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Modern applications of water-wave studies, as well as some recent theoretical develop- 
ments, have shown the need fbr a systematic and accurate calculation of the character- 
istics of steady, progressive gravity waves of finite amplitude in water of arbitrary 
uniform depth. 

In  this paper the speed, momentum, energy and other integral properties are calcu- 
lated accurately by means o l  series expansions in terms of a perturbation parameter 
whose range is known precisely and encompasses waves from the lowest to the highest 
possible. The series are extended to high order and summed with Padt approximants. 

For any given wavelength and depth it is found that the highest wave is not the fast- 

lower than the highest. This confirms and extends the results found previously for 
solitary and deep-water waves. 

By calculating the profile of deep-water waves we show that the profile of the 
almost-steepest wave, which has a sharp curvature at the crest, intersects that of a 
slightly less-steep wave near the crest and hence is lower over most of the wavelength. 

est. Moreover the energy, momentum and their fluxes are found to be greatest for waves 
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184 E. D. C O K E L E T  

An integration along the wave profile cross-checks the PadC-approximant results and 
confirms the intermediate energy maximum. 

Values of the speed, energy and other integral properties are tabulated in the appen- 
dix for the complete range of wave steepnesses and for various ratios of depth to 
wavelength, from deep to very shallow water. 

An accurate knowledge of the field of motion in progressive, irrotational water waves is essential 
for many applications in coastal engineering, offshore structures, ship hydrodynamics, open- 
channel flows and air-sea interaction. Since the pioneering work of Airy (1845)) Stokes (1847, 
1880 b), Rayleigh (1876) and others, most applications have relied on approximations, based on 
the assumptions that the wave slopes are small or that the particle accelerations are negligible 
compared to gravity - assumptions no longer valid for waves of finite steepness. These approxi- 
mations lead to motions that are either sinusoidal or cnoidal in form. 

More recently practical demand for better accuracy has led to the use of higher-order approxi- 
mations such as the Stokes fifth-order series for waves in finite-depth water (De 1955) or the ninth- 
order Rayleigh-Boussinesq series for solitary waves (Fenton 1972). However two difficulties have 
arisen. First, it was discovered by Schwartz (1974) that the Stokes small-amplitude expansion for 
deep-water waves is not convergent beyond a certain wave steepness, less than the maximum. 
This means that to sum these series use must be made of Pad6 approximants or other summation 
techniques; in any case it is impossible to follow Stokes in using the amplitude of the first harmomic 
as the expansion parameter. Secondly, it was discovered by Longuet-Higgins & Fenton (1974) 
for solitary waves and also by Longuet-Higgins (1975) for deep-water waves that many charac- 
teristics of gravity waves, such as the speed, energy and momentum, are not monotonic functions 
of the wave amplitude, as had always been assumed, but in fact increase up to a certain wave 
amplitude and then diminish before the wave of greatest amplitude (for a given wavelength) is 
reached. Thus the highest waves are not necessarily the fastest or the most energetic.? 

These discoveries emphasized the need for a reliable calculation of the form and characteristics 
of even the simplest, symmetric progressive waves in water of uniform depth for all amplitudes up 
to the highest. I t  is this which the present paper aims to provide. I n  point of fact the calculations 
were first begun in order to provide an accurate check on the general numerical method of calcu- 
lating time-dependent free-surface flows described by Longuet-Higgins & Cokelet (1976). 

In  $ 2  we formulate the problem and assume a solution in the form of a Fourier series whose 
coefficients must be determined (Stokes I 847, I 880b) . 

I n  $ 3 following Schwartz (1974) we represent the Fourier coefficients as series in terms of a 
perturbation parameter. Recursion relationships are derived between expansion co-efficients a t  
various orders which provide for their efficient calculation on a digital computer. In the manner of 
Longuet-Higgins (1975) we define a perturbation parameter in terms of the fluid speed at the 
wave crest in such a way that its range is known ab initio. The procedure for determining the 
expansion coefficients is outlined, and the practical computational limitations are discussed. 

The series for the wave height and speed are summed in $4  by using [NIN]Pad6 approximants. 
Some examples of the degree of numerical convergence are given. We find that for all depths the 
highest wave is not the fastest. A comparison of our results with those of other researchers shows 

7 There is evidence of this also in a paper by Sasaki & Murakami (1973). For solitary waves confirmation has 
been provided by a quite independent method of calculation (Byatt-Smith & Longuet-Higgins 1976). 
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good agreement in some cases. In  others it is suggested why adequate results for highest wavcs 
have not previously been obtained. 

I n  § 5 the mass, momentum, energy and their respective fluxes are calculated for various depths. 
I t  is found that they too achieve maximum values for waves somewhat lower than the highest and 
then decrease as the highest wave is approached. These results are supported by Pad6 approxi- 
mating different series and combining them by using relations between the integral properties. 

We demonstrate in 96  that the profile of an almost-highest wave intersects that of a slightly 
lower wave near the wave crest, and con.sequently the higher wave is on average less extreme. This 
helps to explain the intermediate maxima in the integral properties. Finally we integrate along 
the wave profile directly to conjrm the maxima in the potential energy for near-highest waves. 

Tables of the integral properties of the waves as functions of the perturbation parameter are 
presented in the appendix for relative fluid depths ranging from deep-water to about +5 of a 
wavelength. 

2. F O R M U L A T I O NO F  T H E  P R O B L E M  

Consider two-dimensional, periodic, surface waves of wavelength h and wavenumber k = 2 n / h  

propagating under the influence of gravity, g, in a fluid of constant density, p. Take units of mass, 
length and time such that p = k = g = 1and hence h = 2n. Assume that the fluid is inviscid and 
incompressible and that the motion is irrotational. The waves are assumed to propagate from left 
to right over a horizontal bottom without change of form. By a choice of reference frame the 
fluid velocity at any fixed depth always within the fluid averaged over one wave cycle may be 
taken as zero. The frame of reference so defined is unique as is the propagation speed, c, of the 
waves with respect to that frame. 

Choose rectangular coordinates (x, y) such that the x-axis is horizontal and the y-axis is directed 
vertically upwards. Locate the free surface at y = 7 and the bottom at y = -d. The mean eleva- 
tion of the free surface is 7 where an  overbar denotes an average over one wave cycle. Therefore 
the mean depth is D = d +7 and does not in general equal d. Since the fluid is irrotational and 
incompressible a velocity potential, yl, and stream function, $, can be defined such that the 

and both q5 and $ satisfy Laplace's; equation, V2q5 = V2$- = 0. 
Now consider a second rectangular coordinate system (X, Y) moving in the positive x-direction 

with the waves at speed c. I n  this reference frame the motion is independent of time, t. The 
velocity potential, 0,stream function, Y: and velocity, (%, V ) ,  in this frame are related to 
similar quantities in the (x, y)-frame by 

X =  x-ct, Y =: y, @ = $-cx, y = $-cY,\ 
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I t  is convenient to define the complex variables Z = X+iY and W = @ + i Y  which are analytic 
functions of one another. The 2-plane is shown in figure 1. 

The boundary conditions to be imposed on the flow are that the free surface and bottorn are 
streamlines, that is 

Also the pressure along the free surface is assumed to be equal to the constant atmospheric pressure 
( p  = 0) with the effects of surface tension neglected. This condition can be related to the fluid 
velocity and surface displacement through the Bernoulli equation applied at the free surface 

where K is the Bernoulli constant. 

Stokes (1847) first solved this problem by taking the complex velocity potential Was essentially 
a Fourier series in the complex coordinate Z of the form 

The complex constants A, and B, are then determined by satisfying the boundary conditions. 
Later Stokes (18806) realized that the problem could be considerably simplified if he took Z as a 
Fourier series in W of the form 
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since the boundary conditions are to be satisfied along lines of constant Y (the imaginary part of 
W). Stokes (1847) also showed that the profile of a steady wave must be symmetric about the 
crest (later proved by Levi-Civita (1925)) which in terms of the complex variables means 

Z(W) = -Z"(- W"). (2.7) 

Here the asterisks denote complex conjugation, and the origin has been placed beneath the wave 
crest. Applying the bottom boundary condition of (2.3), the symmetry condition (2.7) and the 
fact that @ = -6 to (2.6) yields 

Z(W) == ---W+i C" a4 (eiiW/~- e-2ide-iiWl~ 1, (2.8)
c j=lJ  

where the height of the origin above the bottom has been defined such that d - Q l c .  The depth d 
is sometimes referred to as the undisturbed fluid depth and represents the depth of a uniform 
stream flowing with speed c whose mass flux equals that of the wave. The real and imaginary 
parts of (2.8) give d i mX,--- Z; 2 (e-iy~c+ e-zidei Ylc 

c j=lJ 

From equation ( 2 . 9 ~ )  it is apparent that a change in @/c of 2.n is equivalent to traversing one 
wave cycle in the 2-plane. The real constants a j in (2.8) are determined by satisfying the Bernoulli 
equation (2.4) on the free surface. The complex velocity, q, is given by 

Substitution of (2.9) and (2.10) in.to (2.4) gives 

where two parameters depending only on d and defined by 

have been introduced. 
Expanding equation (2.11) as a cosine series and equating the harmonic coefficients to zero we 

have 

where the.fj have been introduced for convenience and are defined in terms of the a j by 

I n  all summations each term is tak.en to be identically zero if the lower limit exceeds the upper. 
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The notation adopted here is the same as that of Schwartz (1974) who, following Nekrasov 
( I ~ z I ) ,transformed one cycle of the 2-plane into an annular region in the c-plane by the mapping 
5 reix = eiwlc. (Note that due to the opposite direction of wave propagation Z and W are 
equal to -z* and w * as defined by Schwartz.) The free surface maps to a circle of radius r = 1 
and the bottom to a circle of radius r = ro = e-". Therefore Schwartz's vjand Sj are equal to those 
defined in (2.12). Although useful in some instances the c-plane mapping obscures the simple 
form ofthe Fourier series (2.6). Since it is not a necessary step in the solution we will not consider it 
further. 

3. THEP E R T U R B A T I O N  S O L U T I O N  

Equations (2.13) and (2.14) are a set of nonlinear algebraic equations which determine the 
Fourier coefficients aj completely. These can be solved in a consistent manner by a perturbation 
expansion technique. Let e denote a global perturbation parameter which is zero for infinitesimal 
waves and is positive for higher waves. 

