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Abstract. Analyzing a free boundary problem for harmonic functions we
show that there are no closed particle paths in an irrotational inviscid travel-
ing wave propagating at the surface of water over a flat bed: within a period
each particle experiences a backward-forward motion with a slight forward
drift.

1. Introduction

A Stokes wave is a two-dimensional periodic wave with a symmetric profile
that rises and falls exactly once per wavelength, acted on by gravity and
traveling at constant speed at the surface of irrotational water above a flat
bed. The study of water waves of this type was initiated by formal but
far-reaching considerations due to Stokes [31], while the existence of small
amplitude Stokes waves was proved via convergent power series expansions
by Levi-Civita [20] and Struik [33]. The fact that the Stokes wave problem
can be formulated mathematically as a nonlinear free boundary problem for
a harmonic function in a planar domain made it possible to use an interplay of
harmonic/complex analysis with bifurcation/degree theory to study Stokes
waves of large amplitude, that is, waves that can not be regarded as small
perturbations of a flat water surface. The substantial amount of analytical
theory made available mainly through the work of Toland and collaborators
(see [1,2,4,27,34,35] and citations therein) unveils to a large extent the
fascinating structure of this classical hydrodynamical problem.

The aim of this paper is to describe qualitatively the trajectories of
water particles in a Stokes wave. Due to the lack of explicit formulas
for the free surface or for the velocity field, the current understanding of
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this fundamental aspect of Stokes waves is quite limited: “In progressive
gravity waves of very small aplitude it is well known that the orbits of the
particles are either elliptical or circular. In steep waves, however, the orbits
become quite distorted, as shown by the existence of a mean horizontal drift
or mass-transport in irrotational waves” cf. Longuet-Higgins [23]. Indeed,
the leading order analysis of the linearized Stokes problem pursued in the
classical and modern literature (see [13,14,17,19,22,25,29,31]) indicates
that all particles move on closed orbits – a conclusion apparently supported
by photographs with long exposure [14,29,31] and even by films [3]. The
correction accounted for steeper/larger waves is suggested by an analysis
of the mean energy transport which indicates the presence of an average
forward drift [17,36]. In a recent paper [11] it is proved that for the linearized
problem there are no closed particle orbits. Our aim is to show that this
feature holds for Stokes waves of small and large amplitude. We also provide
a geometric description of the actual particle path and thus explain the almost
closed elliptic paths recognizable in photographs and visualized on film.
While in [11] the analysis relied on the explicit formulas for the velocity
field, for the pressure, and for the free surface provided by the linear theory,
for a Stokes wave no such information is available and our approach relies
on a qualitative study of the specific nonlinear boundary value problem for
harmonic functions.

This paper is organized as follows. In Sect. 2 we present the mathematical
formulation for Stokes waves and we derive properties of the corresponding
water flow. Sect. 3 is devoted to the description of the trajectory of a water
particle in a Stokes wave, while Sect. 4 contains some comments on related
problems within water wave theory.

2. Preliminaries

In this section we present the mathematical problem and we prove some
fundamental properties of the velocity field in a Stokes wave.

2.1. The governing equations. For most waves propagating on the surface
of the sea or in a channel the motion is almost identical in any direction
parallel to the crest line. To describe these waves consider a cross section
of the flow that is perpendicular to the crest line with Cartesian coordinates
(X, Y ), the Y -axis pointing vertically upwards and the X-axis being the
direction of wave propagation, while the origin lies on the mean water level.
Let (u(t, X, Y ), v(t, X, Y )) be the velocity field of the flow over a flat bed
Y = −d and let Y = η(t, X) be the water’s free surface. The balance
between the restoring gravity force and the inertia of the system governs the
evolution of the mass of water, so that within the fluid we have the equation
of mass conservation

uX + vY = 0(1)
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and Euler’s equation{
ut + uuX + vuY = −PX ,

vt + uvX + vvY = −PY − g,
(2)

where P(t, X, Y ) denotes the pressure and g is the gravitational constant of
acceleration. On the free surface we have the boundary conditions

v = ηt + uηX on Y = η(t, X),(3)

and

P = P0 on Y = η(t, X),(4)

where P0 is the (constant) atmospheric pressure, while

v = 0 on Y = −d,(5)

must hold on the flat bed. Assuming no local spin or rotation of a fluid
element, as it is the case for water motions starting from rest, the water flow
has to be irrotational, that is,

uY = vX .(6)

The equations (1)–(6) are the governing equations for irrotational water
waves [17].

