147) implies that 𝜔 = curl𝒓 𝒗 = 𝐽(𝑤, 𝜁) satisfies

𝜕𝑡𝜔 + 𝒗 ⋅ ∇𝒓𝜔 = 0. (151)

Consequently, the continuity equation for 𝐷 implies

𝜕𝑡(𝐷𝜔) + div𝒓(𝐷𝜔𝒗) = 0, (152)
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and the volume integral ∫ 𝐷𝜔𝑑2𝑟 is preserved for tangential boundary conditions on 𝒗. Another
way of writing (158) is

(𝜕𝑡 + 𝒗)(𝐷𝑑𝑤 ∧ 𝑑𝜁) = 0. (153)

Explicit solutions for (155)–(157) can be deduced in a similar manner as above.
An alternative approach, possibly to show well-posedness in more general spaces is to attempt

an analysis based on energy estimates. For this, one needs to analyze the pair of equations

𝜕𝑡𝒗 + 𝒗 ⋅ ∇𝒗 = 0

𝜕𝑡𝐷𝑡 + div𝒓(𝐷𝑡𝒗) = 0

on the domain Ω of the measure 𝐷𝑡𝑑2𝑟. For this we can use a,s apriori estimates the conserved
energy for this system given by

ℎ(𝑴,𝐷, 𝜆, 𝜁) = ∫ 𝑴 ⋅ 𝒗 + 𝜆𝜕𝑡𝜁 𝑑2𝑟 − 𝓁(𝒗, 𝐷, 𝜙, 𝑤, 𝜁; 𝜆)

= ∫
1

2𝐷
|𝑴 − 𝜆∇𝒓𝜁|2 + 𝜆22𝐷 + 𝑔𝐷𝜁 𝑑2𝑟

= ∫
(
1

2
|𝒗|2 + 1
2
|𝑤|2 + 𝑔𝜁)𝐷 𝑑2𝑟

= ∫
(
1

2
|∇̂𝒓𝜙|2 + 12 |𝑤|2 + 𝑔𝜁

)
𝐷 𝑑2𝑟.

as well as Sobolev norm estimates deduced from (39). For this, we introduce the (time-dependent)
𝐿𝑝 norm of some function 𝑓 with respect to the measure 𝐷𝑑2𝑟 as

‖𝑓‖𝐷𝑡,𝑝 = (∫
Ω

𝑓𝑝𝐷𝑡𝑑
2𝑟

)1∕𝑝
,

and can show that |𝒗|𝐷,𝑝 is conserved. Moreover, via a standard Grönwall/Young inequality
argument, one shows that ‖𝜙‖𝐷,𝑝, ‖𝜁‖𝐷,𝑝, ‖𝑤‖𝐷,𝑝 and ‖𝐷‖𝐷,2 are controlled. Controls on higher
Sobolev norms are also possible.
For existence, one follows DiPerna and Lions,54 to define a sequence (𝒗𝑛, 𝐷𝑛𝑡 )𝑛∈ℕ by

𝜕𝑡𝒗
𝑛 + 𝒗𝑛−1 ⋅ ∇𝒓𝒗

𝑛 = 0,

𝜕𝑡𝐷
𝑛
𝑡 + div𝒓

(
𝐷𝑛𝑡 𝒗
𝑛
)
= 0.

For each 𝒗𝑛−1, we may apply the results from Ref. 54 (Theorem III.2) to prove existence of 𝒗𝑛. We
would need to prove that 𝒗𝑛 satisfies the relevant bounds to allow us to apply the theorem again
and iterate this process.We then show that the sequence is relatively compact in a suitably chosen
Sobolev space.
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Remark 25. According to Remark 3.3, when considering the ECWWE equations with pressure as
in Section 3.3, the transport velocity evolves according to the 2D Euler equation and the system
thus inherits the analytical properties of this equation.

8 FUTUREWORK

The augmentedwater wave problem that has been introduced here opens doors for new analytical
results, as well as interesting directions for numerical studies of wave–current interaction. For
example:

1. Analytical properties of thewave–current interaction equations introduced here are unknown,
and the extended version of the CWWEs opens the door for new analytical results for CWWE.

