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Benilov, O’Brien & Sazonov (2003) and Benilov (2004) describe “a new type of
instability” in a liquid film inside a rotating cylinder. Though their linear systems
support only neutrally stable modes, they find explosive disturbances which become
singular after a finite time. They suggest that this result casts doubt on the reliability
of modal analysis for prediction of instability; and they claim that “Such cases
have never been described in the literature, and they are probably extremely rare”.
Here, other examples are given, some of which have been known (though not well-
known) for many years. A common feature of all these singularities is a local phase
synchronization of short-wave modes; but the configuration of Benilov et al. has
the additional feature of eigenfunctions that exhibit very large changes in amplitude
within the spatial domain. The relevance, or not, of such singularities to real physical
systems is discussed.

1. Fourier series and singularities
The configuration of Benilov, O’Brien & Sazonov (2003, henceforth referred to as

B), led, after several assumptions which do not at present concern us, to an eigenvalue
problem on a finite (periodic) interval, 0 � θ � 2π, for temporally periodic modes of
exponential form exp(−iωnt) and eigenfunctions φn(θ), where n= 0, ±1, ±2, ±3, . . . .

For each n, the eigenvalues ωn are real and so each mode is neutrally stable.
Accordingly, an arbitrary initial state represented as

h(θ, 0) =

∞∑
n=−∞

anφn(θ) (1.1)

has the later form

h(θ, t) =

∞∑
n=−∞

anφn(θ) exp(−iωnt) (1.2)

for times t > 0. It turns out that there are initial states, characterized by the Fourier
coefficients an, for which the series converges for some initial time interval 0 � t < t0,
but which diverges at the finite time t0. Here, we examine why this can be so.

First we look at situations with sinusoidal eigenfunctions, thereby avoiding, for the
moment, the more complicated system of B. Choosing x as the spatial variable, we
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suppose that a Fourier synthesis of linear modes corresponding to (1.2) gives

f (x, t) =

∞∑
n=−∞

an exp(iknx − iωnt)

for the physical variable of interest. On the interval −l � x � l and with periodic
boundary conditions, kn = πn/l and corresponding eigenvalues yield the dispersion
relation ωn = Ω(kn). (For simplicity, we assume that there is just one eigenvalue ωn of
physical interest for each kn: but this is not usually so in systems dependent on more
than one spatial variable.)

We are mostly concerned with Fourier modes that are either neutrally stable
(ωn real) or damped (Imωn < 0). But we first remark that known cases with
temporally unstable modes (Imωn > 0, some n) exhibit finite-time singularities, even
though individual modes grow only exponentially in time: see, for example, Jones &
Morgan (1972), Jones (1973), Saffman & Baker (1979) and Craik (1983) on the linear
growth of unstable disturbances on a vortex sheet. Thus, for an unbounded inviscid
incompressible flow, with velocity profile u =Vsgnz in the x-direction with z measured
transversely, an initial disturbance with Fourier transform F (α) is

f (x, 0) =
1

2π

∫ ∞

−∞
F (α) exp(iαx) dα. (1.3)

At later times t , this turns out to become (see Craik 1983, p. 86)

f (x, t) =
1

2π

∫ ∞

−∞
F (α) cosh(αV t) exp(iαx) dα, (1.4)

and this integral converges for all x at time t if and only if

lim
α→±∞

{F (α) exp |αV t |} = 0.

In this case, initial disturbances remain bounded at all later times t only if |F (α)|
decays more rapidly than any exponential exp(−K |α|) (K > 0) as |α| approaches
infinity: such an example with F (α) proportional to exp(−Kα2) is given by Drazin &
Reid (1981, p. 29). But disturbances with F (α) proportional to exp(−K |α|) (some
K > 0) as |α| approaches infinity will become singular at the finite time t0 = K/|V |.

Correspondingly, any bounded initial disturbance with F (α) decaying asymptoti-
cally to zero more slowly than any exponential exp(−K |α|) (all K > 0) must become
singular at all instants t > 0, however small (see Craik 1983, p. 87). When F (α) is
wholly real, this singularity, if it occurs, must do so at the point x =0, the disturbance
remaining finite at all other points x due to phase mixing. Such singularity formation
due to rapid growth of short-wave components turns out to be connected with the
singularities discussed in §§ 3 and 4 below.

