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We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally
confirm, for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is
an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a dense
soliton gas, described theoretically by the soliton limit of the Korteweg-deVries (KdV) equation,
a completely integrable soliton system: Hence the phrase “soliton turbulence” is synonymous with
“integrable soliton turbulence.” For periodic/quasiperiodic boundary conditions the ergodic solutions
of KdV are exactly solvable by finite gap theory (FGT), the basis of our data analysis. We find that
large amplitude measured wave trains near the energetic peak of a storm have low frequency power
spectra that behave as ∼ ω−1. We use the linear Fourier transform to estimate this power law from
the power spectrum and to filter densely packed soliton wave trains from the data. We apply FGT to
determine the soliton spectrum and find that the low frequency ∼ ω−1 region is soliton dominated.
The solitons have random FGT phases, a soliton random phase approximation, which supports our
interpretation of the data as soliton turbulence. From the probability density of the solitons we are
able to demonstrate that the solitons are dense in time and highly non Gaussian.

PACS numbers: 92.10.Hm, 92.10.Lq, 92.10.Sx

The physical basis of weak wave turbulence was devel-
oped by Zakharov and Filonenko [1]. They investigated
the theoretical power spectrum for ocean surface waves
and demonstrated that in deep water the direct cascade
of energy - from the spectral peak to higher frequencies
in the spectral tail - should be of the form E(ω) ∼ ω−4.
This theoretical result was confirmed in subsequent work
[2], [3] in which the power law was found to be an exact
solution of the kinetic equation for the waves. The ex-
pansion used in this computation is only up to the third
order in wave steepness and thus the theory is referred to
as “weak turbulence.” Both numerical and experimental
confirmations have been found [4–10]. Zakharov [2, 3]
also found the Kolmogorov spectrum for shallow wa-
ter weak wave turbulence. The inverse cascade of wave
action to large scales/small frequency is a power law:
Iω ∼ Q1/3ω−1 where Q is the flux of action.

The theory of integrable soliton turbulence, as used
here to analyze ocean wave data, is based on the dis-
covery of complete integrability for the Korteweg-deVries
(KdV) equation:

ηt + c0ηx + αηηx + βηxxx = 0 (1)

(co =
√
gh, α = 3co/2h, β = coh

2/6, for h the water
depth, g the gravitational acceleration), valid for small
but finite amplitude, long waves in shallow water. KdV

is integrated by the Inverse Scattering Transform (IST)
on the infinite line [11]. Zakharov has studied this shal-
low water case [12, 13] for integrable turbulence for a
rarified soliton gas. He derived a soliton-gas kinetic equa-
tion for the KdV equation using the IST. More recently
the kinetic equation for a dense soliton gas for inte-
grable nonlinear wave equations has been found by El
and Kamchatnov [14] by taking the thermodynamic limit
of the Whitham equations to obtain a nonlinear integro-
differential equation for the spectral measure. This result
generalizes Zakharov’s case for a rarified soliton gas.

The other equation we refer to herein is the nonlinear
Schrödinger (NLS) equation which describes nonlinear
wave packet dynamics

i(ψt + Cgψx) + µψxx + ν|ψ|2ψ = 0 (2)

(Cg, µ and ν are depth dependent constants [19]). The
NLS equation is approximately valid in a narrow band
about the spectral peak. We use NLS here mainly to
ensure the separation of long wave (KdV) and short wave
(NLS) scales as discussed below in the data analysis.

Herein we test to ensure that the measured time series
are stationary and ergodic, a standard procedure for
the analysis of ocean waves. The fast Fourier transform
(FFT, a periodic algorithm) is the most often used
method for data analysis. Likewise finite gap theory
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FIG. 1: Measured surface wave time series of 8192 points (27.96 minutes, sampling interval 0.2048 s, black curve) from Currituck
Sound beginning at 21:00h on 4 February 2002. The significant wave height was 0.52 m in a depth of 2.63 m. The red curve is
the low frequency soliton signal obtained by low pass filtering the (black) measured time series.