Fig. 1 A Stokes wave

A Stokes wave is a solution to the governing equations for which
η, u, v, P are all periodic in the X variable and exhibit an (t, X)-dependence
in the form of (X − ct), where c > 0 is the speed of the wave, with the
functions η, u, P even and v odd in the variable (X − ct). For such waves
it is convenient to eliminate time from the problem by passing to a moving
frame

x = X − ct, y = Y.(7)
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In the moving frame Bernoulli’s law holds: the expression (u−c)2+v2

2 +
g(y + d) + P is constant throughout the fluid domain

Ω = {(x, y) ∈ R2 : −d < y < η(x)}.
Defining the stream function ψ(x, y) up to a constant by

ψy = u − c, ψx = −v,(8)

we see that ψ is harmonic in Ω in view of (6), whereas (3) and (5) guarantee
that ψ is constant on both boundaries of Ω, say ψ = 0 on y = η(x) while
ψ = m on y = −d. Using Bernoulli’s law, we can express the boundary con-
dition (4) in an alternative form. We thus obtain the following mathematical
formulation for Stokes waves: look for a smooth solution (η(x), ψ(x, y)),
periodic and even in the x-variable, and such that η rises and falls exactly
once per period with η′(x) �= 0 except at the maximum/minimum, of the
free boundary value problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∆ψ = 0 in − d < y < η(x),
|∇ψ|2

2 + g(y + d) = Q on y = η(x),
ψ = 0 on y = η(x),
ψ = m on y = −d,

(9)

with m and Q physical constants (relative mass flux, respectively hydraulic
head). Since η(x) + d > 0 we must have Q > 0. On the other hand, m < 0
unless ψ ≡ 0. Indeed, experimental data [22] indicates that in general u < c,
that is, the horizontal motion of individual water particles is slower than
the propagation speed of the wave. Using the strong maximum principle for
harmonic functions [15] first for ψ and then for ψy, we infer from ψ = 0
on y = η(x) that m < 0, respectively

ψy = u − c < 0 in Ω,(10)

unless ψ ≡ 0. Observe that in the moving frame the wave speed c > 0
does not appear in the system (9). To recover the wave speed, notice that
the mean horizontal velocity per wavelength λ at any fixed depth y0 below
the wave trough level,

∫ λ

0 ψy(x, y0) dx, is constant throughout Ω, as one can
easily infer by applying the divergence theorem to the vector field (ψx, ψy)
in the rectangular domain bounded above by the segment y = y0 and below
by the corresponding segment on the flat bed y = −d. This leads naturally
to Stokes’ definition of the wave speed as the mean velocity in the moving
frame of reference in which the wave is stationary,

c = −1

λ

∫ λ

0
ψy(x,−d) dx > 0.(11)

Several assumptions encompassed in (9), like symmetry or the fact
that the free surface is a smooth curve, are not restrictive requirements.
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Indeed, assuming the free boundary to be a continuously differentiable
curve, a theorem of Lewy [21] ensures that the boundary must be a real-
analytic curve and the velocity components have harmonic extensions across
it. Moreover, by a result of Spielvogel [30], the free surface has to be the
graph of a real-analytic function. The symmetry of the free surface is actually
guaranteed if we assume that the wave profile is monotone between crests
and troughs [26,7]. The only Stokes waves for which the free surface is not
a continuously differentiable curve are the waves of greatest height in which
case the curve is symmetric and real-analytic except at the crest where it is
just continuous with a corner containing an angle of 2π/3 cf. [2,34].

2.2. Properties of the velocity field. The existence of Stokes waves of
small and large amplitude (up to the existence of the wave of greatest
height) is established using a hodograph transform of (9) cf. [1,2,18,34]. In
this paper we assume the existence of a Stokes wave with a non-flat surface
profile η and we derive some qualitative properties of it, working with the
system (9). Without loss of generality, consider Stokes waves of period 2π
with the crest (0, η(0)) and the trough (π, η(π)).

Lemma 1 [34] We have

ψx(x, y) < 0,
d

dx
u(x, η(x)) < 0 for x ∈ (0, π), y ∈ (−d, η(x)].

(12)

Proof. For the sake of completeness, we present a short proof. First of all,
ψx is harmonic in

Ω0 = {(x, y) ∈ R2 : x ∈ (0, π), −d < y < η(x)},
with ψx = 0 on y = −d. Since by assumption η′(x) < 0 on (0, π),
differentiating the relation ψ(x, η(x)) = 0 on (0, π), we obtain using (10)
that ψx < 0 on the top of Ω0. The strong maximum principle [15] then
forces ψx < 0 in Ω0. On the other hand, from (2) we infer by a direct
calculation that P is superharmonic:

∆P = −2ψ2
xy − 2ψ2

xx ≤ 0.

