

Routine high resolution observation of selected major surface currents from space

SEASAR 200

- Fabrice Collard(1), Alexis Mouche(1), Celine Danilo(1), Bertrand Chapron(2), Jordi Isern-Fontanet(2), Johnny Johannessen(3) and Bjorn Backeberg(4)
 - (1) BOOST Technologies, 115, rue Claude CHAPPE, 29280 Plouzané, France
 - (2) IFREMER, Centre de Brest, 29280 Plouzané, France
 - (3) NERSC, Edvard Griegsvei 3a, N-5059 Bergen, Norway
 - (4) Univ. of Cape Town, Rondebosch 7701, South Africa

Doppler shift contributions

- Observed Doppler velocities = underlying current + background sea state + sea state perturbated by surface current.
- First order : only underlying current + background sea state
 - Hypothesis based on Doppler observation compared to HF radar except in area where tidal current is fast changing due to interaction with bathymetry :

SEASAR 2008

 Second order : sea state perturbated by surface current. Advanced models such as Doprim are needed to take into account modification of wave spectrum by surface current gradients.

CDOP geophysical model function

- First presented at ENVISAT Cal-Val review in 2002, published in JGR 2005 using wave mode at 23° incidence angle.
 - Modeled using tilt+breaking
 - largest influence from the largest steepness (typically in equilibrium with the wind stress)
 - First order : only wind dependance
 - empirical law only based on wind speed and direction relative to radar look

CDOP_23 = f(wind speed/direction)

CDOP geophysical model function

SEASAR 2008

 Now extended to all incidence angles using WSM Doppler grid.

Simple methodology to remove sea state effects

SEASAR 2008

Equatorial Pacific Zone monitoring

Equatorial Pacific Zone monitoring 2D comparisons

Equatorial Pacific Zone monitoring 1D comparisons

Equatorial Pacific Zone monitoring Monitoring the seasonal cycle

First Breakthrough

SEASAR 2008

• Help to the characterization of errors in existing ocean circulation models (MERCATOR) or ocean current derived using altimetry/scatterometry (OSCAR).

Supersites for systematic acquisition of ASAR Wide Swath scenes (400km width)

• Gulf stream (North Carolina)

Agulhas current

SFASAR 2008

NEW : Doppler Centroid Estimation now provided in all ASAR WSM and WSS products

Resolution 10km in azimuth and 5km in range

- Anomaly = measured predicted
- Compensated non-geophysical sources of anomaly :
 - Antenna misspointing (uniform shift)
 - Instrumental bias in the radial direction (radial discontinuities)
 - Doppler estimator bias caused by azimuthal variation fo backscatter (artificial correlation between doppler and sigma0).

CDOP correction

Residual velocities

15

Altimetry derived surface current : 3 days mean

Agulhas main stream velocity • From Sept 1 2007 to Jan 17 2008

Surface drifter velocity (float d378) from the Agulhas Current

SEASAR 2008

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Conclusions

- Large scale surface current now routinely observed by SAR with quantitative estimations of surface current in the radar look direction. Surface current values validated at 100km scale.
- Need for high resolution validation dataset for full resolution validation (less than 10km). HF radar is an option but the range is to small even for SAR image mode.
- CDOP applicable to the C band ATI phase. Concept can possibly be extended to X and L bland.
- Thanks to ESA for now providing systematic wide swath Doppler grid over Agulhas and gulf stream since summer 2007 !