2. The incorporation of surface tension into this framework is a potentially interesting issue.
Other physical approximations commonly made to derive other well-known water wave equa-
tions (KdV, KP, etc.) may also be considered within this framework.

3. Further study of the stochastic ECWW equations in Section 6 and their stochastic ACWW and
WCI FS versions would be worthwhile. In particular, Section 6 introduces a stochastic version
of the well-studied classical water wave model that has been stochastically perturbed in a way
that preserves many of its desirable fluid dynamics properties. In particular, this model would
allow us to consider a stochastic CWW theory based on a DNO for 3D irrotational SALT flows.
Introducing noise into the parameter 𝜖 in the ACWW and WCI FS models may also be inter-
esting, since doing so would enable investigations of the probabilistic nature of wave–current
interactions using stochastic versions of WCMC.

We expect to pursue all of these research directions in future work.
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CORRECT IONS AFTER F IRST PUBL ICAT ION ONLINE
Following the appearence of the ‘early view’ version of this paper, a typographical error on the
right-hand side of equation (86) was corrected. Namely, 𝑤 should read 𝑤̃, in which case the last
term in (86) vanished. With this correction, the motion equation for the total momentum M in
(86) simplified to the gradient of the Bernoulli equation for the velocity potential 𝜙 in (73). This
correction also simplified the Casimir (formerly equation (90), but since removed) because the
advected total potential vorticity q in that equation then vanished. The potential vorticity also
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vanished when buoyancy is taken to be constant, as in Section 5.6. Consequently, the Hamilto-
nian structure in (89) reduced to the symplectic form in (58) for two sets of canonical variables
(D, 𝜙) and (𝜆, 𝜁). This was already clear from for the phase-space Lagrangian in equation (85). The
simplification to canonical variables no longer occurs when the dynamics of the buoyancy 𝜌 was
included.When the buoyancy 𝜌was included as an additional dynamical variable, the total poten-
tial vorticity q did not vanish andwas not advected. Instead, the q dynamicswas driven by the cross
product of the buoyancy gradient and the pressure gradient. Rather than the wave-current mini-
mal coupling term, it was the inclusion of buoyancy gradients which enables a potential vorticity
formulation. Thus, a key finding of the paper was that horizontal buoyancy gradients can gen-
erate circulation of the total wave-plus-current momentum per unit mass during Wave-Current
Interaction on a free surface.
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APPENDIX A: TRANSFORMATION THEORY FOR FLUID DYNAMICS—KELVIN
THEOREM
The Kelvin–Noether theorem is the statement of Newton’s law for fluid mass distributed on a
material loop.

𝑑

𝑑𝑡 ∮ 𝑐𝑡=𝜙𝑡𝑐0

𝐯(𝑡, 𝐱) ⋅ 𝑑𝐱 = ∮
𝑐𝑡

𝐟 ⋅ 𝑑𝐱
⏟⏟⏟
𝖭𝖾𝗐𝗍𝗈𝗇′𝗌 𝖫𝖺𝗐

. (A1)

For a discussion of the geometric mechanics underlying the deterministic case, see, for exam-
ple, Ref. 23. For a discussion of the geometric mechanics underlying the stochastic case, see, for
example, Refs. 26, 29.

Proof. The deterministic Kelvin–Noether theorem may be proved, as follows. Consider a closed
loop 𝑐𝑡 moving with the material flow as

𝑐𝑡 = 𝜙𝑡𝑐0.

The Eulerian velocity of the loop is

𝑑

𝑑𝑡
𝜙𝑡(𝑥) = 𝜙

∗
𝑡 𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝜙𝑡(𝑥)).

