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Equa,tions governing the current system in the upper layers of oceans and lakes were 
derived by Craik & Leibovich (1976). These incorporate the dominant effects of both 
wind a,nd waves. Solutions comprising the mean wind-driven current and a system of 
' Langmuir ' cells aligned parallel to the wind were found for cases in which the wave 
field consisted of just a pair of plane waves. However, it was not clear that such 
cellular motions would persist, for the more realistic case of a continuous wave spectrum. 

The present paper shows that, in the latter case, infinitesimal spanwise periodic 
perturbat,ions will grow on account of an instability mechanism. Mathematically, the 
inst,ability is closely similar to the onset of thermal convection in horizontal fluid 
layers. Physically, the mechanism is governed by kinematical processes involving the 
mean (Eulerian) wind-driven current and the (Lagrangian) Stokes drift associated 
wit,h the waves. The relationship of this mechanism to instability models of Garrett 
and Gammelsrrad is clarified. 

1. Introduction 
The importance of Langmuir circulations as a mixing process in the top few metres 

of lakes and oceans is being increasingly recognized. While there is little doubt that 
bhese circulat'ions originate from an interaction of the mean wind-driven current and 
the wave field, the precise nature of this interaction is still the subject of debate. 
Indeed, there is a superfluity of theories purporting to explain the phenomenon, and 
these have been comprehensively reviewed by Craik (1970), Faller (1971) and Pollard 
(1976). At present, three recent but conflicting theories appear to command most 
support: those of Gammelsrard (1975), Craik & Leibovich (1976) and Garrett (1976). 

Gammelsr~d attributes the circulations $0 an instability of the wind-driven shear 
flow and his theory, like an earlier one of Faller (1 964, 1966), depends on the influence 
of Coriolis acceleration : without the Coriolis term, no instability occurs. However, it 
would be surprising if the existence of Langmuir circulations with a typical length 
scale of several metres turned out to depend crucially on the Coriolis acceleration. 

Garrett ( 1  976) also proposes an instability mechanism, this time involving varia- 
tions in wave amplitude and correspondingly distributed dissipation of wave energy. 
But his model is a very crude heuristic one. In particular, certain of his approximations 
appear to be inconsistent and terms neglected without firm justification may be 
comparable with those retained. Although the underlying 'physics ' of Garrett's 
mechanism appear plausible, several aspects of his analysis are unacceptable (see the 
remarks of Leibovich & Radhakrishnan 1977). 
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Craik & Leibovich (1976)) following earlier work of Craik (1970) and Leibovich & 
Ulrich (1972)) provide a rational derivation of the equations likely to govern Langmuir 
circulations and the mean wind-driven current. They then consider the solution of a 
model problem in which the gravity-wave field is replaced by a single pair of wave 
trains propagating at  oblique angles to the wind direction. A more complete numerical 
solution to this problem, in which all nonlinear terms of the equations are retained, 
has recently been obtained by Leibovich (1977) and Leibovich & Radhakrishnan 
(1977). The former paper concentrates on the development of the mean current from 
a zero initial state while the latter considers the structure of the growing ‘Langmuir 
cells ’. Various known features of actual Langmuir circulations are reproduced in these 
solutions. 

In  their model problem, periodic spanwise (cross-wind) variations of the Stokes 
drift associated with the assumed wave field drive correspondingly spaced ‘ Langmuir 
cells ’ by distorting the originally spanwise vorticity imparted to the water by a con- 
stant wind stress. Similar forced cellular motions will arise whenever the wave field 
is such as to cause significant spanwise variations in the Stokes drift. However, a 
difficulty arises when the wave field comprises a continuous spectrum of wavenumbers 
rather than an assemblage of discrete components; for, if the Fourier components of 
the spectrum have random phases, the spanwise variations of the Stokes drift must 
phase mix to zero. While it is not clear that, in practice, the phases must be random, 
one cannot make progress with a statistical model without this assumption. Such a 
statistical model developed by Craik & Leibovich (1976) yields a plausible estimate of 
likely cell spacing; but it predicts infinitesimally weak secondary currents as the 
number of wave components increases to infinity (i.e. as a continuous spectrum is 
approached). In short, the model problem solved by Craik, Leibovich and Radhakrish- 
nan successfully reproduces known features of Langmuir circulations and, more 
important, elucidates the inherent dynamical processes; but its direct relevance to 
the ocean is open to question. On the other hand, this model may well be appropriate 
for confined bodies of water such as small lakes where the fetch- or time-limited wave 
spectrum can be sharply peaked. 

The present work arose from an attempt to reconcile the theories of Craik & Leibo- 
vich, Garrett and Gammelsrcad. It was recognized that a basic process in both the 
Craik-Leibovich and the Garrett theories is the distortion of vorticity by the Stokes 
drift. But the basic difference remains that the Craik-Leibovich-Radhakrishnan solu- 
tions are forced motions in response to spanwise variations imposed by the wave field, 
whereas Garrett and Gammelsrerd proPo* instability mechanisms in which spanwise 
variations arise spontaneously by amplification of initially infinitesimal disturbances. 