Following Schwartz we assume expansions of the form 

Substitution of (3.1) into (2.13) and (2.14) and equating coefficients of equal powers of s yield the 
following recurrence relations: 

Equations (3.2 a-e) are of order e21, ej-F2p, eo, e2k and ei+2k respectively. This system of equations is 
not closed until the expansion parameter e has been specified. 

Stokes (1847, 188ob) applied the method of successive approximation to this problem and 
found that the coefficients at any order can be determined solely in terms of those at lower orders. 
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The algebraic manipulation actuajly involved in finding the coefficients is exceedingly laborious, 
but Schwartz (1974) made a great advance. He was the first to derive equations (3.2) and using 
them was able to program the manipulations on a modern digital computer. This has allowed the 
Stokes expansion to be carried out to a very high order thus greatly increasing its usefulness. 

(a) The expansion parameter 

The choice of the expansion parameter E is of considerable importance to this problem. A 
parameter whose range encompasses waves from the lowest to the very highest and which gives 
rapid convergence in the various perturbation series (3.1) is most desirable. Stokes chose for his 
parameter the first Fourier coefficient, a,. This is zero for infinitesimal waves and increases 
initially with the wave height. To  the order to which Stokes carried his approximation (O(a:) for 
general depths, O(a:) for deep water) this parameter proved satisfactory. With it he showed that 
the phase speed, c, increases with the wave height, H. 

Schwartz (1974) carried Stokes's expansion out to order aTO.Using Domb-Sykes plots (a 
graphical version of the ratio test) and Pad6 approximants (rational fractions), he found that a, is 
not a monotonically increasing function of H. That is, for any given depth a, first increases with 
H, reaches a maximum and then decreases until H attains its peak value. Therefore, a, is not a 
suitable expansion parameter for waves near the highest since a single value of a, can correspond 
to two dzfferent wave heights.? 

In  order to remove the ambiguity in Stokes's expansion Schwartz chose a new expansion 
parameter 

€ = a = -W, 

where a is the wave amplitude. He carried the expansions in (3.2) out to for general depths 
and to O(a117) for deep water. The resulting series were summed with Pad6 approximants thus 
greatly increasing their domain of convergence. 

The maximum value of a is not known a priori, and to determine it Schwartz made use of 
Stokes's (188oa) conjecture that the h i d  velocity in the (x, y)-frame at the crest of the highest wave 
must equal the phase speed. In  the moving (X, Y)-frame the crest is a stagnation point. What 
Stokes actually showed was that for a wave with a crest stagnation point the profile must become 
sharply pointed with an included angle of 120". This solution is a local solution valid only at the 
stagnation point. Such a profile represents a limiting wave in the sense that any symmetric wave 
whose crest velocity in the (x, y) frame exceeds the phase speed cannot be steady. Stokes did not 
prove that such a limiting wave is a highest wave, but it turns out to be the case. 

Therefore, accepting Stokes's conjecture equations (2.10) and (3.1 a) give for the highest wave 

--
m 

C 
.--

m m 

C 
= 0. (3.4) 

I a I +  C vjajkd+2k 
j=1 j=l k=O 

Taking c as finite and nonzero the denominator of (3.4) must be infinite. By [NIN] Pad6 approxi- 
mating the denominator of (3.4) and considering the limit of the smallest positive pole as N 
increased, Schwartz calculated the maximum wave amplitude for any given depth. He was 
then able to determine the wave speed as a function of wave height for waves from the lowest to 

I. An indication of this for deep-water waves is given in Table 3 of Monkmeyer & Kutzbach (1966), who 
iteratively solved a set of nonlinear algebraic equations for the first 15 Fourier coefficients. However, they do not 
mention the non-monotonicity of a, in their text, nor do their results indicate a maximum in the phase speed for 
the almost-highest wave. 
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near the highest for a variety of water depths. However the convergence of Schwartz's series 
deteriorated for very high waves and for very shallow depths. 

A new expansion parameter has been introduced by Longuet-Higgins & Fenton (1974)  in 
their study of solitary waves. The parameter w' is defined by 

where qcrestis the fluid speed at the wave crest in the reference frame moving with the wave and 
c, is the phase speed of infinitesimal solitary waves. This parameter has the advantage that its 
range, 0 < w' < I, is known nb initio. For a linear wave the crest speed equals the phase speed 
(qcrest= c,,, w' = O), and for the limiting wave the crest is astagnation point (q,,,,, = 0, w' = 1 ) .An 
added advantage is that the PadC-approximated perturbation series converge better with this 
parameter than with the wave amplitude as in the usual Rayleigh-Boussinesq expansion for 
solitary waves. 

For a perturbation solution of periodic waves in deep water Longuet-Higgins (1975)  used a 
similar expansion parameter 

where qtroushis the fluid speed at the wavc trough. This parameter reduces to that used by 
Longuet-Higgins & Penton for solitary waves and has a similar range, 0 < w < 1 .  The qtrough 
termwas introduced so that w could be expressed by a series in even powers of Schwartz's para- 
meter a. 'Taking Schwartz's series whose coefficients were supplied by the present author, Longuet- 
Higgins reverted to obtain series in w which converged more rapidly than thosein a. However this 
series reversion process was prone to the rapid loss of significant figures with increasing order. 

We shall choose the expansion parameter s defined as 

2 2 
2 -- 1 -qcrest qtronahs 

cJ (3.7) 
This has the followiilg attributes: 

( 1 )  its range, 0 < s 6 1, is known ab initio, 
( 2 )  most physical properties of the flow are expressable as series in even powers of s, 
( 3 )  the perturbation expansion can be carried out initially in terms of s without having to 

resort to series reversion, and 
(4) the resulting series in e can be readily summed with Pad6 approximants giving rapid 

convergence in a wider range of fluid depths and wave heights than previously possible. 

(b)  Solving for the perturbation coejicients 

Now that the perturbation parameter has been specified the system of equations (3.2) and 
(3 .7)  is closed.The fluid speeds at the wave crest and trough are obtained from (2.10) with 
Y = 0 and @ / c  = 0 and n: respectively. Expanding the right hand side of (3.7) in powers of s, we 
have 
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and after some rearrangement ant1 reduction 

Expansion of the left-hand side and equating powers of e gives 

( -1 )( -) ! 
= 

j-1 

2 a2(j-k), k cr2(j-k)! ( j ) k=O 

where the equation is of order e2f .  
The calculation procedure is as follows: 

(1) specify the maximum order, N, of the perturbation expansion, 
(2) specify the undisturbed fluid clepth, d, and calculate cYj = I -e-2jd and cr.3 = 1+e-2jd ( j= 1, 
2, ..., N), 
(3) calculate the coefficients at order eP in terms of the previously determined coefficients with 
p = 0, I, ..., 2M, 2M+ 1, ..., N, 

(a) within any even order, 2M, 

(i) 	 calculateaij a n d & .  bytsolving equations (3.2 6) and (3.2d) simultaneouslyproceeding 
in the sequence (i,j )  = (2M, O), (2M- 2, I), . . ., (4, M -  2), 

(ii) 	 calculate a,, ,z-,, PI,M-l, a2,M-I and P2,M-l by simultaneously solving equations 
(3.2d) with j = 1, k = M - 1, (3.26) with j = 2, p = M- 1, (3.2d) with j = 2, k = 

M- 1, and (3.10) with j = M, 
(iii) calculate from equation (3 .2~)  with k = M, 

(b) within any odd order, 2hJ-t- 1, 

(i) 	 calculate A M  from (3.2 b) withj = 1,p = My 
(ii) 	 calculate aijand pij by simultaneously solving (3.2 b) and (3.2d) proceeding in the 

sequence (i,j )  = (2hJ-F1, O), (2M- I), ..., (3, M- l), 

(4) 	and, finally, calculate yl from (3.20) with I = 0, 1, ..., +N. 

Notice that the odd-order coefficients and /31,M-1 cannot be determined until the next 
higher even order, and also that the even-order AM cannot be determined until the next higher 
odd order. Table 1 shows a schematic representation of part 3 of the calculation scheme. The first 
column gives the order of the equations involved and the calculation proceeds from left to right, 
row by row through the remainder of the table. 

(c) limit,^ to the maximum order of the expansion 

The radius of convergence of a series is restricted by the location of the nearest singularity, but 
it can often be extended by using such analytical tools as Pad6 approximants. These are most 
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effective if the series can be calculated to a very high order with great accuracy. Such calculations 
are possible if the algebraic manipulations are handled by a modern digital computer. Olcourse, 
such computations are limited by the availability of computer time and space, the loss of signifi- 
cant figures, and the existence of computational overflow. 

The calculation scheme was programmed in FORTRAN IV on Cambridge University's 
IBM 3701165 digital computer. The computations were done for specific depths with e-"anging 
from 0 to 0.9 in increments of 0.1. I n  double precision (approximately 17 significant figures) the 
required computer execution time ( N iV4)for one value of d was 40 s to order el l0.  The storage 
space required ( w  N2)was 90 I< bytes where I byte equals 8 bits, a double precision word is 
8 bytes and 1K equals 1024. 

TABLEI. THECOEFFICIENT CALCULATION SCHEME : 

THE CALCULATION PROCEEDS LEFT TO RIGHT, ROW BY ROW 


order 

P o ,  0  


A 0 


~ 1 , o  P 2  0  
P I ,  0  ~ 2 , o  P o , 1 


A1 E 3 , 0 P 3 ,  0  


E d ,  0  P 4 ,  0  ~ 1 . 1  P O ,  2  
P I ,  1  Ez, 1P 2 , l  

A 2  a& ~ 3 . 10  P 5 ,  0  p 3 , l  

~ 6o  P G ,  o  P 4 ,  1 a , ,  z  P l ,  2  a , ,  2  P Z ,  2 P o ,  3  , ~ 4 . 1  

The rate of loss of significant figures can be ascertained by comparing the results of the same 
calculation carried out at two different computer 'precisians', for example at single precision 
(approximately 7 significant figures) and double precision. Figure 2 is a plot of the number of 
significant figures lost against the order ofthe expansion for e-" 0,0.3,0.5,0.7,0.9. The loss-rate 
is about the same for each of the series in (3.1). The e-d = 0.5 case was done in quadruple preci- 
sion (approximately 35 significant figures). From the figure it is concluded that above moderate 
values of iV the loss-rate increases with decreasing d until e-d = 0.5 and then decreases. By extra- 
polation it appears that the e-" 0.5 double precision calculations would become useless past 
order em or elo0. 