Soliton turbulence region: 
Low frequency, large scales

Weak wave 
turbulence: High 
frequency, small 

scales

NLS modulational scales
near peak of spectrum

Spectral minimum 
characterized by water 

depth h = 2.63 mSp
ec

tra
l A

mp
litu

de
 - 

m 
2

Benjamin-Feir instability

Zero crossing frequency

FIG. 2: Power spectrum of the measured time series in FIG.
1. Validity intervals for KdV (f < 0.22 Hz) and NLS (0.34 Hz
< f < 0.56 Hz) are shown. Exact power laws (red lines) are
shown in the low-frequency soliton turbulent region (∼ f−1)
and high-frequency cascade region (∼ f−4).

[15] (nonlinear Fourier analysis for KdV which is also
periodic) is used to analyze and interpret the measured
Currituck Sound data using the methods of [16]. This
means that we are able to deal, from a theoretical and
data analysis point of view, with the densely packed
solitons found in the data. Herein, our use of the term
soliton turbulence is synonymous with integrable soliton
turbulence as discussed in the theoretical literature [12–
14]. The ω−1 theoretical power law of Zakharov [2, 3]
for shallow water weak wave turbulence is not applicable
to high density soliton interactions with strongly non
Gaussian behavior as addressed experimentally herein.

A confirmation of the theoretical behavior of soliton
dynamics of integrable soliton gases came from numerical
simulations using FGT [17]. The method was applied
to construct realizations of KdV random processes with
a power law spectrum k−γ and uniformly distributed
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FIG. 3: Least squares fit spectral power laws of the experi-
mentally determined solitonic wave trains at different hours
during a Currituck Sound storm on 04/02/2002. The spectra
have been vertically shifted for clarity.

FIG. 4: Significant wave height Hs during the Currituck
Sound storm (green diamonds) and slope of power law spectra
γ (red circles) versus time during the Currituck Sound storm.

FGT phases. These highly nonlinear cases consisted of
energetic, densely packed solitons in low-level radiation.
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FIG. 5: Turbulent soliton wave trains computed by low-pass filtering the measured wave data as discussed in the text. The
results were obtained during the storm of 4 February 2002 (a), (b) and (c). We have verified with FGT that the peaks in these
time series are solitons and are governed by a low frequency power law as shown in FIGs. 2, 3.
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FIG. 6: Two measured wave trains (black) together with the underlying soliton trains obtained by low pass filtering of the data
(red). The results show how large solitons tend to occur under large packets.

(a) (b)

FIG. 7: FGT Soliton spectrum of the measured wave train in
FIG. 1 (a). Histogram of soliton amplitudes from FIG. 5 (b).
The highly non Gaussian nature of the solitons is clear.

Direct experimental verification of soliton turbulence
in the ocean has remained unconfirmed for over four
decades. One obstacle has been the impossibility of
distinguishing by eye solitons from the large radiative
(wind) waves in experimental data. This difficulty was
overcome in [18] using a nonlinear filtering technique -
based on FGT for KdV - to extract solitons from surface

wave data obtained in the Adriatic Sea.
In the present paper we analyze data measured by

Long and Resio in Currituck Sound, North Carolina
[5]. FIG. 1 shows a measured amplitude time series,
whose power spectrum is given in FIG. 2. An important
characteristic of the Currituck Sound data is the small
depth (h=2.63 m) in which the probes were positioned.
This particular water depth allowed the simultaneous
measurement of the spectrally well-separated dynamics
of both KdV (shallow water wave dynamics) and NLS
(variable depth dynamics centered about a narrow
spectral peak) in the same data set, resulting in a
power spectrum which divides high frequency and low
frequency behaviors by a low energy spectral minimum
parametrically characterized by the depth h. The mean
of the frequencies at the minima in the measured spectra,
in all data sets analyzed is fmin ' 0.22 Hz, correspond-
ing to a value of kh ' 0.80, where ω2 = gk tanh(kh) is
the linear dispersion relation, f = ω/2π (see FIG. 2).
Thus, the experimental set up is quite unique, with well
separated KdV and NLS behaviors. This contrasts to
[18] where no NLS regime occurred.

