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Abstract This investigation considers theoretical models and
empirical studies related to the dispersion of ocean surface
gravity waves propagating in ice covered seas. In theory, wave
dispersion is related to the mechanical nature of the ice. The
change of normalized wavenumber is shown for four different
dispersion models: the mass-loading model, an elastic plate
model, an elastic plate model extended to include dissipation,
and a viscous-layer model. For each dispersion model, model
parameters are varied showing the dependence of deviation
from open water dispersion on ice thickness, elasticity, and
viscosity. In all cases, the deviation of wavenumber from the
open water relation is more pronounced for higher frequen-
cies. The effect of mass loading, a component of all dispersion
models, tends to shorten the wavelength. The Voigt model of
dissipation in an elastic plate model does not change the wave-
length. Elasticity in the elastic plate model and viscosity in the
viscous-layer model tend to increase the wavelength. The net
effect, lengthening or shortening, is a function of the particular
combination of ice parameters and wave frequency. Empirical
results were compiled and interpreted in the context of these
theoretical models of dispersion. A synopsis of previous

measurements is as follows: observations in a loose pancake
ice in the marginal ice zone, often, though not always, showed
shortened wavelengths. Both lengthening and shortening have
been observed in compact pancakes and pancakes in brash ice.
Quantitative matches to the flexural-gravity model have been
found in Arctic interior pack ice and sheets of fast ice.
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1 Introduction

With enough time and space, the action of wind at the air-sea
interface will induce gravity waves (henceforth waves) which
propagate across the surface of the seas.Wavesmay propagate
into, and interact with, regions of partial or complete ice cover.
Ice may be in the form of slurry, a continuous sheet, floes of
various sizes and arrangements, or any combination these.

Wave prediction is of utmost importance for the safety
of operations, but in the polar oceans, due to the pres-
ence of ice and the resulting wave-ice interaction, wave
prediction is problematic. The interaction is a two-way
coupled problem: ice not only affects waves, but waves
affect ice. In the Arctic, wave action and ice cover may
be connected via feedback loop where waves fracture
ice; the ice melt is enhanced due to an increased lateral
surface area, and a larger fetch is available for wave
development (Asplin et al. 2012; Asplin et al. 2014).
Hence, wave-ice interaction is an important physical pro-
cess that may, in part, determine the fate of sea ice extent
as the Arctic warms (Thomson and Rogers 2014;
Thomson et al. 2016).

This article is part of the Topical Collection on the 14th International
Workshop on Wave Hindcasting and Forecasting in Key West, Florida,
USA, November 8–13, 2015

Responsible Editor: Oyvind Breivik

* Clarence Olin Collins, III
Tripp.Collins@nrlssc.navy.mil

1 US Naval Research Laboratory, Oceanography Division, 1005 Balch
Blvd, Stennis Space Center, Hancock County, MS 39529, USA

2 Department of Ocean Sciences, University of Miami, Rosenstiel
School of Marine and Atmospheric Science, Miami, FL, USA

Ocean Dynamics
DOI 10.1007/s10236-016-1021-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s10236-016-1021-4&domain=pdf


The one-way interactions of this coupled process can be
described in simple terms. Waves to ice: waves stress and
potentially fracture ice. Ice to waves: ice refracts, shoals, and
attenuates waves—the latter is an outcome of dissipation, re-
flection, and scattering. In the complex formulation of the
wavenumber in the dispersion relation, the real part is related
to the change in wavelength, and the imaginary part to atten-
uation due to dissipation. The majority of previous studies
have focused on attenuation because the phenomenon is rela-
tively easy to measure, and therefore has been well document-
ed (e.g., Squire and Moore (1980), Wadhams et al. (1988),
Squire et al. (1995), Squire (2007). There is some agreement
on the order of magnitude of attenuation, but little consensus
on whether the dominant mechanisms are related to scattering
or dissipation (covering a number or proposed physical mech-
anisms). Although comprehensive measurements of in-ice
dispersion have yet to be achieved, it is anticipated that these
will be available in the near future, possibly from the recent
Office of Naval Research (ONR) BSea State and Boundary
Layer Physics of the Emerging Arctic Ocean^ (Sea State)
research initiative (Thomson et al. 2013).1 Therefore, this
study explores features of the much less-studied, real part of
dispersion or, in other words, the change in wavenumber.

Dispersion refers to the fact that (in intermediate and deep
waters) waves of different frequencies propagate at different
speeds, and so Bdisperse^ in space and time (e.g., Snodgrass
et al. 1966), and it is this dispersion relation which connects
temporal and spatial wave kinematics.

Immediately upon entering icy seas, wave dispersion is
altered from the open water relation. This change from the
open water dispersion relation results in an altered wave-
length, phase velocity, direction, group velocity, and wave
height, but the frequency and action (i.e., energy divided by
frequency) are invariant. After propagating some distance in
ice, wave height decreases due to attenuation.

The open water dispersion relationship is derivable from
first principles: Newton’s 2nd law for body forces on a
fluid continuum manifests as the Navier-Stokes equation.
Assumptions are made about water so that several terms in
the Navier-Stokes equation are negligible. This includes
neglecting viscosity (it is later included in a 2-layer in-ice
model), neglecting compressibility, and assuming water
motion is irrotational. If water is assumed to be incom-
pressible and irrotational, the fluid velocity can be de-
scribed by the gradient of a scalar function called the ve-
locity potential. The dynamic boundary conditions at the
interface require the normal stress to be continuous and the
shear stress to vanish (for an inviscid water surface).
Detailed derivations are available in the literature (e.g.,
Kinsman (1965)).

By linearizing the dynamic boundary condition at the sur-
face, the open water (i.e., ice free) dispersion relation is:

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kd

p
ð1Þ

where ω is the wave frequency, k is the wavenumber, d is the
water depth, and g is the acceleration due to gravity. The
wavelength is 2π/k. For simplicity, Eq. (1) is taken to the deep
water limit, such that tanh(kd) approaches 1:

ω ¼
ffiffiffiffiffi
gk

p
⇔

ω2

g
¼ k≡kow ð2Þ

Here, kow is defined as the open water wavenumber. The
deep water limit is maintained throughout the remainder of
this study, though intermediate-depth forms are available in
general.

The mechanical model of the ice determines the stress-
strain relationships which are enforced in the boundary con-
ditions, and the boundary conditions alter the form of the
dispersion relation derived from a potential flow theory (e.g.,
Mosig et al. 2015). In the forthcoming sections, the openwater
dispersion relation—Eq. (2)—will be progressively compli-
cated by introducing extra terms. The most basic formulation,
and a component in all subsequent models, is a term due to the
added inertia of ice on the surface (Section 2.1). Under the
umbrella of ice as an elastic plate, a term due to elastic re-
sponse to wave-induced bending is introduced (Section 2.2.1),
then a note on compression (Section 2.2.2), and finally the
addition of dissipation (Section 2.2.3). A different approach
is then introduced: the viscous-layer model (Section 2.3).
With eachmodel, idealized ice conditions are described which
would be the most appropriate for the application of that par-
ticular model. Given the in-ice dispersion relation, Snell’s law
is used to derive the expected shoaling and refraction
(Section 3). This is followed by a survey of the previous field
and laboratory measurements of dispersion (Section 4). The
article ends with a discussion (Section 5) which focuses on
dispersion models and their implementation in spectral wave
models (Section 5.1), measurement deficiencies (Section 5.2),
a picture of the status quo (Section 5.3), future prospects
(Section 5.4), and ice and unresolved processes (Section 5.5).