Therefore [15] the minimum of P is attained on the flat bed or on the
free surface. Since Py = −g on y = −d by (2) and (5), Hopf’s maximum
principle [15] ensures that P > P0 below the free surface. Since η′(x) < 0 on
(0, π), relation (4) yields by Hopf’s maximum principle that Px (x, η(x)) < 0
for x ∈ (0, π). But Px = (c − u)[ux + ηxuy] on y = η(x) in view of (2)
and (3), so that ux(x, η(x)) + η′(x)uy(x, η(x)) < 0 for x ∈ (0, π) in view
of (10), which is precisely the missing part of (12). ��
Lemma 2 The function u decreases strictly as we go from crest to
trough along the broken line [(0, η(0)), (0,−d)] ∪ [(0,−d), (π,−d)] ∪
[(π,−d), (π, η(π))].
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Proof. From Lemma 1 we know that ψx < 0 in Ω0. Since ψx = 0 on
y = −d, on x = 0 and on x = π, by Hopf’s maximum principle [15] we
deduce that

ψxy(x,−d) < 0, x ∈ (0, π),(13)

ψxx(0, y) < 0, y ∈ (−d, η(0)).(14)

and

ψxx(π, y) > 0, y ∈ (−d, η(π)).(15)

Relation (13) yields at once that the function x 
→ u(x,−d) is strictly
decreasing on (0, π). For the monotonicity of u on the remaining two open
vertical segments, notice that there v = 0 so that on x = 0 we have
Py + g = ψyψxx > 0 while Py + g = ψyψxx < 0 on x = π in view of

(2), (10), and (14), whereas P + g(y + d) + ψ2
y

2 remains constant on both

segments by Bernoulli’s law. But then ∂y
(ψ2

y

2

) = (u−c)uy < 0 must hold on

the open segment x = 0, while ∂y
(ψ2

y

2

) = (u − c)uy > 0 holds on the open
segment x = π. Using (10) we infer that uy(0, y) > 0 for y ∈ (−d, η(0)),
whereas uy(π, y) < 0 for y ∈ (−d, η(π)), and the statement follows. ��
Remark The previous two lemmas in combination with relation (10) show
that u < c in the closure Ω0 of Ω0, unless we deal with a Stokes wave of
greatest height (in which case u = c at the crest (0, η(0)) with u < c at all
other points in Ω0 cf. [34]).

Lemma 3 The zero level set {u = 0} of the function u in Ω0 consists of
a curve C connecting a point (x+, η(x+)) to a point (x−,−d) for some
x−, x+ ∈ (0, π). Each streamline ψ = ψ0 with ψ0 ∈ [m, 0] intersects C in
precisely one point.

Proof. Since (11) ensures that the average of u over the segment [(0,−d),
(π,−d)] is zero, from Lemma 2 we deduce the existence of a unique point
x− ∈ (0, π) with u(x−,−d) = 0. Furthermore, we have that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u(0, y) > 0, y ∈ [−d, η(0)],
u(x,−d) > 0, x ∈ [0, x−),

u(x,−d) < 0, x ∈ (x−, π],
u(π, y) < 0, y ∈ [−d, η(π)].

(16)

Since u(0, η(0)) > 0 while u(π, η(π)) < 0, the monotonicity of u along
the top boundary of Ω0 ensured by Lemma 1 guarantees the existence of
a unique point x+ ∈ (0, π) such that u(x+, η(x+)) = 0 while{

u(x, η(x)) > 0, x ∈ [0, x+),

u(x, η(x)) < 0, x ∈ (x+, π].(17)
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The zero level set of the harmonic function u has a simple structure: for
a sufficiently small neighborhood N (x0, y0) of a point (x0, y0) ∈ Ω0 where
u(x0, y0) = 0 there is an integer n = n(x0, y0) ≥ 1 and n analytic curves
γk : (−1, 1) → N (x0, y0) such that:

(i) {u = 0} ∩ N (x0, y0) = ∪n
k=1γk where γk = {γk(t) : t ∈ (−1, 1)};

(ii) γk(0) = (x0, y0) and the angle at (x0, y0) between γk and γk+1 is
precisely π

n .