The presence of singularities is usually indicated by an increase in the magnitudes of the expan- 
sion coefficients with increasing order. Figure 3 is a plot of the magnitude of the largest laij[ 
against N for various d. The size of the coefficients increases with Nand decreases with d, a result 
first noted by Stokes (1880 6 ) . Since the maximum physically allowable value of e is 1, this would 
preclude the convergence of the sequence of partial sums of the series for high waves; however, it 
will be shown in $54-6 that the [iV/N] Padt approximants give self-consistent convergence. The 
largest number which the IBM 3701165 can hold without overflow is of order loT5.Therefore, by 
extrapolation from figure 3 we conclude that the computations will be limited at about O(s120) 

for e-"l 0.9 and at higher orders for greater depths. 
Extrapolation of the curves for e-d = 0 in figures 2 and 3 indicates that the deep-water results 

will be limited first by the loss of significant figures. In  quadruple precision all 35 significant 
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figures will not be lost until order e250or r 3 ~ However Longuet-Higgins ~ ~ ~ . (1975) found that by 
reverting from series in a to series in w no gain in accuracy was possible past order w40. This dis- 
crepancy is due to the large rounding errors inherent in reverting the series. These errors will 
become more pronounced as d dec:reases. 

FIGURE2. The number of significant figures lost plotted against the order of 
the expansion, N, for various fluid depths, d. 

FIGURE3. The magnitude of the largest expansion coefficient plotted against the order of 
the expansion, N, for various fluid depths, d. 
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4. THEW A V E  H E I G H T  A N D  S P E E D  

The nonlinear behaviour ofwater waves traditionally has been illustrated by the dependence of 
the phase speed on the wave height. To express a as a series in s similar to (3.1 c) for c2 we have 
from (2.9 b) evaluated at the wave crest and trough 

Thus a may be found in terms of the aijas determined in 5 3b. 
For deep water the expaizsions to tenth order are 

correct to 6 significant figures. With a few exceptions the order of magnitude of the coefficients 
decreases uniformly to 10-j at order ell0 (beyond which we have not carried the expansion). Thus 
it seems likely that the series will converge even for the highest wave (s2 = 1). An expansion in 
Longuet-Higgins's (197 j) parameter, w, behaves similarly, but this is in marked contrast to 
Schwartz's (1974) expansion in the wave amplitude, i.e. 

The order of magnitude of the coefficients in the c2 series increases to lo7at order a30 (Schwartz 
1972, table A-1). Using the maximum value of a of about 0.44 as determined by Schwartz, we 
find that the ratio ofsuccessive terms in the series exceeds 1 which implies that the simple sequence 
of partial sums will not converge for waves of maximum amplitude. 

For e-d 6 0.5 our coefficients behave in a manner similar to those for deep water, but for 
shallower depths the coefficients begin increasing with order past some critical order ( < 110) 
dependent on d. 

(a) The Padd-approximant results 

TVe shall use [ N / N ]Pad6 approximants to sum the series for a and c2 taking advantage of their 
ability to provide automatic analytic continuation. Briefly, the [ M / N ] Padt approximant of a 
functionf(z) whose series expansion is known to order i.e. 

can be defined by 

The p5and q, can be found in terms of theS, by equating coefficients of powers of z in (4.4) and 
(4.5) to order zM'-N. The original series and the Padt approximants are thus equal to order 
zfif+N, but the Pad6 approximant has an infinite number of terms as can be shown by expanding 
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the reciprocal of the denominator as a series in z and multiplying by the numerator. [MINIf (2) 
is often much more useful than the truncated series (4.4) since the Padt approximant has at its 
disposal N poles corresponding to the N roots of the denominator. 

When the number of poles off (2) is not known a priori the Pad6 approximant with the same 
order is both numerator and denominator, denoted [ N / N ]f (z), is the most useful since it is in- 
variant under Euler transformaticrns. This means that in theory it is equal to the approximant 
obtained by first locating the successive poles of the function, mapping them away to infinity and 
then [NIN] Padt approximating. (However, it should be pointed out that in practice fewer 
significant figures may be lost by first Euler transforming and then Pad6 approximating.) 

Pad6 approximants were introduced into water-wave theory by Schwartz (1974) and were later 
employed successfully by Longuet-,Higgins & Fenton (1974) and Longuet-Higgins (1975). Some 
useful references on Padt approxirnants and series singularities are Baker (1965), Graves-Morris 

(1973) and Van Dyke (1974). 
Bearing in mind the limitations of $ 3 6  we have carried out the series expansions to order ell0in 

double precision for e - L  0, 0.1, 0.2, ..., 0.9. This maximum order is a compromise between 
order elo0at which all significance will be lost for e-" 0.5 and order at which computational 
overflow will occur for e-" 0.9. More importantly, for most fluid depths and wave heights this 
is a sufficiently high order for the sequence of Padt approximants to converge to at least six 
figures. 
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Table 2 shows the sequence of summed [NIN] Padt approximants of a and c2 for values of s2 
near I and for three fluid depths, e-" 0, 0.5, 0.9. I t  will be noted that the deep-water results, 
e-" 0, converge rapidly for,s2 < 0.96. For the highest wave the Padt approximants appear to 
converge up  to N = 21 and then begin to fluctuate. This is due to the loss of significant figures 
during the calculation of the approximants themselves which is in turn influenced by the nearness 
of singularities. The convergence of the Padt approximants with N is a play-off between two 
factors - the increase of information about the series against the attendant loss of significant 
figures. Inspection of the results for the two shallower depths reveals the decrease in the rate of 

TABLE [NIN] PADB APPROXIMANTS OF THE WAVE AMPLITUDE,2 b. SUMMED a, 

AND THE WAVE SPEED SQUARED, c2, FOR e-d = 0.5 

10a 10c2 
A 

f > r 
A > 

N e2= 0.9 e2= 0.95 e2= 1 c 2 = 0 . 9  c 2 = 0 . 9 5  c2 = 1 

1 2.38913 2.49600 2.60386 7.83084 7.97585 8.12751 
2 2.40153 2.51090 2.62160 7.80392 7.94315 8.08809 
3 2.33264 2.38790 2.38113 7.83055 7.97384 8.12358 
4 2.33154 2.38501 2.37197 7.62450 7.61918 7.44588 
S 2.34206 2.41300 2.45649 7.64046 7.66434 7.59241 
6 2.34281 2.41518 2.46305 7.64311 7.67257 7.61980 
7 2.34321 2.41663 2.46863 7.64310 7.67254 7.61969 
8 2.34343 2.41783 2.47605 7.64380 7.67563 4.63460 
9 2.34348 2.41816 2.47939 7.64401 7.67711 7.64844 

10 2.34348 2.41822 2.48027 7.64401 7.67709 7.64827 
11 2.34348 2.41820 2.47998 7.64403 7.67745 7.65669 
12 2.34349 2.41828 2.48166 7.64403 7.67738 7.65417 
13 2.34348 2.41823 2.48055 7.64403 7.67734 7.65295 
14 2.34349 2.41831 2.48255 7.64403 7.67737 7.65382 
15 2.34349 2.41831 2.48272 7.64403 7.67743 7.65594 
16 2.34349 2.41830 2.48250 7.64403 7.67740 7.65469 
17 2.34349 2.41831 2.48317 7.64403 7.67748 7.65938 
18 2.34349 2.41833 2.48629 7.64403 7.67748 7.65889 
19 2.34349 2.41832 2.48334 7.64404 7.67751 7.66478 
20 2.34349 2.41834 2.50526 7.64404 7.67753 7.67704 
21 2.34349 2.41832 2.48364 7.64403 7.67749 7.66036 
22 2.34349 2.41833 2.48559 7.64403 7.67749 7.66055 
23 2.34349 2.41832 2.48356 7.64403 7.67749 7.66051 
24 2.34349 2.41831 2.48298 7.64403 7.67749 7.66022 
25 2.34349 2.41833 2.48694 7.64403 7.67750 7.66128 
26 2.34349 2.41832 2.48387 7.64403 7.67748 7.65920 
27 2.34349 2.41828 2.48176 7.64403 7.67748 7.65929 

convergence with decreasing d. I n  general, convergence is better for greater depths and smaller 
wave heights; thus the e-" = 0.9 values of table 2c represent the worst convergence encountered. 
Even in this extreme case, based on the consistency of the Padt approximants, a and c2are good 
to 2 and 3 significant figures respectively. 

The main results are plotted in figures 4 and 6 and are tabulated in the appendix. Figure 4 
which is a plot of a against e2 shows that for each water depth the wave amplitude is a monotoni- 
cally increasing function of s2. Therefore a limiting wave for which s2 = 1is also a highest wave. 
Figure 6 is the graph of (c2 -C;)/C; against €%here c, is the phase speed of an infinitesimal 
wave, i.e. 

j - e-2d 
c; = tanhd = -

1+ec2" 
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The dashed lines in these figures represent the uncertainty in the values of a and c2associated with 
the incomplete convergence of the Pad6 approximants. The curve for e-" 1 is from the work of 
Longuet-Higgins & Fenton (1974) for solitary waves. 

The important thing to notice in figure 5 is that for the entire depth range the highest wave is 
not the fastest, but instead the wave speed reaches a maximum for waves somewhat lower than 
the highest! This is a generalization of the solitary-wave results of Longuet-Higgins & Fenton 
(1974) and the deep-water results of Longuet-Higgins (1975). The intermediate depth curves 
lie between the two limits of zero and infinite depth and behave in a similar manner. 

Figure 6 is a graph of the wave height: divided by the undisturbed fluid depth, H/d, against the 
Froude number squared, c2/gd, foi- various depths. The solitary-wave results as well as the curve 
along which the highest solitary wave must lie, H/d = *c2/gd, are also shown. This plot represents 
the region in the two-parameter space in which steady gravity waves can exist. The degree to 
which an individual curve deviates from constant Froude number as the wave height is increased 
represents the effect of nonlinearity. 

The relatively poor convergence of both a and c2 for e-" 0.9 has been amplified by division 
by d. For the high waves in water of this depth a seems to converge to 2 figures with an error of $ 1  
in the last figure as shown in colunln 4 of table 2 c .  However a smooth curve bounding the highest 
waves for the other depths in figure 6 would pass about 12% below the highest wave calculated 
for this depth. We feel that the correct value is most likely that obtained by such a bounding 
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FIGURE4. The wave amplitude, a = $IT, plotted against the expansion parameter, €5 for various fluid dcpths, d. 

