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ABSTRACT

The interaction of internal waves with geostrophic flows is found to be strongly dependent upon the

background stratification. Under the traditional approximation of neglecting the horizontal component of the

earth’s rotation vector, the well-known inertial and symmetric instabilities highlight the asymmetry between

positive and negative vertical components of relative vorticity (horizontal shear) of the mean flow, the former

being stable. This is a strong stratification limit but, if it becomes too low, the traditional approximation

cannot be made and the Coriolis terms caused by the earth’s rotation vector must be kept in full. A new

asymmetry then appears between positive and negative horizontal components of relative vorticity (vertical

shear) of the mean flow, the latter becoming more unstable. Particularly conspicuous at low latitudes, this new

asymmetry does not require vanishing stratification to occur as it operates readily for rotation/stratification

ratios 2V/N as small as 0.25 (the stratification still dominates over rotation) for realistic vertical shears. Given

that such ratios are easily found in ocean–atmosphere boundary layers or in the deep ocean, such ageostrophic

instabilities may be important for the routes to dissipation of the energy of the large-scale motions. The

energetics show that, depending on the orientation of the internal wave crests with respect to the mean

isopycnal surfaces, the unstable motions can draw their energy either from the kinetic energy or from the

available potential energy of the mean flow. The kinetic energy source is usually the leading contribution

when the growth rates reach their maxima.

1. Introduction

Internal waves are often analyzed as perturbations of

a stably stratified fluid at rest. Ocean and atmosphere

are indeed stratified but not at rest. When such situations

occur, instability theory takes over to find out whether

imposed mean flows are stable or unstable to infinitesimal

or finite amplitude perturbations. At sufficiently large

scales the basic state is geostrophic with vertical shear

equilibrated by the slope of the density surfaces. For

vigorous oceanic mesoscale eddies or jets, observations

show vertical variations of isopycnal surfaces on the

order of 500 m over, for example, 50 km or a slope of 1%.

Because the slope is so small, the interaction of internal

waves with mean flows is often studied in the context of

a flat horizontal background stratification. For waves with

frequencies in the range of the Brunt–Väisälä frequency,

particle displacements are nearly vertical, making this

approximation an excellent one. At low enough frequency,

rotation becomes important and the choice of a flat hori-

zontal stratification becomes questionable.

The interaction of a mean vertical shear with internal

gravity waves has a long history [for a review, see Drazin

and Reid (1981)]. In the three-dimensional case, the

wave–mean flow interaction is governed by what happens

at critical layers (Booker and Bretherton 1967; Lindzen

1988). With the addition of rotation, the mean vertical

shear is in thermal wind balance and a sloping stratifica-

tion occurs. The modification of the critical layer condi-

tions caused by rotation was studied by Jones (1967) on

the f plane and Grimshaw (1975) in the general case. The

effect of a sloping stratification on the propagation of

stable internal waves was considered by Mooers (1975)

on the f plane.

More generally, the specific instabilities of waves on

sloping density surfaces fall into two categories. First, for

motions of subinertial frequencies, that is, frequencies much

lower than the inertial frequency f, three-dimensional,

quasigeostrophic waves are found to become unstable
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DOI: 10.1175/JPO-D-11-067.1

� 2012 American Meteorological Society



when the gradient of potential vorticity changes sign, the

source of energy comes from the available mean potential

energy associated with the sloping isopycnals and the

most unstable waves have scales of the order of the

Rossby radius of deformation. The theories formulated

by Charney (1947) and Eady (1949) have been hugely

successful to rationalize the eddy energy containing

scale in both the atmosphere and ocean. The second cat-

egory is symmetric instability (also called slantwise con-

vection), which operates in an ageostrophic regime and

supposes that the perturbations are two dimensional

(uniform along the direction of the mean flow). They were

shown by Stone (1966) to compete in terms of growth

rates with the quasigeostrophic instabilities for low

enough Richardson numbers. Hoskins (1974) showed

them to be a variant of the inertial instability found by

Rayleigh (1917), the necessary condition for instability

amounting to the vanishing of Ertel potential vorticity.

The initial context of application was the atmosphere

and the circumpolar vortex (Ooyama 1966; Charney

1973)—hence the name symmetric for those perturba-

tions independent of longitude. Whether and how such

symmetric waves became unstable was studied by many

authors (Ooyama 1966; Bennett and Hoskins 1979; Xu

and Clark 1985; Sun 1995). Application of the theory has

shifted from the large-scale circumpolar vortex to the

formation of rainbands in mesoscale fronts (Bennett and

Hoskins 1979; Seltzer et al. 1985; and reviews by

Emmanuel 1994; Bluestein 1993). Symmetric instability

in the ocean is starting to be considered an important

process during episodes of convective deep-water for-

mation (Haine and Marshall 1998) and in the surface

mixed layer in the presence of horizontal temperature

gradients (Taylor and Ferrari 2010). It has been recently

invoked by Joyce et al. (2009) to rationalize some of the

mixing events observed in the vicinity of the Gulf

Stream front. The interaction of internal gravity waves

with geostrophic mean flows is important to study in the

large-scale context of the ocean circulation because in-

ternal waves are suspected to be the missing link to ac-

count for the required diapycnal transport and energy

dissipation of the circulation (Wunsch and Ferrari 2004).

There has been a renewed interest in recent years about

the dynamical consequences of a finite angle between the

gravity and the rotation vector abandoning hydrostatics

and the so-called traditional approximation, which ne-

glects the horizontal component of the earth’s rotation.

Convection experiments in the laboratory by Sheremet

(2004) and in idealized numerical experiments by Straneo

et al. (2002) and Wirth and Barnier (2008) point out that

convective plumes tend to be organized along the di-

rection of the rotation axis (and not gravity) even far

into the turbulent regime. Symmetric instability without

making the traditional approximation was addressed by

Sun (1995), who found that it introduced an asymmetry

between positive and negative values of vertical shears

of the mean flow. The usually neglected nontraditional

Coriolis terms were added recently in Stone’s instability

problem by Jeffery and Wingate (2009), who found that

it increased the dominance of symmetric over baroclinic

instabilities in regions of weak stratification, such as the

Labrador Sea.

From the above succinct review, it appears that a unified

treatment of the interaction of internal gravity waves with

vertical and horizontal shear of the mean flow, full repre-

sentation of the earth’s rotation vector, and arbitrary

stratification is still missing. The objective of this paper is to

provide such a unified view in the hope to find out if some

important new process may emerge for a particular com-

bination of the above factors. The previous authors all

point out that a correct representation of the earth’s ro-

tation vector becomes crucial when the stratification is

weak, and it is precisely in this region of parameter space

that some new results will emerge. Even for linearized

problems such a broad scope requires simplifications. First,

the waves are allowed to vary only in the plane normal to

the mean flow thereby filtering out critical layer insta-

bilities, hence the term symmetric in the title of this paper.

Furthermore only short internal gravity waves are con-

sidered so that the vertical and horizontal shears and

stratification of the background state are taken as constant.

Given these assumptions, this paper provides answers

to the following questions:

(i) With the exception of Sun (1995), it is usually assumed

that the meridional component of the earth’s rotation

is negligible for the internal wave–geostrophic mean

flow interaction problem. Does it become important if

at all? Do certain latitudes favor the interaction?

