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PARTICLE TRAJECTORIES IN SOLITARY WATER WAVES

ADRIAN CONSTANTIN AND JOACHIM ESCHER

Abstract. Analyzing a free boundary problem for harmonic functions in an
infinite planar domain, we prove that in a solitary water wave each particle
is transported in the wave direction but slower than the wave speed. As the
solitary wave propagates, all particles located ahead of the wave crest are
lifted, while those behind it experience a downward motion, with the particle
trajectory having asymptotically the same height above the flat bed.

1. Introduction

A solitary wave is a localized steady two-dimensional gravity wave of elevation
propagating at the surface of water over a flat bed. That is, the only restoring force
acting on the water is gravity (surface tension being neglected, since its effects are
relevant only for water waves of very small amplitude), the motion is identical in
any direction parallel to the crest line, and the surface disturbance is a single hump
decaying rapidly away from the crest and propagating at constant speed without
change of form. Originally discovered by Scott Russell in 1844 whilst conducting
experiments in canals, the solitary waves are essential in our understanding of the
dynamics of water waves. Since the linear theory of waves of small amplitude fails to
yield any approximation to solitary waves (see [13]), the first systematic procedure
to study these wave patterns was via nonlinear approximations to the governing
equations for water waves in the limiting case of long wave lengths (in the shallow
water regime). The first attempts by Boussinesq and Lord Rayleigh to put the
experimental studies performed by Scott Russell on a firm theoretical basis culmi-
nated with the derivation in 1895 by Korteweg and de Vries of a model equation
whose solitary wave solutions captured to a good extent the essential features of
solitary water waves; cf. [13]. The solitary wave solutions of the Korteweg-de Vries
equation were later (in the late 1960’s) found to possess remarkable properties: their
speed is proportional to their amplitude, and when a large solitary wave catches
up to a small one, it virtually passes through, recovering its original shape and
speed, the only hallmark of the nonlinear interaction being a slight phase shift.
Such solitary waves are termed solitons, and their fascinating theory has become
important in various branches of mathematics and theoretical physics (see [9]). On
the other hand, the rigorous theory of solitary water waves started with the work
of Friedrichs and Hyers [11] and was subsequently readdressed by Beale [4]. Fur-
ther substantial developments of the analytical theory are mainly due to the work
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of Toland and collaborators (see [1, 2, 3, 12]) and to the work of Craig and col-
laborators (see [6, 7, 8], unveiling to a large extent the structure of these waves.
The aim of this contribution is to describe the particle trajectories in the fluid as
the solitary wave propagates on the water’s free surface. The paper is organized
as follows. In Section 2 we present the mathematical formulation for the solitary
wave problem, and we derive some useful properties of the underlying water flow.
Section 3 is devoted to the description of the particle trajectories, while Section 4
contains some comments on related problems within water wave theory - e.g. a
comparison with the recently elucidated features (see [5]) of the particle motion in
periodic steady water waves (Stokes waves).

2. Preliminaries

Consider a two-dimensional solitary wave of elevation and of permanent form
propagating with speed c > 0 on the surface of water over a flat bed; see Figure 1.
Choose Cartesian coordinates (x, y) so that the horizontal x-axis is in the direction
of wave propagation, the y-axis points upwards, with the origin on the flat bed.
Let y = η(x − ct) be the free surface and let (u(x − ct, y), v(x − ct, y)) be the
velocity field, the space-time dependence of the free surface and of the velocity field
of the form (x − ct) expressing mathematically the fact that we investigate a wave
of permanent form moving with constant wave speed c.

x = 0y = 0

y =    (x)

flow

at rest 
flow

at rest
U U

h h

η

c

Figure 1. Solitary wave (at time t = 0) with asymptotic height
h > 0, moving at speed c > 0. The velocity at a point in the fluid
is U = (u, v).