Note that a limlting wave (eZ= 1)is also a highest wave. 


FIGURE5. The relative increase of the squared wave speed, c2, to that of infinitesimal waves, c,2, plotted against the 
expansion parameter, eZ. The curve for e-d = 1 is from the solitary-wave results of Longuet-Higgins & 
Fenton (1974).All the wave speeds reach maxima for waves slightly lower than the highest. 
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curve and that the Pad6 approxirnants have not completely converged for e-$ = 0.9. For his 
expansions in a Schwartz found that more nonphysical singularities began appearing on the 
negative real axis in the complex a2-plane as the depth decreased. The Pad6 approximants had 
to use more and more terms to deal with these and had less terms left to accurately represent the 
series in the region of interest. A similar behaviour can be expected here. 

c21& 

FIGVRE6. The ratio of the wave height to undisturbed fluid depth, H/d, plotted against the squared Froude 
number, cZ/gd, for a variety of fluid depths. Also plotted are the solitary-wave results of Longuet-Higgins 
& Fenton (1974) and the line along which the highest solitary wave must lie, H/d = &c2/gd. 

( b )  Comparison with other work 

In  the past few years several auf.hors have attempted to determine the characteristics of non- 
linear periodic waves. Our technique is closely akin to that of Schwartz (1974) and Longuet- 
Higgins (1975). Table 3 gives the height of the highest waves for various fluid depths and com- 
pares them with Schwartz's results. Agreement is good, but Schwartz's waves are slightly higher 
than ours. His results do not converge for the two shallower depths. Concerning the wave speed, 
Schwartz stated that the series for c2 converged well for waves up to 3 % short of the highest, but 
for higher waves it was necessary to extrapolate. Hence he did not report the wave speed maxima. 

Comparing our values of a and c2 with the highest deep-water waves of Longuet-Higgins we 
have a = 0.44313, c2  = 1.1928 versus his a = 0.4433, c2 = 1.1931. These results differ only in the 
fourth decimal place, and for lower waves both sets ofresults are identical. I t  should be pointed out 
that a solution procedure similar to $3 b could be carried out ab initio in terms of Longuet-Higgins's 
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parameter w .  If so the solution scheme outlined in table I would be somewhat more complicated 
in that at the beginning of each odd order, 2 M  + 1,it would be necessary to solve 7 simultaneous 
linear equations in the 7 unknowns a,, ,-,, PI,N-l, a2,N-,, /32,3f-1, PO,M ,  A M  and y, rather than 
4 equations in the first 4 unknowns. (One of the equations in A M  actually comes from two equa- 
tions at order 2 M  + 1.The order 2 M  + 1terms are removed with the identity 6,/3,, -a, A, = 0.) 

We have not attempted this calculation, but instead we have expanded w2as a series in e2, reverted 
and substituted into the other series. Although there is some loss of significant figures it is not as 
devastating as changing from a series in a to one in w .  We find that there is little difference between 
the two parameters; for some depths and some series one parameter may yield slightly better 
convergence than the other and vice versa. 

TABLE3. THELIMITING WAVE HEIGHT FOR VARIOUS FLUID DEPTHS. 

SCHWARTZ'S(1974) RESULTS ARE I N  COLUMN 4 

e-& d/h H/h H/h (Schwartz) 

Dean (1965) has tried a numerical approach to the calculation of nonlinear waves. He expres- 
sed the stream function and free-surface elevation as Fourier series in X, truncated after the 
eleventh harmonic. Due to the truncation, the dynamic free-surface boundary condition is not 
satisfied exactly. To determine the Fourier coefficients for fixed values of the depth and wave 
height he minimized the mean-squared error in the dynamic boundary condition over a number 
ofpoints evenly spaced in Xbetween thewave crest and trough. The highest waves were chosen to 
satisfy an empirically derived relation between the wave height and depth. Comparing the Pad& 
approximant deep-water wave results with those of a later paper of Dean (1974, case 10) we 
find good agreement with his values of s2, a and c2 for low to moderately steep waves. However, 
his values for the wave of greatest height are s2 = 0.8971, a = 0.43806 and c2 = 1.222070. This is 
too low a value for s2, and inspection of table A 0  in the appendix indicates that this is too fast a 
wave for this wave height. Dean's tabulated wave parameters are too widely spaced to detect a 
maximum in the wave speed. As the highest wave is approached the higher-order harmonics 
become more important in order to describe the sharply curved wave crest, but Dean's formula- 
tion becomes less adequate since the errors are distributed over a small number of Fourier co- 
efficients. 

Von Schwind & Reid (1972) have used an approach similar to Dean's. They expressed 
Z + id as an eighth-order Fourier series in W-iQ. Fixing the first Fourier coefficient F, (their 
A,),  they determined the others by an error minimization technique. To find the highest wave for 
a particular d they increased Fl until a parameter l' (their ul /C),associated with the fluid speed 
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at the wave crest, reached a maximum value and began to fall off erratically. The value of I;,so 
obtained was assumed to correspond to the highest wave. I n  our notation 

and its maximum value should be 1when qcrest = 0. Von Schwind & Reid do not mention this, 
nor do they state what maximum value of r they did obtain. However by expressing F, in terms 
of our Fourier coefficient a,, namely 

1- e-2d a1Fl = -------
d I+7 /dy  (4.8) 

FIGURE7 . A plot of H/d against c2/gdcomparing the PadC-approximant results (-) with those of Thomas 
(1975) (- Q) -) for (a) e-d = 0.0230541, (b) erg = 0.151836, (c) e-d = 0.284610, (d) e-% 0.389661, 
(e)  e-a = 0.42402, ( f )  e-d = 0.512'72. Agreement is acceptable except in the case of the highest waves for 
which Thomas employed a numeric:al technique dgerent from that used for the lower waves. 

we can see immediately why their inethod cannot converge for high waves. For fixed d, a, is not a 
monotonically increasing function of tlre wave height. Although Ij" also increases with H and 
ultimately decreases (as shown in figure 12) the term I + ;ii;/dwill not cancel out the double-valued- 
ness of a,. Hence Fl is not monotonic in 11. The highest waves calculated by Von Schwind & Reid 
correspond very closely to the waves for which a, achieves a maximum. 

Thomas (1975)has solved a nonlincar integral equation iteratively to obtain the relation 
between the Froude number and the wave height for various depths. His solution involves finding 
an eigenvalue ,ic which is related to the reciprocal of the fluid speed a t  the wave crest and which 
becomes infinite for highest waves. Our calculations have been performed for the same fluid 
depths as considered by Thomas, and the results are compared in figure 7 .  Thomas's curves 
closely parallel ours for all but the liighest waves and differ by at most 1% in the Froude number. 

26-2 




FIGURE8. Comparison of the Pad&-approximant curves (----) of the wave height, H, and speed, c, to Sasalri 8: 
Murakami's points with their error bars (I--@-+). (a) Deep water (e-" 0). Also sho~vn are the curve of 
Longuet-Higgins (1975) (- --) where it deviates from our own and the highest wave of Yamada (1957) (a). 
(b) e" = 0.1813, ( c )  e-8 = 0.4385. Notice that the magnitude of Sasaki & hfurakami's estimated errors 
preclude them from identifying the wave speed maxima. 

mailto:(I--@-+)
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However, for waves of greatest height the curves diverge, and Thomas finds a rapid increase in 
wave speed with height. His squared Froude numbers are 7-10% greater than ours, but his 
highest waves are somewhat lower. Because ,u approaches infinity for highest waves Thomas found 
it necessary to solve a di$erent integral equation in this case. He fixed p at 'some large number' 
and considered a sequence of iterations different from that of the lower waves. By comparison 
with our results we feel that this sequence does not converge to the correct answer for highest 
waves. Thomas's results might be improved by explicitly including the asymptotic form of the 
crest singularity as the highest wave is approached. 

The work of Sasaki & Murakami (1973) tends to support our conclusions. Using an indepen- 
dent numerical method, they solved an integral equation valid for all fluid depths including 
solitary waves. They do not give results for highest waves, but their near-highest wave results 
indicate a possible maximum in the wave speed. However, they estimate an error in c of 0.02 % 
which would be enough to obscure the maximum in all but the solitary wave case. We have done 
our computer calculations for the same three depths as they (e-d = 0, 0.3201, 0.4385), and the 
results are compared in figure 8, Figure 8a shows the wave steepness, H/h, plotted against c2 for 
deep-water waves. The solid curvt: represents our cl10 results and the points with error bars are 
those of Sasaki & Murakami. Also displayed are the highest wave results obtained by Yamada 
(1957) using a numerical method similar to Sasaki & Murakami's and the curve of Longuet- 
Higgins (1975) which deviates only slightly from ours at highest waves. From the graph we see 
that Sasaki & Murakami's results parallel our own, but their c2 values are consistently larger. 
Figures 8 b and c show Hid against c2/gd for two intermediate depths. Again, their points fall near 
our curve, but their error estimate!; preclude the certain identification of the c2 maxima. Only in 
the solitary wave case are their error estimates small enough to detect the maximum, but their 
wave speeds are consistently 0.4 % lower than those of Eonguet-Higgins & Fenton (1974). Sig- 
nificantly, Sasaki & Murakami do not mention the maxima in the text of the paper, but they 
appear in the tabulated results. 

A recent confirmation of the solitary wave speed maximum has been given by Byatt-Smith & 
Longuet-Higgins (1976). They have numerically solved yet a different integral equation and 
have obtained results for waves up 10near the highest. Their solution is important because it is the 
only approach so far which is both independent of the Pad6 approximants and convincingly 
accurate. 

5. THEI N T E G R A L  P R O P E R T I E S  

The integral properties of waves such as the mean momentum and energy and their respective 
fluxes are of particular interest 1.0 hydraulicians and oceanographers. These quantities are 
readily calculated from the perturbation solutions, and since certain relations exist between them 
they can be used to provide a cross-check on the Pad6 approximated results. 