This equation illustrates the operation of “pull-back”𝜙∗𝑡 𝑢(𝑡, 𝑥) of the Eulerian fluid velocity 𝑢(𝑡, 𝑥)
by the material flow map 𝜙𝑡.

https://doi.org/10.1016/0370-1573(85)90028-6
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Compute the time derivative of the integral of the momentum/mass (impulse) around a time-
dependent loop 𝑐𝑡 = 𝜙𝑡𝑐0 moving with the flow map, 𝜙𝑡, as

𝑑

𝑑𝑡 ∮𝑐𝑡=𝜙𝑡𝑐0 𝐯(𝑡, 𝐱) ⋅ 𝑑𝐱 = ∮𝑐0
𝑑

𝑑𝑡
(𝜙∗𝑡 (𝐯(𝑡, 𝐱) ⋅ 𝑑𝐱))

= ∮
𝑐0

𝜙∗𝑡 ((𝜕𝑡 + 𝑢(𝑡,𝐱))(𝐯 ⋅ 𝑑𝐱))
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
𝖫𝗂𝖾 𝖽𝖾𝗋𝗂𝗏𝖺𝗍𝗂𝗏𝖾 𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 𝗏𝗂𝖺 𝖼𝗁𝖺𝗂𝗇 𝗋𝗎𝗅𝖾

= ∮
𝜙𝑡𝑐0=𝑐𝑡

(𝜕𝑡 + 𝑢(𝑡,𝐱))(𝐯 ⋅ 𝑑𝐱)

= ∮
𝑐𝑡

𝐟 ⋅ 𝑑𝐱
⏟⏟⏟
𝖭𝖾𝗐𝗍𝗈𝗇′𝗌 𝖫𝖺𝗐

=∮
𝑐0

𝜙∗𝑡 ( 𝐟 ⋅ 𝑑𝐱⏟⏟⏟
𝖬𝗈𝗍𝗂𝗈𝗇 𝖾𝗊𝗇

).

(A2)

This is the Kelvin–Noether theorem of Ref. 23. When the covector field 𝐯(𝑡, 𝐱) is interpreted as
the momentum per unit mass in the fixed Eulerian inertial frame, then the last line states New-
ton’s law for fluid mass distributed on a material loop. When the covector field 𝐟 (𝑡, 𝐱) = −∇𝑝 is
a pressure-gradient force per unit mass in the Eulerian inertial frame, then the last line states
Kelvin’s theorem for the conservation of circulation in ideal Euler fluid dynamics with spatially
homogeneous density. ■

Let us delve more deeply into the statement in the second line of the proof of the Kelvin–
Noether theorem that “the Lie derivative is defined via the chain rule.” More specifically, the
Lie derivative is defined by the time derivative of the pull-back 𝜙∗𝑡 of the flow map 𝜙𝑡 acting on
the circulation integrand (which is a 1-form) by using the chain rule. The pull-back is also used
in the discussion of the Burgers equation in Section 7. Let us do the corresponding calculation for
the Kelvin–Noether theorem.
Integration in time of the pull-back relation in the proof,

𝑑

𝑑𝑡
𝜙𝑡(𝑥) = 𝜙

∗
𝑡 𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝜙𝑡(𝑥)),

yields the smooth invertible map, 𝜙𝑡 ∈ Dif f (𝑀), by integration of the characteristic curves of the
smooth time-dependent vector field 𝑢𝑡 ∈ 𝔛(𝑀) acting on smooth functions 𝑓 ∈ 𝐶∞(𝑀) defined
on a smooth manifold, 𝑀. In this situation, one says that the map 𝜙𝑡 is generated by the vector
field 𝑢𝑡. The pull-back relation can be written equivalently, as a push-forward, denoted as

𝑢𝑡 = 𝜙𝑡∗𝜙̇𝑡 = 𝜙
−1
𝑡

∗
𝜙̇𝑡 = 𝜙̇𝑡𝜙

−1
𝑡 ,

in which the operation of push-forward of a smooth function 𝑓 by a smooth invertible map 𝜙𝑡
depending on a parameter 𝑡 is defined as the inverse of the pull-back, which may be written as
𝜙𝑡∗ = 𝜙

−1
𝑡

∗
.