The fluid motion results as a balance between the restoring gravity force and
the inertia of the system, so that within the fluid we have the equation of mass
conservation

(1) ux + vy = 0

and Euler’s equation

(2)

{
(u − c)ux + vuy = −Px,

(u − c)vx + vvy = −Py − g,
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where P (x−ct, y) denotes the pressure and g is the gravitational constant of acceler-
ation. The equations (1)-(2) reflect the fact that within this setting it is appropriate
to regard water as an inviscid homogeneous fluid [13]. On the free boundary the
dynamic boundary condition

(3) P = P0 on y = η(x − ct),

P0 being the constant atmospheric pressure, decouples the motion of the air from
that of the water. The kinematic boundary conditions

(4) v = (u − c)ηx on y = η(x − ct)

and

(5) v = 0 on y = 0

express the fact that particles do not leave the free surface, respectively the fact
that the rigid bed is impenetrable. Assuming no local spin of a fluid element, the
water flow has to be irrotational, that is,

(6) uy = vx.

In addition to the governing equations (1)-(6) for irrotational water waves [13], for
a solitary wave we must have that, as x → ±∞, the flow is at rest and the free
surface approaches a height h > 0 above the flat bed. The parameters c > 0 and
h > 0 cannot be arbitrarily chosen: given the wave speed c > 0, the inequality

(7) c >
√

gh

must hold for nontrivial solutions (see [1]). Moreover, all solitary waves are a priori
of positive elevation above their asymptotic limit h, symmetric about a single crest
and with a strictly monotone wave profile on either side of this crest, as shown by
Craig and Sternberg [8].

The existence of small amplitude solitary waves was proved by Friedrichs and
Hyers [11] via a power series method, while Beale [4] used the implicit function
theorem of Nash-Moser type to improve this result. The existence of large amplitude
solitary waves, including the existence of a solitary wave of greatest height, is due
to Toland and collaborators (see [1, 2, 3, 12]) and relies on global bifurcation theory.
We now present some fundamental properties of solitary waves established in these
papers, and we derive some conclusions that are relevant for our purposes. To
facilitate our task, assuming that at time t = 0 the wave crest is located at x = 0,
let

Ω = {(x, y) ∈ R
2 : 0 < y < η(x)}

be the fluid domain at time t = 0, with its two components

Ω− = {(x, y) ∈ R
2 : x < 0, 0 < y < η(x)}

and
Ω+ = {(x, y) ∈ R

2 : x > 0, 0 < y < η(x)},
the boundaries (top and bottom) of which we denote by

S− = {(x, y) ∈ R
2 : x < 0, y = η(x)}, B− = {(x, y) ∈ R

2 : x < 0, y = 0},
respectively

S+ = {(x, y) ∈ R
2 : x > 0, y = η(x)}, B+ = {(x, y) ∈ R

2 : x > 0, y = 0}.
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Defining the stream function ψ(x, y) up to a constant by

(8) ψy = u − c, ψx = − v,

we see that ψ is harmonic in Ω in view of (6), whereas (4) and (5) ensure that ψ
is constant on both boundaries of Ω, say ψ = 0 on y = η(x) and ψ = m on y = 0.
Throughout Ω we have u < c, with the inequality extending to the boundary of
Ω (the free surface is the graph of a real-analytic function and the fluid velocity
components have harmonic extensions across it, except for the wave of greatest
height, where the curve is real-analytic everywhere but at the crest, where it is just
continuous with a corner containing an angle of 2π/3), except for the wave of great
height, in which case u = 0 at the crest with u < c elsewhere (see [1, 3]). That is,

(9) ψy = u − c < 0 in Ω ∪ S− ∪ S+ ∪ B,

where B = {(x, 0) : x ∈ R} is the flat bed, so that m > 0. Using the implicit
function theorem we deduce that for all α ∈ (0, m] the level curve {ψ = α} is a
smooth curve y = hα(x). Notice that hm ≡ 0, while h0 is the profile of the wave
(with a corner at x = 0 in the case of the wave of greatest height). Following some
ideas due to Craig and collaborators in conjunction with the insight provided by
the results of Toland and collaborators, we now prove some useful facts.

Lemma 1. At any given time t the horizontal velocity component u is positive,
while the sign of the vertical velocity component v at a point in the fluid depends
on the position of the point with respect to the crest: v = 0 below the crest and on
the flat bed, v > 0 if the crest is behind the particle located above the bed, and v < 0
if the point is above the bed and behind the crest.