(a) l>@nitions and relations 

Some useful physical quantities can be defined in the (x, y)-frame of reference. Define the mean 
mass offluid above the origin per unit horizontal area, iV1,by 
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where the overbar signifies an x-average. Similarly define the circulation per unit length, C, by 


where the integration is to be performed at a level always within the fluid. Cis identically zero by 
the choice of reference frame in $ 2 .  The mean momentum or impulse, I,kinetic energy, T, and 
potential energy, V, per unit horizontal area are defined by 

T = j ' +p (u2+v2) dy, 
-d 

The radiation stress, the excess flux of momentum due to the waves, per unit span denoted S,, 
is given by 

Herep, = -pg(y -?j) is the (hydrostatic) pressure in the absence of the waves but in a fluid with 
the same mean depth D = d+7. The mean energy flux per unit span, F, is defined by 

Finally the mean squared velocity at the bottom denoted 2 is 

I n  the steady motion (the Z-plane) there are three physical quantities which are independent 
of X. The first is the mass flux per unit span, -Q, defined by 

As stated previously, d represents the depth of uniform stream flowing with velocity -c whose 
mass flux equals that of the wave. A uniform stream with the same mean depth and mass flux 
as the wave will flow with a dzfeerent velocity, -c,,, which is related to c by 
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-c,, is the velocity of the centre of mass of the fluid with respect to the (X, Y)-frame. For alldeep- 
water and solitary waves c,, equals c, but this is not true in general. 

The other two X-independent quantities are the total head, R, defined by 

and the momentum flux per unit span, S', defined by 

TVe have retained the dimensionless quantities p = g = k = I in the definitions for clarity, but 
we shall discard them for the remainder of this section. Also we shall drop the words 'per unit 
horizontal area' and 'per unit span' and refer to T, for example, as the kinetic energy. 

Longuet-Higgins (1975) has derived various relations (some previously known) between the 
integral properties defined above. Since there are minor differences in notation we shall restate 
these equations but in a slightly more general form which applies when both M and Care non- 
zero. They are as follows: I = c D - Q ,  (5.13) 

Here K is the Bernoulli constant a:; defined in equation (2.4). The derivations of these relations 
are omitted here, but they follow closely those of Longuet-Higgins (1975). 

TVe wish to express each integral property as a perturbation series in E .  With the definitions of 
Q and V and the fact that C = 0 we have I = cii, (5.20) 

2T = c27, (5.21) 
-

2V = q2-7j2. (5.22) 

These equations relate I, Tand V to c2, +jand Now we already have perturbation series for c2 
so we only need series for 7 and p.For the mean displacement of the free surface we have 
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where we have integrated along the wave profile with the use of equations (2.9) and (3.1 a). The 
mean square of the surface elevation is given by 

1 m j - 1  j - ~ n - 1  j-71%-k-1 j-??a-k-i-1 8j-rn-k-i-n
+ - C  C C C C

4 j=2 na=1 k=O i=O j - m - k - i - a  

Therefore we can use the series (5.23) and (5.24) along with the series ( 3 . 1 ~ )  and (3.1 d) plus the 
relatioris (5.15)-(5.22) to express each integral property as a perturbation series in s2. 

(b) The Pad&-approximantresults 

Taking the complete series solution from 94a and equations (5.23) and (5.24) expanded to 
order el10 we have calculated the various integral properties with the aid of [ N / N ]Padt approxi- 
mants. This was done for e-d = 0, 0.1, ..., 0.9 and s2 = 0.1, 0.2, ..., 0.8, 0.81, 0.82, ..., 1. For a 
particular dep-~h the computer usage was 5& min and 124 K bytes in double precision. 

On  hindsight we feel that a saving in computer time ofperhaps a factor of ten but with a subse- 
quent doubling in storage space could be achieved by changing the order in which the calcula- 
tions are performed. For a particular series at a fixed value of s2we computed the coefficients for 
the [NIN]  Pad6 approximants and summed them for N = 1, 2, . . .,28. However, the coefficients 
of the Padt approximants depend on N but not on s2. Therefore, it would have been wiser to 
calculate the Padt coefficients, store them for each series (which would require ( N +  storage 
locations) and then sum them for each s2rather than to recalculate them. A substantial saving in 
computer time should result since to calculate each [ N / N ]Padt approximant requires thesolution 
of a symmetric N x N system of equations. 

The main results are tabulated in the appendix and are presented graphically in figures 9-18. 
The tabulated results are given to 6 figures where possible. Based on consistency in the Pad6 
approximants we feel they are correct to -t 1 in tlie last decimal place reported. As with the wave 
height and speed, the convergence is worse for higher waves and shallower depths, and the effects 
of this are shown by the dashed lines in the figures. 

Figures 9-1 1 show tlie momentum, kinetic energy and potential energy plotted against s2.The 
important result is that these quantities achieve maxima for waves short of the highest. This is a 
generalization of the solitary-wave results of Longuet-Higgins & Fentoa (1944) and the deep- 
water results of Longuet-Higgins (1975). I t  is clear that for a fixed value of s2there is an orderly 
progression of results from deep to shallow water. 



S T E E P  G R A V I T Y  W A V E S  I N  W A T E R  207 

Figure 12 is a plot of the mean surface elevation against e2 for various depths. I t  shows that 5 
has an intermediate maximum which is a result also obtained by Schwartz in his thesis (1972). 
However, he did not make use of the relations (5.20) and (5.21) to obtain the surprising results 
(at that time, at least) about the wave momentum and energy. 

€2 

FIGURE9. The wave momentum, I,plotted against the expansion parameter, e2, for various depths, d. 

FIGURELO. The kinetic energy, T, plotted against the expansion parameter, e2, for various depths, d. 

27 Vol. 286. A. 
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The dependence of the mean squared bottom velocity on e2 and d is illustrated in figure 13. 
2has the now characteristic dependence on e2, but its variation with d may at first appear sur- 
prising. For e - L  0 the bottom is infinitely far away, and so ub = 0. As d decreases the waves are 
more influenced by the bottom, and ~Tincreases. However, for solitary waves (e-d = 1) uTmust 
again vanish because although the integral of u2, with respect to x from -co to is finite (ub = 0 

€2 

FIGURE11. The potential energy, V, plotted against the expansion parameter, c2, for various depths, d. 

FIGURE12. The mean free-surface elevation, ij, plotted against the expansion parameter, e2, for various depths, (I. 
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at + a)and nonzero it is divided by w, the wavelength of solitary waves, Therefore must have 
a maximum (dependent on e)  for some intermediate value of d. 

The radiation stress and the mean energy flux are plotted in figures 14 and 15. Again each 
quantitity has an intermediate maximum in e2, but some of the curves for deeper water intersect 
those for shallower depths. This eff'ect may be thought ofas due to the 3terms in equations (5.15) 
and (5.16). 

€2 

FIGURE13. The mean squared bottom velocity, 3,plotted against the expansion parameter, aZ, for various depths, d. 

e2 


FIGURE14. The radiation stress, S,,, plotted against the expansion parameter, eZ, for various depths, d. 

27-2 
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Assuming no reflexion and constant energy flux, Burnside (1915) showed that small-amplitude 
waves entering slowly shoaling water first suffer a decrease in wave height followed by an increase. 
The comparison offigures 4 and 16 at constant Fappears to confirm this result. However we must 
caution that these curves are for quantities nondimensionalized with respect to wavenumber. In  
general, the wavenumber of a shoaling wave will not remain constant, but under certain condi- 
tions its frequency will (see Phillips 1966,tj 3.7) .If desired our results can be recast simply in terms 

FIGURE15. The energy flux, F, plotted against the expansion parameter, eZ,for various depths, d. The e-8 = 0.1 
curve lies above the deep-water wave curve for s2 less than about 0.7. 

of frequency, CT,rather than wavenumber, k. Ifwe denote dimensional quantities with a tilde and 
quantities non-dimensionalized with respect to frequency by a prime we have 

B \ 
= E- = c2,

s" 
5 2

H' =I- t - ; -=  c2H, 
g 

' -3u =u,= cu,
(I 

I' = f-83 = ~ 3 1 ,

P!? 
- 5 4

T' = T- = ~4 T,
Pg3 

* 5 4  
S'=S-=c  ",Pg3 

- 5 5
F' = F-;;- = CS~F, 

pq4 
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wwhere we have used the identity c = - 5 (5.26)k" ' 

I n  order to emphasize some of the shallower-water results, we have chosen to subtract from the 
mass flux, total head and momentum flux their respective zero-order values, and then to divide 
by them. The solitary-wave results of Longuet-Higgins & Fenton can be compared with these 
since by the definitions of Q, R and Swe have 

'I 
Q = -1-I d Y  

d 

FIGURE16. The relative increase of the mass flux, Q, over that of linear waves, Qo, plotted against the expansion 
parameter, 8, for the entire range of fluid depths. 

Figures 16-18 show (Q -&,)I&,, ( R-R,)/R, and (S- So)/So plotted against s2 for various depths 
where the subscript zero refers to linear waves. We see that the solitary-wave curves represent 
upper bounds and that all but one of the curves reach maxima for e2 < 1. The exception is the 
(R -R,)/R, curve for e-" = 0.9 which is too uncertain to plot for s2 2 0.91 owing to incomplete 
convergence of the Pad6 approximants. 
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FIGURE17, The relative increase of the total head, R, over that of linear waves, R,, plotted against the 
expansion parameter, e2, for various depths, d. 

FIGURE18. The relative increase of the momentum flux, S, over that of linear waves, So, plotted against the 
expansion parameter, eZ, for various depths, d. 
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In  a celebrated paper, Benjamin & Lighthill (1954)parameterized finite-depth surface waves 
in terms of Q, R and S. Using cnoidal wave theory, they calculated the positions of two barriers in 
the R-S plane beyond which no steady waves can exist. One barrier consists of waves of zero 
height and the other of solitary waves and uniform supercritical flows. They were not able to 
calculate the position of the third barrier which was thought to consist of waves of greatest height. 
From our results we find that this third barrier consists ofwaves of greatest total head and momen- 
tum fluxbut does not exactly correspond to waves ofgreatest height. From the tabulated values in 
the appendix the coordinates of some points along this barrier can be determined. 

As a check on the behaviour of the Padt approximants the integral properties were calculated in 
two different ways, and the results were compared. Using the relations (5.15)-(5.22), we com- 
bined the series for the individual terms and thcn Padt approximated the resulting series. We also 
Pad6 approximated the individual terms and then combined them. Comparing the results, we 
find that for deep water they differ by between 10-l%nd depending on the value of s2 and 
the integral property in question. TJsually the comparisons are very good and only deteriorate for 
waves very near the highest. They are still good enough to confirm that all of the integral proper- 
ties achieve maxima for waves short of the highest. The same is generally true for finite depths, 
but the agreement worsens as the depth decreases. Excluding the e-" 0.9 case which did not 
converge completely, the differences range from 10-2l to Since the results of calculating the 
same physical quantity by Padt approximating different series agree, it is unlikely that this is due 
to spurious behaviour of the Padt approximants. 