Recent descriptions of wave-induced ice-fracture events
(Asplin et al. 2012; Kohout et al. 2014; Collins et al. 2015;
Kohout et al. 2015) led to a deceptively simple question: do
open water surface waves increase or decrease their height
immediately upon entering ice, potentially increasing or de-
creasing the expected stress delivered to the ice? According to
Snell’s law, this question is exactly the same as asking: does
the dispersion relation change? This investigation is the result
of exploring this question.

The literature on wave-ice interaction and ice mechanics is
enormously rich and growing. For those familiar with surface1 http://www.apl.washington.edu/project/project.php?id=arctic_sea_state
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wave mechanics, it is hoped that this study will act as an
introduction and a bridge to the more sophisticated
treatments given in Mosig et al. (2015) and Zhao et al.
(2015), for example. For broad reviews, please see Squire
et al. (1995), Wadhams (2000), Squire (2007), and Collins
et al. (2016).

2 Theoretical wave dispersion in ice

2.1 Mass-loading model

The simplest way to introduce the effects of ice on wave
dispersion is by including the added mass of ice at the inter-
face. This is known as the mass-loading model.2 The mass
loading model (ML) may be appropriate for conditions where
the wavelength is much longer than the typical ice floe length
such that there is no elastic response of ice, and adjacent floes
do not interact. For example, long swell propagating through
small (compared to the characteristic wavelength), sparsely
spaced or noninteracting ice floes. This type of ice can occur
within the marginal ice zone (MIZ) either as broken floes or as
pancakes.3 The ML model was originally developed in the
1950s (see Weitz and Keller (1950) and the discussion within
Squire et al. (1995)); the resulting dispersion relation is

ω2

g−ρicehω2=ρ
¼ k ð3Þ

ρ is the familiar water density and ice is introduced through
the inclusion of ice density, ρice, and thickness, h. Ice concen-
tration, c, a scalar representing the fraction of surface area
covered by ice, may be written into the equation explicitly:

ω2

g−cρicehω2=ρ
¼ k ð4Þ

following Liu and Mollo-Christensen (1988), the presentation
can be simplified by defining an inertial coefficient,M:

ω2

g−Mω2
¼ k ð5Þ

it is worth noting that M represents inertia of ice below the
mean water level as ice can also have some freeboard, i.e.,
volume above the mean water level. In Fig. 1, the density of
seawater was set as 1025 kg m−3, ρice was set to 90% of ρ, and
c is 100%. There is only one free parameter, h, and as the h
approaches zero, the inertial term in the denominator

approaches zero and Eq. (5) simplifies to that of open, deep
water relationship of Eq. (2).

The effect of different ice thicknesses on the dispersion
relation is shown in Fig. 1. The wavenumber was normalized
by the open water wavenumber, kow, so that the y-axis is the
deviation from the openwater relation. Figure 1 shows that the
mass loading model (1) always increases the wavenumber
(shortens the wavelength) and (2) that deviation from open
water wavenumber is greater as the frequency increases.
Even for a relatively thin ice, h = 0.21 m, the wavenumber
corresponding to 0.8 Hz is double that of the open water
relationship. For long waves, f < 0.1 Hz, the relative effect
of ice of 3.5 m thick is less substantial, e.g., a 15% increase
in wavenumber at 0.10 Hz.

Many of the lines asymptote at a particular frequency, im-
plying a high frequency limit. Indeed, it is clear from Eq. (5)
that as k→∞ the denominator approaches zero and wave
frequency approaches the following limit

ω→ωc ¼ 2π f c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρg

ρicech

r
ð6Þ

(Wadhams and Holt 1991). Waves with open water frequen-
cies above this limit are completely reflected and do not enter
the ice as the reflection coefficient is |R| = |kice − kow|/(kice + kow)
for normally incident waves (Keller and Weitz, 1953).

2.2 Elastic plates

2.2.1 Pure elastic plate

The dynamic free surface boundary condition states that
the pressure just below the free surface is equal to the
ambient (air-side) pressure; without ice, this results to the
Bernoulli equation. In ice, an additional pressure term
comes from the volumetric stress in ice. The stress-strain
relationship is dictated by the model chosen for the me-
chanical behavior of ice.

Here, ice is modeled as a thin, elastic plate in which surface
waves induce coupled wave modes. For this model to be ap-
propriate, the typical size of ice floes should be much larger
than the characteristic wavelength. Though academic in con-
cept, a near approximationwould be a uniform ice layer which
form naturally as fast ice in fjords, harbors, and inlets. For very
low frequencies (0.03–0.05 Hz), the central pack ice in the
Arctic may approximate a uniform sheet.

Re-deriving the dispersion relation, the material property of
flexural-rigidity, L, shows up in the denominator as a term
proportional to k4.

ω2

g−Mω2 þ Lk4=ρ
¼ k ð7Þ

2 Also referred to as Badded mass^ model, the Binertial^ model, the Badded
inertia^ model, and possibly others.
3 Unfamiliar with basic ice types? Please see http://seaiceatlas.snap.uaf.
edu/glossary for detailed definitions. Ice types mentioned in this manuscript
are pancake, frazil, brash, grease, pack ice, and fast ice sheets.
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A simple mechanical model is an application of the Euler-
Bernoulli beam theory or its extension, Kirchoff-Love plate
theory (Fox and Squire 1994) (FS) where the flexural-rigidity
of the sea ice is a function of three ice parameters (1) the
thickness, h, (2) the effective elastic modulus, Y, and (3) the
Poisson ratio, v:

L≡
Yh3

12 1−ν2ð Þ ð8Þ

In this case, ice is purely elastic (linear strain response to
stress). The elastic modulus (Y) and shear modulus (G) are
Lamé constants with simple relations (Wang and Shen 2010a):

In the following example, the free parameter is chosen to be
G and ν is set to 0.3.

Y ¼ 2G 1þ νð Þ ð9Þ

ν ¼ Y
2G

−1 ð10Þ

The elastic term tends to increase wavelength (Squire
1993). According to Fig. 2, whether the wave shortens or
lengthens depends on the relative contributions of the inertial
and elastic terms in the demoninator. When the shear modulus
approaches zero, then the mass loading Eq. (5) is recovered
from Eq. (7).

The frequency at which the dominant term transitions to
elastic term is given by Fox and Haskell (2001):

ωt ¼ 2π f t ¼
ρg5

L

� �1
8

ð11Þ

Figure 2 shows that a 0.1 Hz wave is significantly length-
ened, but only for combinations of thick h and large G.
Otherwise, theML term dominates and the wavenumber tends
to increase.

Figure 3 shows the relative change in wavenumber for a
0.1-Hz wave as a function of G for a given ice thickness. For

the thicknesses tested, deviations from the ML model slowly
appear beyond a shear modulus of 106 Pa. For a given h, after
the effects of elasticity appear, the wavelength rapidly in-
creases as a function of G (and h). For the same level of shear
modulus, say 1010 Pa, a change in ice thickness from 1 to 2 m
leads to a change in a wavelength of ~60 m.

