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Discontinuous Galerkin methods for
turbulence simulation

By S. Scott Collis †

A discontinuous Galerkin (DG) method is formulated, implemented, and tested for sim-
ulation of compressible turbulent flows. The method is applied to turbulent channel
flow at low Reynolds number, where it is found to successfully predict low-order statis-
tics with fewer degrees of freedom than traditional numerical methods. This reduction
is achieved by utilizing local hp-refinement such that the computational grid is refined
simultaneously in all three spatial coordinates with decreasing distance from the wall.
Another advantage of DG is that Dirichlet boundary conditions can be enforced weakly
through integrals of the numerical fluxes. Both for a model advection-diffusion problem
and for turbulent channel flow, weak enforcement of wall boundaries is found to improve
results at low resolution. Such weak boundary conditions may play a pivotal role in wall
modeling for large-eddy simulation.

1. Introduction

In this paper we formulate, implement, and apply a discontinuous Galerkin (DG)
method for the simulation of compressible turbulent flows. Discontinuous Galerkin can
be thought of as a hybrid of finite-volume and finite-element methods that has a number
of potential advantages including: high-order accuracy on unstructured meshes, local hp-
refinement, weak imposition of boundary conditions, local conservation, and orthogonal
hierarchical bases that support multiscale turbulence modeling (Hughes et al. 2000; Collis
2001, 2002). The interested reader should consult the review of Cockburn (1999) and
Cockburn et al. (2000) for a recent update on the status of discontinuous Galerkin. Since
the DG method is ideally suited for hyperbolic or nearly hyperbolic systems, we believe
that DG may be a particularly attractive method for high-Reynolds-number compressible
turbulent flows in complex geometries. This paper takes a first step in applying DG
to turbulent flows by considering low-Reynolds-number DNS of compressible turbulent
channel flow. We note, before proceeding, that there is considerable ongoing research on
DG methods (see Cockburn et al. 2000) and we have greatly benefited from the work of
Cockburn and co-workers, Karniadakis and co-workers, and Bassi and Rebay.

2. Formulation

Consider the compressible Navier–Stokes equations in strong form

U ,t + F i,i − F
v
i,i = S in Ω, (2.1a)

U(x, 0) = U0(x) at t = 0, (2.1b)

where U = {ρ, ρu, ρe}T is the vector of conserved variables, ρ is the fluid density, u is the
fluid velocity vector, and e is the total energy per unit mass. The inviscid and viscous
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Figure 1. Schematic of DGM discretization

flux vectors in the ith coordinate direction are F i(U) and F v
i (U), and S is a source

term, including body forces in the momentum equations and a heat source in the energy
equation. Equation (2.1a) is solved subject to appropriate boundary conditions, which
must be specified for each problem of interest; a state equation, such as the ideal gas
equation; and constitutive laws that define fluid properties such as viscosity and thermal
conductivity as functions of the conserved variables. Due to space limitations, we do not
explicitly define the flux vectors, state equation, or constitutive relations, but instead
refer the reader to standard texts such as Hirsch (1988).

The fixed spatial domain for the problem is denoted by Ω, which is an open, connected,
bounded subset of IRd, d = 2 or 3, with boundary ∂Ω. Let Ph be a partition of the domain
Ω into N subdomains Ωe where

Ω̄ =

N⋃

e=1

Ω̄e and Ωe ∩ Ωf = ∅ for e 6= f . (2.2)

Starting from the strong form of the compressible Navier–Stokes equations (2.1a), we
consider a single subdomain, Ωe, multiply by a weighting functionW which is continuous
in Ωe, and integrate the flux terms by parts

∫

Ωe

(
W TU ,t +W T

,i(F
v
i − F i)