We may now understand the first step in the proof above as the change of variables in the loop
integral to transform the loop 𝑐𝑡 = 𝜙𝑡𝑐0 moving under the flow map 𝜙𝑡 in the fixed frame, into a
fixed loop 𝜙𝑡

−1
𝑐𝑡 = 𝑐0 in themoving frame of the flowmap; while also transforming the integrand

(𝐯(𝑡, 𝐱) ⋅ 𝑑𝐱) in the loop integral from the fixed frame into themoving frame of the flowmap. This
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transformation of the Kelvin circulation loop integral into the frame in which the moving loop is
fixed allows the time derivative to commute with integration around the loop. Consequently, the
time derivative comes inside the integral to act on the transformed integrand, which is now in the
moving frame of the flow map 𝜙𝑡.
The second step in the proof above defines the Lie derivative as Ref. 23

𝑑

𝑑𝑡
(𝜙∗𝑡 (𝐯(𝑡, 𝐱) ⋅ 𝑑𝐱)) =∶ 𝜙

∗
𝑡

((
𝜕𝑡 + 𝜙̇𝑡𝜙−1𝑡

)
(𝐯 ⋅ 𝑑𝐱)

)
=∶ 𝜙∗𝑡 ((𝜕𝑡 + 𝑢(𝑡,𝐱))(𝐯 ⋅ 𝑑𝐱))
=∶ 𝜙∗𝑡

((
𝜕𝑡𝐯 + (𝐮 ⋅ ∇)𝐯 + 𝑣𝑗∇𝑢

𝑗
))
⋅ 𝑑𝐱.

(A3)

To finish the proof of the Kelvin–Noether theorem in (A2), one transforms the loop integral back
into the fixed frame, in which the loop moves with the flow map and the integrand is fixed.

Remark A1. The Lie derivative of a differential k-form has the same expression in any coordinate
system, even in a moving coordinate system. In particular, this is true for functions (0-forms),
circulation 1-forms, and mass density 2-forms in 2D.

Lie derivatives in the hat formulation. The transformation to the 𝑓 notation in (4) evaluates an
arbitrary flow variable 𝑓 on the free surface,

𝑓(𝒓, 𝑡) = 𝑓(𝒓, 𝑧, 𝑡) on 𝑧 = 𝜁(𝒓, 𝑡). (A4)

For functions (0-forms), the hat-transformation evolves according to

𝑑

𝑑𝑡
𝜙∗𝑡 (𝑓(𝒓, 𝑡)) = 𝜙

∗
𝑡 ((𝜕𝑡 + 𝒗)𝑓) = 𝜙∗𝑡 (𝜕𝑡𝑓 + 𝒗(𝒓, 𝑡) ⋅ ∇𝒓𝑓)[

𝑑

𝑑𝑡
𝜙∗𝑡 (𝑓(𝒙, 𝑡))

]
𝑧=𝜁(𝒓,𝑡)

= [𝜙∗𝑡 (𝜕𝑡𝑓 + 𝑓𝑧 𝜕𝑡𝜁 + 𝒗(𝒙, 𝑡) ⋅ (∇𝒓𝑓 + 𝑓𝑧 ∇𝒓𝜁(𝒓, 𝑡)))]𝑧=𝜁(𝒓,𝑡)

= [𝜙∗𝑡 (𝜕𝑡𝑓 + 𝒗(𝒙, 𝑡) ⋅ ∇𝒓𝑓 + 𝑓𝑧 (𝜕𝑡𝜁 + 𝒗(𝒙, 𝑡) ⋅ ∇𝒓𝜁(𝒓, 𝑡)))]𝑧=𝜁(𝒓,𝑡)

= [𝜙∗𝑡 (𝜕𝑡𝑓 + 𝒗(𝒙, 𝑡) ⋅ ∇𝒓𝑓 + 𝑓𝑧 𝑤)]𝑧=𝜁(𝒓,𝑡)

= [𝜙∗𝑡 ((𝜕𝑡 + 𝒗)𝑓)]𝑧=𝜁(𝒓,𝑡)
= 𝜙∗𝑡 ((𝜕𝑡 + 𝒗)𝑓)
=
𝑑

𝑑𝑡
𝜙∗𝑡 (𝑓(𝒓, 𝑡)).