The high-frequency cascade range of the wind-wave
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spectrum, f > 0.7 Hz, was found to have a power-law
∼ f−4 (FIG. 2), in agreement with [4, 5, 7, 8]. The low-
frequency spectra were also found to be approximated
by a power law ∼ f−γ during the full 34 hours of the
storm, FIG. 2. FIG. 3 shows the least squares fits of
many of these low frequency power law spectra found
during the peak of the storm. In FIG. 4 we graph the
significant wave height Hs and the low-frequency slope
γ as a function of time over the period of the storm.
Near the peak of the storm Hs averaged 0.496 ± 0.060
m and γ averaged 1.043 ± 0.074.

Several well-defined, large amplitude solitons were
found in the present study. In FIG. 5 we show three
turbulent soliton trains in the absence of the background
radiation and in FIG. 6 we show several soliton trains
beneath the measured surface waves. The tendency for
the largest solitons to occur beneath large wave packets
is clear. Thus our data set vastly extends on previous
results from [18] where this effect was first seen.

In order to characterize the measured soliton wave
trains we have: (1) Extracted the long wave, low
frequency part of the spectrum from the measured
data to see the soliton turbulence in the absence of the
radiation modes (FIGS. 1, 5 and 6). (2) Computed the
power spectrum in order to obtain the spectral slope γ
(FIGs. 3, 4). (3) Determined that these low frequency
Fourier power spectral components are solitons using
FGT (FIGs. 5, 6). (4) Computed the soliton spectrum
(FGT) and the probability density of solitons (FIG.7).
In the first method (1) we low pass filtered the measured
time series using the fast Fourier Transform and FGT.
Because of the well-separated scales in the spectral
domain, these results are comparable and support the
soliton interpretation of the data. In the second method
(2) we use the Fourier transform to obtain the power
spectrum to estimate the slope of the power law γ (FIG.
3). In the third and forth methods (3), (4) we apply
FGT to compute the nonlinear spectrum to determine
whether the power law spectrum computed from the
linear Fourier transform arises strictly from solitons:
For each elliptic modulus near 1 we have a soliton
component. FGT demonstrates that the soliton modes
saturate the low-frequency part of the power spectrum,
spanning the region of the ∼ f−1 power-law.

The nonlinear physics corresponds to a dense soliton
gas as seen in the nonlinear spectrum and probability
density function (FIG. 7). For each of the 14 time series
near the storm peak there are about 120 solitons that
appear in the region of the low frequency power spectra
characterized by a power law γ ∼ 1.043 ± 0.074. The
average full width at half maximum of each soliton is
about 10.5 sec (1258 sec/120 solitons): roughly half of
the solitons are smaller (and broader) than the average
soliton (6.3 cm height) and are therefore more densely
packed than the average, while the remaining half of
the solitons are larger (and more narrow) than the

average and are thus less dense and easily seen as the
largest solitons in FIGS. 1, 4 and 5. We also find that
the FGT phases of the solitons are random numbers
on (0, 2π), thus connecting integrable FGT with a
statistical description of the data, the solitonic random
phase approximation of FGT [17]: Our data is described
by soliton FGT modes with random phases, which is
soliton turbulence, the random soliton limit of KdV.

Reasons why the Currituck Sound experiment has
been able to successfully measure soliton turbulence
include: (1) The shallow water depth allows for the
generation of long wave solitonic components. (2) The
particular depth of 2.6 m divides the low frequency KdV
region of the spectrum from the high frequency NLS
region. (3) Large wave conditions occurred at the peak
of the storm on 5/2/2002, thus providing a large range of
nonlinear frequency scale interactions in the spectrum.
(4) Use of FGT allows us to determine the presence of
soliton turbulence in the spectrum of the data.
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