Proof. Since with respect to a frame of reference moving with speed c the flow is
steady and occupies a fixed region, it suffices to prove that u > 0 throughout Ω
and v(x, y) > 0 if (x, y) ∈ Ω+ ∪ S+, while v(x, y) < 0 if (x, y) ∈ Ω− ∪ S−.

Notice that v = 0 on the flat bed B = {(x, 0) : x ∈ R} in view of (5). The
symmetry properties established by Craig and Sternberg [8] ensure that u and η
are symmetric with respect to the line {x = 0}, while v is anti-symmetric. In
particular, v(0, y) = 0 for all y ∈ [0, η(0)]. Notice that the convergence u, v → 0 as
|x| → ∞ is exponentially fast (see [1]). Furthermore, since (4) and (9) ensure that
v < 0 on S− as the profile x �→ η(x) of the free surface is strictly increasing for
x < 0, while v = 0 at x = −∞ and on B− as well as for x = 0, we deduce by the
maximum principle for the harmonic function v in Ω− that v < 0 in Ω−. Similarly
one shows that v(x, y) > 0 for (x, y) ∈ Ω+ ∪ S+.

To prove that u > 0 in Ω we proceed as follows. Notice that (2) yields Bernoulli’s
law: throughout the fluid domain Ω the expression (u−c)2+v2

2 + P + gy is constant.
Evaluating the expression on the free surface as |x| → ∞, we deduce that this
constant value equals c2

2 + P0 + gh. Consequently

(10)
(u − c)2 + v2

2
+ P + gy =

c2

2
+ P0 + gh throughout Ω.

On the other hand, a direct calculation based on (2) and (8) yields that P is
superharmonic in Ω:

∆P = −2ψ2
xy − 2ψ2

xx ≤ 0.
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Therefore, in view of (3), the minimum of P in Ω is attained on the flat bed or on
the free surface since (10) yields

P (x, y) → P0 + g(h − y) ≥ P0 for |x| → ∞.

But Py = −g on B by (2) and (5) so that Hopf’s maximum principle [10] ensures
that the minimum of P is attained everywhere on the free surface (where P = P0)
and P > P0 in Ω. Again by Hopf’s maximum principle, we infer that Px(x, η(x)) >
0 for x < 0, while Px(x, η(x)) < 0 for x > 0 if we take into account (3) and the strict
monotonicity of the graphs S− and S+. But Px = (c − u)[ux + ηxuy] on y = η(x)
in view of (2) and (4), so that (9) ensures ux(x, η(x)) + ηx(x) uy(x, η(x)) > 0 for
x < 0, with the opposite sign for x > 0. That is,

(11)
d

dx
u(x, η(x)) > 0 for x < 0, and

d

dx
u(x, η(x)) < 0 for x > 0.

In other words, along the free surface u increases strictly from x = −∞ to the crest
x = 0, and thereafter it is strictly decreasing. But the function u is harmonic in Ω
and on the flat bed B we have uy = vx = 0 by (5) and (6), so that Hopf’s maximum
principle ensures that the minimum and maximum of u cannot occur on the bed.
Since u → 0 as |x| → ∞, the monotonicity properties of u along the curve y = η(x)
encompassed in (11) ensure that u > 0 throughout Ω, with u reaching its maximum
value (less or equal to the wave speed c) at the crest (0, η(0)). �

Lemma 2. To each fluid particle moving within the water there corresponds a
unique time t∗ ∈ R so that at t = t∗ the particle is exactly below the wave crest,
while afterwards it is located behind the wave crest, the wave crest being behind the
particle for t < t∗.

Proof. The path (past and future) (x(t), y(t)) of a particle with location (x(0), y(0))
at time t = 0 is given by the solution of the differential system

(12)

{
x′ = u(x − ct, y),
y′ = v(x − ct, y).

Associate to (12) the Hamiltonian system

(13)

{
X ′ = u(X, Y ) − c,

Y ′ = v(X, Y )

in the moving frame

(14) X = x − ct, Y = y,

in which the wave is stationary. The Hamiltonian function for (13) is ψ(X, Y ) in
view of (8). Notice that X(t) describes precisely the position of the particle with
respect to the wave crest at time t, assuming that initially (at time t = 0) the wave
crest is located at x = 0: (X(t), Y (t)) ∈ Ω. All solutions of (13) are defined globally
in time (in the past and in the future), since the boundedness of the right-hand
side prevents blow-up in finite time.