Starting from Craik & Leibovich’s governing equations, one may prescribe a Stokes 
drift which depends only on depth and pose a stability problem for spanwise-periodic 
motions. Unlike Garrett’s and Gammelsrcad’s models, there is no need to include either 
distributed wave dissipation or the Coriolis force at  this level of approximation. 
Instead, the motion is governed only by kinematic processes and by ordinary viscous 
or ‘eddy-viscous’ diffusion. The stability analysis has much in common with corres- 
ponding work in thermal convection and rotating fluids and these analogies will be 
described. The present physical model is among the simplest yet proposed and it 
yields an instability which at  last may satisfactorily explain the regular spacing of 
Langmuir cells in the presence of a continuous spectrum of wind waves. 
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2. The governing equations 
The equations of motion are precisely those derived by Craik & Leibovich (1976) 

and Leibovich (1977). These were obtained by rational approximation based on clearly 
stated hypotheses concerning the relative magnitudes of certain key quantities. Fore- 
most among these is the hypothesis that steady currents are typically small compared 
with wave orbital speeds: a fact well established by observation. The reader is referred 
to these papers for full details of the derivation and approximations. 

We here adopt the scaling of Leibovich (1977) in writing the velocity vector for the 
non-oscillatory water motions as 

where i ,  j and k are unit vectors in the windward (2) direction, spanwise (y) direction 
and upward ( z )  direction, the water being taken to fill the region - m < z < 0. Here 
u* is the water friction velocity, which is related to a constant wind stress rw by 
rw = pu;, where p is the water density; vT is an eddy viscosity assumed to be constant; 
K - ~  is a length scale characteristic of the waves ( K  is the wavenumber for the discrete 
wave model); a is a characteristic wave amplitude and w a wave frequency scale which 
may be taken as (gK)' without loss of generality, where g is the gravitational accelera- 
tion. The space variables x, y and z are non-dimensionalized relative to the length 
scale K - ~  and dimensionless time t is scaled by (aKu*)-l [vT/w)f.  The dimensionless 
velocity components u, v and w are functions of y, z and t but not of x since the current 
system is assumed to be uniform in the windward direction. These rather cumbersome 
scalings have the advantage of reducing the nonlinear equations and boundary condi- 
tions to their simplest form. 

These equations are 
ut -k vu, + wu, = La Q2u, ( 2 . 1 ~ )  

Rt + vQ, + wR, = La V2R + F ,  (2.1 b )  

(2.1 c) R = - v2$, v2 = a2/ay= + a21a22, 

( 2 . l d )  

where v and w may be represented by the stream function $ in virtue of continuity 
and R is the longitudinal (x) vorticity. The influence of the waves is manifested in the 
term F ,  which is given by 

(2.2) 

where 4Y is the dimensionless Stokes drift. This is defined as the time average 

F = aVu,  - @,u,, 

t 
a = ~ ( u w .  i1.S w d t ,  (2.3) 

where awuw is the irrotational dimensional velocity vector associated with the wave 
motion. In  terms of vorticity dynamics, F represents the distortion of vorticity by the 
Stokes drift as discussed above. The parameter La, appropriately named the Langmuir 
number by Leibovich, is effectively an inverse Reynolds number; it is typically small 
in situations of interest. 

0-2 
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If one postulates a pre-existing quasi-steady wave field with time-independent 
Stokes drift but no Eulerian currents (u,v,w) and poses the initial-value problem 
corresponding to application of a constant wind stress rw on the surface z = 0 for all 
t 2 0 (thereby avoiding consideration of how the wave field is generated), the appro- 
priate boundary conditions for a developing current system with fixed spanwise 
periodicity LK-1 are (cf. Leibovich) 

Y ( O , z , t )  = f i (O,z,t)  = u*(O,z,  t )  = 0, 

Y ( L , z ,  t )  = f i (L ,z ,  t )  = u,(L,z,t) = 0,  

Y y ,  O , t )  = W Y ,  0 , t )  = 0, %(Y, O , t )  = 1, 
Y,u+O ( 2 - t  --a), 

Y ( y ,  2 , O )  = u(y ,  2 , O )  = 0.  

Note that La and L are the only two parameters of the problem, but that in addition 
the Stokes drift @ will depend on the properties of the chosen wave field. The parti- 
cular function chosen in the Craik-Leibovich-Radhakrishnan model is 

@ = [4 - (n/L)z] t  e 2 z { I  + [i - (n/2L)2] cos (ny/L)} (L  > in), 
which corresponds to a pair of monochromatic gravity waves propagating at  angles 
& sin-1 (n/2L) to the x direction. Since this gives rise to a ‘forcing term ’ F with specified 
y periodicity, the spacing of the cells is predetermined. 