(ii) In symmetric instability, it is often assumed a priori

that the motions lie along mean isopycnal surfaces.

In such a case the energy source can only be the

kinetic energy of the mean flow through the action

of Reynolds’s stresses. However, is this always true

and under which conditions does the available po-

tential energy associated with the sloping back-

ground stratification come into play?

Section 2 provides the central, horizontal vorticity equa-

tion that governs the dynamics of internal gravity waves

on a mean zonal flow. The marginal stability conditions

are found analytically in section 3. It includes the full

dependencies on stratification, latitude, and horizontal

and vertical shears. The question of the energy sources is

discussed in section 4. Section 5 presents maps of the

growth rates in the unstable case and points out the

fundamental importance of the meridional component of
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the earth’s rotation when the stratification is low enough.

This is concluded by a general discussion in section 6.

2. The governing equations

We consider the dynamics of perturbations of a mean

flow in thermal wind equilibrium, with stable stratifica-

tion (Brunt–Väisälä frequency N2 . 0). There is no diffi-

culty and definite conceptual advantage in keeping the full

Coriolis forces, so the traditional approximation of ne-

glecting the meridional component of the earth’s rotation

is not made, suppressing the restriction to shallow water

motions. Because the interest is focused on the high fre-

quency waves, the causes for the existence of baroclinic

quasigeostrophic waves are suppressed by neglecting mean

potential vorticity gradients (beta effect, varying topogra-

phy, and undulation of the isopycnal surfaces) and leaving

aside boundary effects. This constant potential vorticity

case is meaningful only if the scales of the waves are as-

sumed to be smaller than any lateral inhomogeneities

due to rotation, stratification, topography, or mean flows.

Filtering inflection-point-type instabilities requires a short

wavelength approximation; that is, the mean flow will vary

only linearly (horizontally and/or vertically).

The analysis is given here for zonal mean flows with

mean isopycnals sloping in the meridional direction. The

x, y, and z axes are in the eastward, northward, and up-

ward vertical directions, respectively, and the equations

governing the mean flow velocity [U(y, z), 0, 0] are then

fU 5 2
1

r0

›P

›y
(1a)

and

2~f U 5 2
1

r0

›P

›z
1 B, (1b)

implying the generalized thermal wind equation,

(2V � $)U 5 2
›B

›y
(1c)

in which f 5 2V sinf, ~f 5 2V cosf (f is latitude), and

2V 5 (0, ~f , f ) in (1c) is twice the earth’s rotation vector.

The quantity B is the mean buoyancy (52gr/r0), so ›B/›z

is the mean Brunt–Väisälä frequency N2. Since the mean

flow lies along B contours, the buoyancy conservation

equation is also satisfied. Note that Eqs. (1a)–(1c) are exact

in the sense that horizontal or vertical shears of the zonal

flow are arbitrary: (1a)–(1c) are not a small Rossby num-

ber approximation of the Euler equations. The general-

ized thermal wind equation (1c) has been proposed in

a discussion of the equatorial context by Colin de Verdière

and Schopp (1994). Because of its importance for the ocean,

only zonal mean flows are considered here, but note that

this case favors the role of the nontraditional Coriolis terms.

The analysis is restricted to symmetric wave pertur-

bations with no x variation along the mean flow direction.

The linear perturbations in terms of u 5 (u, y, w), p and

b obey the following equations:

›u

›t
1 y

›U

›y
1 w

›U

›z
2 f y 1 ~f w 5 0, (2a)

›v

›t
1 fu 5 2

1

r0

›p

›y
, (2b)

›w

›t
2 ~f u 5 2

1

r0

›p

›z
1 b, (2c)

›b

›t
1 y

›B

›y
1 w

›B

›z
5 0, (2d)

›y

›y
1

›w

›z
5 0. (2e)

The terms at the origin of the present work are the ~f

Coriolis terms, the shear terms in (2a), and the advection

through the lateral buoyancy gradient in (2d). This last

term is usually considered insignificant for internal waves

but, as argued previously, this is an impossible assump-

tion to defend for quasi-horizontal waves. Because of

(2e), a streamfunction can be introduced for the pertur-

bations velocities y and w,

y 52
›C

›z
w 5

›C

›y
.

The equation for the x component of vorticity can be

obtained by cross differentiation of (2b) and (2c),

›§x

›t
5 (2V � $)u 1

›b

›y
: (3)

The zonal vorticity component §x can change through

tilting of the earth’s vorticity by the shear of the pertur-

bations and by buoyancy torques. Time derivation of (3)

and elimination of u and b with the help of (2a) and (2d)

and use of (1c) provides the equation:

›2§x

›t2
1 2V � $(Za 3 u � i) 2

›y

›y
(2V � $U) 1

›w

›y

›B

›z
5 0,

(4)

where

Za 5 0, Zay 5 ~f 1
›U

›z
, Zaz 5 f 2

›U

›y

� �

is the mean absolute vorticity vector and i the zonal unit

vector. In the following, the terms ›U/›z and 2›U/›y
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will be designated horizontal and vertical relative vortic-

ity, respectively (instead of vertical and horizontal shear).

After some algebra, Eq. (4) can be rewritten in terms of

the sole variable C:

›2

›t2
=2C 1 ~f Zay 1

›B

›z

� �
›2C

›y2
1 fZaz

›2C

›z2
1 2fZay

›2C

›y›z
5 0.

(5)

When mean flow shears are set to zero, the first three

terms of (5) are readily identified with those governing

the dynamics of mixed inertial–internal gravity waves

with a flat background stratification (Gerkema et al.

2008). When geostrophic mean flow shears and sloping

isopycnal surfaces are considered for the background

state, two modifications occur in the governing equation

of inertial–internal gravity waves. First, absolute vor-

ticity appears as ~f 2 / ~f Zay in the second term and

f 2 / fZaz in the third. The prefactor of the fourth term

(the mixed y and z derivative) f ( ~f 1 ›U/›z) shows that

the term exists also under the traditional approximation

(provided the background state is in thermal wind bal-

ance). Its influence on the stability properties of inertial–

internal gravity waves will be shown to be determinant.

Equation (5) first appeared in Hua et al. (1997).

3. The dispersion relation and the marginal
stability condition

Given the localness assumption, Eq. (5) is a constant

coefficient partial differential equation whose solu-

tion in terms of waves can be obtained by inserting

C 5 Re[C
0
ei(ly1mz2vt)], yielding the dispersion relation

v2 5
( ~f Zay 1 ›B/›z)l2 1 ( fZaz)m2 1 2fZaylm

l2 1 m2
. (6)

This dispersion relation has appeared in Ooyama (1966),

Hoskins (1974), Mooers (1975), and Xu and Clark (1985)

under the traditional f-plane approximation and in ab-

sence of vertical relative vorticity. The present version

however does not make the traditional approximation of

neglecting the meridional component of the earth’s ro-

tation vector. Sun (1995) has considered this same prob-

lem, but his Eq. (23) has a different factor in the last term

of (6) whose origin is connected to a lack of consistency in

the dynamics because that author makes the traditional

approximation for the background state but not for the

waves. Introducing the angle u between the wavenumber

vector and the y axis allows (6) to be rewritten as

v2 5 ~f Zay 1
›B

›z

� �
cos2u 1 fZaz sin2u 1 fZay sin2u.