(A5)

Thus, Equation (7) is recovered for 0-forms

(𝜕𝑡 + 𝒗)𝑓 = [(𝜕𝑡 + 𝒗)𝑓]𝑧=𝜁(𝒓,𝑡).
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By the product rule for the pull-back, this calculation also applies to 1-forms and 2-forms, so we
have

𝑑

𝑑𝑡
𝜙∗𝑡 (𝑽̂(𝒓, 𝑡) ⋅ 𝑑𝒓) = 𝜙

∗
𝑡 ((𝜕𝑡 + 𝒗)(𝑽̂ ⋅ 𝑑𝒓))

= 𝜙∗𝑡 ((𝜕𝑡𝑽̂ + (𝒗 ⋅ ∇𝒓)𝑽̂ + 𝑉𝑗∇𝒓𝑣
𝑗) ⋅ 𝑑𝒓)[

𝑑

𝑑𝑡
𝜙∗𝑡 (𝑽(𝒙, 𝑡) ⋅ 𝑑𝒙)

]
𝑧=𝜁(𝒓,𝑡)

= [𝜙∗𝑡 ((𝜕𝑡 + 𝒗)(𝑽(𝒙, 𝑡) ⋅ 𝑑𝒙))]𝑧=𝜁(𝒓,𝑡)
=
[
𝜙∗𝑡 (

(
𝜕𝑡𝑽 + 𝒗

(
𝒙, 𝑡) ⋅ ∇𝒓𝑽 + 𝑽𝑧 𝑤 + 𝑉𝑗∇𝑣

𝑗
)
⋅ 𝑑𝒙

)]
𝑧=𝜁(𝒓,𝑡)

= 𝜙∗𝑡 ((𝜕𝑡 + 𝒗)(𝑽̂ ⋅ 𝑑𝒓))
=
𝑑

𝑑𝑡
𝜙∗𝑡 (𝑽̂(𝒓, 𝑡) ⋅ 𝑑𝒓)

(A6)

Thus, for 1-forms we have a formula which will project the Kelvin theorem onto the free surface.
Namely,

(𝜕𝑡 + 𝒗)(𝑽̂ ⋅ 𝑑𝒓) = [((𝜕𝑡 + 𝒗)(𝑽(𝒙, 𝑡) ⋅ 𝑑𝒙)]𝑧=𝜁(𝒓,𝑡)
Finally, for 2-forms we have the continuity equation on the free surface,[

𝑑

𝑑𝑡
𝜙∗𝑡 (𝜌 𝑑

2𝑟)

]
𝑡=0

= (𝜕𝑡 + 𝒗)(𝜌 𝑑2𝑟) = (𝜕𝑡𝜌 + 𝒗 ⋅ ∇𝒓𝜌 + 𝜌∇𝒓 ⋅ 𝒗)𝑑2𝑟

= (𝜕𝑡𝜌 + ∇𝒓 ⋅ (𝜌𝒗))𝑑
2𝑟 = 0.

(A7)

APPENDIX B: HAMILTON’S PRINCIPLE FOR 3D FLUID DYNAMICSWITH A FREE
SURFACE
In this appendix, we will re the 3D Euler fluid equations (1) and (2) from a constrained variational
approach for dynamics on a free surface. In this setting, we will be able to continue modelling the
free surface equations. In particular, in Hamilton’s principle, we will constrain the action integral
by applying what we have learned in the present section about the Eulerian equations of irrota-
tional free-surface motion to obtain the ECWWE (73) for the 2D velocity fields 𝑽 and 𝒗 on the
free surface.
This approach via Hamilton’s principle will also enable us to derive equations for fluid dynamic

flows on a free surface with vorticity, nonhydrostatic pressure, and spatially varying buoyancy. In
the action integral, the wave variables will be regarded as field variables interacting with the fluid
variables. After introducing a wave–current “minimal-coupling” Ansatz reminiscent of the cou-
pling of a charged fluid to an electromagnetic field,23 we will show that this system of equations
can be closed and that the wave variables will be able to generate circulation in the fluid. The
resulting coupled equations will model a sort of Craik–Leibovich28 wave–current interaction on
the free surface.
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Consider an action integral defined by

𝑆 = ∫ ∫ 𝐷𝜌
(
1

2
|𝒖|2 − 𝑔𝑧) − 𝑝(𝐷 − 1) − 𝜇(𝜕𝑡 + 𝒖 ⋅ ∇)(𝜁 − 𝑧)

+ 𝜑(𝜕𝑡𝐷 + div(𝐷𝒖)) + 𝛾(𝜕𝑡𝜌 + 𝒖 ⋅ ∇𝜌) 𝑑3𝑥 𝑑𝑡.