The present work shows that such y variation of the Stokes drift is not a prerequisite 
for development of spanwise-periodic currents. Rather, such currents can arise by 
instability in cases where the Stokes drift @2 is a function of depth only. The Stokes 
drift of a continuous spectrum of waves symmetric about the wind direction is just 
such a function. 

The analysis to follow is in several parts. Section 3 poses a quasi-steady linear 
stability problem based on the assumption that the Stokes drift @ and the mean 
Eulerian wind-driven current u = U may be treated as functions of depth only: the 
stability of small spanwise-periodic disturbances is then examined and inviscid 
solutions for some particular cases are given. Section 4 deals with the viscous problem 
and attention is there drawn to analogous solutions of the well-known stability 
problems in which (i) a layer of fluid is heated from below (or cooled from above) and 
(ii) concentric rotating cylinders are in relative motion. 

Since the limitations of quasi-steady stability analyses, when the primary state 
vanes with time, are well recognized, a combined initial-value stability problem is 
considered in $5:  this has much in common with work of Foster (1965, 1968) on the 
onset of thermal convection. The relevant conclusions of Foster’s studies are described 
and interpreted in the present context. The final section examines the physics of the 
instability mechanism and explores the relationship of the present mechanism to 
those of Garrett and Gammelsmd. The probable form of circulations with magnitudes 
beyond the range of validity of our linear theory is also discussed. 

3. The quasi-steady stability problem 

the equation 
In the absence of circulations, the mean wind-driven current u = Z(z, t )  must satisfy 

;ii,-LaU,, = 0,  
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along with the boundary and initial conditions 

UZ = 1 ( z  = 0, t 2 O ) ,  U - t O  ( Z - t  - - , t  2 O ) ,  
u = 0 (z < 0,  t = 0).  

This has the solution (cf. Leibovich) 

If the time scale associated with the evolution of this profile is long compared with 
characteristic growth times of unstable disturbances then a quasi-steady stability 
analysis is permissible. Assuming meantime that this is so, we treat both ii and 42 as 
functions of z only and write 

u = U ( z )  + cd(y, 2, t ) ,  $- = cY(y, 2, t ) ,  

where 8 is small, to obtain the linearized O(c)  equations 

A typical Fourier component is written as 

(2, Y) = Re (( U ,  - it-l W )  exp (iZy) exp (d)}, 

where 1 is its spanwise wavenumber and a(Z) the growth or decay rate to be found. 
This yields 

(3.3) I [(r - La(D2 - 171 U = U, W ,  
[a - La(D2 - 291 (D2 - 1 2 )  W = - P42, U ,  

where D = d/dz. 

viscous terms by setting La = 0. Then 
To demonstrate the existence of a possible instability mechanism, we first omit 

( 0 2  - 12) w = - (t%T-25iz 42z) w , u = ii, (r-1 w 
and the inviscid boundary conditions are 

W ( 0 )  = 0,  W-tO ( z 3 - C o ) .  

Case I 
One case yielding an immediate solution is 

A ( - H < z < O ) ,  { 0 ( - o o < z <  - H ) ,  
= 

where A is a positive constant. This corresponds, for instance, to cases where U and 
42 exhibit uniform shear to a depth H and then one or both functions are zero beyond 
that depth. We note that the profile (3.1) may be approximated by such a function. 
For - 00 < z < - H ,  W has the form A exp lz  to satisfy the boundary condition at  
infinity. The matching conditions at z = - H are that W and D W should be continuous 
whilein - H  < z < 0 

D2W = P(1 -Aa-') W .  
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There is no non-trivial solution for A < u2. For A > u2 the solution in - H < z < 0 is 

W ( z )  = -Asinmz/e'HsinmH, m2 = 12(Au-2-1), 

mH cot mH = - ZH. 

The last equation has an infinite number of positive roots m = mi (i = 1,2, ...) each 
corresponding to a permissible ejgenstate. The smallest root m = m, for fixed ZH is 
that associated with the largest growth rate 

a = a,(lH) = A*( lm + ;/12)-*.  

The magnitude of ul increases uniformly with 1 from zero when 1 = 0 to A* when 
l-tco: that is to say, all wavenumbers are unstable with the fastest growth rates 
apparently occurring at the smallest wavelengths. Of course, this conclusion will be 
modified by viscosity, which will assuredly stabilize the shortest wavelengths, but 
the existence of a mechanism of instability has been demonstrated. 

Case 11 

A second class of profiles which yields a simple anaIytic solution is that where 

iiz %!z = Ae"H 

This class includes all cases where both Ci2 and ii decrease exponentially (possibly at 
different rates) with depth and such profiles may be acceptable approximations for 
(3.1) and for the Stokes drift. The equation for W is now 

0 2  W = 12( 1 - e2lHAr2)  W 

6 = A*(21H/u) exp ( z / 2 H )  
and the change of variable 

leads directly to Bessel's equation 

c2 Wcc + cWc + W[c2 - (21H)'l = 0 

with the boundary condition W = 0 at both 6 = 0 and 6 = A*(ZlH/a). 

given by the condition 
~i = A*(ZZH)/ci, 

where the ci are the zeros of J,,(g) with v = 21H. The most unstable root for given 
1H is the root u = u1 corresponding to the smallest positive zero el. As 1H increases, 
u1 increases uniformly from zero at  ZH = 0 to A) as IH -t 03 (see Abramowitz & Stegun 
1965, chap. 9) just as in case I. 