The most familiar type of singularity is the Dirac delta function δ(x − x0): this
generalized function equals zero for all x �= x0,and its integral from a to b ( >a)
equals unity whenever a <x0 <b. The Fourier series representation of the Dirac delta
function δ(x) is

δ(x) =
1

2π

∫ ∞

−∞
exp(iαx) dα.
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Similarly, an infinite row of equally spaced delta functions at x = 2nl (n= 0, ±1,

±2, ±3, . . .) has the Fourier series (see Lighthill 1962, pp. 19, 68)

∞∑
n=−∞

δ(x − 2nl) =
1

2l

∞∑
n=−∞

exp(inπx/l). (1.5)

The singular solution (4.5) in B is of delta-function type (see equation (3.7) below),
as are those discussed in this paper. (Higher-order singularities associated with other
generalized functions might be studied similarly, but we do not do so.)

2. Examples with neutral sinusoidal modes
We consider disturbances of the form

f (x, t) =
1

π

∫ ∞

0

cos(αx) cos(ωt) dα or
1

π

∫ ∞

0

cos(αx − ωt) dα. (2.1 a, b)

where ω = ω(α) is some known positive real function of the wavenumber α. Both
forms have a delta-function singularity at x = 0 and t = 0. Since this f (x, t) has
dimensions of (length)−1, a corresponding displacement is obtained by multiplying
this expression by the square of some chosen length scale. The form (2.1a) comprises
symmetric standing-wave modes, and (2.1b) contains only wave modes that propagate
from left to right. We are interested in whether these expressions do or do not have
a singularity at other times t .

(a) Inviscid gravity waves.

For water of infinite depth, Lamb (1945, pp. 384–394) considers the form (2.1a)
with ω = (gα)1/2, where g is gravitational acceleration. He finds that

f (x, t) =
1

πx

[
ζ − ζ 3

3.5
+

ζ 5

3.5.7.9
− . . . +

ζ 2N+1(−2)N (2N)!

(4N + 1)!
+ . . .

]
, ζ =

gt2

2x
. (2.2)

The function in square brackets was tabulated by Lommel (1886), and Lamb gives
diagrams showing f (x, t) versus x at fixed times t , and versus t at fixed locations
x. Lamb’s derivation draws on the early work of Cauchy (1827) and Poisson (1818)
on the solution of the general initial-value problem for water waves, and on work of
Lommel and Fresnel on diffraction. (See the historical accounts of Darrigol 2003 and
Craik 2004.) For large ζ , a more convenient asymptotic approximation was given by
Poisson (1818) (see Lamb 1945, p. 387):

f (x, t) = x−1(ζ/2π)1/2 cos

(
1

2
ζ − 1

4
π

)
− (πx)−1[ζ −1 − 3.5ζ −3 + 3.5.7.9ζ −5 − . . .].

Waves spread out symmetrically from the origin, longer waves travelling faster and
farther than shorter ones, as expected from the dispersion law. At each positive time
t , the amplitudes of wave crests diminish and the local wavelength increases with
distance. More importantly for our purposes, a singularity remains at x = 0 for all
subsequent times t. Regarding this singularity, Lamb observed (p. 392) that:

the region in the immediate neighbourhood of the origin may be regarded as a kind of source, emitting

. . . an endless succession of waves . . . . This persistent activity of the source is not paradoxical; for our

assumed initial accumulation of a finite volume of elevated fluid on an infinitely narrow base implies an

unlimited store of energy.

In any practical case, however, the initial elevation is distributed over a band [of wavenumbers] of

finite breadth . . . In the result, the mathematical infinity and other perplexing peculiarities . . . disappear.
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Since (2.2) is a solution for t < 0 as well as t > 0, it follows that all disturbances
leading to a delta-function singularity at some later time are themselves singular at
x = 0 at all previous times t . Therefore, in contrast with the model of B, for gravity
waves in deep water, no bounded initial state can evolve into a delta-function singularity
at some later time.

(b) Case ω(α) = α + ε2α3.

This is a simplification of the dispersion relation that arose in B (see their
p. 208). Though our configuration is simpler than theirs, needing only sinusoidal
eigenfunctions, the evolution of the travelling-wave configuration (2.1b) is in many
respects analogous. With the change to a moving coordinate ξ = x − t , we have

f (x, t) =
1

π

∫ ∞

0

cos(αξ − ε2tα3) dα =
1

(3ε2t)1/3
Ai

⌊
−ξ

(3ε2t)1/3

⌋
(t > 0),

=
1

(−3ε2t)1/3
Ai

⌊
ξ

(−3ε2t)1/3

⌋
(t < 0).

Here Ai(−u) is the Airy function (see e.g. Abramowitz & Stegun 1965, pp. 446–447),
which has the form of slowly decreasing waves as u increases from zero, and uniform
decay to zero as u takes increasingly large negative values. Here, f (ξ, t) is singular
only at (ξ, t) = (0, 0): at all earlier and later times t , the surface elevation remains
bounded for all ξ. Hence, an initial bounded state, corresponding to the above solution
at any specified negative time t = −t0, will become singular at the origin x =0 after
a time t0 has elapsed. Likewise, an initial delta-function singularity becomes non-
singular at all later times. This is unlike case (a), where the singularity persists, and
it is analogous to the solutions found by B.