)
dx+

∫

∂Ωe

W T (F n − F
v
n) ds =

∫

Ωe

W TS ds (2.3)

where F n = F ini. If the solution were assumed to be continuous and this equation
were summed over all the elements in Ph, then all the flux terms would telescope to
the boundary ∂Ω and we would obtain the standard continuous Galerkin form of the
compressible Navier–Stokes equations. However, in discontinuous Galerkin, one instead
allows the solution and weighting functions to be discontinuous across element inter-
faces (see figure 1) and the solutions on each element are coupled using appropriate

numerical fluxes for both the inviscid flux F n(U)→ F̂ n(U
−,U+) and the viscous flux,

F v
i (U ,U ,j) → F̂

v

i (U
−,U−,j ,U

+,U+
,j). Introducing numerical fluxes and summing over

all elements yields

N∑

e=1

∫

Ωe

(
W TU ,t +W T

,i(F
v
i − F i)

)
dx +

N∑

e=1

∫

∂Ωe

W T
(
F̂ n(U

−,U+)− F̂
v

n(U
−,U−,j ,U

+,U+
,j)
)
ds =

N∑

e=1

∫

Ωe

W TS ds (2.4)

where the U+ and U− states are defined in figure 1. For an element edge on the physical
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boundary ∂Ω, U+ = U bc. Likewise, for inter-element boundaries, U+ comes from the
neighboring element. Thus, all interface and boundary conditions are set through the
numerical fluxes. Rewriting (2.4) in a more compact notation, the discontinuous Galerkin
method is:

Given U0 = U0(x), for t ∈ (0, T ), find U(x, t) ∈ V(Ph)×H1(0, T ) such that U(x, 0) =
U0(x) and

BDG(W ,U) = (W ,S) ∀W ∈ V(Ph), (2.5)

where V(Ph) is the broken space defined in Baumann & Oden (1999). If V(Ph) is restricted
to a space of continuous functions, then one recovers the classical continuous Galerkin
approximation upon using the consistency properties of the numerical fluxes (Cockburn
1999).

While there is a wide range of choices for both the inviscid and viscous numerical
fluxes (see Cockburn (1999) for a thorough review), we have initially chosen to use a
Lax–Friedrichs method for the Euler flux

F̂ n(U
−,U+) =

1

2

(
F n(U

−) + F n(U
+) + λm

(
U− −U+

))
(2.6)

where λm is the maximum, in absolute value, of the eigenvalues of the Euler Jacobian
An = ∂F n/∂U .

For the numerical viscous flux, we use the method of Bassi & Rebay (1997). First, a
“jump savvy” gradient of the state, σj ∼ U ,j is computed by solving

N∑

e=1

∫

Ωe

V Tσj dx = −
N∑

e=1

∫

Ωe

V T
,jU dx+

N∑

e=1

∫

∂Ωe

V T Ûnj ds ∀V ∈ V(Ph) (2.7)

for each direction, j, where

Û =
1

2

(
U− +U+

)
. (2.8)

The Bassi–Rebay viscous flux is then computed using

F̂
v

n(U
−,σ−j ,U

+,σ+j ) =
1

2

(
F v

n(U
−,σ−j ) + F v

n(U
+,σ+j )

)
. (2.9)

While this method is known to be only “weakly stable,” (Arnold et al. 2002) we have
not encountered any difficulties for the problems considered here, and this method has
been used successfully in the past (Bassi & Rebay 1997). In the future, we will consider
other, provenly-stable, numerical fluxes for the viscous terms, and the reader is referred
to Arnold et al. (2002) for an extensive discussion of the advantages and disadvantages
of a wide range of viscous fluxes for use in discontinuous Galerkin discretizations.