(7)

As for classical inertial or internal gravity waves, the

frequency depends only on the orientation of the wave-

number vector so that the waves are fully anisotropic. In

the absence of shear, the frequencies are bounded

(Gerkema et al. 2008), but no such conclusion can be

reached when a mean flow is present because each of the

coefficients in (7) may become negative for sufficiently

strong shear. The dispersion relation can be rewritten

nondimensionally with v9 5 v/2V:

v92 5 cos2f(1 1 m22 1 m21Ri21/2) cos2u

1 sin2f(1 1 Roz) sin2u

1 cosf sinf(1 1 m21Ri21/2) sin2u. (8)

Three well-known adimensional numbers are introduced

in (8), namely the Richardson number Ri 5 N2/(›U/›z)2

and the Rossby number Roz 5 (2›U/›y)/(2V sinf), which

measure the vertical relative vorticity against that of the

earth and a latitude-dependent parameter m 5 2V cosf/N,

which measures rotation against stratification. Note that

the term involving Ri1/2 in (8) is defined to be positive or

negative according to the sign of ›U/›z. The expression

(8) is put under the form

v92 5 b cos2u 1 a sin2u 1 d sin2u. (9)

By writing ½(b 2 a) 5 r cosl and d 5 r sinl, (9) can be

rewritten as

v92 5 r cos(2u 2 l) 1
1

2
(b 1 a). (10)

If a 1 b . 0, the frequency range of the waves is simply

[2r 1 ½(b 1 a); 1r 1 ½(b 1 a)]. When the lower bound

2r 1 ½(b 1 a) . 0, the solutions of (5) are periodic

waves modified by the presence of the shear of the mean

flow. If the lower bound vanishes, the waves are neutral

to become unstable when it becomes negative.

If a 1 b , 0, there is at least one value of u (5l/2 1

p/4) for which the rhs of (10) is negative; therefore, the

flow is always unstable.

Note that Re(v9) is zero at the marginal state, a result

shown by Hua et al. (1997) to derive from the self-adjoint

property of the spatial operator in (5). There is therefore

an exchange of stability from periodic waves to a non-

oscillatory flow. From the definition of r, it is not difficult

to show that the steady marginal flow occurs for the two

conditions, ab 5 d2 and a 1 b 5 0. After some algebra,

the condition ab 5 d2 becomes

Roz[mRi1/2 1 (1 1 m2)Ri] 1 (Ri 2 1 2 mRi1/2) 5 0.

(11)
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Note that the reference to latitude now appears only

through Roz and m. The parameter m summarizes the in-

fluence of the meridional component of the earth’s rota-

tion vector, whose role will therefore be maximized at low

latitudes and low stratification. Background Brunt–Väisälä

frequencies for the lower atmosphere or ocean lead to

values of m O(1022) or O(1021), respectively; that is,

stratification dominates rotation, which indeed gives

credit to the traditional approximation. Of course, this

cannot be true in regions where convective or mechan-

ical mixing has eroded the stratification. Finding out the

effects of a varying stratification in (11) is not convenient

because both Ri and m vary with N and it is better to use

Roy 5
›U/›z

2V cosf

instead of Ri. This second Rossby number Roy measures

the horizontal (meridional) relative vorticity against that

of the earth. The bulk of the kinetic energy of observed

flows in the ocean is associated with balanced flows for

which the vertical Rossby number Roz is smaller than

one. By contrast, observed vertical shears show that this

horizontal Rossby number Roy can be much larger than

one. It can be expressed readily in terms of Ri and m as

Ro
y

5 m21Ri21/2 so that (11) becomes

Roz(m22 1 Roy 1 1) 1 [m22 2 Ro2
y 2 Roy] 5 0.

(12)

The complicated relations (11) or (12) have a rather

simple origin. Let us complete (3) and write the govern-

ing equations for the y and z vorticity components as

›§y

›t
5 (Za � $)y,

›§z

›t
5 (Za � $)w. (13)

Since the vortex stretching terms vanish for the marginal

state, the velocity must be constant in the direction of the

absolute vorticity vector Za. Furthermore, the buoyancy

equation (2d) requires the velocity vector to lie along

mean isopycnal surfaces in steady flow. Then, from con-

tinuity the velocity can vary only in the direction normal

to these surfaces. For a nontrivial flow to be possible, the

absolute vorticity vector must also lie along the isopycnal

surfaces:

Za � $B 5 0. (14)

However, Z
a
� $B is the Ertel potential vorticity of the

mean state, which has to be zero for a neutral perturba-

tion to exist. From the previous expression of Za and use

of (1c), it can be shown that the zero potential vorticity

(PV) condition (14) leads precisely to (11) or (12). The

marginality condition (11) involves the three independent

parameters Ri, Roz, and m [or the combination Roy, Roz, m

in (12)], making the conditions of instability rather difficult

to extract. The analysis that is performed next allows one

to explore the sensitivities to stratification, rotation, mean

shears, and latitude.

a. Strong stratification: m� 1

If m 5 0, the effect of the horizontal component of the

earth’s rotation disappears altogether and (11) simplifies to

Roz 5 (21 1 Ri21)

or

Ri 5
1

Roz 1 1
, (15)

which is the marginal symmetric instability condition

discussed by Bluestein (1993) and Emmanuel (1994).

Note that the condition involves only the square of ver-

tical shear through Ri, and the instability is therefore

independent of its sign. In this limit of strong stratifica-

tion, the marginality condition (15) reduces to Ri ’ 1 for

balanced, quasigeostrophic flows (Roz � 1), the well-

known condition for symmetric instability (Stone 1966).

By using (1c), this condition can also be expressed as

a condition on the mean isopycnal slope s:

s 5 2
›B/›y

›B/›z
’ f /NRi21/2 (16)

so that the marginality condition Ri ’ 1 also means that

the critical slope jsj is equal to jfj/N or equivalently that

the Burger number ( f 21Ns)2 is unity. In the Rossby

adjustment problem the radiation of inertial gravity

waves is called for to explain how the scales of quasi-

geostrophic motions adjust to the internal Rossby radius

of deformation. Here, by contrast, the same O(1) Burger

number end state is found for reasons associated with

the marginal stability of the internal gravity waves

themselves.

When horizontal and vertical relative vorticity are

present, the instability depends very much on the sign of

vertical relative vorticity since Ri greater (less) than one is

required for negative (positive) vertical relative vorticity,

respectively. Hence, a mean flow with positive vertical

relative vorticity is more stable than one with negative

vertical relative vorticity. With such an instability oper-

ating in the ocean or atmosphere (and mean flows adapt-

ing to marginal conditions), the isopycnal slopes given by

(16) are expected to be less for negative than for positive
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relative vorticity and the same will be true of the associated

flows from (1c).

In cases of vanishing horizontal relative vorticity or very

large stratification (Ri / ‘), the marginality condition

(15) becomes simply Roz / 21, the inertial Rayleigh in-

stability limit for horizontal flows for which the vertical

absolute vorticity Zaz vanishes. Introduced for homo-

geneous fluids, inertial instability is recovered in the

strong stratification limit. The vertical velocities become

very small and the second term of the dispersion relation

(7) then dominates as u / p/2.