However, unlike the problem of B, the present system is conservative, with constant
energy. Accordingly, if a singularity exists at a single instant and at a single point,
then the total energy of the disturbance must be infinite at all previous and later
times. Here, the group velocities of short wavelengths equal 3(εα)2, an expression
which becomes indefinitely large as |α| → ∞. Thus the energy contained in sufficiently
short waves is transported from left to right at indefinitely large speeds. It is for this
reason that the singularity cannot persist for more than an instant. In contrast, the
group velocity in case (a) decays to zero as α approaches infinity, and indefinitely
short waves are unable to leave the vicinity of the origin: as a result, any singularity,
if it exists, must persist for all times t .

(c) Capillary waves

Here, ω(α) = T 1/2α3/2 where T is the coefficient of surface tension divided by density.
The resulting integrals (2.1a, b) do not then reduce to tabulated functions. However,
it is easy to see that, for all non-zero t , there is no singularity at x = 0: this is because∫ ∞

0
cos(bα3/2)dα is bounded for all non-zero constants b. The dominant contribution

to (2.1a, b) can be found by using Kelvin’s method of stationary phase: see Kelvin
(1887), Lamb (1945, pp. 395–398 and 462–463), and Copson (1971). Kelvin observed
that his method may be applied equally well to gravity waves in water of finite depth,
to deep-water capillary–gravity waves and to light in a dispersive medium.

Lamb states the leading-order result for an initial delta-function force impulse
at the surface of still water, but he does not consider the delta-function surface
displacement of present interest. Though Lamb’s approximate result (1945, p. 463,
equation 8) appears to indicate a singularity at x =0 for all times t , this stationary-
phase approximation is valid only if T 1/2t/x3/2 is small, and so cannot be applied at
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x = 0. At x = 0, Lamb’s exact integral (p. 462, equation 1) has the form∫ ∞

0

cos
(
bα3/2

)
α−1/2dα

(
b = T 1/2

)
,

which is clearly bounded.
The corresponding stationary-phase approximation for the delta-function displace-

ment (2.1b) is

f (x, t) ≈ 4x1/2

3(πT )1/2t
cos

(
4x3

27T t2
− π

4

)
+ . . . (x, t > 0) (2.3a)

≈ 4x

3(−πTx)1/2t
cos

(
4x3

27T t2
+

π

4

)
+ . . . (x, t < 0), (2.3b)

which has no singularity at x = 0. Respectively, these are good approximations for
sufficiently large positive x at each constant t > 0, and for sufficiently large negative
x at each constant t < 0; but again neither can be relied upon when x is small.
However, we have just confirmed that there is no singularity at x = 0 except when
t = 0. When x and t differ in sign, there are no equivalent results since there is then
no point of stationary phase. Results (2.3a, b) respectively show that, when x or −x is
large for each fixed positive or negative t , both the local amplitude and wavenumber
continuously increase with |x|. (In contrast, the Airy function in case (b) gives wave
amplitudes that decay asymptotically as x−1/4 for fixed t of O(x).) Here, as in case (b),
there is a large class of disturbances, bounded for all finite x, that become singular at
some later time. But these disturbances do not tend to zero as |x| approaches infinity,
except at the precise moment when the singularity appears.

It seems that a graph of the solution (2.1b) for capillary waves has not previously
been published. The integral may be rewritten as

f (x, t) =
1

π(T t2)1/3

∫ ∞

0

cos
(
uξ − u3/2

)
du =

2

3π(T t2)1/3

∫ ∞

0

cos
(
ξv2/3 − v

) dv

v1/3

where ξ ≡ x(T t2)−1/3; but neither of these forms is convenient for computation.
Contour integration of the latter around the first quadrant yields the more suitable
form

f (x, t) =
2

3π(T t2)1/3

∫ ∞

0

exp

(
−w +

√
3

2
ξw2/3

)
cos

(
1

2
ξw2/3 − π

3

)
dw

w1/3

≡ 2

3π(Tt2)1/3
F (ξ ) (2.4)

in which the integrand with respect to w decays exponentially at large w. The function
F (ξ ) was calculated using MAPLE for −3 <ξ < 7: this is shown as the solid curve
in figure 1. Also shown, as a dashed curve, is the stationary-phase approximation to
F (ξ ), corresponding to result (2.3a), which is

2(πξ )1/2 cos
[

4
27

ξ 3 − 1
4
π
]

(ξ > 0). (2.5)

Agreement between F (ξ ) and its stationary-phase approximation is very good for ξ

greater than 3: the actual error is plotted in figure 2. Still better agreement could be
obtained by calculating higher-order asymptotic approximations. The author is most
grateful to Peter Lindsay for undertaking these computations.