In setting boundary conditions weakly through the numerical fluxes, one must con-
struct a state, U bc, that enforces the appropriate boundary conditions, and Atkins
(1997) provides a discussion of the important issues involved in selected U bc. For the
Navier–Stokes calculations reported here, we use the following approach. At far-field
boundaries U bc is set to freestream values. At isothermal wall boundaries, we evaluate
U bc separately for the convective and viscous fluxes. Let q1 = (u−ny − v−nx)ny and
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q2 = (v−nx − u−ny)nx then the reconstructed state at a wall for the convective flux is

U bc =





ρ−

ρ− q1
ρ− q2

ρ−e− + 0.5ρ−(q21 + q22)





. (2.10)

This state enforces the no-penetration condition which is appropriate for both inviscid
and viscous calculations. For the viscous flux, the no-slip condition is enforced using

U bc =





ρ−

0
0

ρ−Tw/(γ(γ − 1)M 2)





(2.11)

where Tw is the prescribed wall temperature, γ is the ratio of specific heats, and M is
the reference Mach number.

By way of summary, the discontinuous Galerkin method is a hybrid of finite-element
and finite-volume methods, where solutions are continuous within an element but dis-
continuous across element interfaces, and elements are coupled via numerical fluxes on
element interfaces. Discontinuous Galerkin has several potential advantages including:
(1) Spectral accuracy on arbitrary meshes, (2) Local hp-refinement, (3) Boundary con-
ditions are imposed weakly through numerical flux, (4) Local conservation allows for
different fidelity models on neighboring elements, (5) Orthonormal hierarchical basis on
each element readily supports multiscale turbulence models, and (6) DG works best near
the hyperbolic limit making it potentially valuable for high Reynolds number turbulence.
A thorough review of the DG method is available (Cockburn 1999) while a more com-
plete description of DG for turbulence simulation including a discussion of multi-scale
turbulence modeling is given in (Collis 2002).

3. Discretization and implementation

For every element Ωe ∈ Ph we define the finite-dimensional space Ppe
(Ω̂) of polynomials

of degree ≤ pe defined on a master element Ω̂. Then

Ppe
(Ωe) =

{
φ|φ = φ̂J−1Ωe

, φ̂ ∈ Ppe
(Ω̂)
}

(3.1)

where JΩe
is the Jacobian of the transformation of element Ωe to the master element

and

Vp(Ph) =

(
N∏

e=1

Ppe
(Ωe)

)m

⊂ V(Ph) (3.2)

where m is the number of conserved variables; m = 5 in three dimensions.
Thus, the semi-discrete discontinuous Galerkin method is: Given U 0 = U0(x), for

t ∈ (0, T ), find Uh(x, t) ∈ Vp(Ph)×H1(0, T ) such that

BDG(W h,Uh) = (W h,S) , ∀W h ∈ Vp(Ph) . (3.3)

We utilize the family of orthogonal, hierarchical bases formed from tensor products of
Jacobi polynomials, as described in Karniadakis & Sherwin (1999), which are supported
in a wide range of elements types in two and three dimensions. For time advancement,
we currently use the third-order TVD-RK method (Shu 1988; Shu & Osher 1988)
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Figure 2. Typical parallel speedup for DG implementation on a Pentium IV Beowulf cluster.

The DG formulation presented above has been implemented using object-oriented pro-
gramming (OOP) in fully modern ANSI/ISO C++ using the Standard Template Library
and generic programming concepts. For efficiency, all kernel computations are performed
using the ATLAS library, and the code runs on a number of operating systems includ-
ing Linux, Windows, and SGI Irix. The code is implemented as an element library that
supports all the operations required for discontinuous Galerkin, and we have used this
library to implement specific solvers for advection-diffusion, Burgers, wave, linearized-
Euler, Euler, Navier–Stokes equations. Due to the inherent locality in the discontinuous
Galerkin discretization, parallel implementation is particularly easy and efficient. We use
the MPI-2 library (including parallel MPI-IO) and parallel efficiency results are shown
in figure 2 for our Pentium IV Beowulf cluster demonstrating excellent scaling.