The exact relation (11) is illustrated in Fig. 1 for typical

atmospheric (2V/N 5 0.01) and oceanic cases (2V/N 5

0.1) at 458 latitude. For the oceanic case, a small sensitivity

to the sign of vertical shear (through the sign of Ri1/2), and

hence to the meridional component of the earth’s rota-

tion, already appears.

b. From strong to weak stratification

Stratification is weak in boundary layers, in the lower

atmosphere when gravitational convective instability

has eroded the stratification or in the surface oceanic

mixed layer. It is also weak in polar regions or the deep

ocean. The relation (12) between Roz and Roy is shown

in Fig. 2 for three values of 2V/N 5 (0.01, 0.1, 1) at 458

latitude. The important stability differences of positive

and negative vertical relative vorticity and the inertial

stability limit recalled previously stand out for the

smaller values of 2V/N. When 2V/N (and therefore m)

is not so small however, the stability domain changes

completely, and it becomes easier for a flow with posi-

tive vertical relative vorticity to become unstable, pro-

vided the horizontal relative vorticity (Roy) is large

enough. Figure 3 (a zoom of Fig. 2c) reveals clearly this

reduced domain of stability when 2V/N 5 1. The

structure of the marginal curve in Roz–Roy space can be

rationalized as follows. The first term in (12) vanishes for

Roy 5 2(1 1 m22) so that Roz / ‘, giving the vertical

asymptote in Fig. 3. If, instead, Roy / ‘, then Roz 5

Roy 2 m22, giving the second oblique asymptote. Note

that Roz 5 Roy means that (2V � $)U 5 0, which implies

a flat background stratification from (1c). The first bis-

sectrix in Fig. 3 therefore separates two regions with

mean buoyancy B decreasing (increasing) poleward in

FIG. 1. The marginal curves Roz as a function of jRi1/2j from (11) at a latitude f 5 458 for two

stratifications, (a) 2V/N 5 0.1 and (b) 2V/N 5 0.01. Black (dashed) curves indicate positive

(negative) horizontal relative vorticity. When Ri is very large, the instability occurs as inertial

instability (Roz , 21). As Ri decreases, the horizontal shear required for instability decreases

but still requires negative vertical relative vorticity (Roz , 0). As Ri , 1, flows with positive

vertical relative vorticity (Roz . 0) become unstable as well. Although stratification dominates

rotation in these examples, an asymmetry between positive and negative horizontal relative

vorticity is already apparent in (a).
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the right (left) part of the figure. Further study of (12)

shows the existence of two extrema. The minimum Roz 5

21 for Roy 5 21 corresponds to the condition of inertial

instability when the middle term dominates in the dis-

persion relation (7) and the unstable motions are quasi

horizontal. We have already seen in section 3b that the

behavior around this local minimum dominates the dy-

namics for a large domain of Roy values when m is small.

However, there is also a maximum Roz 5 2(1 1 4m22),

which occurs for Roy 5 2(1 1 2m22), but it can be

shown to be irrelevant for the stability boundary. As

shown previously, when a 1 b is negative, the flow is

always unstable, and this marginal condition written in

terms of Roz and Roy is

Roy 1 1 1 m22 1 tan2f(1 1 Roz) 5 0. (17)

The straight line (18) goes through the point of co-

ordinates Roy 5 2(1 1 m22), Roz 5 21 and is always

above the maximum, so the whole half-plane Roz # 21 is

always unstable. Therefore, when m 5 O(1) (stratification

equals rotation), the stable region in Fig. 3 is limited by the

two asymptotes: the vertical one at Roy 5 2(1 1 m22) and

the oblique one at Roz 5 Roy 2 m22, and only that part of

the curve (12) above the minimum Roy 5 21, Roz 5 21.

The interplay of stratification and horizontal and

vertical relative vorticity on the marginal stability of

zonal jets can then be summarized as follows.

1) For positive relative vertical vorticity (Roz . 0), the

stability domain shrinks as the stratification weakens.

The flow may become unstable for sufficiently large

positive or negative horizontal relative vorticity.

2) For zero relative vertical vorticity (Roz 5 0), the

flow is stable in the interval 21/2 2 (1/4 1 m22)1/2 #

Roy # 21/2 1 (1/4 1 m22)1/2. The huge stability

interval for strong stratification (m � 1) shrinks

asymptotically to the small interval 21 # Roy # 0 for

low stratification (m� 1).

3) For negative relative vertical vorticity (Roz , 0),

there remains a stability island (connected to the

FIG. 2. The marginal curves Roz as a function of Roy at a latitude f 5 458 for (a) 2V/N 5 0.01, (b) 2V/N 5 0.1, and

(c) 2V/N 5 1. The domain of stability lies above the black curves; its reduction as the stratification decreases from

(a) to (c) reveals the growing influence of the meridional component of the earth’s vorticity. The dotted lines in (c)

refer to the asymptotes described in the text.
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above) that shrinks as m increases. Here Roz must be

greater than 21 (obtained for Roy 5 21) for the flow

to be stable. Outside of this small island, the flow is

unstable.

In conclusion, the reduction of the domain of stability as

the stratification decreases shows clearly that the addi-

tion of the meridional component of the earth’s rotation

vector is favorable to the development of the instability

of internal waves in zonal shear flows.

The existence of the stability boundary created by

the vertical asymptote in Figs. 2c and 3 has a rather

simple physical explanation because the condition

Roy 5 2(1 1 m22) becomes, in dimensional form,

~f Zay 1 N2 5 0, (18)

a condition on the y component of absolute vorticity to be

equal to 2N2/~f . When N / 0, this is nothing but inertial

Rayleigh instability but now with respect to the vanishing

of the meridional component of absolute vorticity. The

flow is still stratified but in the lateral (y) direction. The

perturbations involve nearly vertical crests as the first

term in the dispersion relation (7) dominates as u / 0.

The unstable perturbations are made of sheets of vertical

motions aligned along the front. There is no preferred

meridional scale to control the distributions across the

front because sheets of ascending or descending motions

are independent of each other since the flow is vertically

nondivergent. This occurrence is possible of course only if

the Coriolis forces caused by the horizontal component of

the earth’s rotation are kept in the dynamics. Such a pa-

rameter regime could be met in oceanic or atmospheric

boundary layers when vertical stratification has first been

eroded by a gravitational (convective) instability or tur-

bulent mixing to reduce the value of N. A decrease of

zonal velocity of only 0.15 m s21 over a 1-km height is

a mean vertical shear that is already supercritical at the

equator. This interaction between zonal and vertical ve-

locities is an inertial instability that feeds on the negative

vertical shear of the mean zonal flow.