2.2.2 Elastic plate with compression

Motivated by an ice-fracture event, Liu and Mollo-
Christensen (1988) formulated the effects of compressive
stress into the elastic plate model:

ω2

g−Mω2 þ Bk4−Phk2=ρ
¼ k ð12Þ

where the bending coefficient, B = L/ρ is introduced with P
being the compressive stress. This can be further simplified by
defining a compressive coefficient, Q = Ph/ρ

ω2

g−Mω2 þ Bk4−Qk2
¼ k ð13Þ

There is an analogy between compressive stresses in a
wave dispersion with the effects of surface tension, the equa-
tion for which bears the form:

ω2 ¼ gk þ Tk3

ρ

� �
tanhkd ð14Þ

where T is the surface tension of water. By taking this form to
the deep water limit, and rearranging:

ω2

g þ Tk2=ρ
¼ k ð15Þ

Fig. 1 The normalized
dispersion relation calculated
from the mass loading model as a
function of ice thickness, h. The
thickness ranges from 0.001 to
3.500 m linearly (Δh = 0.035 m)
where h = 0 is the deep water
linear dispersion relation shown
by the black line and h = 3.5 m is
the dark red line
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now, the surface tension, T, and the compressive stress can be
related by the following equation:

P ¼ −T=h ð16Þ

So, compressive stress acts like a negative surface tension
scaled by the ice thickness. The effect of compressive stress
is to increase the wavenumber (see Fig. 1a of Liu and Mollo-
Christensen (1988)), but the compressive stress assumed,
5.1 × 106 Nm−2, is considered unrealistic under most condi-
tions (Timco and Weeks 2010). However, it is conceivable
that situations occur that increase compressive stress within
ice cover, such as a strong on-ice storm event in which the ice

edge becomes compact due to wave and wind forcing, and
inclusion of the compressive stress term may need to be
considered.

2.2.3 Elastic plate with dissipation

Observations have shown that wave energy attenuates expo-
nentially as a function of propagation distance into ice
(Wadhams et al. 1988). This attenuation may be due to the
energy conserving process of wave reflection and scattering
(e.g., Kohout and Meylan (2008)) or any number of noncon-
servative, dissipative processes. Here, dissipation is

Fig. 2 The normalized
wavenumber from the pure elastic
plate model with shear modulus,
G, varying over 11 decades from
1 Pa (dark blue) to 1010 Pa (dark
red). Ice thicknesses of 0.01, 0.1,
0.5, 1.0, 2.0, and 3.5 m are shown
in seperate panels from left to
right, top to bottom, respectively

Fig. 3 Change is normalized
wavenumber as a function of
shear modulus, G, in the pure
elastic model. Ice thickness
shown in color as indicated in the
legend
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introduced into inviscid plate theory. First, the dispersion re-
lation is formulated in terms of a complex wavenumber4:

k ¼ k0 þ iα ð17Þ

Assuming the real and imaginary parts are separable, solv-
ing for the real part of the dispersion relation gives the wave-
number and solving for the imaginary part gives the attenua-
tion coefficient, α. Dissipation is introduced into Eq. (7) by
including an additional imaginary term within the term pro-
portional to k4.

ω2

g−Mω2 þ Dk4
¼ k ð18Þ

whereD has a real part (B from Eq. (7)) and an imaginary part
consisting of any number of specific complex formulations.
We continue with the extended model of Fox and Squire
(1994) (EFS) (Mosig et al. 2015). This is a Voigt model; it
follows from analogy to a spring-dashpot and introduces dis-
sipation (or friction) proportional to frequency. The dispersion
relationship for EFS is as follows:

ω2

g−Mω2 þ Gvh3

6ρ
1−νð Þk4

¼ k ð19Þ

Here, Gv is complex Voigt shear modulus (Mosig et al.
2015) which is related to the elastic shear modulus, G, and
the dissipation parameter5 (related to the dashpot-con-
stant), η:

Gv ¼ G−iωρiceη ð20Þ

so that Eq. (19) can be expanded to

ω2

g−Mω2 þ Bk4−iωρiceη
h3

6ρ
1−νð Þk4

¼ k ð21Þ

Figure 2 was produced by setting η to zero in Eq. (21),
therefore reducing the EFS to the FS, and then varying the
value ofG. With all other parameters staying the same, and for
the values of dissipation parameter tested, changing the dissi-
pation parameter alone did not produce a significant change to
the real part of the wavenumber and hence does not alter the
wavelength (this is consistent with the dominant wave mode
in Figs. 4 and 5 of Mosig et al. (2015)). Dissipation does,
however, introduce attenuation.

Figure 4 shows the normalized dispersion relation on
the left side and on the right the attenuation coefficient.
From top to bottom, the ice thickness is 0.1, 0.5, 1.0, and
3.5 m, respectively. G is set to 2 × 109; the value used in
Doble and Bidlot (2013) and the variation of η is shown
with color. For the combination of parameters considered,
wavenumber is not a function of dissipation parameter
and all the dispersion curves lie on top of one another
leaving only the last color plotted (dark red) visible. In
contrast, attenuation curves progress monotonically with
frequency and linearly with dissipation parameter.6 The
change in slope of attenuation for a specific value of the
dissipation parameter can be seen to correspond with de-
viation from the open water dispersion relation. Given the
same dissipation parameter, whether or not attenuation
increases or decreases with a change in ice thickness de-
pends on the frequency. Comparing the top and bottom
plots on the right hand side, the lower frequency
(<0.10 Hz) attenuation is drastically increased and the
higher frequency (>0.30 Hz) attenuation is slightly
decreased.

To explore this a bit further, values are set for elastic shear
modulus,G = 105, and dissipation parameter, η = 0.01. The ice
thickness is varied from 0 to 5 m. For reference, the solutions
for the dispersion relation with ice thickness of 5 m for the
mass loading model (ML) and purely elastic model (FS) are
also shown.

The left side of Fig. 5 shows the dispersion relation calcu-
lated using the EFS model with color showing ice thickness.
The solution for h = 5 m matches that of the FS exactly. The
change in k is small for low frequencies and more pronounced
for high frequencies. On the right side, attenuation is a func-
tion of frequency, with attenuation highest for the high fre-
quencies. The change in slope for the attenuation corre-
sponds with the dominant term in the dispersion relation
transitioning of ML to flexural-gravity. Before the transi-
tion, the attenuation increased monotonically with thick-
ness, the opposite is true after the transition, resulting in
an unintuitive situation: high frequency (>0.50 Hz) waves
in thinner ice encounter more attenuation. This behavior is
similar to a common feature of models for water waves
over seabed composed of a viscous mud layer, e.g.,
Dalrymple and Liu (1978): dissipation has a nonmonotonic
dependence on mud layer thickness (see their Fig. 2), with
thicker layers being less dissipative.

It should be kept in mind that the relationship being
tested is based on the Euler-Bernoulli beam theory which
is valid only for infinitesimal strains, and as the wave fre-
quency increases, the reflection approaches 100% (Fox and
Squire 1994).

4 In the literature, the imaginary part of the complex wavenumber is also
denoted as ki or q
5 In Mosig et al. [2015], this is called viscosity parameter, but here, we use
dissipation to avoid confusion with viscous-layer model introduced in the
following section. The symbol η is not to be confused with sea surface
elevation.

6 A reviewer pointed out that an asymptotic expansion in the dissipation pa-
rameter should be possible.
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2.3 Viscous-layer models

Instead of an elastic plate, the problem can be formulated in a
two-layer model. Ice would be represented by a layer of vis-
cous fluid on top of a slightly viscous or inviscid layer by
keeping viscosity in the Navier-Stokes equation (Weber
1987; Keller 1998; De Carolis and Desiderio 2002). In these
models, the ice does not have flexural properties, and the two
free parameters are ice thickness and an effective viscosity
parameter. Please see the original references for the closed
forms of the dispersion relations which are omitted here.

The model of Wang and Shen (2010a) extended the model
of Keller (1998) to incorporate elasticity. Thus, Keller’s vis-
cous model can be recovered by setting the effective shear

modulus to zero in the model of Wang and Shen (2010a).
Figure 6 is produced in this way, using the model of Wang
and Shen (2010a) as implemented in WAVEWATCH III®
(Tolman and the WAVEWATCH III® Development Group
2014), and varying the viscosity parameter, η, over nine de-
cades for several thicknesses.