The analytical results described in cases (a) and (c) were derived in the 19th
century. But these earlier researches envisaged the subsequent evolution of an initial
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Figure 1. The function F (ξ ) defined in (2.4) (solid line) and its stationary-phase
approximation (2.5) (dashed line).
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Figure 2. The difference between F (ξ ) and the approximation (2.5).

localized pulse, rather than the later development of a singularity from smooth initial
data. Though the time-reversibility of the conservative equations of motion was well
understood, it seems that 19th-century hydrodynamicists chose to ignore the latter
consequence of their work. Aware of the many paradoxical and unrealistic results
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deriving from the equations of inviscid hydrodynamics, they were perhaps reluctant
to draw attention to yet more.

(d) General non-dissipative case

The above examples show that the persistence, or not, of an initial delta-function
singularity is determined by the nature of the dispersion relation at large wavenumbers
α. If ω behaves asymptotically as KαN for large α, where K and N are constants,
then the singularity at x = 0 persists for all t provided N is less than 1, and the
singularity disappears for all non-zero t whenever N is greater than 1. Similarly, if
ω =Kα + LαM + . . . when α is large and M < 1, singularities persist for all t , now
located at x = ±Kt for (2.1a) and x = Kt for (2.1b); but these disappear for all
non-zero t if M > 1.

Accordingly, in case (a), no bounded state for t < 0 can lead to a delta function
at t = 0 because N = 1/2 < 1; hence no such singularity can develop at any later
time from any bounded initial data. But, in (b) and (c), there are classes of initial
states (bounded except perhaps as |x| approaches infinity), that develop delta-function
singularities at some later time: in (b), N = 1, M = 3 > 1; and in (c), N =3/2 > 1.

It should not be supposed that only a very limited class of initial disturbances gives
rise to such singularities. We have described only those solutions that evolve into a
pure delta function; but to these one may add any combination of modes with finite
wavenumbers. The appearance of a singularity depends only on the synchronization,
at some (x, t), of the phases of infinitely short wavelengths, and (in the present
conservative situations) on infinite energy being contained therein.

A general disturbance may be expressed as the Fourier integral

1

2π

∫ ∞

−∞
F (α) exp[i(αx − ωt] dα.

Singularities like those above occur at x = 0, t = 0 whenever F (α) approaches a
constant as |α| tends to infinity. If, instead, F (α) → M exp(ipα) as |α| → ∞ where M

and p are real constants, the singularity at t = 0 is merely shifted to x = −p. Likewise,
if ω behaves asymptotically as KαN where N > 1, and F (α) → M exp(ipα+iqαN ), the
singularity exists only at x = −p, t = q/K. On the other hand, if F (α) → Mαr where
M and r > 0 are real constants, more-exotic higher-order singularities arise.

Although B (p. 211) claim that such “exploding” solutions “have never been
described in the literature, and they are probably extremely rare”, it is clear from the
above that such solutions are common in non-dissipative dispersive systems for which
the frequency at large wavenumbers increases as some power of α that is greater than
1. All that is required is that short waves remain dispersive, with group velocities
that do not tend to a constant as α approaches infinity. However, the system of
B is not a conservative one, and their geometry less simple, with eigenmodes that
are not just plane waves. Though one may expect the behaviour of such systems to
show qualitative similarities with those just described, it is necessary now to examine
carefully the roles played by dissipation and by other geometries.

3. The problem of Benilov et al.

Other geometries may not support plane waves, but may allow decomposition into a
complete set of neutrally stable modes of form φn(θ) exp(−iωnt) (n= 1, 2, 3, . . .) where
θ is some spatial variable, and the real mode frequencies ωn and usually complex
eigenfunctions φn(θ) are known. (In B’s case, θ is an angle with range 0 � θ � 2π and
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there are periodic boundary conditions.) If extended to infinite regions, as in B’s local
WKB approximation, summation over n is replaced by integration over a continuum
of modes, as ∫ ∞

−∞
F (α)φ(α, θ) exp(−iωt) dα,

where ω is a known function of α. Often, the higher eigenfunctions for large |α|
are nearly sinusoidal, at least locally in θ . On the infinite periodic extension of finite
domains, one has not a single delta function but a periodic array of them, with spacing
equal to that of the domain, rather as in (1.3). The development or annihilation of a
singularity is still entirely dominated by the behaviour of the higher eigenmodes, as
n or α approaches infinity. We expect a singularity to arise from suitable bounded
initial data if the dispersion relation for ω is such that these higher modes coalesce
in phase at some (θ, t), rather than phase mix as they do at others. Likewise, initial
singularities should disappear for t > 0 if and only if ωn or ω(α) grow rapidly enough
as n or |α| increases towards infinity.