4. Weak boundary conditions

One of the issues that arises in using discontinuous Galerkin methods is that Dirichlet
boundary conditions are most naturally enforced weakly through the numerical fluxes.
While similar “weak” boundary conditions have been used for far-field nonreflecting
boundary conditions in finite-difference discretizations (see e.g. Poinsot & Lele (1992);
Thompson (1987)) the use of weak boundary conditions for wall-type boundary condi-
tions is less common, especially in the flow physics community. In the computational
mechanics and applied mathematics communities there has been prior work on weak
enforcement of Dirichlet boundary conditions in the continuous Galerkin method by
Babuska (1973) and Nitsche (1971) and these methods are related to discontinuous
Galerkin (Arnold et al. 2002). Likewise, the recent work of Layton (1999) provides the-
oretical considerations for weakly enforced Dirichlet boundary conditions for the Stokes
problem that are motivated by observations of improved solution quality compared to
hard Dirichlet boundary conditions.

While one can always set “hard” Dirichlet boundary conditions in any discretization
(including DG), it is interesting to compare the performance of hard boundary conditions
with weak enforcement through the numerical fluxes as described above. As an example,
consider the simple steady forced advection-diffusion problem

u,x = 1 + νu,xx (4.1)

with boundary conditions u(0) = u(1) = 0 and diffusivity ν = 0.01. Figure 3 shows re-
sults computed using a discontinuous Galerkin discretization with two p = 6 elements and
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Figure 3. Weak (a) and hard (b) Dirichlet boundary conditions for an advection-diffusion problem

BC L∞ L2 H1

Weak 0.374 0.0198 2.00
Hard 0.251 0.0850 3.35

Table 1. Errors in advection diffusion solutions

both hard and weak enforcement of the Dirichlet boundary conditions. This discretiza-
tion was intentionally selected to be coarse in order to highlight the differences between
the two solutions. One clearly sees that oscillations are more pronounced when a hard
boundary condition is used. Conversely, while oscillations are less in the weak case, the
boundary condition on the right side (inside the boundary layer) is only approximately
satisfied; u(1) = 0.374 instead of zero. Table 1 compares the error in the solution in the
L∞, L2, and H1 norms. Consistent with the graphical results, the solution with weak
Dirichlet boundary conditions has four times less error in L2 and is also better in H1.
However, the solution with weak boundary conditions is slightly worse in L∞ and this is
directly due to the error in the boundary value. Discarding a small region near x = 1, the
weak solution is also better in L∞. While these results are certainly not conclusive, they
are indicative of the potential benefit to be gained from weak enforcement of Dirichlet
boundary conditions that are naturally obtained from a DG discretization. Philosoph-
ically speaking, one should not enforce boundary conditions any more accurately then
the error in the interior solution. Doing so tends to over-constrain the interior solution,
typically leading to oscillations as seen in figure 3(b). By weakly enforcing boundary
conditions one obtains solutions that still feel the influence of the boundary through the
numerical fluxes, but in a manner that is consistent with the accuracy of the interior
solution, leading to improved solutions away from the wall. Given the importance of wall
boundary conditions for near-wall turbulence, we will pay particular attention to the
success of the weak boundary condition throughout the following discussion.

5. Flow over a circular cylinder

Before applying our DG formulation to a turbulent flow, we begin by considering a
benchmark problem of both steady and unsteady flow over a circular cylinder.
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DG DG FD Experiment
Re p = 4 p = 6 6th order

s/d Cd s/d Cd s/d Cd s/d Cd

20 0.96 2.125 0.96 2.124 0.93 1.98 0.9 2.01
40 2.39 1.589 2.39 1.589 2.36 1.50 2.1 1.48

Table 2. Drag and separation length for laminar ¤ow over a circular cylinder, with comparison to prior
computations and experiments. The computational and experimental data are taken from Visbal (1986).