If we do not deal with a wave of greatest height, then for some ε > 0 we have that
u ≤ c−ε throughout Ω. Therefore X(t) ≤ x(0)−ε t for t > 0, with X(t) ≥ x(0)+ε t
for t < 0, and the statement of the lemma follows at once.

Let us now address the issue in the case of the wave of greatest height, in which
case u = c at the wave crest, with u < c elsewhere in the fluid. Taking into
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account (9), we find that X ′(t) ≤ 0 with equality sign possible only if X(t) = 0
and Y (t) = η(0). Notice that (0, η(0)) is the only critical point of the continuous
autonomous system (13) with a right-hand side that is uniformly bounded in Ω
and smooth everywhere except at the critical point. Since Y (t) = hα(X(t)) for
some α ∈ [0, m] as ψ(X(t), Y (t)) = α for all t ∈ R, we deduce that the only two
possible scenarios for the statement not to hold are that (X(0), Y (0)) ∈ S+ ∪ S−
reaches (0, η(0)) in infinite time or (X(t), Y (t)) = (0, η(0)) for all t ∈ [0, T ] with
some T > 0. The first possibility cannot occur, since for, say, (X(0), Y (0)) ∈ S+ we
have Y (0) = h0(X(0)) so that Y (t) = η(X(t)) for all t ≥ 0, and our claim follows
as the inequality

(15)
∫ X(0)

0

dx

c − u(x, η(x))
< ∞

shows that the decreasing function X(t) reaches 0 in finite (positive) time. The
inequality (15) follows from the fact that c − u(x, η(x)) = O(

√
x) as x ↓ 0. This

last estimate is a direct consequence of the fact that η′(x), existing for x �= 0, is
bounded away from zero as x ↓ 0. Indeed, (3) and (10) yield

(16) [c − u(x, η(x))]2 + v2(x, η(x)) = c2 + 2g[h − η(x)] = O(x) as x ↓ 0,

with the decay rate a consequence of the mean value theorem as η(0) = h + c2

2g for
the wave of greatest height in view of (10). Furthermore, notice that the corner at
the crest for the wave of greatest height contains an angle of 2π/3. Therefore, if
θ(x) is the angle between the wave profile x �→ η(x) and the horizontal direction
(1, 0), we have limx↑0 θ(x) = π/6 while limx↓0 θ(x) = π − π/6. But

tan (θ(x)) = ηx(x) =
v(x, η(x))

u(x, η(x)) − c
for x �= 0

if we take into account (4). In conjunction with (16), the above inequality yields

c − u(x, η(x)) = O(
√

x) and v(x, η(x)) = O(
√

x) for |x| ↓ 0.

In particular, (15) holds true. This means that in the case of the wave of greatest
height uniqueness fails for the solution of (13) with initial data (0, η(0)). The
possibility that a particle might stay at the wave crest for a positive period of
time is ruled out by the following reasoning. The physically reasonable solution of
(13) with initial data (0, η(0)) is not the constant solution, since this would mean
that particles collide at the crest; otherwise the particle located at the crest would
move at constant speed c > 0 to the right, whereas, in view of (15), any particle
located initially at some point (x(0), y(0)) with x(0) > 0 and y(0) = η(x(0)) would
reach the crest in finite time. Therefore in the moving frame a solution starting
on y = η(x) reaches the point (0, η(0)) in finite time and does not pause there but
moves on with a decreasing X-coordinate as time goes by. This concludes the proof
in the case of the wave of greatest height. �

Remark. The wave of greatest height has a stagnation point at its crest since u = c
and v = 0 there. Lemma 2 shows the somehow counter-intuitive fact that this
nevertheless does not mean that the particle at the crest moves along with the
wave at speed c. Instead, the particle at the crest is left behind as the wave moves
on.
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We conclude this section by recalling that the streamlines ψ(x, y) = α with
(x, y) ∈ Ω and α ∈ [0, m] fixed are smooth curves y = hα(x), except for h0 in
the case of the wave of greatest height. Due to the exponential decay of (u, v) as
|x| → ∞, we deduce that for each fixed y0 ∈ [0, η(0)] the streamline y = hα(x)
with α = ψ(0, y0), passing through the point (0, y0), has an asymptote y = l(y0) as
|x| → ∞, with l(η(0)) = h and l(0) = 0. Furthermore, the function x �→ hα(x) is
strictly decreasing on (0,∞) and strictly increasing on (−∞, 0) for all α ∈ [0, m),
while hm(x) = 0 for all x ∈ R.