I n  general the series for properties with a basic physical meaning, such as momentum and 
energy, converged better than those which were just individual terms in the equations. Therefore 
the results given in the appendix are those for which the series were first combined and then Padt 
approximated. 

6. THEW A V E  P R O F I L E  

I t  is useful to determine the shape of the wave profile. An irregular profile is a visual indication 
that all is not well in the calculations. Also it is possible to integrate along the wave profile numeri- 
cally to find the mean free-surface elevation and the potential energy thus providing another 
check on the results of 95. 

We shall use Schwartz's (1972)method of calculating the stream lines. The basic idea is to 
calculate the Fourier coefficients aj as series in s and Pad6 approximate them. With these in hand 
we then Padt approximate the Fourier series itself and thereby mimic the behaviour of the un- 
known higher harmonics. 

From equation (2.8) we have 

where thepj and qj  are related to the aj by the definition of the [AT/N]Pad6 approximants. Along 
a streamline !PICis constant and @/c varies between 0 and 2n. 
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I t  is convenient to define two intermediate variables, r and by 

By equating real and imaginary parts of (6. I),  it can be shown that 

N 
where ( r ) = C dm(r) sin 

m = - N  

N 

hm(r)= 2 I= qk qk-m r 2k-m (m = 1,2, ...,N). 
k=na 

There is a conflict between the need for the higher harmonics to define the wave profile 
adequately and the fact that their Fourier coefficients converge less well due to fewer terms in the 
perturbation series. For a given maximum order of the perturbation expansion, M, and a particu- 
lar Fourier coefficient, aj, only {&(M- j )  + 1) terms are known in the series expansion since from 
equation (3.1 a) 

Here we use the notation '{I'to mean 'the integer part of'. Therefore the highest-order [N/N] 
Pad6 approximant that can be calculated is {&(M -j)).For the lower harmonics (small j )  this is 
often of sufficiently high order to converge to several figures, but for the higher harmonics con- 
vergence is not as good. However, since the Fourier coefficients contribute to Z like ajbthe 
higher harmonics need not be as well converged to obtain acceptable accuracy. We have used 
a simple technique to determine the highest-order Fourier coefficient which is sufficiently 
converged. For a particularj, j = 1,2, . . .,M, we calculate 
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with L = 1, 2, . . . until either & < or L = (&(M-j)). If the first criterion is satisfied we take 
[LIL]aj for thejth Fourier coefficient and try the same procedure on aj+,. If the second criterion 
is satisfied then a+, is taken as the largest usable Fourier coefficient. By experimentation we 
have found that increasing or decreasing the convergence criterion for d by an order of magni- 
tude produces less accurate wave profiles. 

FIGURE19. The wave profiles from crest to trough of deep-water waves for s2 = 0.1, 0.2, ...,0.8, 0.9, 0.95. 

FIGURE = 0.6, 0.7, 0.8, 20. A small portion of the deep-water wave profiles near the crests of the higher waves (s2 
0.9, 0.95). Notice that the s2 = 0.95 wave profile intersects that of the lower sZ = 0.9 wave very near the 
crest so that it is on average less extreme. 'This accounts for the intermediate maxima in the wave properties 
considered as a function of s2. 

The surface streamlines were calculated for various wave heights and depths with the pertur- 
bation expansion carried to order ell0. Figure 19 shows the deep-water wave profiles from crest to 
trough adjusted to the same mean level for s2= 0.1,' 0.2, . . ., 0.8, 0.9, 0.95. The s2= 0.95 profile 
intersects the €2 = 0.9 profile twice between crest and trough, once near the wave crest and again 
near the mean level. A magnified portion of the profiles near the crests is shown in figure 20. We 
can see that the €2 = 0.95 wave is higher than the s2= 0.9 wave at its crest but soon becomes lower. 
Over most of the profile the s2= 0.9 wave is higher above the mean level and lower beneath it; 
therefore it is, in an average sense, more extreme. For solitary waves this behaviour was guessed by 
Longuet-Higgins & Fenton (1974, $6) and confirmed by Byatt-Smith & Longuet-Higgins 

(1976). 
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The maxima in the wave energy and other physical properties may be explained in terms of the 
behaviour of the wave profile. Initially the integral properties increase with the wave height. But 
as the limiting wave is approached (which also corresponds to the highest wave) the crest stagna- 
tion point forces the rounded profile to conform to a sharp 120" angle as shown by Stokes (188oa). 
I n  so doing the crest narrows, and the wave becomes on average less extreme. Hence the integral 
properties decrease. 

Schwartz found that as the wave height increases the successive Fourier coefficients first increase 
and then decrease so that the high waves have relatively more high-harmonic content. This is 
necessary to produce the sharp 120" angle at the highest wave crest. As s2ranges between 0.1 and 
0.95 we have been able to calculate between 105 and 83 Fourier coefficients using the method of 
equation (6.7). For larger e2the profiles begin to diverge because the aj fail to converge adequately 
at order sllO.Grant (1973) has shown that the wave crest is not a regular singular point; therefore 
the Pad6 approximants have an increasingly difficult time as the highest wave is approached. 

FIGURE21. A comparison of the PadC-approximated series results (-) and the profile results (- - -) for a small 
portion of the wave amplitude, a, against expansion parameter, t?, curve near the highest deep-water wave. 

I n  order to provide an independent check on the results of @4-5 we have calculated a, ii; and V 
directly from the wave profile. The wave amplitude is simply one-half the vertical distance from 
crest to trough. ii; and V were calculated from their definitions by numerically integrating along 
the wave profile by the Clemshaw-Curtis quadrature technique (which involves integrating 
Chebyshev series) over 64 and 128 integration intervals between crest and trough. 

Figure 21 shows part of the a against e2curve for high waves in deep water. The solid line repre- 
sents the PadC-approximated series results of $4 and the dashed line those obtained directly from 
the profile. The two curves are indistinguishable for s2< 0.91 and are still within 0.1 % of one 
another up until €2 = 0.95. Beyond this point the profile-determined values of a begin to deviate 
due to the inability of the Pad6 approximants to represent the sharp crest, but the maximum 
deviation at s2 = 1is still only 2 %. 

Figures 22 and 23 show portions of the mean surface elevation and potential energy curves 
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plotted against e2.The important result here is that the profile results confirm the existence of the 
maxima. The results disagree by a t  most 0.5 % for high waves even though the high-harmonic 
content is not adequately represented. Similar calculations have been done for the shallower 
depths, and the presence of the maxima are confirmed for e-d < 0.5. For depths shallower than 
this, accurate representations of the wave profiles are not obtainable. 

FIGURE22. A comparison of the PadC-approximated series results (-) and the profile results (- -) for a small 
portion of the mean free-surface elevation, 7, against expansion parameter, e2, curve near the highest deep- 
water wave. 

FIGURE23. A comparison of the PadC-approximated series results (-) and the profile results (- -) for a small 
portion of the potential energy, V, against expansion parameter, c2, curve near the highest deep-water wave. 
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7. DISCUSSION 

The properties ofsteady, periodic gravity waves from the lowest to the highest have been deter- 
mined by a perturbation technique. We have carried the expansion out to a very high order in 
terms of a parameter whose range is known ab irzitio, and the resulting series have been accurately 
summed with Padt approximants. The most significant result is that the wave speed, momentum 
and energy attain maxima for waves which are lower than the highest in water of any uniform 
depth. By calculating the wave profile we have shown that a very high wave intersects a lower 
wave near the wave crest. Therefore along most of the profile the very high wave is less extreme. 
The intermediate maximum in the potential energy has been confirmed by numerically in- 
tegrating along the wave profile. 

We know that small-amplitude waves are unstable to disturbances of slightly different wave- 
length by the Benjamin & Feir (1967) mechanism of instability, but this requires many wave 
periods to develop. As pointed out by Longuet-Higgins & Fenton (1974), the non-monotonicity 
of the integral properties as functions of wave height raises certain questions about the stability 
of very high waves. For instance, in water of the same depth it is possible for two waves of equal 
wavelength and frequency to exist, but with the lower one having more energy than the higher 
one. If disturbed might one of these waves tend to the other perhaps losing energy but gaining in 
height? Alternatively might a wave become unstable when its height first becomes a double- 
valued function of another of its properties, its momentum, say? Such instabilities occurring on 
a short time-scale might explain why it is difficult to generate very high waves in the laboratory. 

To date no experimental observations have been made of steady waves whose heights near 
those at which the wave speed, etc., first become non-monotonic. Such waves may become un- 
stable and break, but even that would be a useful observation to make. A careful measurement of 
the wave profile in time and space and of the fluid velocity at  a fixed point would provide enough 
information to calculate the wave height, speed and potential energy. The waves should be as 
long as possible to scale down the effects of surface tension and viscosity. Also the wave-speed 
maximum becomes more pronounced as the wavelength to depth ratio increases, but it must be 
remembered that even for solitary waves the speed difference between the fastest and highest 
waves is only 0.6 %. Therefore precise measurements need to be made. Because of the difficulty 
in generating very high waves it might be better to generate lower waves and then build up their 
energy density by sending them into a slowly converging channel. 

The existence of the stagnation point at  the crest of a highest wave forces the flow to become 
singular there and for the free surface to conform to a sharp 120" angle. This in turn causes the 
highest wave to be less extreme than a slightly lower wave. In  reality, the effect of surface tension 
will become important at  the wave crest. Our calculations are valid strictly only in the limit of 
large-scale waves, when gravity dominates surface tension except in a limited region near the 
wave crest. For waves offinite length, surface tension will become important at some wave ampli- 
tude, near the crest. I t  would be interesting to see how the surface tension affects the relation 
between wave height and wave energy. 

The existence of periodic waves has been proven by Krasovskii (1961) for wave slopes up to 
30" from the horizontal. His proof does not consider steeper waves although Stokes's (188oa) 
local solution at  the crest of a wave with a stagnation point in the 2-plane does have this limiting 
slope. However, Sasaki & Murakami (1973) have suggested that the maximum slope exceeds 
30°, and in a recent paper Longuet-Higgins & Fox (1977) have shown it to be equal to 30.37". 
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Therefore it would be better to have an existence proofwhose validity is limited by the presence of 
a stagnation point rather than by a maximum slope. 