5.1. Steady flow

Consider the steady, laminar flow of air past an isothermal circular cylinder kept at
the freestream temperature. The freestream Mach number is M = 0.2 and results are
reported for two Reynolds numbers: 20 and 40. By considering a series of different domain
sizes, we eventually selected a domain of Ω = [−15, 30]× [−30, 30] as sufficiently large to
prevent adverse influence on the net drag and length of the separation bubble. A block
structured mesh using 812 quadrilaterals was generated using a special purpose grid
generator (Tezduyar 1991) and each quadrilateral has polynomial order of either p = 4
or p = 6. Table 2 compares the current DG results for the total drag coefficient, Cd, and
separation bubble length, s/d, with prior high-order finite-difference computations and
experiments. The DG results for both p = 4 and p = 6 are nearly identical, indicating that
these quantities are converged. The DG results are within about 7% of the experimental
results, which is a negligible difference given the difficulty of performing measurments
at such low Reynolds numbers. Comparing the DG results to the prior finite-difference
calculations of Visbal (1986) yields a difference of about 6% in Cd and less than 3% in s/d.
Interestingly, Morgan et al. (2002) recently performed simulations using a block-parallel
version of the same solver used by Visbal (1986) and they report up to 3% difference in
both s/d and Cd. While the source of the discrepencies between these three codes is not
known, the DG results are converged with regard to both domain size and resolution.

5.2. Vortex shedding

Next, consider unsteady vortex shedding from a circular cylinder. The Reynolds number
based on diameter and freestream velocity is Re = 100, the freestream Mach number is
M∞ = 0.2 and an isothermal condition is enforced at the cylinder surface with Tw = T∞.
We have performed simulations over a range of domain sizes and have investigated both
h and p-refinement to establish the convergence properties of the method. For brevity,
we show results only for a relatively large rectangular domain, of size x1 ∈ [−15, 30] and
x2 ∈ [−30, 30], using 812 quadrilateral elements with a tensor-product basis of Legendre
polynomials on each element, where the polynomial order varies from p = 5 to 8. We note
in passing that this domain was found to be sufficiently large to prevent far-field boundary
influence on the solution. Table 3 documents the convergence of the Strouhal number
St, peak-to-peak lift coefficient ∆Cl, and average drag coefficient Cd with polynomial
order. We see that even with p = 4 all quantities are accurate to three significant figures.
When p = 8 the average drag coefficient is converged to at least 5 significant figures.
The converged Strouhal number is St = 0.1653 which is in excellent agreement with
the experimental value of 0.165 (Williamson 1989). For both the steady and unsteady
cylinder flows, the weak implementation of wall boundary conditions is found to provide
excellent results, even for rather coarse discretizations.



162 S. S. Collis

p St ∆Cl Cd

4 0.1652 0.6951 1.4104
5 0.1652 0.6953 1.4105
6 0.1653 0.6958 1.4106
7 0.1653 0.6960 1.4107
8 0.1653 0.6960 1.4107

Exp† 0.165 – –

Table 3. Convergence with polynomial order for vortex shedding from a circular cylinder at Re = 100.
†Experimental data is from Williamson (1989)

Figure 4. Cross-stream (z–y) quadrature grid for the stretched mesh with p = 5, 4, 3.

6. Fully-developed channel flow

We now consider fully-developed turbulent flow in a plane channel with coordinates
x = x1 in the streamwise direction, y = x2 in the wall-normal direction, and z = x3 in the
spanwise direction. The flow is assumed to be periodic in the streamwise and spanwise
directions where the box size is selected so that the turbulence is adequately decorrelated
in both directions. Coleman et al. (1995) provide excellent documentation of DNS results
for compressible channel flows at low Reτ .

As a first step towards utilizing DG for turbulent flows, we have performed DNS at
Reτ = 100 with a centerline Mach number of Mc = 0.3 so that comparisons can be made
directly to prior incompressible results (see e.g. Kim et al. (1987); Moser et al. (1999)).
Following Coleman et al. (1995), we use a cold, isothermal wall so that internal energy
created by molecular dissipation is removed from the domain via heat transfer across
the walls, allowing a statistically steady state to be achieved. The bulk mass flow is held
constant by the addition of an x1-momentum source on the right-hand side of (2.1a).