To see this, it suffices to associate to u the analytic function

f(z) = u(z) + i
(
v(z) − v(z0)

)
, z = x + iy, z0 = x0 + iy0,

chosen such that f(z0) = 0. Clearly f �≡ 0 so that there exists a unique
positive integer n ≥ 1 with f(z) = (z − z0)

n f1(z) in a small neighborhood
of z0, where f1 is analytic in that neighborhood and f1(z0)) = Z0 �= 0.
Choosing a single-valued branch of z

1
n in a neighborhood of Z0, via a con-

formal transformation we find a function f2(z) that is analytic in a neigh-
borhood of z0 and satisfies

f(z) = [(z − z0) f2(z)]n

in that neighborhood. Therefore we can find an analytic homeomorphism
ϕ such that u ◦ ϕ(z) is precisely the real part of zn in a neighborhood of
z0 and the claims (i)–(ii) follow at once. Extending these local curves to
a maximal curve, the properties (i)–(ii) ensure that each maximal curve has
its endpoints on the boundary of Ω0. The mean-value property of harmonic
functions shows that these maximal curves do not selfintersect (otherwhise
we would get an open set where u ≡ 0 hence u ≡ 0 throughout Ω0)
and their endpoints are disjoint. The properties (16)–(17) now ensure that
there can be only one such maximal curve C. Notice that by (10) and (12)
a streamline ψ = ψ0 with ψ0 ∈ (m, 0] is the graph of a strictly decreasing
smooth function x 
→ y(x), while ψ = m corresponds to y = −d. Since
u(0, y(0)) > 0 > u(π, y(π)) by (16), C intersects y = y(x) in at least
one point. This point is unique by the above structural properties of the set
{u = 0}. ��

3. Particle trajectories

The path (X(t), Y(t)) of a particle with location (X(0), Y(0)) at time t = 0
is given by the solution of the differential system{

X ′ = u(X − ct, Y ),

Y ′ = v(X − ct, Y ).
(18)

The corresponding system in the moving frame is the Hamiltonian system{
x ′ = u(x, y) − c,
y′ = v(x, y),

(19)



530 A. Constantin

with Hamiltonian function ψ(x, y). The transformation (7) maps solutions
of (19) into solutions of (18). Notice that if we do not have a wave of greatest
height, then there is some ε > 0 such that c − u ≥ ε on Ω according to
the remark of Sect. 2, so that each solution of (19) starting in Ω0 intersects
the line x = −π in finite time in the future and the line x = π in finite
time in the past. If we deal with a Stokes wave of great height, then this
statement holds also true. Indeed, for a solution starting at some point in
Ω0 this follows easily by noticing that a solution of (19) stays on the same
level set of ψ and along this level set we have c − u ≥ ε for some ε > 0 in
view of the remark in Sect. 2. On the other hand, a solution of (19) starting
on the top boundary of Ω0 reaches the point (0, η(0)) in finite time since

∫ π
2

0

dx

c − u(x, η(x))
< ∞

due to the fact that c − u(x, η(x)) = O(
√

x) as x ↓ 0. The last estimate
follows from the boundedness of η′(x) away from zero as x ↓ 0 and from
the inequality

(c − u(x, η(x)))2 ≤ 2(Q − g[η(x) + d]) = O(x) as x ↓ 0

which is a consequence of the nonlinear boundary condition in (9), with
the estimate on the above right-hand side obtained from the mean-value
theorem as Q = g [η(0) + d] in the case of a wave of greatest height. This
means that in the case of the wave of greatest height uniqueness fails for
the solution of (19) with initial data (0, η(0)). The physically reasonable
solution is not the constant solution as this would mean that particles collide
at the crest. Therefore in the moving frame a solution starting on the top of
Ω0 reaches the point (0, η(0)) in finite time and does not pause there but
moves on with a decreasing x-coordinate.

Lemma 4 Given y0 ∈ [−d, η(π)], let θ = θ(y0) > 0 be the time needed for
the solution (x(t), y(t)) of (19) with initial data (π, y0) to intersect the line
x = −π. Then this solution corresponds via (7) to a closed particle path if
and only if θ = 2π

c .

Proof. By symmetry we know that the solution intersects the line x = −π
at the point (−π, y0) so that y(θ) = y0 while x(θ) = −π.