(B1)

The Lagrange multipliers 𝜇, 𝜑, and 𝛾 impose the dynamical constraints in (2) as pioneered in
Clebsch.55 From left to right, the terms in (B1) are: the difference between kinetic and potential
energies, the incompressible flow constraint, the Clebsch constraint that the quantity (𝜁 − 𝑧) is
advected (i.e., particles on the surface remain so), and two more Clebsch constraints that impose
advection dynamics on 𝐷 as a density and 𝜌 as a scalar function, respectively.

Remark B1. The action integral in (B1) makes sense physically, as long as the free surface 𝑧 =
𝜁(𝒓, 𝑡) is a graph, so that the magnitude of the elevation slope |∇𝒓𝜁| remains bounded. Hence,
we assume that no wave breaking will occur in the underlying fluid model during the temporal
interval of the flow.

Hamilton’s principle. Applying Hamilton’s principle 𝛿𝑆 = 0 to the constrained action integral in
(B1) yields the following variations:

0 = 𝛿𝑆 = ∫ ∫ 𝛿𝐷
(
𝜌

(
1

2
|𝒖|2 − 𝑔𝑧) − 𝑝 − (𝜕𝑡𝜑 + 𝒖 ⋅ ∇𝜑)) + 𝛿𝑝(𝐷 − 1)

+ 𝛿𝜌

(
𝐷

(
1

2
|𝒖|2 − 𝑔𝑧) − (𝜕𝑡𝛾 + div(𝛾𝒖)))

+ 𝛿𝒖 ⋅ (𝐷𝜌𝒖 − 𝜇∇(𝜁 − 𝑧) − 𝐷∇𝜑 + 𝛾∇𝜌)

+ 𝛿(𝜁 − 𝑧)(𝜕𝑡𝜇 + div(𝜇𝒖)) − (𝜕𝑡(𝜁 − 𝑧) + 𝒖 ⋅ ∇(𝜁 − 𝑧))𝛿𝜇

+ 𝛿𝜑(𝜕𝑡𝐷 + div(𝐷𝒖)) + 𝛿𝛾(𝜕𝑡𝜌 + 𝒖 ⋅ ∇𝜌) 𝑑3𝑥 𝑑𝑡.

The variations with respect to each dynamical variable yield the following independent relations,
written in the coordinate-free Lie derivative notation discussed in Appendix A,

𝛿𝐷 ∶ (𝜕𝑡 + 𝒖)𝜑 = 𝜌
(
1

2
|𝒖|2 − 𝑔𝑧) − 𝑝

𝛿𝜌 ∶ (𝜕𝑡 + 𝒖)
( 𝛾
𝐷

)
=
1

2
|𝒖|2 − 𝑔𝑧

𝛿𝜑 ∶ (𝜕𝑡 + 𝒖)(𝐷 𝑑3𝑥) = (𝜕𝑡𝐷 + div(𝐷𝒖))𝑑3𝑥 = 0
𝛿𝑝 ∶ 𝐷 − 1 = 0,

}
⇒ div𝒖 = 0,

𝛿𝜁 ∶ (𝜕𝑡 + 𝒖)
( 𝜇
𝐷

)
= 0,

𝛿𝛾 ∶ (𝜕𝑡 + 𝒖)𝜌 = 0,
𝛿𝜇 ∶ (𝜕𝑡 + 𝒖)(𝜁 − 𝑧) = 0,
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𝛿𝒖 ∶ 𝜌𝒖 ⋅ 𝑑𝒙 =
𝜇

𝐷
𝑑(𝜁 − 𝑧) + 𝑑𝜑 −

𝛾

𝐷
𝑑𝜌,

where𝒖 denotes Lie derivative with respect to the 3D velocity vector field.We have also imposed
natural homogeneous boundary conditions. Assembling these variational equations leads to the
following fluid motion equation:

𝜌(𝜕𝑡 + 𝒖)(𝒖 ⋅ 𝑑𝒙) = 0 + 𝑑(𝜕𝑡 + 𝒖)𝜑 − (𝜕𝑡 + 𝒖)
( 𝛾
𝐷

)
𝑑𝜌

= 𝑑

(
𝜌

(
1

2
|𝒖|2 − 𝑔𝑧) − 𝑝) −(1

2
|𝒖|2 − 𝑔𝑧)𝑑𝜌

= 𝜌𝑑

(
1

2
|𝒖|2 − 𝑔𝑧) − 𝑑𝑝.