The computational domain is (4π, 2, 4π/3) and this is discretized with an array of
8 × 8 × 8 elements yielding a total of 512 elements. Exploiting the flexibility of the DG
discretization, we use both h and p refinement to more efficiently resolve flow features
near the wall. In particular, two wall-normal distributions of elements are investigated.
We first use a stretched mesh in the wall-normal direction where the grid points are given
by

yj =
tanh(cs(2j/Ny − 1))

tanh cs
+ 1 , j = 0, 1, . . . , Ny (6.1)

where Ny = 8. For this mesh, we reduce the polynomial order away from the wall,
starting with two layers of p = 5 elements, then a layer of p = 4 followed by a layer
of p = 3 elements near the centerline. Thus, moving from the bottom wall to the top
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Figure 5. Discontinuities in instantaneous and averaged mean-¤ow pro£les, Re τ = 100:
(a) instantaneous u, (b) instantaneous ρ, (c) average u, (d) average ρ.

wall, the element order varies like: {5, 5, 4, 3, 3, 4, 5, 5} resulting in a total of 79,488
degrees of freedom. Note that the flexibility of the DG method makes it possible to
coarsen simultaneously in all three coordinate directions as one moves away from the
wall. The crossflow quadrature grid for the stretched mesh is shown in figure 4. We also
have performed simulations using a uniform h mesh in the wall-normal direction but
again with variable p order. For this mesh, two p distributions were considered: a low-
resolution case with p ={5, 5, 4, 3, 3, 4, 5, 5} yielding 79,488 degrees of freedom and a
high-resolution case with p ={6, 6, 5, 4, 4, 5, 6, 6} resulting in 131,456 degrees of freedom.
In all cases, we use third-order TVD-RK time advancement with ∆t = 0.0001. This time
step is a factor of 10 smaller than that typically used in our incompressible code (Collis
et al. 2000) because the incompressible code treats wall-normal viscous terms implicitly.
We are currently enhancing our DG code to support implicit time-advancement.

We also note that computing turbulence statistics from a DG solution requires a sub-
stantial coding effort, so that currently we compute only mean and rms quantities. Higher-
order statistics and spectra will be presented in the future.

We begin by plotting typical instantaneous and average u and ρ profiles for the
stretched mesh solution in figure 5. In plotting all the results shown in this paper, no
smoothing or other postprocessing has been done to remove the discontinuities inherent
in a DG discretization. Thus, we can clearly see discontinuities in the instantaneous pro-
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Figure 6. Mean and rms velocity pro£les in wall units for the stretched mesh: DG,
incompressible DNS, law of the wall.

files, especially in ρ near the center of the channel. However, after averaging, both the
streamwise velocity and density profiles are smooth. One of the nice features of DG is
that if the solution is known to be smooth, then visible jumps in the solution are indica-
tive of low resolution. Thus, with the stretched mesh, the instantaneous turbulent flow
near the center of the channel is only marginally resolved, although near the walls even
the instantaneous profiles appear smooth, indicating good resolution there. However, it is
important to note that even though the resolution near the centerline may be marginal,
the mean flow is well represented.

Evidence to support this claim is given in figure 6 which shows the mean and rms
velocity profiles in wall units, compared to a reference incompressible DNS at the same
Reτ (Chang 2000). Both the mean and rms velocities are in excellent agreement with
the incompressible DNS. Likewise, no discernible discontinuities are observed in either
the mean or the rms profiles. We recall that the DG discretization uses 79,488 degrees of
freedom and is formally between 4th- and 6th-order accurate, depending on the local poly-
nomial order. For comparison, the incompressible DNS uses a hybrid Fourier-Galerkin
method in the planes and second-order finite-volume method in the wall-normal direction
and uses 336,960 degrees of freedom after dealiasing. Thus, the DG solution uses a factor
of 4.2 less degrees of freedom (1.9 if dealiasing is not used in the incompressible case).