3. Main result

We now describe the particle trajectories in a solitary wave; see Figure 2.

Theorem. A particle on the flat bed moves in a straight line to the right at a
positive speed. Any particle above the bed reaches at some instant t∗ the location
(x0, y0) below the wave crest (x0, η(0)). The particle trajectory is confined for t �= t∗

to the region strictly below the streamline y = hα(x) in Ω, where α = ψ(0, y0), and
strictly above the asymptote y = l(y0) at x = ±∞ of this streamline. As time t
runs on (−∞, t∗), the particle moves to the right and upwards, while for t > t∗ the
particle moves to the right and downwards.

Proof. For particles on the bed the statement is already proved in Section 2. For a
particle located above the flat bed, without loss of generality, in view of Lemma 2,
we may assume that t∗ = 0 and x0 = 0. Let (x(t), y(t)) be the corresponding
particle trajectory with y(0) = y0 > 0 and x(0) = 0. It suffices to prove the
statement for t > 0, as the case t < 0 can be dealt with similarly. In view of
Lemma 1, we deduce that x(t) is strictly increasing for t > 0. On the other hand,
(8) and (12) yield

d

dt
ψ(x(t), y(t)) = −c v(x(t) − ct, y(t)) > 0, t > 0,

with the inequality justified by Lemma 1 since x(t) − ct < 0. Therefore

(17) ψ(x(t), y(t)) > ψ(0, y0) = α for t > 0,

and (9) ensures that for t > 0 the particle trajectory lies strictly below the stream-
line y = hα(x). Furthermore, Lemma 1 and (12) ensure that y(t) is strictly de-
creasing for t > 0. We claim that limt→∞ y(t) = l(y0). Indeed, (17) and the
monotonicity of the streamline y = hα(x) ensure that limt→∞ y(t) ≤ l(y0). On the
other hand, since ψ is the Hamiltonian function of the system (13), we have

ψ(x(t) − ct, y(t)) = ψ(0, y0) = α for t ≥ 0,

which means that hα(x(t) − ct) = y(t) for all t ≥ 0. Therefore

l(y0) = lim
|x|→∞

hα(x) ≤ lim sup
t→∞

hα(x(t) − ct) = lim
t→∞

y(t).

With the opposite inequality already established, we infer that limt→∞ y(t) = l(y0),
and the proof is complete. �
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y=0 x=0

l(y  )
0

y=y

y=   (x)η

particle trajectory (x(t),y(t))

0
streamline y=h  (x)α
(at time t=0 )

Figure 2. Just like the free surface, each streamline moves to the
right with speed c. The streamlines at time t = 0 determine the
location of particle trajectories even if the particles do not move
on streamlines.

4. Comments

Recently Craig [7] proved that the solitary wave phenomenon can occur only for
two-dimensional water waves: for the three-dimensional water wave problem there
do not exist any localized steady waves of elevation propagating over a flat bed.

It is of interest to compare the particle trajectories in solitary waves with the
particle paths in periodic waves, especially since it is known (see [2]) that periodic
waves converge to solitary waves in the long-wave limit. Interestingly, while in
periodic waves within a period each particle experiences a backward-forward motion
with a slight forward drift (see [5]), we saw that in a solitary water wave there is
no backward motion: all particles move in the direction of wave propagation at a
positive speed, the direction being upwards/downwards if the particle precedes or
does not precede the wave crest. This shows that in the long-wave limit the shapes
of the periodic waves approach the profile of a solitary wave but the pattern of the
particle motion within the fluid is not preserved in this limiting process.
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