The existence of the stability boundary at the second

oblique asymptote, Roz 5 Roy 2 m22, can be shown to be

equivalent to the condition 2V �$B 5 0, that is, the special

case in which the earth’s rotation vector V is parallel to

the isopycnal surfaces (which then slope upward in the

poleward direction). With this condition and thermal

wind (1c), the Ertel potential vorticity becomes 2f 21

(›yB)2. Because it is negative, the mean flow is always

unstable in such a case.

c. From mid to low latitudes

For the case of strong stratification (m � 1), the de-

pendence on latitude of the marginal condition is cap-

tured accurately by the Rossby number Roz and the

inverse nature of the relationship between Roz and Ri in

(15). Reasoning from Fig. 1, suppose that the mean flow

is neutral at a given latitude. Keeping constant the hor-

izontal shear, the Rossby number jRozj grows as f de-

creases. Negative (positive) vertical relative vorticity is

then destabilized (stabilized) as f decreases. Hence,

higher (lower) Ri [meaning less (more) horizontal rel-

ative vorticity] is then required to keep mean flows with

negative (positive) vertical relative vorticity near mar-

ginality. It is difficult to assess whether this conclusion

remains valid for lower stratification because of the

latitudinal dependence of the three adimensional num-

bers in (12). Figure 4 illustrates the relation (12) recast in

term of horizontal shear and vertical shear at three lat-

itudes (458, 108, and 18) for the fixed value 2V/N 5 0.25.

The shape of the stability domain (similar to that in Fig. 3)

shows readily that, as in the previous case, flows with

negative (positive) vertical relative vorticity are desta-

bilized (stabilized) at lower latitudes. Recall that, when

m is not small, the domain of stability is structured by

Roy ’ 2(1 1 m22), Roz ’ Roy 2 m22, and Roz $ 21.

The last condition implies that instability can occur for

very small values of negative vertical relative vorticity

when the latitude f goes to zero (see Fig. 4). The flow

can also become unstable for modest positive relative

vorticity for negative Roy around 2(1 1 m22). For large

positive horizontal relative vorticity, however, the situ-

ation is different. If, for instance, Roy is much larger than

1 and m22, then the marginal condition (12) reduces to

FIG. 3. The marginal curves Roz as a function of Roy (vertical

shear) at a latitude f 5 458 for 2V/N 5 1 (so that m 5 221/2). The flow

is stable above the black curve. In this zoomed version of Fig. 2c,

the vertical asymptote (bold dashed) obeys Roy 5 2(1 1 m22) 5

23, and the oblique one (bold dashed) obeys Roz 5 Roy 2 m22 5

Roy 2 2.
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Roz ’ Roy. (19)

When recast in terms of horizontal and vertical shear,

(19) becomes

2
›U

›y
’ tanf

›U

›z
. (20)

If ›U/›z is fixed and the latitude f goes to zero, then

›U/›y goes to zero and the domain of stability in Fig. 4

becomes asymptotic to the whole of the first quadrant.

Therefore, a flow with positive vertical relative vorticity

can remain stable at the equator for sufficiently high

(positive) values of horizontal relative vorticity. This

extension of stability agrees with inertial Rayleigh in-

stability.

4. Dispersion relation and energetics

The dispersion relation (6) is first illustrated for rather

strong stratification, strong vertical shear, and no hori-

zontal shear in Fig. 5. The frequency being invariant to

wavenumber changes k to 2k, so the locus of constant

frequency in l–m space is symmetric with respect to the

origin and only the half space (m . 0) is shown. Nearly

horizontal wavenumbers (vertical wave crests) are sta-

ble with frequencies bounded by N. As the wavenumber

orientation increases, the frequency decreases rapidly at

first and vanishes for some critical nearly vertical ori-

entation and a sector of instability opens. The maximum

growth rate reaches 0.6, in units of 2V. The property that

the frequency of internal waves does not depend on

scale but only on orientation extends to the unstable

wave: only particular wave crests angles are selected.

Scales are arbitrary as long as they are small compared

to the mean flow scales, the major working hypothesis

here. The unstable sector is not symmetric with respect

to the l 5 0 axis but is centered around the direction of

the mean buoyancy gradient. Unstable wave crests can

show more or less tilt than the mean isopycnal surface

indicating a variety of energy transfers. In the case

shown here, the maximum growth rate is found for wave

displacements nearly along the mean isopycnal surface.

When the frequency is real (and nonzero), the group

velocity is normal to k and its value (1/jkj)›
u
v shows that

it points downward everywhere for m . 0 (upward for

m , 0). Right at the stability boundary the group velocity

is not defined, but the largest group velocities are found

FIG. 4. The marginal curves for three latitudes for 2V/N 5 0.25. Horizontal relative vorticity

(›U/›z)/2V is along the horizontal axis of the figure (vertical relative vorticity (›U/›y)/2V is

along the vertical axis). Negative vertical relative vorticity flows destabilize more easily as the

latitude decreases because the critical value become very small. By contrast, the domain of

stability of positive vertical relative vorticity expands at lower latitudes. As the equator is

approached, a negative horizontal relative vorticity can still destabilize a positive vertical

relative vorticity flow [if Roy , 2(1 1 m22)], whereas a positive horizontal relative vorticity

cannot (the whole of the first quadrant above becomes stable).
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on the stable side of that boundary in Fig. 5. Neighboring

stable waves can quickly send a signal (near horizontally

here) of the existence of the nearby existence of an

unstable region.

The consideration of energetics is essential to find the

physical nature of the instability. To derive the energy

equation, the momentum equations (2a)–(2e) are multi-

plied by u and averaged over a wavelength (an operation

indicated by the brackets) to obtain

›tKE 5 2huyi›yU 2 huwi›zU 1 hbwi, (21)

with KE 5 ½hjuj2i the perturbation kinetic energy per

unit mass. Similarly, the buoyancy equation is multiplied

by b and averaged to obtain

›tPE 5 2hbyi›yB/›zB 2 hbwi (22)

with the perturbation potential energy

PE 5
1

2
hb2i/›zB.

Adding (21) and (22) gives the equation for the pertur-

bation total energy E 5 KE 1 PE:

›tE 5 2huyi›yU 2 huwi›zU 2 hbyi›yB/›zB. (23)

Choose a real unstable wave of the form

c 5 (c0eiu 1 c0
*e2iu)ev

I
t,

where u 5 ly 1 mz. Values of u, y, w, b, and the wave

correlations that occur in (24) can be computed to be

huyi 5 m(mZaz 1 lZay)A/vI

huwi 5 l(mZaz 1 lZay)A/vI

hbwi 5 l(m›yB 2 l›zB)A/vI

hbyi 5 2m(m›yB 2 l›zB)A/vI

KE 5
1

2
m2 1 l2 1

(mZaz 1 lZay)2

v2
I

 !
A

PE 5
(m›yB 2 l›zB)2

›zB
A/2v2

I

in which A 5 2jc0 j
2e2v

I
t. To identify the various energy

contributions to the growth rates vI, it is best to divide

the various terms in (23) by the total energy E since the

sum of the various energy fluxes on the right-hand side

becomes simply 2vI. The results are shown in Fig. 6 for

the parameters of the previous case. If umax is the

wavenumber orientation of the maximum growth rate,

PE dominates for u . umax and KE dominates for u #

umax. Furthermore, the term involving the buoyancy flux

hbyi dominates the energetics for u . umax and the term

involving the huwi Reynolds stress dominates for u #

umax. For u . umax, the wave displacements occur at an

angle less than the mean isopycnal and conversion of

mean potential energy is possible. For u # umax, the

mean kinetic energy source associated with the mean

vertical shear becomes the primary energy flux. In the

instability sector of Fig. 5, the wavenumber directions to

the left of $B are caused by a transfer of mean potential

energy, whereas those to the right are caused by a transfer

of mean kinetic energy. When negative (positive) vertical

relative vorticity is added, a positive (negative) contri-

bution of mean kinetic energy fluxes also occurs in

agreement with inertial instability. If the focus is on the

maximum growth rate, the dominant contributor is the

mean kinetic energy transfer. It occurs for a direction

close to $B, justifying the hypothesis of symmetric in-

stability that assumes fluid motions along isopycnal

surfaces. However, as the stratification weakens (with

larger m), the energy transfer to the unstable wave be-

comes more equipartitioned between mean kinetic and

mean potential energy fluxes.