In the problem of B, the eigenfunctions φn(θ) satisfy the non-self-adjoint equation
(B, equation (3.2))

d

dθ

(
ε sin θ

dφ

dθ

)
+

dφ

dθ
− iωφ = 0 (3.1)

where φ = φn(θ) and ω = ωn (n= 1, 2, 3, . . .) are the set of complex eigenfunctions and
real eigenvalues associated with the periodic boundary conditions φ(0) = φ(2π) and
dφ/dθ(0) = dφ/dθ(2π).

The differential equation adjoint to (3.1) is

d

dθ

(
ε sin θ

dψ

dθ

)
− dψ

dθ
− iωψ = 0 (3.2)

where ψ denotes the respective adjoint eigenfunctions ψn(θ) for each ω = ωn, that
satisfy the same periodic boundary conditions as the φn(θ). It is easy to show that∫ 2π

0

φmψndθ = 0 (m �= n),

∫ 2π

0

φmψ∗
ndθ = 0 (all m, n),

where * denotes complex conjugate. Furthermore, (3.2) is such that ψ ∗(θ) = Kφ(θ +π)
for some constant K . Without loss, we may impose the normalizations K = 1 and∫ 2π

0

φnψndθ = 1 (all n).

Expressed in terms of temporally harmonic modes, B’s surface displacement h(θ, t) is
(in complex form)

h(θ, t) =

∞∑
1

anφn(θ)e−iωnt ,

with arbitrary complex coefficients an. It readily follows that there are two conserved
quantities, not noted by B,∫ 2π

0

h(θ, t)h(θ + π, t) dθ = 0,

∫ 2π

0

h(θ, t)h∗(θ + π, t) dθ =

∞∑
1

|an|2, (3.3a,b)
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where h(θ +π, t) is to be interpreted modulo 2π in 0 � θ � 2π. These may be rewritten
in terms of real and imaginary parts of h(θ, t) = hr(θ, t) + ihi(θ, t) as∫ 2π

0

hr(θ, t)hr(θ + π, t) dθ =

∫ 2π

0

hi(θ, t)hi(θ + π, t) dθ =
1

2

∞∑
1

|an|2,

∫ 2π

0

hr(θ, t)hi(θ + π, t) dθ =

∫ 2π

0

hi(θ, t)hr(θ + π, t) dθ = 0.

It might be thought that these conservation laws would require h(θ, t) to remain
bounded if it were so at some initial time; but this is not necessarily so, as B’s
“exploding” solution confirms. The reason is that hr(θ, t) and hi(θ, t) can become
very large while hr(θ + π, t), and hi(θ + π, t) remain small. The approximate localized
solution for φ(θ) in equation (3.9) of B indicates how this occurs. Though restricted
to eigenvalues ω such that εω is small, where ε is their small gravitational parameter,
this solution gives

φ(θ) ≈ eiωθ exp[εω2(1 − cos θ)]

(1 − 4iεω sin θ)1/4
(1 + O(ε2)). (3.4)

This shows, for instance, that |φ(0)| and |φ(π)| differ by the exponential factor
exp(2εω2), which is large when ω is large. The corresponding h(θ , t) is

h(θ, t) ≈
∞∑
1

an

eiωn(θ−t) exp
[
εω2

n(1 − cos θ)
]

(1 − 4iεωn sin θ)1/4
. (3.5)

If all the constants an have the same fixed phase when n is large, then all these
components are (nearly) in phase when θ = t . A disturbance may be bounded at t = 0,
when phase synchronization occurs near θ = 0; but the θ-dependent exponential terms
permit growth at later times, when synchronization of modes occurs at larger θ-values.
This result suggests that blow-up first occurs at some time in the interval (0, π) if the
constants an are such that the expressions |an|exp

(
2εω2

n

)
are O(1) or more relative to

n, as n (and ωn) approaches infinity. Though this criterion is unlikely to be precise,
since the above h(θ, t) is an approximation that does not remain valid at very large
n, it is certainly suggestive of the true situation. The simpler model of Benilov (2004)
displays similar features without need for a localized approximation: see his equ-
ation (3.4).