Assume that θ = 2π
c . Then

X(θ) − X(0) = [x(θ) + cθ] − x(0) = 0

while
(X(θ) − cθ) = −π = x(0) − 2π = X(0) − 2π

so that the periodicity of the right-hand side of (18) proves sufficiency.
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Conversely, if we have a closed path (X(t), Y(t)) of (18) of period τ > 0,
then y(0) = y(τ) so that τ = nθ for some integer n ≥ 1. But then,
x(τ) = x(0) − 2nπ so that X(0) = X(τ) forces

0 = X(τ)− X(0) = [x(τ)+cτ]−x(0) = x(τ)−x(0)+cnθ = − 2nπ+cnθ.

Thus θ = 2π
c is also necessary. ��

Let us now prove the following result.

Proposition There are no closed particle paths in a Stokes wave.

Proof. According to the above considerations it suffices to show that
θ(y0) > 2π

c for all y0 ∈ [−d, η(π)].
Let us first choose y0 = −d and let (x(t), y(t)) be the solution of (19)

with initial data (π,−d). Then y(t) = −d for all t ≥ 0. Since u − c < 0 on
y = −d, we infer from (19) and from x(θ) = −π = x(0) − 2π the identity

∫ π

−π

dx

c − u(x,−d)
= θ.

On the other hand, since by Lemma 2 the function (c − u) is monotone on
the flat bed, we obtain by the Cauchy-Schwarz inequality that

4π2 <

∫ π

−π

dx

c − u(x,−d)

∫ π

−π

(c − u(x,−d)) dx = 2πc
∫ π

−π

dx

c − u(x,−d)

in view of (11). We deduce that θ(−d) > 2π
c .

Consider now the case when y0 ∈ (−d, η(π)]. Applying the divergence
theorem to the vector field (ψx, ψy) in the strip

{(x, y) ∈ R2 : x ∈ (−π, π), −d < y < y(x)},
where y = y(x) is the equation of the streamline ψ = ψ(π, y0), we obtain
that∫ π

−π

(c − u(x,−d)) dx =
∫ π

−π

√
[c − u(x, y(x))]2 + v2(x, y(x)) dx.

Taking into account (11), we infer that
∫ π

−π

√
[c − u(x, y(x))]2 + v2(x, y(x)) dx = 2πc

and thus Lemma 1 yields
∫ π

−π

[c − u(x, y(x))] dx < 2πc.(20)
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On the other hand, since u − c < 0 along y = y(x) except perhaps at
(0, y(0)) in the case of the wave of greatest height with y0 = η(π), we
obtain ∫ π

−π

dx

c − u(x, y(x))
= θ.(21)

Using the Cauchy-Schwarz inequality in combination with (21), we get

θ

∫ π

−π

[c − u(x, y(x))] dx =
∫ π

−π

dx

c − u(x, y(x))

∫ π

−π

[c − u(x, y(x))] dx

≥ 4π2

so that

θ ≥ 4π2∫ π

−π
[c − u(x, y(x))] dx

>
2π

c

in view of (20) and the proof is complete. ��
The main result of the paper follows now from the following considera-

tions. Along each streamline y = y(x) with x ∈ [−π, π] we have

u(−π, y(−π)) = u(π, y(π)) < 0 < u(0, y(0))

with the function x 
→ u(x, y(x)) changing sign at its two roots on (−π, π).
Moreover,

v(x, y(x)) = −v(−x, y(−x)) < 0, x ∈ (0, π),

while for any solution of (18) with X(0) = π we have

θ >
2π

c
, X(θ) = cθ − π > π,

where 2π
c is the wave period and θ > 0 is the first time when Y(θ) = Y(0).

Theorem In a Stokes wave the particle located initially on the bed at
(π,−d) stays on the flat bed. It first moves to the left, then turns back to
the right and before the period elapses it returns to move to the left with
its final location after one period to the right of (π,−d). A particle located
initially at the point (π, y0) above the flat bed moves in a similar way, except
that the particle stays above the line y = y0 while a period elapses: the
first backward motion and the first part of the subsequent forward motion is
upwards, while for the second part of the forward motion and the following
backward motion preceding the fulfillment of one period the particle moves
downwards. This downward motion continues until the particle reaches the
same minimal height y0 above the flat bed at time θ(y0) at a point located
to the right of (π, y0).

Remark It was known that certain particle trajectories might be as depicted
in Fig. 2 – see for example a nice photograph in [24]. In this paper we
proved that all trajectories above the flat bed are of this type.