Nekrasov (1921), Levi-Civita (1925) and Struik (1926) have proven that series expansions 
similar to Stokes's do converge for sufficiently small wave amplitudes. However they were not 
able to determine the maximum radius of convergence. We have not proven that our series 
converge, but we have relied on physical reasoning and consistency of the Padt approximants in 
several different series to obtain what we feel are reliable results. The final resolution of this 
problem lies in the proper identification and removal of the singularities near the wave crest 
as the highest wave is approachecl. 

A complete dynamical description of wave breaking has long eluded investigators because the 
wave motion is time-dependent and fully nonlinear. A recent numerical method (Longuet- 
Higgins & Cokelet 1976) has been developed which allows the fluid surface to be followed as 
it bends over on itself. Such techniques probably will help to unravel what happens in the 
irrotational part of a breaking wave, but any numerical method must be tested to prove that 
it gives reliable answers. The results of the present investigation have already provided an  
accurate and exact nonlinear wave which was used as a check for those calculations. 

8. A P P E N D I X  

The properties of the waves as a function of the expansion parameter, c2 = 1- q&oush/~4),(qirest 
as determined by [ N / N ] Pad6 approximating the various perturbation series are given in the 
following tables labelled A 0 to A 9 corresponding to e-d = 0, 0.1, . . ., 0.9 respectively. The vari- 
ous symbols are defined in the main text of the paper. 

The numerical values are given to 6 significant figures where the convergence of the Pad6 
approximants allows. The consistency of the Pad6 approximants indicates that for a particular 
numerical value the least significant figure given is correct to t 1. However, as we have indicated 
in 5 4 a  and $5t i ,  this may not be true for the shallowest depth (e-d = 0.9). 

For the purposes of interpolation we find that a cubic spline (Ahlberg, Nilson & Walsh 1967) 
with its third derivative equal over its first pair and last pair of endpoints works well along lines 
of constant e-". Indeed many of the figures were computer-drawn using splines. 
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HE PROPERTIES OF THE STEADY V 


PARAMETER c2 FOR 


c 2  

9.23077 x 10-I 
9.39572 x 10-I 
9.57179 x 10-I 
9.76003 x 10-I 
9.96136 x 10-I 
1.01763 
1.04039 
1.06401 
1.08713 
1.08929 
1.09141 
1.09348 
1.09584 
1.09741 
1.09926 
1.10101 
1.10265 
1.10418 
1.10556 
1.10678 
1.10782 
1.10866 
1.10927 
1.10963 
1.10972 
1.10954 
1.10910 
1.1085 
1.1080 

I 


0.0 

7.06286 x 

1.43239 x 

2.17525 x 

2.92906 x 

3.68315 x 

4.41818 x 

5.09836 x 

5.65549 x 

5.70012 x 

5.74211 x 

5.78125 x lo-' 

5.81734 x 

5.85017 x 

5.87950 x 

5.90510 x 

5.92671 x 

5.94410 x 

5.95701 x 

5.96521 x 

5.96853 x 

5.96681 x 

5.96003 x 

5.94838 x 

5.9323 x 

5.9130 x 10-2 

5.8925 x 

5.876 x 

5.872 x 


JAVE AS A FUN(:TION OF THE EXPA 

e-d = 0.2 

T 

0.0 

3.42307 x 

7.00692 x 10-3 

1.07450 x 

1.46170 x 

1.85774 x 

2.25326 x 

2.62950 x 

2.94836 x 

2.97459 x 

2.99941 x 

3.02272 x 

3.04437 x 

3.06425 x 

3.08220 x 

3.09808 x 

3.11174 x 

3.12302 x 

3.13176 x 

3.13781 x 

3.14102 x 

3.14131 x 

3.13861 x 

3.13300 x 

3.12471 x 

3.1144 x lo-" 

3.103 x 

3.09 x 

3.08 x 


-
4 


0.0 

1.05690 x 

2.07950 x 

3.05758 x 

3.97706 x 

4.81820 x 

5.55256 x 

6.13803 x 

6.51137 x 

6.53378 x 

6.55310 x 

6.56920 x 

6.58199 x 10-3 

6.59138 x 

6.59729 x 

6.59964 x 

6.59837 x 

6.59346 x 

6.58492 x 

6.57282 x 

6.55729 x 

6.53861 x 

6.51719 x 

6.49374 x 

6.45933 x 

6.4457 x 

6.4256 x 

6.4138 x 10-3 

6.418 x 10-3 
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TABLE OF THE STEADY WAVE AS A FUNCiTION OF THE EXF 'ANSIONA 3. THEPROPERTIE:; 

PARAMETER 6' 

a 

0.0 
1.01407 x 10-I 
1.45806 x 10-I 
1.81613 x 10-I 
2.13322 x 10-I 
2.42619 x 10-I 
2.70271 x 10-I 
2.96534 x 10-I 
3.21119 x 10-I 
3.23450 x 10-I 
3.25750 x 10-I 
3.28018 x 10-I 
3.30252 x 10-I 
3.32448 x 10-I 
3 .34604~10- I  
3.36717 x 10-I 
3.38782 x 10-I 
3.40797 x 10-I 
3.42757 x 10-I 
3.44658 x 10-I 
3.46498 x 10-I 
3.48272 x 10-I 
3.49978 x 10-I 
3.51617 x 10-I 
3.53193 x 10-I 
3.54717 x 10-I 
3.56219 x 10-I 
3.57760 x 10-I 
3.5948 x 10-I 

c2 

8.34862 x 10-I 
8.50859 x 10-I 
8.67918 x 10-I 
8.86141 x 10-I 
9.05617 x 10-I 
9.26393 x 10-I 
9.48390 x 10-I 
9.71196 x 10-I 
9.93490 x 10-I 
9.95578 x 10-I 
9.97621 x 10-I 
9.99610 x 10-I 
1.00153 
1.00339 
1.00517 
1.00685 
1.00843 
1.00989 
1.01121 
1.01237 
1.01336 
1.01416 
1.01473 
1.01507 
1.01514 
1.01494 
1.01450 
1.01391 
1.01349 

I 

0.0 
5.54793 x 
1.12878 x 
1.71966 x 
2.32284 x 
2.92979 x 
3.52476 x 
4.07832 x 
4.53378 x 
4.57033 x 
4.60472 x 
4.63676 x 
4.66631 x 
4.69317 x 
4.71715 x 
4.73804 x 
4.75565 x 
4.76976 x 
4.78016 x 
4.78667 x 
4.78912 x 
4.78741 x 
4.78150 x 

FOR ePd = 0.3 

T 

0.0 
2.55876 x 
5.25780 x 
8.09400 x 
1.10525 x 10-2 
1.40995 x 
1.71630 x 
2.00958 x 
2.25950 x 
2.28011 x 
2.29962 x 
2.31793 x 
2.33495 x 
2.35056 x 
2.36466 x lo-2 
2.37712 x 
2.38782 x lop2 
2.39664 x 
2.40344 x lop2 
2.40810 x 
2.41051 x 
2.41059 x 
2.40830 x 

4.77154 x 10-"2.0368 x 
4.75796 x 2.39692 x 
4.74172 x 2.38850 x lo-% 
4.7246 x 2.37937 x 
4.7105 x 2.3716 x 
4.708 x 2.3698 x 
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OF THE STEADY WAVE AS A FUNCTION OF THE EXPANSION 

ARAMETER e2 FOR e r d  = 0.4 
-

I T V 7 

0.0 0.0 0.0 0.0 
3.84088 x 1.65174 x 1.63656 x 4.46570 x 
7.88489 x 3.42871 x 3.36430 x 9.06630 x 
1.21161 x 5.33003 x 5.17620 x 1.37711 x 
1.65018 x 7.34745 x 7.05728 x 1.85308 x 
2.09784 x 9.45857 x 8.97835 x 2.32643 x 
2.54266 x 1.16132 x 1.08843 x 2.78352 x 
2.96191 x 1.37055 x 1.26708 x 3.20050 x 
3.31113 x 1.55124 x 1.41363 x 3.53380 x 
3.33934 x 1.56625 x 1.42524 x 3.55984 x 
3.36592 x 1.58048 x 1.43612 x 3.58418 x 
3.39072 x 1.59384 x 1.44620 x 3.60668 x 
3.41361 x 1.60628 x 1.45543 x 3.62723 x 
3.43444 x 1.61771 x 1.46374 x 3.64570 x 
3.45305 x lop2 1.62803 x 1.47106 x 3.66195 x lop2 
3.46929 x 1.63717 x 1.47733 x 3.67585 x 
3.48299 x 1 0 P  1.64502 x 1.48249 x 3.68724 x 
3.49397 x 1.65150 x 1.48645 x 3.69599 x 
3.50207 x 1.65649 x lop2 1.48916 x 3.70196 x 
3.50714 x 1.65991 x 1.49055 x 3.70502 x 
3.50903 x 1.66168 x 1.49058 x 3.70509 x lop2 
3.50766 x 1.66172 x 1.48923 x 3.70211 x 
3.50301 x 1.66000 x 1.48649 x 3.69610 x 
3.49518 x 10-% 1.65656 x 1.48244 x 3.68723 x 
3.4845 x 1.65155 x 1.47726 x 3.67588 x 
3.4717 x 1.6453 x 1 . 4 7 1 3 0 ~  3.6628 x 
3.4582 x 1.6385 x 1.4652 x lo-% 3.6495 x 
3.4471 x 1.6327 x 1.4604 x 3.639 x 
3.445 x 1.631 x 1.460 x 3.638 x 