In the viscous-layer formulation, in contrast to dissipation
in the EFS model, effective viscosity results in a deviation
from the open water wavenumber. For the low frequencies,
the wavenumber is slightly increased compared to ML,
through the mid-range frequencies k approaches the ML rela-
tion. The different behaviors in the high frequencies can be
described in terms of a Reynolds number, Rn ¼

ffiffiffiffiffiffiffi
gh3

p
=η (Keller

1998). For very large Reynolds numbers, there is no

Fig. 4 Left side: normalized
wave number relation. Right side:
corresponding attenuation
coefficient. From top to bottom
the ice thickness is 0.1, 0.5, 1.0,
and 3.5 m. The colors indicate the
dissipation parameter ranging
over five decades. The dispersion
relation does not change as a
function of dissipation parameter,
therefore all lines are over plotted
and the only visible line is dark
red (last one plotted) and the
black dotted line is the open water
relation

Fig. 5 Left side: normalized
wave number as a function of
frequency. Right side: the
corresponding attenuation rate.
The color indicates ice thickness,
h. Shear modulus is set to the
value 105 and dissipation
parameter to the value 0.01. The
mass loading model (ML) and
purely elastic model (FS) are
shown for h = 5.0 m with the
magenta dotted line and black
dashed line, respectively
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significant change in wavenumber, and the attenuation has a
constant slope in frequency. With small Reynolds numbers,
the wavenumber behavior is similar to the FSmodel in that the
wavenumber follows the MLmodel as an upper bound, and at
a particular frequency, the wavenumber precipitates. At inter-
mediate Reynolds numbers, the wavenumber tends to stay
closer to the open water relation before rapidly decreasing.
The attenuation, although monotonically increasing with fre-
quency, changes the slope in sync with changes in slope of
normalized wavenumber. For both the low and the high fre-
quencies, increasing η increases attenuation up to a point, then
it begins to decrease again. For a very high η, there is a level-
ing out of attenuation in the high frequencies at the point
where wavenumber dips below the open water value.

Newyear and Martin (1999) gave η = (3.0 ± 0.25) ×
10−2 m2 s−1 as a fit to their laboratory data. At this effective
viscosity, there is a little or no change in wavenumber except
for at the highest frequency and largest thickness tested
(bottom panels of Fig. 6) where a decrease is evident.

For combinations of high frequencies and large thickness, a
small change in viscosity parameter results in a large differ-
ence in wavenumber near Rn = 1.

This behavior is demonstrated in Fig. 7. For the wave fre-
quency 0.39 Hz, there is a discontinuity in the normalized
wavenumber near Rn = 1 for the thickness of 3.50 and
1.00 m. For the other thickness-frequency combinations, there
is a smooth transition across layer viscosity. This may be re-
lated to the method of choosing a wave mode (or root), in this

Fig. 6 Results from evaluating
the viscous-layer model of Keller
(1998). Left side: normalized
wavenumber as a function of
frequency. Right side: the
corresponding attenuation. From
top to bottom the ice thickness is
0.1, 0.5, 1.0, and 3.5 m. The
colors indicate the viscosity of the
viscous-layer ranging over nine
decades

Fig. 7 Keller model as a function
of layer viscosity over eight
decades for combinations of
frequency and thickness. The
dashed lines indicate a frequency
of 0.10 Hz while the solid line
corresponds to 0.39 Hz. The cool
to warm colors indicate
thicknesses of 0.01, 0.10, 0.50,
1.00, and 3.50 m, respectively.
Two results for the ML are shown
for reference with magenta and
black dashed lines. The curves for
f = 0.10 Hz stick close to k/kow = 1
and are mostly hidden behind the
small thickness curves for
f = 0.39 Hz
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case, the least attenuating wave mode was chosen (Zhao et al.
2015). The ML model is shown to bind an increase in wave-
number. The effect of viscosity in the Keller model is to de-
crease the wavenumber.

2.4 Note on viscoelastic models

Models which combine dissipation and elasticity are collec-
tively known as viscoelastic dispersion models (Robinson and
Palmer 1990; Wang and Shen 2010a; Mosig et al. 2015). This
is achieved by introducing dissipation into plate theory, or, in
the case of Wang and Shen (2010a), by generalizing the
viscous-layer theory of Keller (1998) to include viscosity.
The models Wang and Shen (2010a) and Robinson and
Palmer (1990) were not explored here; for a detailed compar-
ison, see Mosig et al. (2015).

3 Refraction and shoaling

The original motivation for this study stemmed from in-
terest in ice-fracture events (Asplin et al. 2012; Kohout
et al. 2014; Collins et al. 2015; Kohout et al. 2015) and
whether or not the wave height changes upon entering ice.
An important consequence of an altered dispersion rela-
tionship, in terms of the stress felt by the ice, is the
change in wave height. In direct analogy for refraction
and shoaling in shallow water (or in horizontally shearing
currents), it can be shown that a wave propagating across
a material gradient will change the group speed and cor-
respondingly change the direction and amplitude. These
changes can be derived with Snell’s law, most commonly
encountered in the context of geometric optics, applied to
ocean waves (e.g., Dean and Dalrymple (1991)).

If the wavelength shortens, then the waves will turn
towards the vector normal to the ice edge. This is sim-
ilar to a situation of waves entering an opposing current
approaching the shore at an angle: waves always turn to
approach shore-normal. If the wavelength increases, the
waves will turn away from the vector normal to the ice
edge, similar to waves approaching a following current
at an angle.

To get Snell’s law in ice, consider monochromatic waves
approaching an ice field with slowly varying properties (e.g.,
Kirby (1992)). Wave crests approach the ice field at some
angle, θ, off-normal to the ice edge and let φ be the corre-
sponding angle between the wave crests and the ice edge.
According to Snell’s law, waves traveling in material 1 and
2 must obey the following relationship:

sin φ1ð Þ
sin φ2ð Þ ¼

C1

C2
¼ λ1

λ2
ð22Þ

where C is the phase speed and λ the wavelength. The phase
and group speed in open, deep water (ow) follows from the
linear dispersion relation:

C≡
ω
k
;Cg≡

∂ω
∂k

ð23Þ

Cow ¼
ffiffiffiffi
g
k

r
; Cg;ow ¼ 1

2

ffiffiffiffi
g
k

r
ð24Þ

As a wave crosses into ice covered regions, Snell’s law
determines the refraction angle:

sin φiceð Þ
sin φowð Þ ¼

sin θiceð Þ
sin θowð Þ ¼

Cice

Cow
¼ kow

kice
¼ λice

λow
ð25Þ

θice ¼ arcsin
kow
kice

sin θowð Þ
� �

ð26Þ

The change in wave height is derived by conserving the
mean energy per unit area, which can be determined from the
spectrum by linear theory (Kinsman 1965). The wave energy
per unit crest length is the integral of spectral density scaled by
gravity and the density of water:

E ¼ 2ρg
Z

F fð Þdf ¼ 1

8
ρgH2

m0
ð27Þ

Wave energy propagates at the group speed which defines
the energy flux, PE

PE≡ECg ð28Þ

assuming a constant energy flux along a section of crest width, s,

PE;icesice ¼ PE;owsow ð29Þ
ρg
8
H2

m0;iceCg;icesice ¼ ρg
8
H2

m0;owCg;owsow ð30Þ

solving for wave height in ice

Hm0;ice ¼ Hm0;ow
Cg;ow

Cg;ice

� �1
2 sow

sice

� �1
2

¼ Hm0;owDK ð31Þ

whereK, known as the refraction coefficient, is the square root
of the ratio of the crest lengths from Snell’s law which can be
written in terms of the refraction angles

K ¼ cosφow

cosφice

� �1
2

ð32Þ
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and D, known as the shoaling coefficient, is the square root of
ratio of the group velocities, with Cg,ice chosen appropriately
for the ice conditions

D ¼
1
2

ffiffiffiffiffiffi
g
kow

q
Cg;ice

0
@

1
A

1
2

ð33Þ

The implication is this: if the group velocity slows in ice,
then wave heights will increase and if the group velocity in-
creases in ice, then wave heights will decrease. In terms of the
wave effects on ice, this will change the stress felt by the ice
since the wave-induced stress is a function of the wave slope.
To reiterate, a decreasing group velocity results in an increas-
ing wave height and because of the increased wave height,
ice-shoaled waves will result in a greater (than expected from
open water dispersion) stress on the ice leading to fracturing
which might not otherwise occur.