The solution is W = AJ,([), where v = 21H, and the roots u = ui (i = 1,2 ,  ...) are 

4. Viscous solutions, La + 0 

On writing u = Lap in (3.3) we obtain 

(D2-Z2-p) U = -La-lGz W ,  

(D2 - l2 - p )  ( D2 - Z2) W = 12La-1Ci2s U ,  

W = D2W = DU = 0 (Z = 0) ,  W ,  U+O (z+ -03). 
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When U, and @z are positive constants and the depth of liquid is taken as finite 
( - H < z 6 0) rather than infinite with, say, a rigid boundary at z = - H ,  the prob- 
lem is a variant of the classical BBnard stability problem for a heated layer of fluid 
with unit Prandtl number and a free upper surface. Now Uplays the role of the tempera- 
ture perturbation, the only departure from the classical problem being that the iso- 
thermal boundary condition U ( 0 )  = 0 is here replaced by DU(0)  = 0. If we take 
;ii, = 1 and. aZ = K and redefine the space variable as z1 = z / H ,  the Rayleigh number 
Ra of the BBnard problem is identified with La-2 KH4 in the present case. 

A similar analogy exists with the Taylor instability problem for flow between con- 
centric rotating cylinders in the ‘small-gap ’ approximation. Further, the stability 
problem for flow between fixed concentric cylinders under a constant azimuthal 
pressure gradient is equivalent to the case U, = (1  + 2z1), eZ = - Kzl( 1 + zl). Details 
of all these related problems may be found in Chandrasekhar (1961). 

On writing H = Kd, where d is the dimensional depth of fluid, and noting that 
C4YZ = K ,  which must be O( l ) ,  may be defined to be unity by readjusting the definition 
of K ,  it is found that the ‘effective Rayleigh number’ is 

Estimates believed to be typical of the ocean at  a wind speed of about 10 m s-l are 
(cf. Leibovich & Radhakrishnan’s equation 17) 

aK w 0.2, vT w 25 cm2 s-l, U* w 1-5 cm s-l, o E 1 s -~ ,  (4.2) 

which yield Ra = 570d4, where d is measured in metres. Clearly, if the water depth 
is more than a few metres the critical Rayleigh number for onset of instability 
(Ra = 1708 for the BBnard problem with rigid boundaries, less than this with free 
boundaries) is sure to be exceeded. However, it must be borne in mind that this 
analogy requires constant gradients Uz and 42, whereas in practice these decay to 
zero with increasing depth. 

Relevant to our initial-value problem is the work on the stability of time-dependent 
temperature profiles of Lick (1965) and Currie ( 1  967), both of whom employ the quasi- 
steady approximation. In  these studies, the mean temperature gradient is taken to be 
constant over part of the fluid layer and zero for the remainder, with constants chosen 
to model the heat-conduction solution at  various times after heating is started. 
As might be expected, the (quasi-steady) critical Rayleigh number for onset, based 
on total depth, rapidly decreases from very large values as time increases and as the 
thermal boundary layer thickens; and instability occurs when sufficient time has 
elapsed to reduce this instantaneous critical value to that of the configuration, pro- 
vided the latter exceeds about 1340. In effect, it is the thickness of the thermal 
boundary layer rather than the overall depth of the fluid layer which is the crucial 
length scale. 

In accord with this conclusion, it seems reasonable in the present work to identify d 
not with the actual depth of water but with some O(1) multiple of the lesser of (i) 
the length scale K - ~  over which most of the variations of @ occur and (ii) the ‘ boundary- 
layer thickness ’ 2r1(La  t ) 4  associated with ;ii in (3.1 ). In  this way an ‘ effective Rayleigh 
number ’ Ra* may be defined for deep water and a conjectured approximate instability 
criterion might be Ra* ;2 103. 
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At times sufficiently large that Lat > 4 we take d = K-1 in (4.1) to find that 

Ra* z a2wu2,/K2v$. 

If we use the estimates quoted by Stewart (1967) for fully developed seas, that 

a - 0.2U;/g, w N g/Uw, K N g/Uk,  ( 4 . 3 ~ )  

which were employed by Leibovich & Radhakrishnan to estimate the eddy viscosity 

(4.3b) 
as 

VT N 2.3 x 10-5U&/g, 

and add their result Uw z 660u,, (4.3c) 

we recover Ra* M 7-6 x lo8, which far exceeds the conjectured critical value €or 
instability. We note that for these estimates the Langmuir number La is 3.6 x 

For times such that Lat < 2, the expression ( 4 . 1 )  for Ra reduces to the remarkably 
simple formula Ra,* = (4t)2. On reverting to dimensional time t ,  by using 

we obtain 

t = t,(aKu*) ( W / V T ) +  

Ra” = 0.064(gt,/Uw)2. 