From these considerations, we have the following set of coordinate-free dynamical equations
for the incompressible flow of an inhomogeneous fluid:

(𝜕𝑡 + 𝒖)(𝒖 ⋅ 𝑑𝒙) + 1𝜌𝑑𝑝 − 𝑑
(
1

2
|𝒖|2 + 𝑔𝑧) = 0,

(𝜕𝑡 + 𝒖)(𝐷 𝑑3𝑥) = 0, with 𝐷 = 1,

(𝜕𝑡 + 𝒖)𝜌 = 0,
(𝜕𝑡 + 𝒖)(𝜁(𝑥, 𝑦, 𝑡) − 𝑧) = 0.

(B2)

These equations impose the conditions for incompressible flow div𝒖 = 0 and the constraint that
fluid parcels initially on the free surface remain on it.
The system of equations in (B2) may be evaluated on the free surface immediately by using the

coordinate-free identities derived for Lie derivatives in Appendix A. This evaluation results in the
following system of equations in the hat notation from the previous section:

(𝜕𝑡 + 𝒗)(𝒗 ⋅ 𝑑𝒓) + 1
𝜌
𝑑𝑝 − 𝑑

(
1

2
|𝒗|2 + 1
2
𝑤2 + 𝑔𝜁

)
= 0,

(𝜕𝑡 + 𝒗)[𝐷 𝑑3𝑥]𝑧=𝜁(𝑥,𝑦,𝑡) = 0, with 𝐷 = 1,

(𝜕𝑡 + 𝒗)𝜌 = 0,
(𝜕𝑡 + 𝒗)(𝜁(𝑥, 𝑦, 𝑡) − 𝜁) = 0.

(B3)

Again, one sees that the free surface fluid equations are not closed. As before, they are missing
an evolution equation for 𝑤 and a method of computing, 𝑑𝑝, the gradient of the nonhydrostatic
pressure. Also, we see that the evaluation of the 3-form volume element on the free surface 𝑧 =
𝜁(𝒓, 𝑡) vanishes identically, so the connection of the pressure to 3D volume preservation vanishes
there, too.
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Vorticity dynamics. Taking the differential (i.e., the curl) of the motion equation in (B2) yields the
following equation for the vorticity dynamics: 𝝎 ∶= curl𝒖,

(𝜕𝑡 + 𝒖)(𝝎 ⋅ 𝑑𝑺) = −𝑑(𝜌−1) ∧ 𝑑𝑝. (B4)

Together, the buoyancy equation in (B2) and the vorticity Equation (B4) yield an advection equa-
tion for the PV defined as 𝑞 = 𝝎 ⋅ ∇𝜌. Now, 𝝎 ⋅ 𝑑𝑺 ∧ 𝑑𝜌 = 𝝎 ⋅ ∇𝜌 𝑑3𝑥 and div𝒖 = 0 imply,

(𝜕𝑡 + 𝒖)(𝝎 ⋅ 𝑑𝑺 ∧ 𝑑𝜌) = −𝑑(𝜌−1) ∧ 𝑑𝑝 ∧ 𝑑𝜌 = 0. (B5)

Thus, nonalignment of gradients of pressure and density results in local creation of vorticity.
One expands Equation (B5) to find the advection equation (𝜕𝑡 + 𝒖)𝑞 = 0 for PV 𝑞 = 𝝎 ⋅ ∇𝜌,

by computing

(𝜕𝑡 + 𝒖)(𝝎 ⋅ 𝑑𝑺 ∧ 𝑑𝜌) = (𝜕𝑡 + 𝒖)(𝝎 ⋅ ∇𝜌 𝑑3𝑥) = ((𝜕𝑡 + 𝒖)𝑞) 𝑑3𝑥 = 0. (B6)