As a second example, consider the instability that oc-

curs at low latitudes for lower stratification, strong neg-

ative horizontal relative vorticity, and no vertical relative

vorticity in Fig. 7a. The unstable sector is now very large.

The growth rates are strong ;4 (in 2V unit) and the max-

imum now occurs for nearly horizontal wavenumbers

FIG. 5. Constant frequency locus in l–m space with real (imagi-

nary) frequency drawn with solid (dotted) curves. The frequencies

are nondimensionalized by 2V. The blue lines indicate zero fre-

quency and form the boundary of the unstable sector. The red line

marks the direction of $B. Parameters are f 5 458, 2V/N 5 0.05,

›zU/2V 5 230, and Roz 5 0.
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(or vertical wave crests). The source of instability comes

entirely from the mean kinetic energy (not shown). Just

changing the sign to positive Roy in Fig. 7b shows pro-

found modifications: the unstable sector is much reduced

and the growth rates are a factor of 10 weaker than in the

previous case. Note that, in contrast to the two previous

cases, the direction of $B is now within the stable sector.

The unstable waves have displacements directions that

are always less inclined than the mean isopycnal surfaces

and the mean potential energy flux is positive. Both mean

kinetic and mean potential energy fluxes contribute to the

instability.

5. Growth rates

Of course, only the growth rates allow judgment of the

strength of the instability and of its geophysical importance.

Maximum growth rates are easily obtained from (10). They

vary with the three adimensional numbers Roz, Roy, and

the stratification parameter m, all of which depending on

latitude. These dependencies are shown in a series of maps

with the maximum growth rates given in 2V units.

a. Variation with horizontal relative vorticity Roy

The Rossby number Roy (a measure of horizontal

relative vorticity) is the major parameter allowing the

results of this paper to be discussed. Figure 8a shows the

increase of the growth rate with jRoyj at midlatitude

(458) for several values of 2V/N. Even though the vertical

relative vorticity vanishes (Roz 5 0), large enough values

of jRoyj allow the instability. The threshold values of Roy

are large when stratification dominates rotation and the

growth rates are less than O(1). As the stratification de-

creases, however, the instability becomes very efficient—

both in terms of the value of the growth rates (an order of

magnitude stronger) and of the reduction of the stability

interval along Roy. For the same parameter values but at

equatorial latitudes (58), Fig. 8b shows a dramatic change.

The growth rates are now much smaller than in Fig. 8a ex-

cept for negative Roy and reduced stratification (2V/N 5

0.25)—an indication of a powerful instability favoring

negative horizontal relative vorticity.

b. Variation with vertical relative vorticity Roz

The influence of vertical relative vorticity on the pre-

vious picture is illustrated by showing maps of the growth

rates in Roy–Roz space, Figs. 9a and 9b giving the growth

rates at midlatitude (458) and equatorial latitude (58),

respectively, for a case of strong stratification 2V/N 5

0.05. Figure 9a strengthens quantitatively what has been

said before about the instability favoring strong negative

FIG. 6. Energy fluxes as function of the wavenumber vector orientation u for parameters of

Fig. 5. The thin red line marks the direction of $B. (a) Kinetic energy fluxes: 2huwi›zU

(dashed), hbwi (dashed–dotted), and total (blue). (b) Total energy fluxes: 2huwi›zU (dashed),

2hbyi›yB/›zB (dashed–dotted), and total (blue).
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vertical relative vorticity. Unstable jets with positive ver-

tical relative vorticity need to be associated with very large

values of horizontal relative vorticity Roy to exhibit pos-

itive growth rates as well. The growth rate decreases

markedly at low latitudes but, of course, the critical value

of the required horizontal shear becomes also rather

small with f. For weaker stratification 2V/N 5 0.25 and at

midlatitudes, jets with positive vertical relative vorticity

can exhibit large growth rates for Roy values as small as

O(5) in Fig. 10a. The asymmetry between positive and

negative values of Roy is still rather modest, but it dom-

inates the low-latitude picture in Fig. 10b. The growth

rates are small for positive Roy to become an order of

magnitude larger for negative Roy. The condition (19)

or Roy 5 2(1 1 m22) becomes relevant to rationalize

the presence of these very strong growth rates. Note

that the influence of the value of the vertical relative

vorticity (Roz) becomes negligible in this region of

parameter space.

c. Variations with latitude

Of course, for applications to the ocean or atmosphere,

it is important to find out for which values of shears and

stratification the zonal jets can become unstable, as the

results are strongly latitude dependent. The variation

of the growth rates with latitude is shown in a series of

maps in Figs. 11 and 12. Figure 11 show the variations in

FIG. 7. Constant frequency locus in l–m space: real (imaginary) fre-

quency shown by solid (dotted) curves. The frequencies are adimen-

sionalized by 2V. The blue lines indicate zero frequency and form the

boundary of the unstable sector. The red line marks the direction of

$B. (a) Parameters are f 5 58, 2V/N 5 0.05, ›zU/2V 5 230, and

Roz 5 0. (b) Parameters as in (a), but ›zU/2V 5 130.

FIG. 8. Growth rates (in 2V units) against Roy (horizontal relative

vorticity) for Roz 5 0 (no vertical relative vorticity) and 2V/N 5

0.015 (dashed–dotted), 2V/N 5 0.05 (dashed), and 2V/N 5 0.25

(solid). Latitudes are (a) f 5 458 and (b) f 5 58. As the stratifi-

cation decreases, the instability interval and the growth rates in-

creases. At midlatitudes in (a), the growth rates depend weakly on

the sign of Roy as the diagram is nearly symmetric. At low latitudes

and low stratification, a major asymmetry appears with negative

horizontal relative vorticity generating the largest growth rates.
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latitude–horizontal relative vorticity (›U/›z)/2V param-

eter space for strong stratification with negative vertical

relative vorticity (2›U/›y)/2V 5 20.25 kept constant. For

strong stratification, the growth rates decrease as the

latitude decreases, but at the same time the stability

boundaries merge at low latitudes and the flow is then

always unstable for latitudes less than 158. These are

symptoms of the effect of the vertical component of

absolute vorticity. For weaker stratification, the growth

rates become much stronger than previously and the

asymmetry between positive and negative Roy stands

out at low latitudes. Only the presence of the horizontal

component of the earth’s vorticity and the control by

the horizontal component of the absolute vorticity can

explain this effect.