-
F 4 R S 

0.0 0.0 1.27836 1.08332 
2.2'7038 x 2.07004 x 1.29166 1.10202 
4.75628 x lop3 4.09106 x 1.30558 1.12174 
7.46818 x 6.04048 x 1.32013 1.14255 
1.04078 x 7.88740 x 1.33526 1.16446 
1.35577 x 9.58845 x 1.35092 1.18745 
1.66592 x 1.10808 x lo-% 1.36688 1.21130 
2.01654 x 1.22712 x 1.38266 1.23543 
2.31333 x 1.30183 x 1.39711 1.25826 
2.33873 x 1.30613 x 1.39840 1.26034 
2.36297 x 1.30078 x 1.39964 1.26237 
2.38593 x 1.31273 x 1.40084 1.26433 
2.40748 x 1.31498 x 1.40198 1.26622 
2.42747 x 1.31649 x 1.40306 1.26802 
2.44575 x 1.317213 x 1.40408 1.26973 
2.46217 x 1.31727 x 1.40502 1.27134 
2.47656 x 1.31650 x 1.40588 1.27282 
2.48873 x 1.31494 x 1.40666 1.27418 
2.49851 x 1.31262 x lo-% 1.40734 1.27538 
2.50572 x 1.30953 x 1.40791 1.27642 
2.51019 x 1.30571 x 1.40835 1.27723 
2.51178 x 1.30124 x lop2 1.40867 1.27793 
2.51040 x 1.29620 x 1.40886 1.27836 
2.50604 x 1.29075 x 1.40889 1.27855 
2.49887 x 1.28515 x 1.40877 1.27848 
2.48937 x 1.27970 x lop2 1.40851 1.27816 
2.4786 x 1.27530 x 1.40815 1.2776 
2.4690 x 1.27276 x 1.4078 1.2770 
2.465 x 1.2741 x 1.4077 1.276 
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TABLEA 5. THEPROPERTIES OF THE STEADY WAVE AS A FUNCTION OF THE EXPANSION 

lJARAhIETCR E' FOR eWd= 0.5 

a c 2  

0.0 6.00000 x 10-I 
6.02076 x 10-% 6.15059 x 10-I 
8.83127 x lo-% 6.31112 x 10-I 
1.12137 x 10-I 6.48237 x 10-I 
1.34191 x 10-I 6.66501 x 10-I 
1.35402 x 10-I 6.85933 x 10-I 
176177 x 0 -  7.06443 x 10-I 
1.96607 x 10-I 7.27629 x 10-I 
2.16384 x 10-I 7.48230 x 10-I 
2.18293 x 10 7.50151 x 10-I 
2.20184 x 10-I 7.52028 x 10-I 
2.22034 x 10-I 7.53833 x 10-I 
2.23901 x 10-I 7.35618 x 10-I 
2.25723 x 10-I 7.57316 x 10-I 
2.27518 x 10-I 7.58937 x 10-I 
2.29281 x 10-I 7.60469 x 10-I 
2.31009 x 10-I 7.61900 x 10-I 
2.32703 x 10 7.63217 x 10-I 
2.34349 x 10-I 7.64403 x 10-I 
2.35932 x 10-I 7.65444 x 10-I 
2.37505 x 10-I 7.66318 x 10-I 
2.39003 x 10-I 7.67008 x 10-I 
2.40448 x 10-I 7.67492 x 10-I 
2.41832 x 10-I 7.67748 x 10-I 
2.4316 x 10-I 7 . 6 7 7 6 4 ~  10-I 
2.4443 x 10-I 7.6754 x 10-I 
2.457 x 10-I 7.6707 x 10-I 
2.469 x 10-I 7.6648 x 10-I 
2.484 x 10-I 7.660 x 10-I 

I 


0.0 

2.27828 x lou3 

4.76432 x 10-d 

7.24898 x lou3 

1.03114 x 

1.33093 x 

1.63593 x lo-% 

1.92985 x 

2.18008 x 10-% 

2.20038 x 

2.21993 x 10-% 

2.23805 x 

2.25481 x lo-% 

2.27012 x lo-% 

2.28386 x lo-% 

2.29389 x lo-% 

2.30609 x 

2.31434 x lo-% 

2 32049 x 

2.32444 x 

2.32605 x lo-% 

2.32527 x 

2.32206 x 10-% 

2.3165 x lo-% 

2.3087 x lo-% 

2.2993 x 

2.290 x lo-% 
2.281 x 

2.28 x 


T 

0.0 

8.93380 x 

1.89245 x 

2.99870 x 

4.20911 x 

5.51145 x 

6.87501 x 

8.23092 x 

9.42888 x 

9.52974 x 

9.62558 x 

9.71559 x 

9.80014 x 10-"8.9180 

9.87776 x 

9.94813 x 

1.00106 x 10-% 

1.00646 x 

1.01003 x 10-% 

1.01440 x lo-% 

1.01682 x 

1.01811 x lo-% 

1.01822 x 

1.01714 x 

1.01487 x 

1.0114 x lo-% 

1.0073 x 

1.0027 x lo-% 

9.987 x 

9.97 x 


-
V "1 

0.0 0.0 

8.83775 x 2.90502 x 

1.83131x 5.99719 x 

2.89960 x 9.25188 x 

4.02062 x lop3 1.26303 x lo-% 

5.19710 x 1.60699 x 10-8 

6.39438 x 1.94637 x 

7.54417 x 2.26240 x lo-% 

8.51053 x 2.52032 x lo-% 

8.58833 x 2.54075 x 

8.66141 x 2.55990 x 10-% 

8.72937 x 2.57766 x lo-% 


x 2.59394 x lo-% 

8.84823 x 2.60862 x 

8.89823 x 2.62160 x 

8.94130 x 2.63276 x 

8.97694 x 2.64197 x 10-% 

9.00467 x 2.64913 x 

9.02400 x lou3 2.65411 x 

9.03430 x 2.63681 x 10-% 

9.03579 x 2.65714 x lo-% 

9.02767 x 2.65505 x 

9.0101 x 2.65053 x lo-% 

8.9836 x 2.64376 x 

8.9491 x 2.6349 x lo-% 

8.909 x 2.6246 x lo-% 
8.868 x 2.614 x lo-% 
8.835 x 2.606 x lo-% 
8.83 x 2.606 x 10-% 
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TABLEA 7. THEPROPERTIES OF TIIE STEADY WAVE AS A FUNCTION OF THE EXPANSION 

PARAhIETER &' FOR e-d = 0.7 

a c 2  I T 

0.0 3.42282 x 10-I 0.0 0.0 

2.30969 x 3.53910 x 10-I 4.22398 x 1 0 - V . 2 5 6 4 3  x 

3.61956 x 3.66691 x 10-I 9.64986 x 2.92174 x 

4.86378 x 3.80583 x 10-I 1.62559 x 5.01426 x 

6.11638 x 3.95576 x 10-I 2.40086 x 7.55010 x 

7.40387 x 4.11646 x 10-I 3.28155 x 1.05272 x 

8.73675 x 4.28680 x 10-I 4.24442 x 1.38949 x 

1.01119 x 10-I 4.46301 x 10-I 5.23600 x 1.74897 x 

1.15005 x 10-I 4.63400 x 10-I 6.13736 x 2.08896 x 

1.16374 x 10-I 4.64988 x 10-I 6.21434 x 2.11878 x 

1.17735 x 10-I 4.66538 x 10-I 6.28767 x 2.14735 x 

1.19085 x 10-I 4.68044 x 10-I 6.35692 x 2.17450 x 

1.20423 x 10-I 4.69498 x 10-I 6.42167 x 2.20006 x 

1.21747 x 10-I 4.70893 x 10-I 6.4815 x 2.22385 x 

1.23054 x 10-I 4.72222 x 10-I 6.5358 x 2.2456 x 

1.24341 x 10-I 4.73474 x 10-I 6.5842 x 2.2653 x 

1.25606 x 10-I 4.74641 x 10-I 6.6260 x loM3 2.2824 x 

1.2684 x 10-I 4.7571 x 10-I 6.6606 x 2.2969 x 

1.2805 x 10-I 4.7666 x 10-I 6.6876 x 2.3085 x 

1.2923 x 10-I 4.7749 x 10-I 6.706 x 2.3171 x 

1.3036 x 10-I 4.7818 x 10-I 6.716 x 2.322 x 

1.3146 x 10-I 4.7871 x 10-I 6.717 x 2.324 x 

1.3250 x 10-I 4.790 x 10-I 6.708 x 2.321 x 

1.3349 x 10-I 4.792 x 10-I 6.689 x 2.315 x 

1.344 x 10-I 4.792 x 10-I 6.66 x 2.305 x 

1.353 x 10-I 4.789 x 10-I 6.62 x 2.291 x 

1.361 x 10-I 4.783 x 10-I 6.58 x 2.274 x 

1.368 x 10-I 4.775 x 10-I 6.53 x 2.25 x 

1.374 	 x 10-I 4.76 x 10-I 6.48 x 2.24 x 


-

K s,, F 25 


3.42282 x 10-I 0.0 0.0 0.0 

3.55936 x 10-I 3.48087 x lo-* 1.41606 x 1 0 - Q . 0 6 4 5 2  x lo-" 

3.71197 x 10-I 7.91006 x lo-*  3.31257 x lo-*  1.31874 x 

3.87965 x 10-I 1.32808 x 5 . 7 2 9 9 4 ~  2.11247 x 

4.06171 x 10-I 1.95800 x 8.70939 x lo-* 2.96095 x 

4.25706 x 10-I 2.67496 x 1.22742 x 3.82997 x 

4.46316 x 10-I 3.46180 x 1.63911 x 4.67079 x 

4.67385 x 10-I 4.27599 x 2.08850 x 5.40924 x lop3 

4.87360 x 10 - I  5.01870 x 2.52384 x 5.92840 x 

4.89177 x 10-I 5.08211 x 2.56260 x 5.96194 x 

4.90940 x 10-I 5.14245 x 2.59985 x 5.99134 x 

4.92644 x 10-I 5.19939 x 2.03535 x 6.01638 x 

4.94279 x 10-I 5.2525 x 2.66888 x 6.03682 x 

4.95837 x 10-I 5.3015 x 2.70020 x 6.0525 x 

4.97308 x 10-I 5.3469 x 2.7290 x 6.0631 x 10 

4.98682 x 10-I 5.3853 x 2.7550 x 6.0684 x 

4.9994 x 10-I 5.4191 x 2.7779 x 6.0685 x 

5.0108 x 10-I 5.4468 x 1 0 - 9 2 . 9 7 4  x 6.0630 x 

5.0209 x 10-I 5.468 x 2.813 x 6.0519 x 

5.029 x 10-I 5.482 x 2.825 x 6.035 x 

5.036 x 10-I 5.489 x 2.832 x 6.013 x 

5.041 x 10-I 5.488 x 2.834 x 8.985 x 

5.044 x 10-I 6.479 x 2.832 x 5.952 x 

5.045 x 10-I 5.46 x 2.824 x 5.916 x 

5.04 x 10-I 5.43 x 2.81 x 5.876 x 

5.04 x 10-I 5.40 x 2.79 x 5.836 x 

5.03 x 10-I 5.37 x 2.77 x 5.801 x 

5.02 x 10-I 5.32 x 2.74 x 5.77 x 

5.0 x 10-I 5.28 x 2.72 x 5.76 x 
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