In addition, there are unexplored aspects of phase-
dependent wave dynamics in ice which may appear due to
change of dispersion through (1) altered interaction space for
resonant triad and quadruplet interactions and (2) increased or
decreased steepness of the waves. The steepness may increase
the likelihood that the waves will be unstable possibly leading
to modulational perturbations (nonresonant, quadruplet inter-
actions) or wave breaking, this has been shown to be impor-
tant for waves shoaling on an opposing current (Toffoli et al.
2015).

Conversely, if the wavelength increases and/or the wave
height decreases, then the stress felt by the ice will be less
relative to that expected from open water conditions. In a
coupled wave-ice model (e.g., Williams et al. 2013a, 2013b;
Horvat and Tziperman 2015), it will be imperative to accu-
rately account for the wave-induced stresses on ice.

The shoaling and refraction effects are expected to be the
most important in the vicinity of the ice edge as attenuation
becomes important over long distances. Effects will be less
dramatic along a diffuse wave-ice interface as in the winter ice
expansion of the Arctic MIZ.

4 Measurement of wave dispersion in ice

A number of mathematical models for dispersion of surface
waves in ice have been investigated, and although some of the
closed forms of dispersion relations are simple to write, the
solutions produced can be complex. To verify the solutions
produced by a dispersionmodel, comparison tomeasurements
needs to be performed, but this has proved challenging in
practice. The difficulty is that estimation of the dispersion
requires spatiotemporal information, i.e., colocated measure-
ments of wave period and wavelength. In the following

subsections, visual, remote, in situ, and laboratory observa-
tions of dispersion are summarized and tabulated (Table 1).

4.1 Visual

The account of the chief scientist of the R/V Polarstern, E.
Augstein, was reported by Liu and Mollo-Christensen (1988)
and further expanded on by Broström and Christensen (2008).
Approximately, 560 km from the ice edge, waves of 1m height,
and 18-s period broke up the ice and caused a significant
rafting. The wavelength before the ice broke was reported to
be much shorter than the wavelength in broken ice which mo-
tivated the formulation of the dispersion relation with compres-
sive stress (Liu and Mollo-Christensen 1988).

4.2 Remote sensing: SAR

A number of studies have attempted to use airborne or satellite
synthetic aperture radar (SAR) imagery to observe the change
in wave directional-spectra upon entering ice (Wadhams and
Holt 1991; Liu et al. 1991; Shuchman et al. 1994; Wadhams
et al. 2002; De Carolis 2003;Wadhams et al. 2004). Wadhams
and Holt (1991) found that the wavelength decreased in frazil
and pancake ice in the Chukchi Sea in October. They inverted
the mass loading model to estimate the ice thickness, which
was later found to be overestimated (Wadhams et al. 2004;
Squire 2007). Liu et al. (1991) combined open water buoy
measurements with SAR imagery over compact ice cover,
with an average thickness of 1.5 m and brash ice connecting
floes, to achieve two independent measurements of disper-
sion. For the two cases, they found (1) the peak wavelength
increased from ~150 to ~225 m and (2) the peak wavelength
shortened from ~395 to ~345 m. Comparing to a viscoelastic
model, they found a reasonable agreement for case (1) using a
h = 2 m and depth = 150 m and for case (2) h = 1 m and
depth = 75 m. Shuchman et al. (1994) studied two different
cases (March 1987 and March 1989) in pack ice and a pan-
cake ice tongue with opposing results: lengthening and
shortening, respectively. Wadhams et al. (2002) analyzed five
datasets of frazil-pancake ice, with ground validation in some
cases, and found a consistent decrease in wavelength (see
Wadhams et al. (2002) for an explanation of the various loca-
tions and seasons). De Carolis (2003) found shortened waves
in March in pancake ice from the Odden Tongue. Wadhams
et al. (2004) observed decreased wavelengths in frazil and
pancake ice during April in the Antarctic, and in situ measure-
ments verified the ice parameters inverted from the viscous-
layer model of Keller (1998).

4.3 In situ

Strainmeters, tiltmeters, and seismometers have been used to
determine the elastic properties of ice sheets, typically by
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assuming an elastic (flexural-gravity) dispersion relation (e.g.,
Ewing and Crary (1934), Tabata (1958), and Stein et al.
(1998)). Only a few verify the dispersion relationship itself.
Squire and Allan (1977) calculated the coherence between
three strainmeters at short distances O (10 m) on a 0.5-m thick
sheet of fast ice in Newfoundland. Only in the range of 0.25–
0.33 Hz did wavelength significantly vary from the open wa-
ter relation, matching the longer wavelength prediction of an
elastic model for 0.5 m ice. Marsan et al. (2012) used the
correlation between seismometers deployed near the North
Pole on Arctic pack ice to show the group velocity matched
that of flexural-gravity waves (see their Fig. 7).

In the Antarctic MIZ, Fox and Haskell (2001) mounted two
accelerometers to two elliptic pancake ice floes. The floes
were estimated to be 0.3 and 0.6 m thick, but were not other-
wise characterized. By choosing two closely located positions,
they were able to estimate the propagation speeds of waves
(and hence indirectly the wavelength) in ice by measuring the
frequency spectrum. Fig. 6 shows that the fitted empirical
wavelength is slightly longer for frequencies within the
0.05–0.10-Hz band and then significantly shorter for frequen-
cies from the 0.10–0.16-Hz band and a fitted dispersion rela-
tion gave k ∝ ω2.41. For comparison, the open water relation
gives k ∝ ω2. It is difficult to explain the lengthening of the
low frequencies, but the decrease in wavelength of high fre-
quency waves is essentially consistent with mass loading.7

Sutherland and Rabault (2016) correlated the signals be-
tween nearby accelerometers (<1 peak wavelength) deployed
in fast ice in a fjord in Svalbard (Norway) in March. They
found that the dispersion relation matched that for flexural-
gravity waves until the ice sheet became significantly cracked
at which point the dispersion more closely matched the open
water relation.

4.4 Laboratory

Although there have been a number of experiments in the
laboratory, generalization of results from laboratories is ques-
tionable given the large disparity in scales, for example lab
experiments are limited to very high frequency waves
(>0.40 Hz). Nevertheless, a few of the more salient studies
are summarized here. Newyear and Martin (1999), in experi-
ments with grease ice, found that wavelengths increase ac-
cording to the viscous model of Keller (1998). Sakai and
Hanai (2002), in an experiment with synthetic ice, found that
the dispersion relationship (between 0.6 and 1.7 Hz) varied
between a flexural model and a mass-loading model as a func-
tion of floe length scale. It stands to a reason that this transition
must have been dependent on the relative scales of the wave-
lengths and floe sizes so that at any time the measured disper-
sion relation was not dominated by either the mass loading or
the flexural-gravity terms in the theoretical dispersion relation.
The higher frequencies showed the greatest ranges of celerity
as a function of ice thickness.Wang and Shen (2010b) extend-
ed the experiments in Newyear and Martin (1999) to lower
frequencies and pancakes in grease ice and found the model of
Keller (1998) no longer sufficiently described the dispersion

7 However, Fox and Haskell [2001] did not make this connection: BWhile the
added-mass and ice-sheet models predict dispersion equations with power
laws less than 2, we found that the measured dispersion equation has a power
law with exponent greater than 2.^ Referring to either the statement or the
result, Squire said it was Bperplexing^ in his 2007 review paper.