Accordingly, a notional critical value of lo3 is exceeded after the time 

t,, z 1 - 1  x 102(U,/g). 

For a wind of 10 m s-1 ‘switched on’ at  t = 0, the instability should therefore occur 
after a time of abou6 two minutes. However, an odd feature of the result is that the 
onset time t,, is even less for lighter winds! This anomaly is partly attributable to the 
assumed strong dependence on U, of the estimate for vT; a constant viscosity vT would 
yield the opposite conclusion. Also, the properties of the wave field have been assumed 
independent of U,. It must be remembered that t12 is the time required to ‘trigger’ 
the instability: a further period of growth will be necessary before the disturbance 
becomes observable. This is considered in $ 5 .  

It is anticipated that the linearly most unstable cells are those aligned parallel to 
the wind, as assumed in the above analysis. A corresponding analysis for obliquely 
inclined cells will incorporate three additional features: a reduction of the effective 
Rayleigh number by cos2 8, where 8 is the angle of inclination of the cells to the wind 
direction; convection and shearing of the cellular structure by the component Tisin 8 
perpendicular to the cells, and a term like WEaz sin 8 in the vorticity equation deriving 
from distortion of vorticity associated with the component ii sin 8. It is anticipated 
that the first two of these factors will tend to reduce the growth rate of the present in- 
stability; the last is connected with a Tollmien-Schlichting mode of instability in shear 
flows for which the most unstable waves are those with crests perpendicular to the 
wind direction - an altogether different phenomenon from that under discussion here. 

Finally, the spacing of Langmuir cells may be estimated on the assumption that 
this corresponds to the wavelength 2n/Z of the (instantaneously) most unstable linear 
disturbance. Again it seems plausible to choose the length scale K-, as an appropriate 
measure of effective depth (after sufficient time has elapsed for the notional boundary- 
layer thickness of the wind-driven current to exceed this value). In  this case classical 
results for the BBnard problem (Chandrasekhar 1961, p. 43) predict a spanwise wave- 
length, comprising two counter-rotating cells, of about twice the length scale K - ~ .  
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At smaller times, the characteristic length scale is 2 ~ - l ( L a t ) $  rather than K - ~  and the 
first and smallest unstable spacing, corresponding to the critical time tlc, is about 
0 * 2 ~ - l  for typical values of La.  So the 'instantaneously most unstable' spacing in- 
creases with t from 0 . 2 ~ - l  to 2 ~ - l  approximately. 

5. The unsteady problem 
The quasi-steady assumption for the mean flow ceases to be a satisfactory approxi- 

mation when the predicted growth (or decay) rate of the disturbance is small and also 
at  small times when G(z, t )  varies part'icularly rapidly with t (see, for instance, Gresho & 
Sani 1971). For this reason and to indicate the possible course of future numerical 
work on the problem, attention is now focused on Foster's (1965, 1968) studies of the 
onset of convection in cooled fluid layers. This work closely parallels the initial-value/ 
stability problem specified by (3.1) and (3 .2)  and it does not employ the quasi-steady 
assumpt,ion used above. A corresponding study of rotational Couette flow with an 
impulsively started inner cylinder has been made by Chen & Kirchner (1971) but their 
work need not be considered in detail here. 

Foster (1966) deals with initially isothermal layers of finite depth subject to a 
temperature reduction imposed on the upper surface at t = 0. His governing equations 
are entirely analogous to (3.2) provided our is taken to be constant ( =  K )  over 
the entire fluid layer and provided his Prandtl number is unity. As above, the effective 
Rayleigh number Ra is La-2KH4. Foster examines two cases corresponding to the 
boundary conditions 

and with free boundaries at z = 0,  - H ,  where 

Y = a2Yppz2 = 0, a = 0. 

The present boundary condition U, = 1 may be thought of as intermediate to these 
t.wo cases, for it corresponds to U ( 0 ,  t )  a t* [see (3.1)]. Also, we require ai2la.z rather 
than $2 to vanish on the boundary x = 0,  but Foster (1968) shows that this change 
does not greatly influence the results. 

Foster (1968) considers a semi-infinite fluid subject to surface cooling as in cases 
A and B and with various boundary conditions corresponding to a rigid or free, 
conducting or insulating boundary. The present boundary conditions on 0. and Y 
correspond to a free insulating boundary. 