There are similarities between these situations and that described in equation (1.3)
for temporally amplified modes which reach a threshold amplitude for singularity
formation at some finite time. But now it is the spatial eigenvalue structure itself
that provides the amplification. The analogy becomes clearer if high-order modes
are represented by a local WKB approximation, as waves with amplitudes and
wavelengths that vary gradually with the moving coordinate y ≡ θ − t . Then, as
shown in B (equation (4.4)), one may write h(θ, t) ≡ H (x, t) where x ≡ ε−1/2y, and
H (x, t) approximately satisfies the equation

∂H

∂t
= −sin t

∂2H

∂x2
, (3.6)

now regarded as having −∞ <x < ∞. This has particular solutions (B, equation (4.5))

H (x, t) =
P√

Q − 4 sin2 1
2
t

exp

{
− x2

2
[
Q − 4 sin2 1

2
t
]
}

(3.7)
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for arbitrary constants P, Q; and these develop delta-function singularities at the time
tc ≡ ±2[arcsin(Q/4)]1/2 whenever |Q| � 4.

Equation (3.6) can also be solved as a superposition of plane-wave solutions of
form f (t)exp(iαx), where f (t) = exp(−α2 cos t). Thus, in general,

h(θ, t) ≡ H (x, t) = 1
2π

∫ ∞

−∞
F (α) exp(−α2 cos t) exp(iαx) dα, (3.8)

which has a form reminiscent of (1.3) above, and also of Benilov (2004, equation (3.4)).
To recover the solutions (3.7) one needs to set

F (α) = (2π)1/2P exp[α2(1 − (Q/2))].

More generally, the integral (3.8) converges for all t provided

lim
α→±∞

{F (α) exp(α2)} = 0

and diverges at some t in the interval (0, π] otherwise.
The singular solutions of B, and the rather simpler ones of Benilov (2004) have two

essential features: (i) a synchronization of the phases of high-numbered eigenmodes
that enables them to reinforce one another, rather than phase mix, at some instant and
at some location in physical space; and (ii) a characteristic high-eigenmode structure
in which the greatest local maximum in amplitude is exponentially large compared
with the smallest. It is the latter property that allows disturbances to remain bounded
at some locations where phase synchronization occurs, but to become singular at
others. In contrast, the neutrally stable plane-wave solutions examined in § 1 do
not have property (ii), and so (with appropriate short-wave amplitudes) give rise to
singularities whenever phase synchronization takes place.

4. An oscillating liquid layer
4.1. The lubrication approximation

The problem of B concerned a thin layer of viscous fluid with a free surface, adhering
to the inside of a uniformly rotating circular cylinder with horizontal axis. The
azimuthal angle is θ (measured from the downwards vertical) and the reference frame
y ≡ θ − t moves with the mean azimuthal speed of the cylinder. If a singularity
occurs, it does so at some moment during the first revolution of the cylinder. The
theoretical model of B employs the viscous-dominated lubrication approximation,
whereby local changes in surface elevation result from the spatial gradient of the
volume flux parallel to the wall: that is,

∂h

∂t
= −∂q

∂s
, q(s, t) ≡

∫ h

0

u(n, s, t) dn,

where (s, n) are distances along and normal to the wall and u is the velocity
component along the wall. To a first approximation, u equals the azimuthal velocity
of the rotating cylinder; and there is a smaller correction, proportional to sin θ , due
to the component of gravitational force along the wall.

Since the liquid layer experiences a periodic gravitational acceleration as it moves
round with the cylinder, the problem of B has close similarities with that of a plane
liquid layer oscillated sinusoidally in time normal to its surface, under zero gravity.
Each period of the imposed oscillation then corresponds to one revolution of B’s
cylinder. The latter problem is simpler than B’s and is now described.
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Consider a liquid layer of mean depth d situated on a plane boundary y = 0 that is
performing periodic normal oscillations with variable acceleration g sinΩt . Making
the lubrication approximation, we have

∂η

∂t
= −∂q

∂x
, q(x, t) ≡

∫ d+η

0

u(y, x, t) dy, (4.1)

where η(x, t) is a small normal displacement of the liquid surface, and x is measured
along the wall. Also, the x-momentum equation reduces to

∂2u

∂y2
=

g sin Ωt

ν

∂η

∂x

where ν is the kinematic viscosity of the liquid. Assuming |η(x, t)| to be small
compared with d , and applying the boundary conditions u =0 on y = 0 and ∂u/∂y =0
on y = d , u and then q are readily found. The latter is

q(x, t) = −d3g sin Ωt

3ν

∂η

∂x
, (4.2)

which combines with (4.1) to yield the governing equation for η(x, t):

∂η

∂t
=

d3gsin Ωt

3ν

∂2η

∂x2
. (4.3)

It is no surprise that this is a diffusion equation with time-periodic diffusivity, just
like (3.6) above. There is no need to describe the solutions: just as for (3.6) there are
some that develop delta-function singularities during the course of one period 2π/Ω ,
and others that do not.