Table 1 Change of wavelength in the field

Reference Measurement Timing Location Ice type −Shortened,
+lengthened

f (Hz)

Squire and Allan 1977 Strainmeter Jan–March Newfoundland Sheet of fast ice − 0.25–0.33
Liu andMollo-Christensen

1988
Visual report &

ships radar
Winter Weddell sea Pack ice − 0.056

Wadhams and Holt 1991 SAR October Chukchi sea Frazil and pancake − ~0.09
Liu et al. 1991 (case 1) SAR and buoy March Atlantic East of

Newfoundland
O(10 m) floes in brash + 0.10

Liu et al. 1991(case 2) SAR and buoy March Atlantic East of
Newfoundland

O(10 m) floes in brash − 0.06

Shuchman et al. 1994
(case 1)

SAR Spring Fram strait Pancakes to pack ice + ?

Shuchman et al. 1994
(case 2)

SAR Spring Odden tongue Grease and pancake + ?

Fox and Haskell 2001 Floe mounted
accelerometers

June Antarctic Densely packed pancakes +/− 0.05–0.10/0.10–0.16

Wadhams et al. 2002 SAR and buoy Variable Variable Frazil and pancake − Variable
De Carolis 2003 SAR March Odden tongue Frazil and pancake − ?
Wadhams et al. 2004 SAR April Antarctic Frazil and pancake − ?
Marsan et al. 2012 Seismometers Spring North pole Deep pack ice + 0.05–0.20
Sutherland and

Rabault 2016
Accelerometers March Templefjorden,

Savlbard
Sheet of fast ice +/0 0.10–0.20
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and attenuation for the case of pancake ice. Zhao et al. (2015)
inverted the effective viscoelastic parameters of the Wang and
Shen (2010a) model from three different ice types.

5 Discussion

5.1 Models

5.1.1 Implementation in spectral wave models

Third generation, spectral wave models are the workhorses
responsible for operational prediction of sea state, and these
models solve for evolution of wave action, N, in the radiative
transfer equation:

DN
Dt

¼
X S

σ
ð34Þ

The left side is the propagation term and the right side is the
source and sink terms. Consider spectral density, F = Nσ,
which attenuates as a function of distance, x:

F f ; xð Þ ¼ F f ; 0ð Þexp ikxð Þ ð35Þ

substituting in the complex wavenumber

F f ; xð Þ ¼ F f ; 0ð Þexp ix k0 þ iαð Þð Þ
¼ F f ; 0ð Þexp −αxð Þexp ik0xð Þ ð36Þ

On the right hand side, F(f,0) is the spectral density, the first
exponential is the attenuating mode, and the second exponen-
tial is the oscillatory mode. Given the group velocity, Cg, the
attenuation coefficient may be written in terms of the space or
time domain. Writing the attenuation rate as a function of
distance serves as the implementation of an ice Bsource term^,
Sice, on the right hand side of Eq. (34) (Rogers and Zieger
2014):

Sice
F

¼ −2Cgα ð37Þ

Attenuation, α, comes from the imaginary part of the dis-
persion relation, and group velocity, Cg, is derived from the
real part. The change in group velocity informs the propaga-
tion on the left hand side, and results in shoaling and
refraction.

5.1.2 Generalized plate theory

In Fig. 2 the normalized wavenumber goes below the scale on
the y-axis for combinations of high frequencies and thick ice
and similarly in Fig. 3 for combinations of thick ice and high
G. Indeed, in the limit of high frequencies, large thickness, and
high G, the wavenumber approaches infinity, and the wave

velocity becomes unbounded. In response to this issue,
Mindlin (1951) provided a more general plate theory which
included the effects of rotary inertia and shear. The rotary
inertia and shear terms effectively bound the problem and
acted as correction terms. For this reason, it may be of interest
to apply Mindlin’s plate theory in operational models. For
more details, see Mindlin (1951), in particular Fig. 1, and
Meylan and Squire (1995).

5.1.3 Choosing a root

Solving the dispersion relation, particularly for the more com-
plicated viscoelastic models, gives rich solutions with a num-
ber of choices for the root. In the EFS model, for very high
frequencies, >1.0 Hz, errors with the solver (not shown) arose.
In a plot similar to Fig. 5, following a dispersion relation for
constant thickness from low to high frequencies, wavelength
appeared to suddenly increase by many orders of magnitude
(correspondingly, attenuation appeared step-wise). It was dis-
covered that this was an artifact of the numerical solver giving
the wrong root (e.g., see Mosig et al. (2015)) because the
parameters involved were probably outside the validity of
the model (personal communication with V. Squire, 2015).
According to Mosig et al. (2015), who compared three visco-
elastic models, other dispersion models are also susceptible to
these sorts of errors. As corroboration, artifacts of the root
choosing system are apparent Fig. 7. Devising a system for
choosing roots of the complex dispersion relation (e.g., Zhao
et al. (2015)) is an ongoing challenge for those who seek
routine implementation of these models.

5.2 Measurement deficiencies

The measurements of the dispersion relationship in ice are
much fewer than those of attenuation, and hence, empirically,
the dispersion relationship is even less well understood than
attenuation. There are a number of deficiencies in the existing
observations. The ranges of frequencies covered by the obser-
vations have been limited to that of the peak or a small band,
when ideally the whole range of wind-wave frequencies needs
to be characterized for each ice type.

Analyzing SAR imagery for waves is not a trivial endeavor
in itself, in particular the studies ofWadhams and Holt (1991),
Liu et al. (1991), Shuchman et al. (1994) may be compro-
mised by simplified analysis (see discussion in Wadhams
et al. (2002)). To properly calculate a wavenumber spectrum,
a modulation transfer function must be applied, the details of
which are still a matter of intense investigation (Zhang et al.
2010). In addition, the imaging mechanisms may change in
ice (Ardhuin et al. 2015). In many cases, there was no in situ
verification of the open water SAR analysis, and even when
there was, often it was the change in peak wavelength that was
reported. For any estimated spectrum, the resolution of the
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low frequencies is poor; the spatial resolution of the SAR itself
may also be quite low, so that a shift of even one frequency bin
may equate a large change in wavelength. This may, in part,
explain the overestimation of ice thickness from the MLmod-
el (P. Wadhams, personal communication, 2016). Reporting
just the change in peak wavelength is additionally complicat-
ed by the fact that attenuation usually preferentially damps
high frequency waves, leading to a shift in the peak to lower
frequencies unrelated to dispersion.8 If swell has already trav-
eled a long distance from the generation area, an increase of
the wavelength in the wave direction may be expected from
normal velocity dispersion (Snodgrass et al. 1966), but there
will be no coincident change in direction as is expected with
wave-ice interaction.

One major caveat applies to all the observations
reviewed: there were no accompanying current measure-
ments. In deep water, it is widely known that wave-
current interaction causes a change in dispersion and the
associated shoaling and refraction. Implicit to all of the
above studies is the observation of the intrinsic frequency,
or in other words, observing the wave frequency in the
reference frame of the mean currents. The dispersion ob-
served in a Eulerian reference frame in the presence of
currents has an extra term:

ωE ¼
ffiffiffiffiffi
gk

p
þ k⋅U ð38Þ

where k and U are the wavenumber vector and current vector,
respectively. Opposing currents decrease frequencies while
following currents increase frequencies. Future observations
will need to account for currents.