In these unsteady problems, the time dependence is no longer exponential and 
solutions must be obtained numerically for specified initial disturbances. As a stability 
criterion, Foster employs the concept of a 'nominal critical time'. This is the time 
within which (a suitable averaget of) a disturbance with prescribed spanwise wave- 
number 1 is amplified by a chosen factor; and Foster considers factors ranging from 

t Foster's average @ ( t )  is here equivalent to [ l ( t ) / l ( O ) ] ) ,  where I ( t )  = Y*(Z, t )  dz. fom 
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10 up to lo8. In  both his papers, Foster’s computations demonstrate instability for 
all cases considered. Of course, for finite layers a critical Rayleigh number exists; 
but his computations mainly concern values of Ra considerably greater than this. 
For a fluid of infinite depth the Rayleigh number may be ‘ scaled out ’ of the equations, 
and instability must occur. However, in this latter respect our analogy with Foster’s 
work fails; for the requirement that aZ remains constant is acceptable only for depths 
up to K - ~  at most, since aZ must approach zero for depths greater than this. According- 
ly a critical ‘effective Rayleigh number’ will always exist in the present problem, as 
proposed in 5 4. 

Of particular interest are Foster’s estimates of the most unstable wavenumber and 
the time required for the instability to become observable. This information may be 
deduced from Foster’s (1968) paper. To conform with Foster’s equations, we change 
to new dimensionless co-ordinates (z,, t,) of depth and time, defined as 

z, = K+La-+ z = K+ La--+ ( K Z ~ ) ,  

t ,  = Kt = K La-l ( K ~ v ~ ~ ~ ) ,  

where (zl, tl) denote dimensional depth and time. The dimensionless variables .li 
and ii are also scaled by (KLa)& and Y by (ill) ( K  La)). As suggested above, the 
constant 

Foster’s figures 3 and 5 show the minimum ‘nominal critical time’ t,, for growth 
by factors of 10 and lo8 and with various boundary conditions plotted against the 
Prandtl number 9’ for cases A and B. For a growth factor of 10 at 9’ = 1, t,, is about 
13 for case B and 28 for case A ;  for a growth factor of lo8 at 9’ = 1,  t,, is about 32 for 
case B and 160 for case A .  These values correspond to a ‘free and insulating ’ boundary 
as required by the present problem; but the values do not alter much for the other 
boundary conditions shown. Since the present boundary condition ii(0, t )  = ti  is 
intermediate between cases A and B,  a reasonable conjecture for this case is t,, w 20 
for a growth factor of 10 and t,, w 100 for a growth factor of lo8. 

For the values quoted in (4.2) as typical of wind speeds of 10 m s-l, the corresponding 
dimensional times are 5.5 and 28 min respectively. (At those times, the respective 
thicknesses of the wind-driven boundary layer estimated by 2(Lat)+ K-1 are about 
0 .6~- ’  and 1 * 3 ~ - l . )  That is to say, if a wind suddenly blows up (or changes direction?) 
it should take several minutes for the Langmuir circulations to become established. 
This is broadly in accord with observation and consistent with our estimate of 2 min 
for onset of instability using the quasi-steady approximation. 

Foster’s figures 4 and 6 show the critical horizontal wavenumber a, (i.e. that which 
attains a prescribed growth factor of lo8 in the shortest time) against Prandtl number. 
For 9’ = 1 and a free insulating surface, a, is 0.4 for case B and 0.14 for case A .  
Supposing that, the average a, w 0.27 is appropriate for the present boundary condi- 
tion on ii, we may estimate the dimensional critical wavelength as 

= K may be taken as unity without loss of generality. 

Incorporating dependence on wind speed as given by (4.3) the predicted spacing of 
Langmuir cells is A, = 0*45UL/g: this is 4.6 m at wind speeds of 10 m s-1. 

The quasi-steady theory predicts a most unstable wavelength of 2 ~ - 1  whenever 
the thickness of the wind-driven boundary layer grows beyond the depth scale K-1 
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of the pre-existing Stokes drift. That the estimate 0-44~- ’  of unsteady theory (with 
the huge growth factor 108) is substantially smaller than this suggests that the spacing 
of Langmuir circulations may be determined while the wind-driven boundary layer 
is still quite thin compared with the Stokes-drift depth scale K-l.  This lends aolne 
credence to our assumption that %z may be treated as constant over depths of interest; 
but it must be admitted that this is a rather crude approximation. 

Further numerical calculations directly appropriate to the present problem are 
desirable. It is a simple matter to calculate from (2.3) the actual Stokes drift %(z) 
corresponding to particular directional wave spectra for use in such computabions 
(see appendix). Also, it would be worthwhile to consider the ‘complete’ initial-value 
problem in which also the wave spectrum evolves with time. For it is artificial to 
assume, as here, that the wave field may be prescribed independently of the wind: 
this is justifiable only if the waves attain a quasi-equilibrium state before the onset 
of circulations, but it is not clear that this is so. 

6.  Discussion 
Although the mathematical problem is analogous to that for the onset of thermal 

convection, the physical processes causing the instability are quite different. The 
following explanation yields a clear understanding of the mechanism. 