On the stretched mesh, the average slip in the streamwise velocity at the wall is 0.002%
of the centerline velocity where the first collocation point is ∆y+w = 0.7 from the wall. †
To determine how the weak wall boundary condition influences the solution at coarser
resolution (near the wall) we now consider results using a uniform mesh in the wall-
normal direction. Figure 7 shows the mean streamwise velocity profiles in wall units as
compared to the reference incompressible DNS, for both the low- and high-resolution
cases. Interestingly, we see that the profiles are in excellent agreement with the reference
solution. Such overlap clearly indicates that the mean shear stress is well predicted in
both cases. However, careful examination of figure 7 does show that the law of the wall
u+ = y+ is not perfectly satisfied at small y+ because the flow slips at the wall. For the
low resolution case, the slip velocity is 1% of the centerline velocity with ∆y+w = 2 while
for the higher resolution case there is 0.68% slip with ∆y+w = 1.6. As expected, as near-
wall resolution is increased, the amount of slip is reduced as the enforcement of the wall

† For reference, the centerline velocity is approximately 16uτ at Reτ = 100.
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Figure 7. Effect of slip on mean velocity pro£le for the uniform mesh at two resolutions: DG,
incompressible DNS, law of the wall.
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Figure 8. Effect of slip on rms velocity pro£les for the uniform mesh at two resolutions: DG,
incompressible DNS.

boundary condition improves (this is especially true for the stretched mesh). Importantly,
the mean shear and the majority of the mean velocity profile are well predicted even for
the lowest-resolution case when ∆y+w = 2, which is less than many RANS models allow.

Similar behavior is found for the rms velocities, as shown in figure 8 for the low- and
high-resolution uniform-mesh cases. One can clearly see the slip in the streamwise rms
velocities at the wall. For the low-resolution case u+rms = 0.65 at the wall, while for the
high-resolution case u+rms = 0.48 at the wall. For reference, the stretched-mesh solution
has u+rms = 0.0062 at wall. Again, as resolution is increased in the near-wall region, the
no-slip boundary condition is enforced to a higher accuracy. Importantly, with the ex-
ception of a region very close to the wall, both the mean and rms profiles throughout
the channel are well predicted for all cases. Our prior experience with hard boundary
conditions has shown that mean shear and rms profiles (i.e. turbulence production) are
incorrectly predicted at low resolutions. Conversely, by enforcing the wall boundary con-
ditions weakly through the numerical fluxes, the influence of the wall on the flow is
correctly simulated in the form of net shear stress and turbulence production, even at
resolutions for which the wall boundary values are inaccurate.
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7. Conclusions

A discontinuous Galerkin method is formulated and implemented for simulation of com-
plex, turbulent, compressible flows. The implementation is validated for both steady and
unsteady separated flow over a circular cylinder, with results in excellent agreement with
prior computations and/or experiments. An important feature of discontinuous Galerkin
is the ability to enforce Dirichlet boundary conditions weakly, through numerical fluxes
at the wall. The advantages of this approach are demonstrated for a simple advection-
diffusion problem, where it it shown that enforcement of a weak boundary condition leads
to a significant reduction in oscillations in the computed solution, resulting in a factor
of 4 times less error in the L2 norm. Applying DG to simulate fully-developed turbulent
flow in a plane channel at low Reynolds number Reτ = 100 leads to results in excel-
lent agreement with a reference incompressible DNS. The advantage of weak Dirichlet
boundary enforcement is also demonstrated for this flow, where it is shown that accu-
rate profiles of net shear stress, as well as mean and rms velocity, are obtained at low
resolution—even resolution for which there is significant slip at the wall. In this context,
weakly enforced wall boundary conditions may play a useful role in wall modeling for
large-eddy simulation, where the wall-model is given by a particular numerical flux used
at the wall.
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