For completeness, wave amplitude also affects dispersion.
According to Stokes theory, which uses an expansion on
steepness as a small parameter, the third order dispersion re-
lation has a dependence on wave amplitude, A (e.g., Whitham
(2011)):

ω2

g 1þ k2A2 þ O kað Þ4
� �� � ¼ k ð39Þ

Meaning that wavelength increases for steep waves, though
the effect is small for ocean waves of typical steepness. Also,
the skewness of waves introduces bound harmonics, these are
waves with frequencies at integer multiples of the fundamen-
tal frequency but traveling at the same speed as the fundamen-
tal ones. These bound waves have been observed to be impor-
tant at very high frequencies, f > 3fp (Leckler et al. 2015). If
dealing with measurements of very steep or very high frequen-
cy waves, one should be cognizant of these effects.

5.3 A picture of the status quo

Due to the difficulty of conducting thorough observations
and the variable nature of ice, the best that can be offered
is a qualitative outlook, far from comprehensive, drawn
from the overlap between theory and measurements. For
the MIZ, over the course of a year starting with the au-
tumn refreeze, ice crystals (frazil ice) form, and conglom-
erate on the surface. With enough frazil, small wavelets
are damped, and the surface appears slick (so-called
grease ice). In the absence of waves, sheets of nilas form.
In the presence of waves, grease ice is shaped into almost
spherical conglomerations which grow into pancake ice
(Wadhams 2000). These pancakes increase in concentra-
tion as one travels from open water into the central pack
ice. This central ice pack is characterized by Bcemented^
first-year pancakes and multiyear floes. As waves enter
the MIZ from open water, the floes may be sparse and
one might expect a decrease in wavelength by simple
mass loading. In the case of grease ice, a viscous-layer
model may be appropriate. Going deeper into the MIZ, as
the concentration of floes increases so does the influence
of other factors such as effective viscosity or elastic prop-
erties of the brash or frazil ice layer in between the pan-
cakes. Eventually the floes will consolidate, forming a
solid layer with strong elastic properties which support
lengthened flexural-gravity waves if the incoming waves
do not attenuate entirely before reaching this point.

The low frequency waves deviate less from the linear dis-
persion relationship and correspondingly attenuate less. It may
be possible for extremely low frequency waves (~25 s) to
propagate great distances, if not all the way through, the cen-
tral Arctic ice pack (Wadhams and Doble 2009; Ardhuin et al.
2016a). Very high frequency waves deviate the most from the
linear dispersion relationship, but they are also more quickly
attenuated such that very high frequency waves do not exist
very far into the MIZ.

Once the ice is more or less solid, the bending of the
ice, induced by incoming waves, may exceed the breaking
stress directly or by fatigue, and the ice breaks apart into
floes which no longer support flexural-gravity waves. The
flexural strength of ice weakens as the temperatures rise
and ice experiences the summer melt. Eventually the MIZ
is extended and pushed northward as more ice is broken
by incoming waves.

These broad, qualitative statements more or less sum up
the state of knowledge regarding wave dispersion process-
es in the Arctic. This descriptive understanding of wave-
ice interaction is well short of what is needed to improve
wave forecasting in ice. Certainly, more sophisticated mea-
surements with an increased sensitivity over larger fre-
quency ranges are necessary. A handful of modern tech-
niques may be suitable for this purpose.

8 For the cases of shortening, this implies even a stronger change in dispersion
than measured, and for the cases of lengthening this implies a lesser change in
dispersion (or none at all).
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5.4 Future prospects

SAR imaging will continue to offer a window in the wave
dynamics in sea ice, but clearly, there is still much more work
to be done to advance the current methods. A promising new
avenue for SAR analysis is the work of Ardhuin et al. (2015)
and Ardhuin et al. (2016b). Without a temporal component,
SAR data will always be inherently limited. Ideally, a mea-
surement of dispersion would have both spatial and temporal
components.

A previously overlooked possibility is the complementary
signals from heave-pitch-roll (e.g., common directional wave
buoys) whose cross-correlation allows the estimation of the
low-order directional moments (Longuet-Higgins et al. 1963;
Collins et al. 2014). Wavenumber as a function of frequency
can be estimated from the autocorrelation of these the same
signals (see discussion of Longuet-Higgins et al. 1963;
Appendix A of Kuik et al. 1988). Denoting Cxx and Cyy, the
autocorrelations of the slope signals in the horizontal plane, Czz

the autocorrelation of the sea surface elevation, and ke the esti-
mated wavenumber:

Cxx þ Cyy ¼ k2eCzz ð40Þ

so that

ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cxx þ Cyy

Czz

s
ð41Þ

ke is commonly used as an alternative to assuming the
open water linear relation in formulating the lower order
directional moments (Long 1980), but it has not typically
been evaluated as a measurement of the dispersion rela-
tion. This is because the motion of a buoy may not exact-
ly follow the ocean surface. In this context, the formula
has been used as a quality control measure by comparing
against the expected open water relation in a so-called
check ratio (Tucker 1989, Tucker and Pitt 2001). A sim-
ilar check relation for displacement buoys has been used
to flag the influence of currents, mooring forces, and bio-
fouling on buoy response (Thomson et al. 2015).

If there is uncertainty about the response of a buoy, then
tracking the change in ke across an array of similar buoys would
at least provide whether waves were shortening or lengthening.
To avoid the issue of buoy response, one could combine a time
series with spatial measurement such as colocated, coincident
time series, and spatial measurement, e.g., a laser rangefinder
and a scanning LIDAR.

The ideal systems formeasuringwavedispersion are natively
spatiotemporal. One such system is stereo-video (e.g. Campbell
et al. (2014)) and another is ship-borne, X-band marine radar
(MR) (Young et al. 1985; Borge et al. 1999; Lund et al. 2014;
Lund et al. 2015). Both of these systems directly measure wave

dispersion (Krogstad and Trulsen 2010), and in principle, the
contribution from ice can be uniquely determined.

A sequence of images is 3-D Fourier transformed into
wavenumber-frequency spectra. In wavenumber-frequency
space, the energy is iteratively fitted to a current-free disper-
sion shell; the occurrence of a deviation of energy from the
dispersion shell indicates the presence of currents. The pres-
ence of a current has a directionally dependent signature,
shifting energy according to the relative angle between the
wave propagation direction and the current direction. Since a
dispersion change due to ice has no directional dependence, it
should be possible to use this method to uniquely determine
the ice induced deviation from an open water dispersion.

There are drawbacks, even with these systems. Marine ra-
dars have limited frequency resolutions, typically up to
0.30 Hz, and stereo-video systems sample a limited spatial
extent of the sea surface which sets a lower limit for k.

Even with a perfect system, a comprehensive measurement
is difficult because of the inherent tradeoffs. At each frequen-
cy band are at least two tradeoffs, (1) between the expected
deviation from open water dispersion (higher frequencies de-
viate more) and the strength of the wave signal (higher fre-
quencies suffer higher attenuation) and (2) between the influ-
ence and presence of ice (increasing effect on dispersion). As
short waves are attenuated, the peak waves become lower in
frequency and deviate less from open water dispersion. To say
it in another way: the short waves which best demonstrate a
change in dispersion are also expected to have a weak or
nonexistent signal due to attenuation. Where the short waves
exist, near the openwater edge of theMIZ, there is less ice and
hence waves are less ice affected.