(i) Initially weak spanwise-periodic circulations give rise to variations Q of the 
downwind velocity by advection of the developing mean Eulerian profile U ( z ,  t ) .  
This is accomplished by the term YuZz of (3.2). 

(ii) The spanwise variation of 0 implies a periodic distribution of vertical vorticity: 
Q,. But vorticity is convected by the Stokes drift @(z) since, in the absence of vis- 
cosity, material lines and vortex lines must coincide. Accordingly, the positive gradient 
%z of the Stokes drift ‘tilts ’ vertical vorticity to generate longitudinal (2) vorticity 
of a sense which reinforces the initial circulations postulated in (i). This tilting of 
vertical vorticity is represented by the term 

(iii) The diffusive and dissipative roles of (eddy) viscosity will tend to inhibit the 
inviscid instability mechanism of (i) and (ii), but La is usually sufficiently small for 
instability still to occur. The downwind velocity perturbation Q according to inviscid 
theory is precisely zero at the free surface; but the viscous solutions display a structure 
in qualitative agreement with observed Langmuir circulations. 

It is noteworthy that process (ii) is distinct from that identified by Leibovich & 
Ulrich as responsible for the initial growth of circulations forced by interacting wave 
pairs. Then the Stokes drift % is periodic in y and longitudinal vorticity is first, gene- 
rated by distortion of the mean spanwise vorticity ;ii, by this %. The latter process 
corresponds to the term @,uZ of (2.2), which is taken to be zero in the present work. 
Both processes are represented in the nonlinear solutions of Craik & Leibovich and 
Leibovich & Radhakrishnan for the wave-pair model. 

Garrett’s instability model also incorporates process (ii), albeit imprecisely and 
concealed within his averaging procedures. But process (i) is absent from his work 
since he regarded the downstream current U+eQ as independent of depth though 
varying in the spanwise direction. In fact, Garrett’s mechanism is effectively inde- 
pendent of the wind, except in so far as it determines the directional properties of the 
wave field. This omission necessitated the introduction of distributed wave dissipation 

of (3.2). 
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to complete the ‘feedback cycle’. This is supported by the argument that, since wave 
amplitudes should increase in regions of surface convergence, dissipative processes 
must transfer more momentum from waves to downwind current in such regions. 
This would have the effect of reinforcing the variations lii in downwind current. 

While it is good to know that such variations in wave amplitude tend to support 
rather than suppress the instability, this effect is certain to be small compared with 
process (i). For, with currents of the magnitude assumed here, variations in wave 
amplitude would yield a contribution of higher order (i.e. smaller) than the terms 
retained in our governing equations (2.1). This is also true of the process suggested 
by Kraus (1  967) involving damping of short waves by a surface slick located in zones 
of convergence. 

Gammelsrrad’s theory is basically a special case of the instability discussed by Faller 
(1964, 1966) in which the depth scale is sufficiently small that the mean motion is a 
unidirectional and uniform shear flow. Thus Gammelsrerd’s analysis includes our 
process (i), for the case of constant mean shear Zz, but not process (ii) for the waves 
play no part in his model. Instead, spanwise variations of longitudinal vorticity 
derive from the uniform vertical vorticity field of the earth’s rotation. This vertical 
vorticity is distorted by the z derivative of the spanwise-periodic downstream velocity 
u so as to enhance the circulations; and these circulations in turn maintain lii by 
process (i). 

The strengths of process (ii) and Gammelsrrad’s Coriolis mechanism are readily 
compared. The rate of production of longitudinal vorticity by (ii) is proportional to 
liiu%z and that by the Coriolis mechanism is proportional to 21iizR, where R is the 
earth’s angular velocity. If y and z derivatives are comparable in magnitude, as for 
typical Langmuir circulations, the relative strength of the processes is expressed by 
theratio(a~)~w:2R.Fortypicalwavesa~ M 0.2ando M 1 s-lwhileR = 1.46 x lO-*s-l, 
giving a ratio of about 150 : 1.  The one situation in which Gammelsrrad’s mechanism 
may be significant is that of cells very widely spaced compared with the characteristic 
depth K - ~  since for these liiu may be small compared with 4, in the region of vorticity 
production. But Gammelsrrad’s treatment of viscous terms is imprecise and it is not 
clear that his inviscid mechanism is sufficiently strong to overcome viscousdissipation 
for such widely spaced cells. The application of his model to larger-scale atmospheric 
phenomena is perhaps more convincing ; but the superficial comparison of ‘ cloud 
streets’ and oceanic Langmuir circulations does not seem to withstand closer scrutiny. 

On the other hand, it is quite possible that the modification of the wind-driven 
current by the Coriolis force (i.e. the establishment of an Ekman spiral) may some- 
what alter the structure of Langmuir circulations at  depths of order (v/R)i or more. 
But the production of periodic longitudinal vorticity by processes (i) and (ii) is 
strongest near the surface, where the current is parallel to the wind direction; and 
these are likely to remain the dominant driving mechanisms of the circulations. 