The last line in deriving the PV equation (B6) uses the product rule for the Lie derivative and
enforces volume preservation arising from the divergence-free condition,

(𝜕𝑡 + 𝒖)𝑑3𝑥 = (div𝒖)𝑑3𝑥 = 0. (B7)

Thus, the issues of preservation of volume and PV are linked in projecting the 3D fluid motion
onto the free surface; so, they should be solved together using similar considerations.

APPENDIX C: LEGENDRE TRANSFORMATION TO THE HAMILTONIAN FOR
ACWWE
This appendix explains how the Legendre transformation of the augmented Lagrangian in the
action integral (72) with respect to the sum of the fluid and wave momentum densities

𝑴 = 𝐷𝒗 + 𝜆∇𝒓𝜁 = 𝐷𝑽 (C1)

leads to the ACWW Hamiltonian in (87), which is also the conserved energy for the system of
ACWWE in (77).
The Lagrangian in the action integral (72) is given in dimensional form by

𝓁(𝒗, 𝐷, 𝜙, 𝑤; 𝜁, 𝜆) = ∫ 𝐷
(
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁) + 𝜆(𝜕𝑡𝜁 + 𝒗 ⋅ ∇𝒓𝜁 − 𝑤)

+ 𝜙(𝜕𝑡𝐷 + div𝒓(𝐷𝒗)) − 𝜖𝑤𝜆|∇𝒓𝜁|2 𝑑2𝑟. (C2)

Recall from (73) and (76) that that Bernoulli function𝜛 and vertical wave momentum density
𝜆 are defined as

𝜛 ∶=
1

2
(|𝒗|2 + 𝑤2) − 𝑔𝜁, 𝜆 =

𝐷𝑤

1 + 𝜖|∇𝒓𝜁|2 =∶ 𝐷𝑤. (C3)
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Legendre transforming yields the Hamiltonian,

ℎ(𝑴,𝐷, 𝜆, 𝜁) = ∫
(
𝛿𝓁

𝛿𝒗
⋅ 𝒗 + 𝜆𝜕𝑡𝜁 − 𝐷𝜕𝑡𝜙

)
𝑑2𝑟 − 𝓁(𝒗, 𝐷, 𝜙, 𝑤; 𝜁, 𝜆)

= ∫
(
1

2
|𝒗|2 − 1
2
𝑤2 +
𝜆

𝐷
𝑤(1 + 𝜖|∇𝒓𝜁|2) + 𝑔𝜁)𝐷 𝑑2𝑟

= ∫
(
1

2
|𝒗|2 + 1
2
𝑤2 + 𝑔𝜁

)
𝐷 𝑑2𝑟

= ∫
1

2𝐷
|𝑴 − 𝜆∇𝒓𝜁|2 + 𝜆22𝐷 (1 + 𝜖|∇𝒓𝜁|2)2 + 𝑔𝐷𝜁 𝑑2𝑟

= ∫
(
1

2
|∇̂𝒓𝜙|2 + 12𝑤2 + 𝑔𝜁

)
𝐷 𝑑2𝑟.

(C4)

The corresponding variational derivatives of the Hamiltonian ℎ(𝑴,𝐷, 𝜆, 𝜁) applied in the Lie–
Poisson formulation in Equation (89) are now given by

𝛿ℎ(𝑴,𝐷, 𝜆, 𝜁) = ∫ 𝒗 ⋅ 𝛿𝑴 +
(
−
1

2
|𝒗|2 − 1
2
𝑤2 + 𝑔𝜁

)
𝛿𝐷

+ (−(𝒗 − 𝜖𝑤∇𝒓𝜁) ⋅ ∇𝒓𝜁 + 𝑤) 𝛿𝜆 + (div𝒓(𝜆(𝒗 − 2𝜖𝑤∇𝒓𝜁)) + 𝑔𝐷) 𝛿𝜁 𝑑
2𝑟.

(C5)
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