The trajectories of particles in Stokes waves 533

Fig. 2 The trajectory of a particle located above the flat bed

4. Comments

A result similar to the one obtained for finite depth holds true for Stokes
waves in water of infinite depth, as the approach pursued above can be
carried over. Indeed, the governing equations for irrotational deep-water
waves are (1)–(6) with (5) replaced by the condition

(5′) (u, v) → (0, 0) as y → −∞ uniformly in x ∈ R,

expressing that at great depths there is practically no motion. Consequently,
the last condition in (9) is replaced by

(9′) ∇ψ → (0,−c) as y → −∞ uniformly in x ∈ R,

with ψ < 0 for y < η(x). The results obtained in Lemma 1, Lemma 2, and
Lemma 3 continue to hold true as a consequence of the Phragmen-Lindelöf
principle [15] with the following obvious modifications: all statements about
the flat bed y = −d are replaced by (9′), and in Lemma 3 the curve C starts at
a point (x+, η(x+)) with x+ ∈ (0, π), and it extends to y = −∞. From (9′)
one can infer that the convergence of ∇ψ to (0,−c) and that of ψ(x, y)+cy
to some constant is (uniformly in x) exponentially fast as y → −∞ (see [34,
8]). In particular, this allows us to apply the divergence theorem to the vector
field ∇ψ in the strip {(x, y) ∈ R2 : x ∈ (−π, π), −∞ < y < y(x)}, where
x 
→ y(x) is a streamline. The validity of the calculations presented in the
Proposition is easily checked (with y = −d being replaced by y = −∞).
Therefore all particle trajectories in a deep-water wave are of the type
depicted in Fig. 2.

While rigourous results on large amplitude periodic traveling waves with
an arbitrary vorticity distribution are available [9,10] we do not expect that
in such rotational flows (with nonvanishing vorticity ω = vx − uy) results
on the particle trajectories similar to those established here for irrotational
flows hold true. Since specific properties of harmonic functions were crucial
to our approach, one might think that perhaps different tools could possibly
be developed for rotational water waves. However, the only known explicit
solution to the governing equations (1)–(5) for water waves, discovered by
Gerstner in 1809 [16] and rediscovered by Rankine in 1863 [28] (see the
historical survey [12]), has the property that all particles move on circles;
Gerstner’s wave is in water of infinite depth with nonvanishing vorticity
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(see [5]). Interestingly, for certain specific nonvanishing vorticities there
are even nontrivial three-dimensional explicit solutions to the governing
equations for water waves with all particle paths closed [6]. Thus the ex-
istence of closed particle trajectories is contingent on the vorticity of the
flow.

Useful suggestions and comments made by the referee are gratefully acknowledged.
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4. Buffoni, B., Séré, É., Toland, J.F.: Minimization methods for quasi-linear problems with
an application to periodic water waves. SIAM J. Math. Anal. 36, 1080–1094 (2005)

5. Constantin, A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)
6. Constantin, A.: Edge waves along a sloping beach. J. Phys. A 34, 9723–9731 (2001)
7. Constantin, A., Escher, J.: Symmetry of steady periodic surface water waves with

vorticity. J. Fluid Mech. 498, 171–181 (2004)
8. Constantin, A., Escher, J.: Symmetry of steady deep-water waves with vorticity. Euro-

pean J. Appl. Math. 15, 755–768 (2004)
9. Constantin, A., Strauss, W.: Exact steady periodic water waves with vorticity. Comm.

Pure Appl. Math. 57, 481–527 (2004)
10. Constantin, A., Sattinger, D., Strauss, W.: Variational formulations for steady water

waves with vorticity. J. Fluid. Mech. 548, 151–163 (2006)
11. Constantin, A., Villari, G.: Particle trajectories in linear water waves. J. Math. Fluid.

Mech., to appear.
12. Craik, A.D.D.: The origins of water wave theory. Annu. Rev. Fluid Mech. 36, 1–28

(2004)
13. Crapper, G.D.: Introduction to Water Waves. Chichester: Ellis Horwood Ltd. 1984
14. Debnath, L.: Nonlinear Water Waves. Boston, MA: Academic Press Inc. 1994
15. Fraenkel, L.E.: An Introduction to Maximum Principles and Symmetry in Elliptic

Problems. Cambridge: Cambridge University Press 2000
16. Gerstner, F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile.

Ann. Phys. 2, 412–445 (1809)
17. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves.

Cambridge: Cambridge Univ. Press 1997
18. Keady, G., Norbury, J.: On the existence theory for irrotational water waves. Math.

Proc. Camb. Philos. Soc. 83, 137–157 (1978)
19. Lamb, H.: Hydrodynamics. Cambridge: Cambridge Univ. Press 1895
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