Measurements of dispersion in ice are a manifestation of the
individual mechanisms of wave-ice interaction and thus, like
attenuation, the effect of these mechanisms are difficult, if not
impossible, to separate. Whereas mechanisms responsible for
attenuation in the direction of wave propagation (reflection,
scattering, turbulence, eddy viscosity, etc.) always lead to a
decrease in energy, the outcomes of the individual dispersion
mechanisms are mixed (i.e., there may be a balance of mecha-
nismswhich increase and decreasewavelength). In otherwords,
it is possible for dispersion to be governed by dynamics that are
altered from open water, yet there is no change in wavelength
for a range of frequencies (i.e., a range where k/kow ≅ 1).
Therefore, a good understanding of the ice conditions must
accompany the wave measurements.

5.5 Ice and unresolved processes

Much of the uncertainty about wave-ice interaction lies not
with our understanding of waves, but with our limited under-
standing of sea ice (see Timco andWeeks (2010)). Howwaves
behave in ice depends on the nature of the sea ice encountered.
Before applying a particular dispersion model, large scale
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characteristics should be known in approximation: is the ice
more like a uniform, thin sheet, or is it a conglomeration of
floes? Are these floes densely packed or spaced out? Are
characteristic floe sizes large or small compared to the char-
acteristic wavelength? Is there a layer of slurry-like frazil ice?
The assumption of ice as a continuum needs to be evaluated as
it may be a gross oversimplification in some cases.

When designing a forecast or hindcast with a spectral wave
model, the character of the ice should lead to the appropriate
dispersion model and inform the values of the model param-
eters. Unfortunately, wave measurements are not typically ac-
companied by mechanical measurements of ice. For large
scale wave prediction, input from remote sensing will be im-
portant. However, there is not yet a detailed understanding of
the relationships (if any exist) between (1) the available re-
mote sensing products (i.e., concentration, thickness, age) (2)
the ice type (e.g., pancake, frazil, grease), and (3) the mechan-
ical properties of each ice type.

There are scenarios inwhich ice defies simple characterization
and the application of the mechanical models discussed in this

investigation is no longer sufficient. This happens with mixed
ice types or when unresolved processes become important.
The viscoelastic model of Wang and Shen (2010a) circum-
vents these scenarios by using an effective elasticity and an
effective shear modulus, i.e., model parameters that would
not result from measuring the mechanical properties of the
ice. In fact, the practice has been to first measure disper-
sion and attenuation, then invert the model to give these
effective parameters (Wang and Shen 2010b; Zhao et al.
2015). On the one hand, it is backwards to invert ice pa-
rameters from the waves instead of determining them from
the ice these parameters ostensibly represent, but on the
other hand, it is a convenient solution to an otherwise ob-
scure problem.

The top part of Fig. 8 shows large waves in relatively small,
uniform pancake ice which are forming in a frazil matrix. The
floes converge and diverge with each wave cycle, bumping
into each other. The mechanical properties of this ice type are
obviously not the same as the mechanical properties of the ice
in the lower part of the figure. In the lower photo, there are

Fig. 8 Top: still shot from a video
of 4mwaves propagating through
pancake ice within a frazil ice
slurry in the Arctic MIZ taken by
author WER during the field
observations for ONR BSea State^
project in fall of 2015 in the
Beaufort Sea. Bottom: still shot
taken from a video of 1–2 m
waves propagating in small floes
with thick slush in between floes
taken by author COC from R/V
Lance (the bow in the left side of
the image) in May of 2016 in the
Barents Sea

Ocean Dynamics



waves propagating in floes, all smaller than the characteristic
wavelength but of various shapes and forms. This ice type
occurs as waves break up the consolidated pack ice during
the summer ice retreat. The remote sensing products which
currently inform wave models would give identical concen-
trations and thicknesses, but clearly there are many more nu-
anced interactions that cannot be determined from concentra-
tion and thickness alone. These interactions are not included
in the simple mechanical models of ice. In both cases, all of
the unresolved processes, including floe on floe interactions,
are wrapped up into effective viscoelastic properties that can
only be inferred by measuring the dispersion and attenuation.

In terms of operational wave models and coupled wave-ice
models, an additional complication time and space scales
which (1) are not adequately sampled by any existing opera-
tional method and (2) may be in violation of slowly varying
assumption necessary for the spectral representation of wave
evolution.

6 Concluding Remarks

Dispersion is one mechanism bywhich wave-ice interaction is
implemented inWavewatch III (Rogers and Zieger 2014), and
understanding wave dispersion in ice, is therefore crucial for
accurate prediction of wave characteristics and the corre-
sponding ice conditions in the polar seas. Wave prediction
currently relies on a small number of mechanical models for
wave dispersion in ice, for which there are very few measure-
ments for comparison. There has yet to be significant evidence
in favor of one dispersion model over another, and different
models will be more or less appropriate for different ice types.
On the other side of the coupled problem, dispersion is the key
to understanding the wave-induced stress felt by ice.

Theoretically, wave dispersion in ice is related to the me-
chanical model of ice. Ice mechanics manifest in the disper-
sion relation as extra terms including mass loading which
shortens the wavelength, elasticity (or flexural-rigidity) which
increases the wavelength, effective viscosity of a layer which
increases wavelength (à la Keller 1998), and dissipation in the
viscoelastic EFS model which is neutral to wavelength. The
net result, shortening or lengthening, depends on the specific
combination of ice properties and frequency in question.
Snell’s law gives refraction (change in wave direction) and
change in wavelength which leads to shoaling (change in
wave height) through conservation of momentum.
Observations were compiled and interpreted in the context
of these theoretical concepts of dispersion.

Actual measurements of the dispersion relation are rare in
the literature. An overall picture starts to emerge when con-
sidering the combined results from the individual case studies
as summarized in Table 1. Loose pancake ice in the MIZ does
not have elastic properties (see Fig. 8), and often a shortened

wavelength (Wadhams and Holt 1991; Wadhams et al. 2002;
De Carolis 2003; this study) was reported. Mass loading is
almost certainly the cause of the shortening although inverting
the ML model ends in an overestimation of ice thickness, so
viscous-layer models have also been applied here (Wadhams
et al. 2002). Conceptually, as the pancakes become compact or
compressed, or the frazil/brash matrix between pancakes be-
comes substantial, viscosity and elasticity could start to play a
role. The literature presents mixed results with both lengthen-
ing and shortening observed (Liu et al. 1991; Fox and Haskell
2001; Wadhams et al. 2004); note, this is not necessarily in-
consistent with the models, indeed Liu et al. (1991) matched a
viscoelastic model to their results, however, dispersion under
these ice conditions is not well understood. Observations of
waves on the Arctic interior ice and on fast ice are generally
consistent with the flexural-gravity model (Squire and Allan
1977; Marsan et al. 2012; Sutherland and Rabault 2016) and
quantitative matches have been found. Remarkably,
Sutherland and Rabault (2016) observed a transition to the
open water relation as the ice sheet fractured, presumably
losing its elasticity.

However, the whole empirical body of literature is a series of
case studies, each of which fall well short of giving a compre-
hensive picture some with contradictory results. A number of
potential problems with the empirical studies are discussed,
including the lack of colocated measurements of surface cur-
rents, the gradient of which also causes deviation from linear
dispersion. Many of these problems could be circumvented in
the future by utilizing a spatiotemporal measurement tech-
nique. Nevertheless, a definitive measurement will be difficult
because of the inherent tradeoff between signal strength and the
signature of dispersion. Just as the problem of wave-ice inter-
action is highly coupled, the way forward must include prog-
ress in our understanding of both waves and their icy medium.
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