Finally, the combined effect of stratification and lati-

tude is shown in Fig. 12 for two values of horizontal

relative vorticity (›U/›z)/2V 5 115 and 215 and con-

stant vertical relative vorticity as previously. When the

horizontal relative vorticity is positive (Fig. 12a), growth

rates increase as stratification weakens but saturate for

FIG. 9. Growth rates (in 2V units) for a strong stratification 2V/N 5

0.05 in Roz–Roy space (a) at latitude f 5 458 with contour interval 5

0.2 and (b) at latitude f 5 58 with contour interval 5 0.1. The bold

curve is the marginal (zero frequency) stability condition (12). The

classical inertial stability limit of vanishing vertical absolute vorticity

component or Roz 5 21 dominates the picture. This implies strong

negative vertical relative vorticity for instability at midlatitudes in

(a). At low latitudes in (b), the flow can now be unstable for very

small negative vertical relative vorticity as f is small, but note the

association with smaller growth rates.

FIG. 10. Growth rates (in 2V units) for a weak stratification 2V/N 5

0.25 in Roz–Roy space (a) at latitude f 5 458 with contour interval 5

0.5 and (b) at latitude f 5 58 with same contour interval. The bold

curve is the marginal (zero frequency) stability condition (12). The

vertical asymptote (dashed) obeys Roy 5 2(1 1 m22), condition

(19). The oblique asymptote (dashed) obeys Roz 5 Roy 2 m22. For

large m, the former is inertial instability, with the meridional ab-

solute vorticity component vanishing for Roy 5 21. At the dif-

ference of Fig. 9, the dependence on horizontal relative vorticity

through Roy enters the picture. For sufficiently large values, posi-

tive vertical relative vorticity flows become unstable as well. At low

latitude in (b), the strong asymmetry with respect to the sign of Roy

appears, with the instability favoring negative Roy as the vertical

asymptote is approached. The domain of stability is larger and the

growth rates are smaller for positive Roy.
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2V/N beyond about 0.5. The effect is strong at mid-

latitudes but negligible at low latitudes (growth rates

remain small whatever the stratification). Hence, al-

though the instability occurs for all vertical shears for

latitudes less than 158, the instability is weak. Instead,

if the vertical shear is negative, the situation is very

different and weak stratification indeed boost growth

rates at low latitudes (Fig. 12b). Condition (18) can be

expressed in terms of vertical shear and latitude as

2V/N ’ [2cosf2(Roy 1 1)]21/2, so that stratification in-

creases when jRoyj increases. For realistic values of

horizontal relative vorticity (›U/›z)/2V 5 215, corre-

sponding values of 2V/N are about 0.25 at low latitudes,

so the stratification does not have to be weak compared

to rotation to show this new asymmetry between neg-

ative and positive vertical shears.

FIG. 11. Growth rates (in 2V units) as a function of latitude and

horizontal relative vorticity (›U/›z)/2V for constant negative ver-

tical relative vorticity (2›U/›y)/2V 5 20.25. The bold curve is the

marginal stability condition (12). (a) Strong stratification 2V/N 5

0.05. (b) Weak stratification 2V/N 5 0.25. The red curve is condition

(19). As the stratification weakens in (b), the domain of stability is

reduced strongly and the growth rates increase by a factor of 4. The

strong asymmetry with respect to the sign of vertical shear stands

out at low latitude in (b) with far larger growth rates for negative

horizontal relative vorticity.

FIG. 12. Growth rates (in 2V units) as a function of latitude and

parameter 2V/N. The negative vertical relative vorticity is con-

stant, (2›U/›y)/2V 5 20.25. The black bold curve is the marginal

stability condition (12). (a) Positive horizontal relative vorticity

(›U/›z)/2V 5 115. (b) Negative horizontal relative vorticity

(›U/›z)/2V 5 215. In both cases, the growth rates increase as the

stratification weakens until 2V/N ’ 0.5, at which value they satu-

rate. The growth rates also decrease with latitude. For latitudes less

than 158, (a) they remain small for positive horizontal relative

vorticity but (b) increase rapidly to O(1) for values of 2V/N ’ 0.25

for negative values.
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6. Summary and discussion

The following summary can be read with the help of

a visualization of the marginal condition of instability on

the sphere in Fig. 13 (with its own commentary). Rayleigh

(1917) discovered that inertial instability occurs for a ho-

mogeneous fluid when circulation decreases with distance

from the rotation axis. However, the ocean and atmo-

sphere are stratified and geostrophically balanced mean

flows are associated with a tilt of the isopycnal (or po-

tential temperature) surfaces. Symmetric instability has

focused in the past on the case of stratification dominat-

ing over rotation (Hoskins 1974). For strong stratification

(large Richardson number), the perturbed motions

remain quasi horizontal and vertical absolute vorticity

Zaz 5 f 2 ›U/›y has to be negative for the flow to be

unstable recovering Rayleigh’s result. However, even

in the absence of vertical relative vorticity (no horizontal

shear), an instability is still possible provided enough

horizontal relative vorticity is present (the Richardson

number Ri has to be less than 1). With a geostrophic

mean flow, the marginality condition Ri 5 1 can be re-

written as a Burger number condition ( f 21Ns)2
5 1 in

which s is the slope of the mean isopycnal surfaces.

Hence, an O(1) Burger number is the expected end result

of the life cycle of short-scale unstable perturbations

working their way to restore stability of the mean flows.

This is a complement (rather than an alternative) to the

classical explanation of an O(1) Burger number through

the Rossby geostrophic adjustment process based on in-

ternal waves radiation. When vertical relative vorticity is

included, the asymmetry of positive and negative vertical

relative vorticity (horizontal shear) of the mean flow

becomes the structuring element of symmetric instability.

This asymmetry is found to be very sensitive to the rotation/

stratification ratio. Weakening the stratification reduces

the values of critical shears, and positive vertical relative

vorticity flows can be destabilized for realistic values of

horizontal relative vorticities.

If the stratification is too weak however, the traditional

approximation becomes unacceptable. The parameter

coverage of the unstable regimes of short internal

waves on shear flows has been extended here to include

this full representation of the Coriolis terms. Giving up

the traditional approximation, a new asymmetry emerges

but this time between positive and negative horizontal

components of relative vorticity (vertical shear) of the

mean flow. The doorway to this regime occurs from

condition (19), ~f Z
ay

1 N2 ’ 0, which can be expressed as

N212V ’ [2cos2f(Ro
y

1 1)]21/2 or Roy ’ 2(1 1 m22),

or still Ri1/2 ’ 2m/(1 1 m2). The instability condition

obviously requires that the horizontal vertical vorticity

has to be negative (Roy , 21) and is favored by weak

FIG. 13. Several situations of marginal stability are pictured. The

earth’s vorticity vector 2V is in blue, and the relative vorticity vector

Zr is in red. The thick black lines are the isopycnal surfaces (B 5 cst).