4.2. The short-wave approximation

To test the relevance of the lubrication approximation in the formation of singularities,
we now describe a short-wave viscous approximation, since it is the short-wave
components that give rise to singularities, as has already been described. But the
lubrication approximation assumes that waves are long compared with the liquid
depth, whereas for sufficiently short waves the opposite is the case: for these, the
liquid depth might as well be taken as infinite.

The viscous damping of free-surface waves in liquid layers under the influence
of constant gravity g was comprehensively discussed by Basset (1888, vol. 2,
pp. 309–314). We need only consider short waves in infinite depth, for which the
stream function has the form

ψ(x, z, t) = (Ae−αz + Ce−κz)eiαx+σ t , κ ≡ (α2 + σ/ν)1/2,

where ξ ≡ (σ/ν)1/2 satisfies the equation

(ξ 2 + 2α2)2 − 4α3(ξ 2 + α2)1/2 + gα/ν2 = 0 (4.4)

with α assumed positive (see Basset, 1888, vol. 2, equations (21), (22), (27) with
notational changes).

In the limit of very large viscosity ν or very short waves, Basset found that the
smallest (least-damped) root ξ of (4.4) became zero, and he wrongly discarded this as
unphysical since it gives zero growth or decay rate σ (Basset, art. 521): the other roots
are then strongly damped and purely viscous in origin, unconnected with the presence
of gravity, and may be neglected here. Basset’s discarded root became zero because
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he rejected the gravitational term of (4.4) in this limit. An improved approximation,
valid when g/α3ν2 	 1, turns out to be

ξ 2 = − g

2αν2
, i.e. σ = − g

2αν
. (4.5)

Consider a superposition of such waves, as in (1.3) but now damped, supposing
meantime that g is a positive constant as in § 2, case (a). Clearly, initially bounded
disturbances remain bounded at all later times. Also, an initial delta-function
singularity is not suppressed at later times, because the viscous damping rate of
gravity waves becomes indefinitely small as the wavenumber |α| approaches infinity.
The corresponding result for pure capillary waves, as in § 2, case (c) but now damped
by viscosity, is obtained on replacing g in (4.5) by T α2. Then, the viscous damping
rate σ becomes indefinitely large as |α| approaches infinity: as a result, it is no longer
possible for capillary waves to exhibit a finite-time singularity as they could in the
inviscid case of § 2, case (c).

To extend result (4.5) to the oscillatory layer, we need only to replace the constant g

by g sinΩt (provided Ω is small enough that there are no Faraday-type resonances).
The instantaneous damping rate is then σ = −g sinΩt/2αν, and each mode evolves
very nearly as

exp

{
iαx −

∫ t

0

g

2αν
sin Ωt dt

}
= exp

{
iαx − g(1 − cos Ωt)

2Ωαν

}
.

This is very different from the behaviour predicted by the lubrication approximation.
In the latter, from (4.3), the temporal factor is exp[−(α2d3g/3Ων)(1 − cosΩt)]: as α2

increases, this gives rise to ever larger differences in the amplitudes at, for instance,
Ωt = 0 and π. As we have seen, with a suitable superposition of such modes, these
large differences can cause a singularity at some point in the cycle. But our present
more realistic results show that this is in fact impossible: sufficiently short waves have
temporal behaviour that gets ever weaker as |α| increases to infinity. Accordingly, no
delta-function singularity can evolve from bounded initial data after a finite time, in
direct contradiction to the results of lubrication theory.

A similar conclusion must hold for the cylindrical configuration of B and of Benilov
(2004): their lubrication approximation breaks down for sufficiently short waves, and
such waves on their moving fluid layer will exhibit temporal behaviour, relative to
the moving layer, that is very similar to that just described. In particular, the strong
spatial variation of the maximum local amplitudes of the high eigenfunctions is
entirely suppressed.

5. Discussion
There are many real situations where locally large but finite disturbances arise

from initial states having much smaller amplitudes. The phase-synchronization (or
focusing) phenomenon has long been recognized as a possible cause of giant waves
in the ocean. Now Benilov et al. have drawn attention to refinements caused by large
local variations in eigenvalue stucture. They have thereby identified an interesting
mechanism for disturbance growth that is unconnected with the usual exponential
temporal instability of individual modes. Such behaviour may well be less rare, in
theoretical models, than they suggest: an attempt has been made here to outline both
the circumstances in which it may be expected to arise, and the likely limitations of
such theoretical models.
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B suggest that modal analysis is “not a completely reliable indicator of the stability
properties of a system” (B p. 217), because a finite-time singularity appeared in their
system although all modes were neutrally stable. But such anxiety seems misplaced
for several reasons.