When the disturbances grow beyond the range of validity of the present linear 
theory, their form should resemble the parallel rolls of nonlinear thermal convection 
as studied by Elder (1968), Robinson (1976) and others, for the nonlinear equations 
(2.1) are analogous to their equations, just as in the linear case. Similarities should 
also exist with the nonlinear solutions of Liu & Chen (1973) for time-dependent 
rotational Couette flow. Further, although Leibovich & Radhakrishnan’s (1  977) 
solutions correspond to a Stokes drift with both a mean and a y-periodic part, the 
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structure of their solutions will be similar to that of nonlinear disturbances with a 
y-independent Stokes drift. However, the concentration of x and z momentum in the 
vicinity of regions of surface convergence is likely to be somewhat diminished in the 
latter case. It is hoped that such solutions will be available in the near future. 

There is some evidence to suggest that sufficiently strong circulations may exhibit 
‘ secondary instability ’ yielding structures akin to penetrative thermal plumes, as 
in the experiments and computations of Elder (1968), Robinson (1976) and others. 
The pattern of windrows on the surface of a lake or ocean is frequently rather irregular 
and continuously evolving: it is a reasonable conjecture that this state may correspond 
to such unstable circulations. It also seems likely that the Craik-Leibovich model of 
interacting wave pairs will contribute significant ‘forced solutions ’ which may fluc- 
tuate on a time scale long compared with the characteristic wave period; for the 
phases of the driving waves will vary randomly on this time scale. A qualitative 
picture thereby emerges of two possible regimes: one of regularly spaced cells and 
another, at greater wind speeds or later times, of quasi-turbulent fluctuations with 
strong spanwise variations in longitudinal vorticity. 

A major factor which has yet to be investigated in detail is the influence of density 
stratification upon the Langmuir circulations and, conversely, the role of such 
circulations in establishing the mixed layer above the thermocline. It seems likely 
that a pre-existing stable stratification will inhibit the circulations at wind speeds 
below a certain critical value, but that above this critical wind speed the circulations 
may play a dominant part in creating the mixed layer and in establishing the position 
of the thermocline. 

This work was stimulated by an interesting four-cornered correspondence with 
S. Leibovich, C. Garrett and R. T. Pollard. 

Appendix. The Stokes drift 
It has been assumed that the Stokes drift varies linearly with depth, which is of 

course only a rough approximation to reality (although probably no worse than the 
assumption of constant eddy viscosity !). We here consider the form of the Stokes 
drift for typical wave spectra. The usual dimensional Stokes drift, U, say, is related to 
the dimensionless @(z) defined in (2.3) by C i  = u%K@, where a and o are the charac- 
teristic wave amplitude and frequency used for non-dimensionalization and K = 02/g 
is the characteristic wavenumber. The dimensional depth is 2 = K - ~ z .  With the esti- 
mates ( 4 . 3 ~ )  for fully developed seas this is just V, FZ 0.04Uw@(z), where U, is the wind 
speed. 

Kenyon (1969) has calculated UJ2) for various empirical spectra. In an integral 
form equivalent to (2.3) this is 

u , ( d )  = - j mf(w) o3 exp ( - 2w22/g) do, 
Pg2 0 

where f (o) is the one-dimensional frequency spectrum defined by 

P@ = j r f  ( o ) d w ,  
- c2 being the mean-square surface elevation. 
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For the case 
f ( w )  = wg3W-SexP [-B(g/KP)21 

with the constants a and p chosen as 0.028 and 1.93 respectively to fit observational 
data (Pierson & Moskowitz 1964), Kenyon gives the solution 

q(9) = 3.58 x 10-2Uwexp [ - 3.93(g9)*/Uw]. 

The Stokes drift at the surface 9 = 0 is here about 3.5 yo of the wind speed and it 
decays rapidly with depth 9. Indeed, so sharp is the decay that the gradient of V,  is 
theoretically infinite at  the surface. This property holds for all solutions corresponding 
to f ( w )  - w - ~  (n < 6)  as w -+a, since the rapid variation is attributable to the short- 
wave contributions. In  practice, however, the spectrum will be modified at  large w 
by the effects of capillarity and of viscosity, so that a short-wave cut-off frequency 
must exist. It is consistent with our assumed value of the eddy viscosity (4.3 b )  to 
impose a cut-off frequency at  around 40 s--1, corresponding to waves a few centimetres 
long (for which the ‘wave Reynolds number’ w/K2vT is around unity). This ensures 
that the gradient of the Stokes drift remains finite at the surface, but its value there 
is still likely to be rather large compared with that at  depths of a few metres. 

It is also worth noting that if the above spectrum f ( w )  is modified to include a 
further factor exp [ - 2w2zo/g], where z,, is some constant, the gradient of the Stokes 
drift varies much less rapidly near the surface and there is no need to invoke a cut-off 
frequency. In  this case dU,/dS varies nearly as (zo+z)-* at depths small compared 
with Uk/g. 
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