The marginal stability condition (Ertel PV 5 0) requires by con-

struction that the absolute vorticity vector Za 5 Zr 1 2V is parallel to

the B surface and the thermal wind balance allows in turn to find the

direction of Za along that surface. Case A: Suppose that the B sur-

faces are normal to the earth’s rotation vector V. They are horizontal

at the pole and this requires a very strong stratification (large N2). The

marginal condition is just that the vertical absolute relative vorticity

vanishes, Zrz 5 22Vz. This is inertial instability with the mean flow

varying in y only and unstable motions in the horizontal x–y plane. By

translation of the figure from the pole to the equator, the same inertial

instability now occurs when the meridional component of absolute

vorticity vanishes, Zry 5 22Vy. But, the B surfaces are now vertical

(small N2). The unstable motions are in the vertical x–z plane. Case B:

Consider now the case when the B surfaces are not perpendicular to

2V. In (a) at high latitudes, the B surfaces slope up toward the pole

and the vertical shear of the mean flow is positive. Marginal stability is

reached with positive horizontal and vertical components of absolute

vorticity. By translation to a low latitude in (b), the B surfaces now

shoal toward the equator and the mean vertical shear becomes neg-

ative. Marginal stability is reached with negative horizontal and

positive vertical components of absolute vorticity. A powerful in-

stability develops when the flow becomes supercritical.
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stratification (m 5 2V cosf/N � 1). If N vanishes, it

reduces to the Rayleigh type inertial instability condi-

tion with the vanishing of the horizontal component of

absolute vorticity

Zay 5 ~f 1
›U

›z
5 0.

The zonal and vertical mean momentum equations are

coupled by the Coriolis force due to the meridional

component of the earth’s rotation, and unstable pertur-

bations have nearly vertical orientations. The important

point here is that the stratification does not have to be

that weak to show these new effects. Indeed, values of

2V/N as small as 0.25 are found for critical vertical shears

O(1023 s21). The geographic position in latitude has a

strong influence on the regimes of stability. For strong

stratification, the domain of instability increases with

lower latitudes but the growth rates decrease as f de-

creases. This is the influence of the vertical component

of the earth’s rotation. For weak stratification, the in-

fluence of the meridional component of the earth’s

rotation shows up through the asymmetry amplifying

the growth rates of negative horizontal relative vorticity

flows over positive ones; that is, the instability favors the

situation when the mean isopycnal surfaces shoal toward

the equator. This new asymmetry is enhanced at low

latitudes essentially because the other traditional sym-

metric instability due to the vertical component of the

earth’s rotation becomes ineffective.

There is usually a wide sector of internal wave ori-

entations that allow instability for a given mean flow.

When the waves slope at an angle larger than the mean

isopycnal surfaces, the Reynolds stresses of the waves

dominate and the energy source is the mean kinetic en-

ergy. If the angle is smaller, the buoyancy fluxes dominate

and the energy source is the available potential energy.

Both sources are important even though the maximum

growth rates are usually dominated by the mean kinetic

energy fluxes. Whether such instabilities are important

contributors to the necessity of diapycnal mixing in the

ocean is unknown. Note that the theory predicts wave

orientations only and that spatial scales are arbitrary at

this point, so the existence of a direct cascade to dissi-

pative scales is unknown.

The association of low stratification values and large

vertical shear are readily found in oceanic mixed layers

or near western boundary currents. Strong vertical shears

have also been observed for the equatorial deep jets in

the Pacific and Atlantic (Firing 1987; Gouriou et al.

2001), and the observations point to increased mixing

of tracers in westward jets. Ménesguen et al. (2009)

have proposed inertial instability processes (under the

traditional approximation) to rationalize these obser-

vations. Whether the stronger instability found here for

negative horizontal relative vorticity is at work to control

the jets remains to be assessed.

In the atmospheric case, symmetric instabilities have

been found important for the explanation of frontal

rainbands (Bennett and Hoskins 1979; Seltzer et al. 1985)

within the context of the traditional approximation.

There is also a debate on mesoscale atmospheric dy-

namics about the identification of the lift responsible for

the precipitation (Schultz et al. 2000), and the instability

explored here for low rotation/stratification ratios could

well play a role once ordinary gravitational convection

has preconditioned a state of weak stratification. At low

latitudes, consideration of the meridional component of

the earth’s rotation favors the instability of negative

horizontal relative vorticity, that is, easterlies with wind

increasing upward. Whether this instability plays a role in

the initiation of mesoscale features in tropical cyclones

could provide test elements of the theory.

Finally, the existence of instabilities of internal waves

in geostrophically balanced flows is interesting from

another point of view. Most of what we know about the

large-scale circulation in the ocean–atmosphere system

is based on a frequency separation between the geo-

strophic balanced motions and the internal gravity wave

band. But, here internal gravity waves of zero (real)

frequency explode spontaneously from a balanced state.

The examples developed here give support to the fallacy

of the high–low frequency separation, which have been

outlined by McWilliams et al. (2004), Vanneste and

Yavneh (2004), and Molemaker et al. (2005) in several

contexts under the traditional approximation. The role

for ocean energetics of such ‘‘loss of balance effects’’

between the mesoscale and the gravity waves are vir-

tually unknown (Wunsch and Ferrari 2004). As stressed

by Molemaker et al. (2005), they may be important for

identification of the paths to dissipation in the ocean.
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Ménesguen, C., B. L. Hua, M. D. Fruman, and R. Schopp, 2009:

Intermittent layering in the Atlantic equatorial deep jets.

J. Mar. Res., 67, 347–360.

Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baro-

clinic instability and loss of balance. J. Phys. Oceanogr., 35,

1505–1517.

Mooers, C. N. K., 1975: Several effects of baroclinic currents on the

cross stream propagation of internal waves. Geophys. Fluid

Dyn., 6, 245–275.

Ooyama, K., 1966: On the stability of baroclinic circular vortex:

a sufficient criterion for instability. J. Atmos. Sci., 23, 43–53.

Rayleigh, L., 1917: On the dynamics of revolving fluids. Proc. Roy.

Soc. London, 93A, 148–154.

Schultz, D. M., P. N. Schumacher, and C. A. Doswell III, 2000: The

intricacies of instabilities. Mon. Wea. Rev., 128, 4143–4148.

Seltzer, M. A., R. E. Passarelli, and K. A. Emmanuel, 1985: The

possible role of symmetric instability in the formation of pre-

cipitation bands. J. Atmos. Sci., 42, 2207–2219.

Sheremet, V. A., 2004: Laboratory experiments with tilted con-

vective plumes on a centrifuge: A finite angle between the

buoyancy force and the axis of rotation. J. Fluid Mech., 506,

217–244.

Stone, P. H., 1966: On non geostrophic baroclinic stability. J. At-

mos. Sci., 23, 390–400.

Straneo, F., M. Kawase, and S. C. Riser, 2002: Idealized models of

slantwise convection in a baroclinic flow. J. Phys. Oceanogr.,

32, 558–572.

Sun, W. Y., 1995: Unsymmetrical symmetric instability. Quart.

J. Roy. Meteor. Soc., 121, 419–431.

Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven

convection at mixed layer density fronts. J. Phys. Oceanogr.,

40, 1222–1242.

Vanneste, J., and I. Yavneh, 2004: Exponentially small inertia–

gravity waves and the breakdown of quasigeostrophic balance.

J. Atmos. Sci., 61, 211–223.

Wirth, A., and B. Barnier, 2008: Mean circulation and structures of

tilted ocean deep convection. J. Phys. Oceanogr., 38, 803–816.

Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the

general circulation of the ocean. Annu. Rev. Fluid Mech., 36,

281–314.

Xu, Q., and J. H. E. Clark, 1985: The nature of symmetric in-

stability and its similarity to convective and inertial instability.

J. Atmos. Sci., 42, 2880–2883.

MARCH 2012 C O L I N D E V E R D I È R E 475