First, we found that, in conservative systems where all modes are neutrally stable,
only initial disturbances with infinite energy can give rise to a singularity at later
times, since the energy of the delta function is infinite. But such initial disturbances are
clearly unphysical. In case (a), this infinite amount of energy resides near x =0 for all
t , and so the singularity cannot disappear. But, in cases (b) and (c), the infinite energy
of the singularity at (x, t) = (0, 0) is instantaneously transmitted to/from infinitely
large distances |x| at later/earlier times. However, all these scenarios are unrealistic
artifacts of the non-viscous theoretical models.

Secondly, if a local singularity occurs, it does so entirely because of the contribution
of modes at the high end of the wavenumber spectrum. But, in real physical systems,
very short waves are certain to experience strong dissipation by viscosity, even if longer
waves are neutrally stable or even unstable (cf. the quotation from Lamb given in
§ 2 case (a) above). If, for all α greater than some large but finite constant α0, this
dissipation gives an exponential decay factor of exp(−Kαpt), with positive constants
K and p, then the Fourier integral corresponding to (2.1b) has a large-wavenumber
contribution

1

π

∫ ∞

α0

exp(−Kαpt) cos(αx − ωt) dα.

This integral is finite for all t > 0, whatever ω(α) may be. It follows that an initial
delta-function singularity at t = 0 yields finite displacements at all later times t > 0.
Furthermore, since this integral diverges for all t < 0, no previous bounded initial state
can give rise to a delta-function singularity at t =0. For example, the appearance of
a finite-time singularity for inviscid capillary waves is removed by dissipation, since
the high-wavenumber contribution can then lose an infinite amount of energy during
the first moment of time. For damped gravity waves, finite-time singularities cannot
appear, but for a different reason: short gravity waves are damped as exp(−Kαpt)
where p (= −1) is negative, and so the role of damping is ineffectual, and a singularity
exists at all times or at none.

The problems of B and of Benilov (2004) are based on the lubrication
approximation. Subject to the same assumptions, their analysis applies also to liquid
layers on the outside, as well as the inside, of uniformly rotating cylinders. With
this approximation, finite-time singularities can indeed occur, as also in the oscillating
fluid layer discussed in § 4.1 above. Clarification of the properties of these approximate
models is a worthwhile objective, whether or not the approximations on which they
are based still hold as the singularity is approached. But we showed in § 4.2 that,
because the lubrication approximation fails for very short waves, these singularities
cannot arise: the short waves are far more strongly damped than lubrication theory
suggests.

Nevertheless, Benilov et al. have drawn attention to an interesting mathematical
phenomenon that demanded understanding. As in conservative systems, such
singularities are brought about by phase synchronization of high-frequency Fourier
components at some spatial location, much as in the cases (b) and (c) of § 2. But,
in B and Benilov (2004), the behaviour is also influenced by the unusual form of
the spatial eigenfunctions, which admit very large local variations in amplitude. As a
result, phase synchronization may give rise to bounded disturbances at some locations,
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and unbounded ones at others. If a singularity is to appear, it does so during the first
‘turn’ of their rotating cylinder. Similarly, for the oscillating layer of § 4.1, a singularity
appears, if at all, during the first period of oscillation.

Benilov et al. suggest that their singularities may be associated with droplet
formation on their liquid layer. This could be so, since the nonlinear process of
droplet formation does not require an actual singularity in the linear approximation.
But the various experiments that have been performed with viscous layers on rotating
cylinders do not seem to have encountered this phenomenon, though other instabilities
and nonlinear formations were observed: see, e.g. Moffatt (1977), Preziosi & Joseph
(1988), and additional references in Joseph et al. (2003). Furthermore, other theoretical
models of droplet formation, such as those of disintegrating liquid jets, do not require
singularities of the kind envisaged here.

Whether or not B’s mechanism is relevant to the rapid growth of real disturbances,
one must interpret with caution their predicted appearance of actual singularities
after a finite time. In any linear theory that predicts such singularities, the short-wave
end of the spectrum of disturbances is likely to be incorrectly modelled, and the
singularities spurious.

I am grateful to Peter Lindsay for performing the computations shown in figures 1
and 2, and to David Dritschel, Bob Grundy, Alan Hood and the referees for their
comments on an earlier draft.
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Cauchy, A.-L. 1827 Mémoire sur la théorie de la propagation des ondes à la surface d’un fluide
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