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ABSTRACT

In these notes� we study the Runge Kutta Discontinuous Galerkin method for nu�
mericaly solving nonlinear hyperbolic systems and its extension for convection�
dominated problems� the so�called Local Discontinuous Galerkin method� Examples
of problems to which these methods can be applied are the Euler equations of gas dy�
namics� the shallow water equations� the equations of magneto�hydrodynamics� the
compressible Navier�Stokes equations with high Reynolds numbers� and the equa�
tions of the hydrodynamic model for semiconductor device simulation� The main
features that make the methods under consideration attractive are their formal high�
order accuracy� their nonlinear stability� their high parallelizability� their ability to
handle complicated geometries� and their ability to capture the discontinuities or
strong gradients of the exact solution without producing spurious oscillations� The
purpose of these notes is to provide a short introduction to the devising and analysis
of these discontinuous Galerkin methods�
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Preface

There are several numerical methods using a DG formulation to discretize the
equations in time� space� or both� In this monograph� we consider numerical meth�
ods that use DG discretizations in space and combine it with an explicit Runge�
Kutta time�marching algorithm� We thus consider the so�called Runge�Kutta dis�
continuous Galerkin �RKDG� introduced and developed by Cockburn and Shu
���	 ��	 ��	 ��	 �
� for nonlinear hyperbolic systems and the so�called local dis�
continuous Galerkin �LDG� for nonlinear convection�di�usion systems� The LDG
methods are an extension of the RKDG methods to convection�di�usion problems
proposed �rst by Bassi and Rebay ��� in the context of the compressible Navier�
Stokes and recently extended to general convection�di�usion problems by Cockburn
and Shu �����

Several properties are responsible for the increasing popularity of the above
mentioned methods� The use of a DG discretization in space gives the methods
the high�order accuracy� the �exibility in handling complicated geometries� and the
easy to treat boundary conditions typical of the �nite element methods� Moreover�
the use of discontinuous elements produces a block�diagonal mass matrix whose
blocks can be easily inverted by hand� This why after discretizing in time with
a high�order accurate� explicit Runge�Kutta method� the resulting algorithm is
highly parallelizable� Finally� these methods incorporate in a very natural way the
techniques of �slope limiting� developed by van Leer ���	 ��� that e�ectively damp
out the spurious oscillations that tend to be produced around the discontinuities
or strong gradients of the approximate solution�

In these notes� we sudy these DG methods by following their historical devel�
opment� Thus� we �rst study the RKDG method and then the LDG method� To
study the RKDG method� we start by considering their de�nition for the scalar
equation in one�space dimension� Then� we consider the scalar equation in several
space dimensions and �nally� we consider the case of multidimensional systems�
The last chapter is devoted to the LDG methods�

To study the RKDG method� we take the point of view that they are formally
high�order accurate �perturbations� of the so�called �monotone� schemes which are
very stable and formally �rst�order accurate� Indeed� the RKDG methods were
devised by trying to see if formally high�order accurate methods could be obtained
that retained the remarkable stability of the monotone schemes� Of course� this
approach is not new� It has been the basic idea in the devising of the so�called �high�
resolution� schemes for �nite�di�erence and �nite�volume methods for nonlinear
conservation laws� Thus� the RKDG method incorporates this very successful idea
into the framework of DG methods which have all the advantages of �nite element
methods�

�



CHAPTER �

A historical overview

���� The original Discontinuous Galerkin method

The original discontinuous Galerkin �DG� �nite element method was introduced
by Reed and Hill ���� for solving the neutron transport equation

� u� div� a u� � f�

where � is a real number and a a constant vector� Because of the linear nature of
the equation� the approximate solution given by the method of Reed and Hill can
be computed element by element when the elements are suitably ordered according
to the characteristic direction�

LeSaint and Raviart ���� made the �rst analysis of this method and proved a
rate of convergence of ��x�k for general triangulations and of ��x�k�� for Carte�
sian grids� Later� Johnson and Pitkar�anta ���� proved a rate of convergence of
��x�k���� for general triangulations and Peterson ���� con�rmed this rate to be
optimal� Richter ���� obtained the optimal rate of convergence of ��x�k�� for some
structured two�dimensional non�Cartesian grids�

���� Nonlinear hyperbolic systems� The RKDG method

The success of this method for linear equations� prompted several authors to
try to extend the method to nonlinear hyperbolic conservation laws

ut �

dX
i��

�fi�u��xi � ��

equipped with suitable initial or initial
boundary conditions� However� the intro�
duction of the nonlinearity prevents the element�by�element computation of the
solution� The scheme de�nes a nonlinear system of equations that must be solved
all at once and this renders it computationally very ine�cient for hyperbolic prob�
lems�

� The one�dimensional scalar conservation law�

To avoid this di�culty� Chavent and Salzano ��� contructed an explicit version
of the DG method in the one�dimensional scalar conservation law� To do that� they
discretized in space by using the DG method with piecewise linear elements and
then discretized in time by using the simple Euler forward method� Although the
resulting scheme is explicit� the classical von Neumann analysis shows that it is
unconditionally unstable when the ratio �t

�x is held constant� it is stable if �t
�x is of

order
p
�x� which is a very restrictive condition for hyperbolic problems�

To improve the stability of the scheme� Chavent and Cockburn ��� modi�ed
the scheme by introducing a suitably de�ned �slope limiter� following the ideas
introduced by vanLeer in ����� They thus obtained a scheme that was proven to

�
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be total variation diminishing in the means �TVDM� and total variation bounded
�TVB� under a �xed CFL number� f � �t�x � that can be chosen to be less than or
equal to ���� Convergence of a subsequence is thus guaranteed� and the numerical
results given in ��� indicate convergence to the correct entropy solutions� On the
other hand� the scheme is only �rst order accurate in time and the �slope limiter� has
to balance the spurious oscillations in smooth regions caused by linear instability�
hence adversely a�ecting the quality of the approximation in these regions�

These di�culties were overcome by Cockburn and Shu in ����� where the
�rst Runge Kutta Discontinuous Galerkin �RKDG� method was introduced� This
method was contructed by �i� retaining the piecewise linear DG method for the
space discretization� �ii� using a special explicit TVD second order Runge�Kutta
type discretization introduced by Shu and Osher in a �nite di�erence framework
����� ����� and �iii� modifying the �slope limiter� to maintain the formal accuracy
of the scheme at extrema� The resulting explicit scheme was then proven linearly
stable for CFL numbers less than ��	� formally uniformly second order accurate in
space and time including at extrema� and TVBM� Numerical results in ���� indicate
good convergence behavior� Second order in smooth regions including at extrema�
sharp shock transitions �usually in one or two elements� without oscillations� and
convergence to entropy solutions even for non convex �uxes�

In ����� Cockburn and Shu extended this approach to construct �formally�
high�order accurate RKDG methods for the scalar conservation law� To device
RKDG methods of order k � �� they used �i� the DG method with polynomials of
degree k for the space discretization� �ii� a TVD �k � ���th order accurate explicit
time discretization� and �iii� a generalized �slope limiter�� The generalized �slope
limiter� was carefully devised with the purpose of enforcing the TVDM property
without destroying the accuracy of the scheme� The numerical results in ����� for
k � �� �� indicate �k����th order order in smooth regions away from discontinuities
as well as sharp shock transitions with no oscillations� convergence to the entropy
solutions was observed in all the tests� These RKDG schemes were extended to
one�dimensional systems in �����

� The multidimensional case�

The extension of the RKDG method to the multidimensional case was done in
���� for the scalar conservation law� In the multidimensional case� the complicated
geometry the spatial domain might have in practical applications can be easily
handled by the DG space discretization� The TVD time discretizations remain the
same� of course� Only the construction of the generalized �slope limiter� represents
a serious challenge� This is so� not only because of the more complicated form of
the elements but also because of inherent accuracy barries imposed by the stability
properties�

Indeed� since the main purpose of the �slope limiter� is to enforce the nonlinear
stability of the scheme� it is essential to realize that in the multidimensional case� the
constraints imposed by the stability of a scheme on its accuracy are even greater
than in the one dimensional case� Although in the one dimensional case it is
possible to devise high�order accurate schemes with the TVD property� this is not
true in several space dimensions since Goodman and LeVeque ���� proved that any
TVD scheme is at most �rst order accurate� Thus� any generalized �slope limiter�
that enforces the TVD property� or the TVDM property for that matter� would
unavoidably reduce the accuracy of the scheme to �rst�order accuracy� This is why
in ����� Cockburn� Hou and Shu devised a generalized �slope limiter� that enforced
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a local maximum principles only since they are not incompatible with high�order
accuracy� No other class of schemes has a proven maximum principle for genearal
nonlinearities f � and arbitrary triangulations�

The extension of the RKDG methods to general multidimensional systems was
started by Cockburn and Shu in ���� and has been recently completed in ��
�� Bey
and Oden ��� and more recently Bassi and Rebay ��� have studied applications of
the method to the Euler equations of gas dynamics�

� The main advantages of the RKDG method�
The resulting RKDG schemes have several important advantages� First� like

�nite element methods such as the SUPG�method of Hughes and Brook ��
	 ��	
�
	 ��	 ��	 ��� �which has been analyzed by Johnson et al in ���	 �
	 �
���
the RKDG methods are better suited than �nite di�erence methods to handle
complicated geometries� Moreover� the particular �nite elements of the DG space
discretization allow an extremely simple treatment of the boundary conditions� no
special numerical treatment of them is required in order to achieve uniform high
order accuracy� as is the case for the �nite di�erence schemes�

Second� the method can easily handle adaptivity strategies since the re�ning
or unre�ning of the grid can be done without taking into account the continuity
restrictions typical of conforming �nite element methods� Also� the degree of the
approximating polynomial can be easily changed from one element to the other�
Adaptivity is of particular importance in hyperbolic problems given the complexity
of the structure of the discontinuities� In the one dimensional case the Riemann
problem can be solved in closed form and discontinuity curves in the �x� t� plane
are simple straight lines passing through the origin� However� in two dimensions
their solutions display a very rich structure� see the works of Wagner ����� Lindquist
����� ����� Zhang and Zheng ����� and Zhang and Cheng ����� Thus� methods which
allow triangulations that can be easily adapted to resolve this structure� have an
important advantage�

Third� the method is highly parallelizable� Since the elements are discontinu�
ous� the mass matrix is block diagonal and since the order of the blocks is equal
to the number of degrees of freedom inside the corresponding elements� the blocks
can be inverted by hand once and for all� Thus� at each Runge�Kutta inner step� to
update the degrees of freedom inside a given element� only the degrees of freedom
of the elements sharing a face are involved� communication between processors is
thus kept to a minimum� Extensive studies of adaptivity and parallelizability issues
of the RKDG method were started by Biswas� Devine� and Flaherty ��� and then

continued by deCougny et al� ��
�� Devine et al� ���	 ��� and by �Ozturan et al�
�����

���� Convection�di�usion systems� The LDG method

The �rst extensions of the RKDG method to nonlinear� convection�di�usion
systems of the form

�tu�r � F�u� D u� � �� in ��� T �� ��

were proposed by Chen et al� ��
�� �
� in the framework of hydrodynamic models
for semiconductor device simulation� In these extensions� approximations of second
and third�order derivatives of the discontinuous approximate solution were obtained
by using simple projections into suitable �nite elements spaces� This projection
requires the inversion of global mass matrices� which in ��
� and �
� are �lumped�
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in order to maintain the high parallelizability of the method� Since in ��
� and
�
� polynomials of degree one are used� the �mass lumping� is justi�ed� however� if
polynomials of higher degree were used� the �mass lumping� needed to enforce the
full parallelizability of the method could cause a degradation of the formal order of
accuracy�

Fortunately� this is not an issue with the methods proposed by Bassi and Rebay
��� �see also Bassi et al ���� for the compressible Navier�Stokes equations� In these
methods� the original idea of the RKDG method is applied to both u and Du which
are now considered as independent unknowns� Like the RKDG methods� the re�
sulting methods are highly parallelizable methods of high�order accuracy which are
very e�cient for time�dependent� convection�dominated �ows� The LDG methods
considered by Cockburn and Shu ���� are a generalization of these methods�

The basic idea to construct the LDG methods is to suitably rewrite the original
system as a larger� degenerate� �rst�order system and then discretize it by the
RKDG method� By a careful choice of this rewriting� nonlinear stability can be
achieved even without slope limiters� just as the RKDG method in the purely
hyperbolic case� see Jiang and Shu �����

The LDG methods ���� are very di�erent from the so�called Discontinuous
Galerkin �DG� method for parabolic problems introduced by Jamet ���� and stud�
ied by Eriksson� Johnson� and Thom ee ����� Eriksson and Johnson ���	 ��	 ��	 ����
and more recently by Makridakis and Babu!ska ��
�� In the DG method� the ap�
proximate solution is discontinuous only in time� not in space� in fact� the space dis�
cretization is the standard Galerkin discretization with continuous �nite elements�
This is in strong contrast with the space discretizations of the LDG methods which
use discontinuous �nite elements� To emphasize this di�erence� those methods
are called Local Discontinuous Galerkin methods� The large amount of degrees
of freedom and the restrictive conditions of the size of the time step for explicit
time�discretizations� render the LDG methods ine�cient for di�usion�dominated
problems� in this situation� the use of methods with continuous�in�space approxi�
mate solutions is recommended� However� as for the successful RKDG methods for
purely hyperbolic problems� the extremely local domain of dependency of the LDG
methods allows a very e�cient parallelization that by far compensates for the extra
amount of degrees of freedom in the case of convection�dominated �ows�

Karniadakis et al� have implemented and tested these methods for the com�
pressible Navier Stokes equations in two and three space dimensions with impressive
results� see ����� ����� ����� ����� and �����

���� The content of these notes

In these notes� we study the RKDG and LDG methods� Our exposition will be
based on the papers by Cockburn and Shu ����� ����� ����� ����� and ��
� in which
the RKDG method was developed and on the paper by Cockburn and Shu ����
which is devoted to the LDG methods� Numerical results from the papers by Bassi
and Rebay ���� on the Euler equations of gas dynamics� and ���� on the compressible
Navier�Stokes equations� are also included�

The emphasis in these notes is on how the above mentioned schemes were de�
vised� As a consequence� the chapters that follow re�ect that development� Thus�
Chapter �� in which the RKDG schemes for the one�dimensional scalar conserva�
tion law are constructed� constitutes the core of the notes because it contains all
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the important ideas for the devicing of the RKDG methods� chapter 	 contains the
extension to multidimensional systems� and chapter �� the extension to convection�
di�usion problems�

We would like to emphasize that the guiding principle in the devicing of the
RKDG methods for scalar conservation laws is to consider them as perturbations
of the so�called monotone schemes� As it is well�known� monotone schemes for
scalar conservation laws are stable and converge to the entropy solution but are
only �rst�order accurate� Following a widespread approach in the �eld of numerical
schemes for nonlinear conservation laws� the RKDG are constructed in such a way
that they are high�order accurate schemes that �become� a monotone scheme when
a piecewise�constant approximation is used� Thus� to obtain high�order accurate
RKDG schemes� we �perturb� the piecewise�constant approximation and allow it to
be piecewise a polynomial of arbitrary degree� Then� the conditions under which the
stability properties of the monotone schemes are still valid are sought and enforced
by means of the generalized �slope limiter�� The fact that it is possible to do so
without destroying the accuracy of the RKDG method is the crucial point that
makes this method both robust and accurate�

The issues of parallelization and adaptivity developed by Biswas� Devine� and
Flaherty ���� deCougny et al� ��
�� Devine et al� ���	 ��� and by �Ozturan et al�
���� are certainly very important� Another issue of importance is how to render
the method computationaly more e�cient� like the quadrature rule�free versions
of the RKDG method recently studied by Atkins and Shu ���� However� these
topics fall beyond the scope of these notes whose main intention is to provide a
simple introduction to the topic of discontinuous Galerkin methods for convection�
dominated problems�
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CHAPTER �

The scalar conservation law in one space

dimension

���� Introduction

In this section� we introduce and study the RKDG method for the following
simple model problem�

ut � f�u�x � �� in ��� ��� ��� T �� �������

u�x� �� � u��x�� � x � ��� ��� �������

and periodic boundary conditions� This section has material drawn from ���� and
�����

���� The discontinuous Galerkin�space discretization

������ The weak formulation� To discretize in space� we proceed as follows�
For each partition of the interval ��� ��� fxj���� gNj��� we set Ij � �xj����� xj������
�j � xj���� � xj���� for j � �� � � � � N � and denote the quantity max��j�N �j by
�x �

We seek an approximation uh to u such that for each time t � ��� T �� uh�t�
belongs to the �nite dimensional space

Vh � V k
h � fv � L���� �� � vjIj � P k�Ij�� j � �� � � � � Ng� �����	�

where P k�I� denotes the space of polynomials in I of degree at most k� In order to
determine the approximate solution uh� we use a weak formulation that we obtain
as follows� First� we multiply the equations ������� and ������� by arbitrary� smooth
functions v and integrate over Ij � and get� after a simple formal integration by
parts�

Z
Ij

�t u�x� t� v�x� dx �
Z
Ij

f�u�x� t�� �x v�x� dx �������

�f�u�xj����� t�� v�x
�
j������ f�u�xj����� t�� v�x

�
j����� � ��

Z
Ij

u�x� �� v�x� dx �

Z
Ij

u��x� v�x� dx� �������
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Next� we replace the smooth functions v by test functions vh belonging to the �nite
element space Vh� and the exact solution u by the approximate solution uh� Since
the function uh is discontinuous at the points xj����� we must also replace the
nonlinear ��ux� f�u�xj����� t�� by a numerical ��ux� that depends on the two values
of uh at the point �xj����� t�� that is� by the function

h�u�j�����t� � h�u�x�j����� t�� u�x
�
j����� t��� �������

that will be suitably chosen later� Note that we always use the same numerical �ux
regardless of the form of the �nite element space� Thus� the approximate solution
given by the DG�space discretization is de�ned as the solution of the following weak
formulation�

� j � �� � � � � N� � vh � P k�Ij� �

Z
Ij

�t uh�x� t� vh�x� dx �
Z
Ij

f�uh�x� t�� �x vh�x� dx �������

�h�uh�j�����t� vh�x
�
j������ h�uh�j�����t� vh�x

�
j����� � ��

Z
Ij

uh�x� �� vh�x� dx �

Z
Ij

u��x� vh�x� dx� �������

������ Incorporating the monotone numerical �uxes� To complete the
de�nition of the approximate solution uh� it only remains to choose the numerical
�ux h� To do that� we invoke our main point of view� namely� that we want to
construct schemes that are perturbations of the so�called monotone schemes because
monotone schemes� although only �rst�order accurate� are very stable and converge
to the entropy solution� More precisely� we want that in the case k � �� that is�
when the approximate solution uh is a piecewise�constant function� our DG�space
discretization gives rise to a monotone scheme�

Since in this case� for x � Ij we can write

uh�x� t� � u�j �

we can rewrite our weak formulation �������� ������� as follows�

� j � �� � � � � N �

�t u
�
j �t� �

�
h�u�j �t�� u

�
j���t��� h�u�j���t�� u

�
j �t��

�
��j � ��

u�j ��� �
�

�j

Z
Ij

u��x� dx�
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and it is well�known that this de�nes a monotone scheme if h�a� b� is a Lipschitz�
consistent� monotone �ux� that is� if it is�

�i� locally Lipschitz and consistent with the �ux f�u�� i�e�� h�u� u� � f�u��
�ii� a nondecreasing function of its �rst argument� and
�iii� a nonincreasing function of its second argument�

The best�known examples of numerical �uxes satisfying the above properties are
the following�

�i� The Godunov �ux�

hG�a� b� �

�
mina�u�b f�u� � if a � b�

maxa�u�b f�u� � if a � b�

�ii� The Engquist�Osher �ux�

hEO�a� b� �

Z b

�

min�f ��s�� �� ds�
Z a

�

max�f ��s�� �� ds� f����

�iii� The Lax�Friedrichs �ux�

hLF �a� b� �
�

�
�f�a� � f�b�� C �b� a���

C � max
inf u��x��s�supu��x�

jf ��s�j�

�iv� The local Lax
Friedrichs �ux�

hLLF �a� b� �
�

�
�f�a� � f�b�� C�b� a���

C � max
min�a�b��s�max�a�b�

jf ��s�j�

�v� The Roe �ux with �entropy �x��

hR�a� b� �

���
��
f�a�� if f ��u� � � for u � �min�a� b�� max�a� b���

f�b�� if f ��u� � � for u � �min�a� b��max�a� b���

hLLF �a� b�� otherwise�

For the �ux h� we can use the Godunov �ux hG since it is well�known that this
is the numerical �ux that produces the smallest amount of arti�cial viscosity� The
local Lax�Friedrichs �ux produces more arti�cial viscosity than the Godunov �ux�
but their performances are remarkably similar� Of course� if f is too complicated� we
can always use the Lax�Friedrichs �ux� However� numerical experience suggests that
as the degree k of the approximate solution increases� the choice of the numerical
�ux does not have a signi�cant impact on the quality of the approximations�

������ Diagonalizing the mass matrix� If we choose the Legendre polyno�
mials P� as local basis functions� we can exploit their L��orthogonality� namely�Z �

��
P��s�P���s� ds �

�
�

��� �

�
�� �� �

and obtain a diagonal mass matrix� Indeed� if for x � Ij � we express our approxi�
mate solution uh as follows�

uh�x� t� �

kX
���

u�j ���x��
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where

���x� � P��� �x� xj���j��

the weak formulation �������� ������� takes the following simple form�

� j � �� � � � � N and � � �� � � � � k �

�
�

��� �

�
�t u

�
j�t��

�

�j

Z
Ij

f�uh�x� t�� �x���x� dx

�
�

�j

	
h�uh�xj�������t� � ����� h�uh�xj�������t�



� ��

u�j��� �
��� �

�j

Z
Ij

u��x����x� dx�

where we have use the following properties of the Legendre polynomials�

P���� � �� P����� � ������
This shows that after discretizing in space the problem �������� ������� by the

DG method� we obtain a system of ODEs for the degrees of freedom that we can
rewrite as follows�

d

dt
uh � Lh�uh�� in ��� T �� �����
�

uh�t � �� � u�h� ��������

The element Lh�uh� of Vh is� of course� the approximation to �f�u�x provided by
the DG�space discretization�

Note that if we choose a di�erent local basis� the local mass matrix could be a
full matrix but it will always be a matrix of order �k���� By inverting it by means
of a symbolic manipulator� we can always write the equations for the degrees of
freedom of uh as an ODE system of the form above�

������ Convergence analysis of the linear case� In the linear case f�u� �
c u� the L���� T �L���� ����accuracy of the method �������� ������� can be established
by using the L���� T �L���� ����stability of the method and the approximation prop�
erties of the �nite element space Vh�

Note that in this case� all the �uxes displayed in the examples above coincide
and are equal to

h�a� b� � c
a� b

�
� j c j

�
�b� a�� ��������

The following results are thus for this numerical �ux�
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We state the L��stability result in terms of the jumps of uh across xj���� which
we denote by

�uh �j���� � uh�x
�
j������ uh�x

�
j������

Proposition ���� �L��stability� We have�
�
�kuh�T � k�L������ �"T �uh � � �

�ku� k�L�������
where

"T �uh � �
j c j
�

R T
�

P
��j�N �uh�t� �

�
j���� dt�

Note how the jumps of uh are controled by the L��norm of the initial condition�
This control re�ects the subtle built�in dissipation mechanism of the DG�methods
and is what allows the DG�methods to be more accurate than the standard Galerkin
methods� Indeed� the standard Galerkin method has an order of accuracy equal to
k whereas the DG�methods have an order of accuray equal to k���� for the same
smoothness of the initial condition�

Theorem ���� Suppose that the initial condition u� belongs to H
k����� ��� Let

e be the approximation error u� uh� Then we have�

k e�T � kL������ � C ju� jHk���������x�
k���� �

where C depends solely on k� j c j� and T �

It is also possible to prove the following result if we assume that the initial
condition is more regular� Indeed� we have the following result�

Theorem ���� Suppose that the initial condition u� belongs to H
k����� ��� Let

e be the approximation error u� uh� Then we have�

k e�T � kL������ � C ju� jHk���������x�
k���

where C depends solely on k� j c j� and T �

The Theorem ��� is a simpli�ed version of a more general result proven in �
��
by Johnson and Pitk�aranta ���� and the Theorem ��� is a simpli�ed version of
a more general result proven in �
�� by LeSaint and Raviart ����� To provide a
simple introduction to the techniques used in these more general results� we give
new proofs of these theorems in an appendix to this chapter�

The above theorems show that the DG�space discretization results in a �k���th�
order accurate scheme� at least in the linear case� This gives a strong indication
that the same order of accuracy should hold in the nonlinear case when the exact
solution is smooth enough� of course�

Now that we know that the DG�space discretization produces a high�order
accurate scheme for smooth exact solutions� we consider the question of how does
it behave when the �ux is a nonlinear function�

������ Convergence analysis in the nonlinear case� To study the conver�
gence properties of the DG�method� we �rst study the convergence properties of
the solution w of the following problem�

wt � f�w�x � �	�w�wx�x� in ��� ��� ��� T �� ��������

w�x� �� � u��x�� � x � ��� ��� ������	�
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and periodic boundary conditions� We then mimic the procedure to study the
convergence of the DG�method for the piecewise�constant case� The general DG�
method will be considered later after having introduced the Runge�Kutta time�
discretization�

The continuous case as a model� In order to compare u and w� it is enough
to have �i� an entropy inequality and �ii� uniform boundedness of kwx kL�������
Next� we show how to obtain these properties in a formal way�

We start with the entropy inequality� To obtain such an inequality� the basic
idea is to multiply the equation �������� by U ��w � c�� where U��� denotes the
absolute value function and c denotes an arbitrary real number� Since

U ��w � c�wt � U�w � c�t�

U ��w � c� f�w�x �
�
U ��w � c� �f�w�� f�c��

� � F �w� c�x�

U ��w � c� �	�w�wx�x �

�Z w

c

U ��
� c� 	�
� d


�
xx

� U ���w � c� 	�w� �wx�
�

� #�w� c�xx � U ���w � c� 	�w� �wx�
��

we obtain

U�w � c�t � F �w� c�x �#�w� c�xx � �� in ��� ��� ��� T ��

which is nothing but the entropy inequality we wanted�
To obtain the uniform boundedness of kwx kL������� the idea is to multiply the

equation �������� by ��U ��wx��x and integrate on x from � to �� Since

Z �

�

��U ��wx��x wt �
Z �

�

U ��wx� �wx�t �
d

dt
kwx kL�������Z �

�

��U ��wx��x f�w�x � �
Z �

�

U ���wx�wxx f ��w�wx � ��

Z �

�

��U ��wx��x �	�w�wx�x � �
Z �

�

U ���wx�wxx �	��w� �wx�� � 	�w�wxx�

� �
Z �

�

U ���wx� 	�w� �wxx�� � ��

we immediately get that

d

dt
kwx kL������ � ��

and so�

kwx kL������ � k �u��x kL������� � t � ��� T ��

When the function u� has discontinuities� the same result holds with the total vari�
ation of u� �ju� jTV ������ replacing the quantity k �u��x kL������� these two quantities

coincide when u� � W ������ ���
With the two above ingredients� the following error estimate� obtained in �
��

by Kuznetsov� can be proved�

Theorem ��	� We have

ku�T �� w�T � kL������ � ju� jTV �����
p
�T 	�

where 	 � sups��inf u��supu�� 	�s��
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The piecewise�constant case� Let consider the simple case of the DG�
method that uses a piecewise�constant approximate solution�

� j � �� � � � � N �

�t uj �
�
h�uj � uj���� h�uj��� uj�

�
��j � ��

uj��� �
�

�j

Z
Ij

u��x� dx�

where we have dropped the superindex ���� We pick the numerical �ux h to be the
Engquist�Osher �ux�

According to the model provided by the continuous case� we must obtain �i� an
entropy inequality and �ii� the uniform boundedness of the total variation of uh�

To obtain the entropy inequality� we multiply our equation by U ��uj � c��

�t U�uj � c� � U ��uj � c�
�
h�uj � uj���� h�uj��� uj�

�
��j � ��

The second term in the above equation needs to be carefully treated� First� we
rewrite the Engquist�Osher �ux in the following form�

hEO�a� b� � f��a� � f��b��

and� accordingly� rewrite the second term of the equality above as follows�

STj � U ��uj � c�
�
f��uj�� f��uj���

�
� U ��uj � c�

�
f��uj���� f��uj�

�
�

Using the simple identity

U ��a� c��g�a�� g�b�� � G�a� c��G�b� c� �

Z b

a

�g�b�� g�
��U ���
� x� d
�

where G�a� c� �
R a
c U ��
� c� g�
� d
� we get

STj � F��uj � c�� F��uj��� c� �
Z uj��

uj

�f��uj���� f��
��U ���
� x� d


�F��uj��� c�� F��uj � c��
Z uj��

uj

�f��uj���� f��
��U ���
� x� d


� F �uj � uj��� c�� F �uj��� uj � c� � "diss�j

where

F �a� b� c� � F��a� c� � F��b� c��

"diss�j � �

Z uj��

uj

�f��uj���� f��
��U ���
� x� d


�
Z uj��

uj

�f��uj���� f��
��U ���
� x� d
�
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We thus get

�t U�uj � c� �
�
F �uj � uj��� c�� F �uj��� uj � c�

�
��j �"diss�j��j � ��

Since� f� and �f� are nondecreasing functions� we easily see that

"diss�j � ��

and we obtain our entropy inequality�

�t U�uj � c� �
�
F �uj � uj��� c�� F �uj��� uj � c�

�
��j � ��

Next� we obtain the uniform boundedness on the total variation� To do that�
we follow our model and multiply our equation by a discrete version of ��U ��wx��x�
namely�

v�j � � �

�j

	
U �
�
uj�� � uj
�j����

�
� U �

�
uj � uj��
�j����

�

�

where �j���� � ��j � �j������ multiply it by �j and sum over j from � to N �
We easily obtain

d

dt
juh jTV ����� �

X
��j�N

v�j
�
h�uj � uj���� h�uj��� uj�

�
� ��

where

juh jTV ����� �
X

��j�N
juj�� � uj j�

According to our continuous model� the second term in the above equality
should be positive� Let us see that this is indeed the case�

v�j
�
h�uj � uj���� h�uj��� uj�

�
� v�j

�
f��uj�� f��uj���

�
� v�j

�
f��uj���� f��uj�

�
� ��

by the de�nition of v�j � f
�� and f�� This implies that

juh�t� jTV ����� � juh��� jTV ����� � ju� jTV ������

With the two above ingredients� the following error estimate� obtained in �
��
by Kuznetsov� can be proved�

Theorem ���� We have

ku�T �� uh�T � kL������ � ku� � uh��� kL������ � C ju� jTV �����
p
T �x�

���� The TVD�Runge�Kutta time discretization

To discretize our ODE system in time� we use the TVD Runge Kutta time
discretization introduced in ��
�� see also ���� and �����
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������ The discretization� Thus� if ftngNn�� is a partition of ��� T � and �tn �
tn�� � tn� n � �� ���� N � �� our time�marching algorithm reads as follows�

� Set u�h � u�h�

� For n � �� ���� N � � compute un��h from unh as follows�

�� set u
���
h � unh�

�� for i � �� ���� k � � compute the intermediate functions�

u
�i�
h �

�
i��X
l��

�ilu
�l�
h � �il�t

nLh�u
�l�
h �



�

	� set un��h � u
�k���
h �

Note that this method is very easy to code since only a single subroutine de�ning
Lh�uh� is needed� Some Runge�Kutta time discretization parameters are displayed
on the table below�

Table �

Parameters of some practical Runge�Kutta time discretizations

order �il �il maxf�il��ilg

� � � �
�
�

�
� � �

�

� �

	 �
	

�
	 � �

	 �

�
� � �

� � � �
�

������ The stability property� Note that all the values of the parameters
�il displayed in the table below are nonnegative� this is not an accident� Indeed�
this is a condition on the parameters �il that ensures the stability property

jun��h j � junh j�

provided that the �local� stability property

jw j � j v j� ���	����

where w is obtained from v by the following �Euler forward� step�

w � v � � Lh�v�� ���	����

holds for values of j � j smaller than a given number ���



�� �� THE SCALAR CONSERVATION LAW IN ONE SPACE DIMENSION

For example� the second�order Runke�Kutta method displayed in the table
above can be rewritten as follows�

u
���
h � unh ��t Lh�u

n
h��

wh � u
���
h ��t Lh�u

���
h ��

un��h �
�

�
�unh � wh��

Now� assuming that the stability property ���	����� ���	���� is satis�ed for

�� � j�t maxf�il��ilg j � �t�

we have

ju���h j � junh j� jwh j � ju���h j�
and so�

jun��h j � �

�
� junh j� jwh j� � junh j�

Note that we can obtain this result because the coe�cients �il are positive$ Runge�
Kutta methods of this type of order up to order � can be found in �����

The above example shows how to prove the following more general result�

Theorem ���� Assume that the stability property for the single �Euler forward�
step ���	�
��� ���	�

� is satis�ed for

�� � max
��n�N

j�tn maxf�il��ilg j�

Assume also that all the coe�cients �il are nonnegative and satisfy the following
condition�

i��X
l��

�il � �� i � �� � � � � k � ��

Then

junh j � ju�h j� �n � ��

This stability property of the TVD�Runge�Kutta methods is crucial since it
allows us to obtain the stability of the method from the stability of a single �Euler
forward� step�

Proof of Theorem ���� We start by rewriting our time discretization as
follows�

� Set u�h � u�h�

� For n � �� ���� N � � compute un��h from unh as follows�

�� set u
���
h � unh�

�� for i � �� ���� k � � compute the intermediate functions�

u
�i�
h �

i��X
l��

�il w
�il�
h �

where

w
�il�
h � u

�l�
h �

�il
�il

�tn Lh�u
�l�
h ��

	� set un��h � u
�k���
h �
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We then have

ju�i�h j �
i��X
l��

�il jw�il�
h j� since �il � ��

�
i��X
l��

�il ju�l�h j� by the stability property ���	����� ���	�����

� max
��l�i��

ju�l�h j� since

i��X
l��

�il � ��

It is clear now that that Theorem ��� follows from the above inequality by a simple
induction argument�

������ Remarks about the stability in the linear case� For the linear
case f�u� � c u� Chavent and Cockburn ��� proved that for the case k � �� i�e�� for
piecewise�linear approximate solutions� the single �Euler forward� step is uncondi�
tionally L���� T �L���� ����unstable for any �xed ratio �t��x� On the other hand�
in ���� it was shown that if a Runge�Kutta method of second order is used� the
scheme is L���� T �L���� ����stable provided that

c
�t

�x
� �

	
�

This means that we cannot deduce the stability of the complete Runge�Kutta
method from the stability of the single �Euler forward� step� As a consequence�
we cannot apply Theorem ��� and we must consider the complete method at once�

Our numerical experiments show that when polynomial of degree k are used�
a Runge�Kutta of order �k � �� must be used� In this case� the L���� T �L���� ����
stability condition is the following�

c
�t

�x
� �

�k � �
�

There is no rigorous proof of this fact yet�
At a �rst glance� this stability condition� also called the Courant�Friedrichs�

Levy �CFL� condition� seems to compare unfavorably with that of the well�known
�nite di�erence schemes� However� we must remember that in the DG�methods
there are �k � �� degrees of freedom in each element of size �x whereas for �nite
di�erence schemes there is a single degree of freedom of each cell of size �x� Also�
if a �nite di�erence scheme is of order �k � �� its so�called stencil must be of at
least ��k��� points� whereas the DG�scheme has a stencil of �k��� elements only�

������ Convergence analysis in the nonlinear case� Now� we explore
what is the impact of the explicit Runge�Kutta time�discretization on the con�
vergence properties of the methods under consideration� We start by considering
the piecewise�constant case�
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The piecewise�constant case� Let us begin by considering the simplest case�
namely�

� j � �� � � � � N �

�un��j � unj ���t�
�
h�unj � u

n
j���� h�unj��� u

n
j �
�
��j � ��

uj��� �
�

�j

Z
Ij

u��x� dx�

where we pick the numerical �ux h to be the Engquist�Osher �ux�
According to the model provided by the continuous case� we must obtain �i� an

entropy inequality and �ii� the uniform boundedness of the total variation of uh�
To obtain the entropy inequality� we proceed as in the semidiscrete case and

obtain the following result� see ���� for details�

Theorem ���� We have�
U�un��j � c�� U�unj � c�

�
��t �

�
F �unj � u

n
j��� c�� F �unj��� u

n
j � c�

�
��j

� "n
diss�j��t � ��

where

"n
diss�j �

Z unj

un��j

�pj�u
n
j �� pj�
��U

���
� x� d


�
�t

�j

Z unj��

un��
j

�f��unj���� f��
��U ���
� x� d


��t

�j

Z unj��

un��
j

�f��unj���� f��
��U ���
� x� d
�

and

pj�w� � w � �t

�j
�f��w� � f��w���

Moreover� if the following CFL condition is satis�ed

max
��j�N

�t

�j
j f � j � ��

then "n
diss�j � �� and the following entropy inequality holds��
U�un��j � c�� U�unj � c�

�
��t�

�
F �unj � uj��� c�� F �uj��� uj � c�

�
��j � ��

Note that "n
diss�j � � because f�� �f�� are nondecreasing and because pj is

also nondecreasing under the above CFL condition�
Next� we obtain the uniform boundedness on the total variation� Proceding as

before� we easily obtain the following result�

Theorem ���� We have

jun��h jTV ����� � junh jTV ����� �"n
TV � ��
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where

"n
TV �

X
��j�N

�
U �nj���� � U �n��j����

�
�pj�����u

n
j���� pj�����u

n
j �

�
X

��j�N

�t

�j

�
U �nj���� � U �n��j����

�
�f��unj �� f��unj����

�
X

��j�N

�t

�j

�
U �nj���� � U �n��j����

�
�f��unj���� f��unj ��

where

U �mi���� � U �
�
umi�� � umi
�i����

�
�

and

pj�����w� � s� �t

�j��
f��w� �

�t

�j
f��w��

Moreover� if the following CFL condition is satis�ed

max
��j�N

�t

�j
j f � j � ��

then "n
TV � �� and we have

junh jTV ����� � ju� jTV ������
With the two above ingredients� the following error estimate� obtained in �
��

by Kuznetsov� can be proved�

Theorem ���� We have

ku�T �� uh�T � kL������ � ku� � uh��� kL������ � C ju� jTV �����
p
T �x�

The general case� The study of the general case is much more di�cult than
the study of the monotone schemes� In these notes� we restrict ourselves to the
study of the stability of the RKDG schemes� Hence� we restrict ourselves to the
task of studying under what conditions the total variation of the local means is
uniformly bounded�

If we denote by uj the mean of uh on the interval Ij � by setting vh � � in the
equation �������� we obtain�

� j � �� � � � � N �

�uj�t �
�
h�u�j����� u

�
j������ h�u�j����� u

�
j�����

�
��j � ��

where u�j���� denotes the limit from the left and u�j���� the limit from the right�

We pick the numerical �ux h to be the Engquist�Osher �ux�
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This shows that if we set wh equal to the Euler forward step uh� � Lh�uh�� we
obtain

� j � �� � � � � N �

�wj � uj ��� �
�
h�u�j����� u

�
j������ h�u�j����� u

�
j�����

�
��j � ��

Proceeding exactly as in the piecewise�constant case� we obtain the following result
for the total variation of the avergages�

juh jTV ����� �
X

��j�N
juj�� � uj j�

Theorem ��
� We have

jwh jTV ����� � juh jTV ����� �"TVM � ��

where

"TVM �
X

��j�N

�
U �j���� � U �j����

�
�pj�����uhjIj�� �� pj�����uhjIj �

�
X

��j�N

�

�j

�
U �j���� � U �j����

�
�f��u�j������ f��u�j������

�
X

��j�N

�

�j

�
U �j���� � U �j����

�
�f��u�j������ f��u�j������

where

U �i���� � U �
�
ui�� � ui
�i����

�
�

and

pj�����uhjIm� � um � �

�j��
f��u�m����� �

�

�j
f��u�m������

From the above result� we see that the total variation of the means of the Euler
forward step is nonincreasing if the following three conditions are satis�ed�

sgn�uj�� � uj � � sgn� pj�����uhjIj���� pj�����uhjIj � �� ���	����

sgn�uj � uj�� � � sgn�un��j���� � un��j���� �� ���	����

sgn�uj�� � uj � � sgn�un��j���� � un��j���� �� ���	����

Note that if the properties ���	���� and ���	���� are satis�ed� then the property
���	���� can always be satis�ed for a small enough values of j � j�

Of course� the numerical method under consideration does not provide an ap�
proximate solution automatically satisfying the above conditions� It is thus nec�
essary to enforce them by means of a suitably de�ned generalized slope limiter��
%&h�
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���� The generalized slope limiter

������ High�order accuracy versus the TVDM property� Heuristics�

The ideal generalized slope limiter %&h

� Maintains the conservation of mass element by element�
� Sati�es the properties ���	����� ���	����� and ���	�����
� Does not degrade the accuracy of the method�

The �rst requirement simply states that the slope limiting must not change the
total mass contained in each interval� that is� if uh � %&h�vh��

uj � vj � j � �� � � � � N�

This is� of course a very sensible requirement because after all we are dealing with
consevation laws� It is also a requirement very easy to satisfy�

The second requirement� states that if uh � %&h�vh� and wh � uh � � Lh�uh�
then

jwh jTV ����� � juh jTV ������
for small enough values of j � j�

The third requirement deserves a more delicate discussion� Note that if uh is a
very good approximation of a smooth solution u in a neigborhood of the point x�� it
behaves �asymptotically as �x goes to zero� as a straight line if ux�x�� 	� �� If x� is
an isolated extrema of u� then it behaves like a parabola provided uxx�x�� 	� �� Now�
if uh is a straightline� it trivially satis�es conditions ���	���� and ���	����� However�
if uh is a parabola� conditions ���	���� and ���	���� are not always satis�ed� This
shows that it is impossible to construct the above ideal generalized �solpe limiter��
or� in other words� that in order to enforce the TVDM property� we must loose
high�order accuracy at the local extrema� This is a very well�known phenomenon
for TVD �nite di�erence schemes$

Fortunatelly� it is still possible to construct generalized slope limiters that do
preserve high�order accuracy even at local extrema� The resulting scheme will then
not be TVDM but total variation bounded in the means �TVBM� as we will show�

In what follows we �rst consider generalized slope limiters that render the
RKDG schemes TVDM� Then we suitably modify them in order to obtain TVBM
schemes�

������ Constructing TVDM generalized slope limiters� Next� we look
for simple� su�cient conditions on the function uh that imply the conditions ���	�����
���	����� and ���	����� These conditions will be stated in terms of the minmod func�
tion m de�ned as follows�

m �a�� � � � � a�� �

�
s min��n�� j an j� if s � sign�a�� � � � � � sign�a���

�� otherwise�

Theorem ����� Suppose the the following CFL condition is satis�ed�

j � j � j f
� jLip
�j��

�
j f� jLip

�j
� � ���� j � �� � � � � N� ������
�
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Then� conditions ���	�
��� ���	�
��� and ���	�
�� are satis�ed if� for all j � �� � � � � N �
we have that

u�j���� � uj � m �u�j���� � uj � uj � uj��� uj�� � uj� ��������

uj � u�j���� � m �uj � u�j����� uj � uj��� uj�� � uj�� ��������

Proof� Let us start by showing that the property ���	���� is satis�ed� We
have�

u�j���� � u�j���� � �u�j���� � uj� � �uj � uj��� � �uj�� � u�j�����

� " �uj � uj����

where

" � � �
u�j���� � uj

uj � uj��
�
u�j���� � uj��
uj � uj��

� ��� ���

by conditions �������� and ��������� This implies that the property ���	���� is sat�
is�ed� Properties ���	���� and ���	���� are proven in a similar way� This completes
the proof�

������ Examples of TVDM generalized slope limiters�

a� The MUSCL limiter� In the case of piecewise linear approximate solu�
tions� that is�

vhjIj � vj � �x� xj� vx�j � j � �� � � � � N�

the following generalized slope limiter does satisfy the conditions �������� and
���������

uhjIj � vj � �x� xj�m �vx�j �
vj�� � vj

�j
�
vj � vj��

�j
��

This is the well�known slope limiter of the MUSCL schemes of vanLeer ���	 ����
b� The less restrictive limiter %&�

h� The following less restrictive slope
limiter also satis�es the conditions �������� and ���������

uhjIj � vj � �x� xj�m �vx�j �
vj�� � vj
�j��

�
vj � vj��
�j��

��

Moreover� it can be rewritten as follows�

u�j���� � vj �m � v�j���� � vj � vj � vj��� vj�� � vj� ��������

u�j���� � vj �m � vj � v�j����� vj � vj��� vj�� � vj�� ������	�

We denote this limiter by %&�
h�

Note that we have that

k vh � %&�
h�vh� kL������ �

�x

�
j vh jTV ������

See Theorem ���	 below�
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c� The limiter %&k
h� In the case in which the approximate solution is piece�

wise a polynomial of degree k� that is� when

vh�x� t� �

kX
���

v�j ���x��

where

���x� � P��� �x� xj���j��

and P� are the Legendre polynomials� we can de�ne a generalized slope limiter in a
very simple way� To do that� we need the de�ne what could be called the P ��part
of vh�

v�h�x� t� �
�X

���

v�j ���x��

We de�ne uh � %&h�vh� as follows�

� For j � �� ���� N compute uhjIj as follows�

�� Compute u�j���� and u�j���� by using �������� and ������	��

�� If u�j���� � v�j���� and u�j���� � v�j���� set uhjIj � vhjIj �
	� If not� take uhjIj equal to %&�

h�v
�
h��

d� The limiter %&k
h��� When instead of �������� and ������	�� we use

u�j���� � vj �m � v�j���� � vj � vj � vj��� vj�� � vj � C ��x��� ��������

u�j���� � vj �m � vj � v�j����� vj � vj��� vj�� � vj � C ��x���� ��������

for some �xed constant C and � � ��� ��� we obtain a generalized slope limiter we
denote by %&k

h���
This generalized slope limiter is never used in practice� but we consider it here

because it is used for theoretical purposes� see Theorem ���	 below�

������ The complete RKDG method� Now that we have our generalized
slope limiters� we can display the complete RKDG method� It is contained in the
following algorith�

� Set u�h � %&h PVh�u���

� For n � �� ���� N � � compute un��h as follows�

�� set u
���
h � unh�

�� for i � �� ���� k � � compute the intermediate functions�

u
�i�
h � %&h

�
i��X
l��

�il u
�l�
h � �il�t

nLh�u
�l�
h �



�

	� set un��h � u
�k���
h �

This algorithm describes the complete RKDG method� Note how the generalized
slope limiter has to be applied at each intermediate computation of the Runge�
Kutta method� This way of appying the generalized slope limiter in the time�
marching algorithm ensures that the scheme is TVDM� as we next show�
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������ The TVDM property of the RKDGmethod� To do that� we start
by noting that if we set

uh � %&h�vh�� wh � uh � � Lh�uh��

then we have that

juh jTV ����� � j vh jTV ������ ��������

jwh jTV ����� � juh jTV ������ � j � j � ��� ��������

where

���� � � max
j

�
j f� jLip
�j��

�
j f� jLip

�j
� j � �� � � � � N�

by Theorem ����� By using the above two properties of the generalized slope
limiter�� it is possible to show that the RKDG method is TVDM�

Theorem ����� Assume that the generalized slope limiter %&h satis�es the
properties �������� and ��������� Assume also that all the coe�cients �il are non�
negative and satisfy the following condition�

i��X
l��

�il � �� i � �� � � � � k � ��

Then

junh jTV ����� � ju� jTV ������ �n � ��

Proof of Theorem ����� The proof of this result is very similar to the proof
of Theorem ���� Thus� we start by rewriting our time discretization as follows�

� Set u�h � u�h�

� For n � �� ���� N � � compute un��h from unh as follows�

�� set u
���
h � unh�

�� for i � �� ���� k � � compute the intermediate functions�

u
�i�
h � %&h

�
i��X
l��

�il w
�il�
h



�

where

w
�il�
h � u

�l�
h �

�il
�il

�tn Lh�u
�l�
h ��

	� set un��h � u
�k���
h �
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Then have�

ju�i�h jTV ����� � j
i��X
l��

�il w
�il�
h jTV ������ by ���������

�
i��X
l��

�il jw�il�
h jTV ������ since �il � ��

� j
i��X
l��

�il u
�l�
h jTV ������ by ���������

� max
��l�i��

ju�l�h jTV ������ since

i��X
l��

�il � ��

It is clear now that that the inequality

junh jTV ����� � ju�h jTV ������ �n � ��

follows from the above inequality by a simple induction argument� To obtain the
result of the theorem� it is enough to note that we have

ju�h jTV ����� � ju� jTV ������
by the de�nition of the initial condition u�h� This completes the proof�

������ TVBM generalized slope limiters� As was pointed out before� it is
possible to modify the generalized slope limiters displayed in the examples above
in such a way that the degradation of the accuracy at local extrema is avoided�
To achieve this� we follow Shu ��
� and modify the de�nition of the generalized
slope limiters by simply replacing the minmod function m by the TVB corrected
minmod function 'm de�ned as follows�

'm �a�� ���� am� �

�
a�� if ja�j �M��x���

m �a�� ���� am�� otherwise�
��������

whereM is a given constant� We call the generalized slope limiters thus constructed�
TVBM slope limiters�

The constant M is� of course� an upper bound of the absolute value of the
second�order derivative of the solution at local extrema� In the case of the nonlinear
conservation laws under consideration� it is easy to see that� if the initial data is
piecewise C�� we can take

M � supf j �u��xx�y� j� y � �u��x�y� � �g�
See ���� for other choices of M �

Thus� if the constant M is is taken as above� there is no degeneracy of accu�
racy at the extrema and the resulting RKDG scheme retains its optimal accuracy�
Moreover� we have the following stability result�

Theorem ����� Assume that the generalized slope limiter %&h is a TVBM
slope limiter� Assume also that all the coe�cients �il are nonnegative and satisfy
the following condition�

i��X
l��

�il � �� i � �� � � � � k � ��
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Then

junh jTV ����� � ju� jTV ����� � CM� �n � ��

where C depends on k only�

������ Convergence in the nonlinear case� By using the stability above
stability results� we can use the Ascoli�Arzel a theorem to prove the following con�
vergence result�

Theorem ���	� Assume that the generalized slope limiter %&h is a TVDM or
a TVBM slope limiter� Assume also that all the coe�cients �il are nonnegative and
satisfy the following condition�

i��X
l��

�il � �� i � �� � � � � k � ��

Then there is a subsequence fuh�gh��� of the sequence fuhgh�� generate by the
RKDG scheme that converges in L���� T �L���� ��� to a weak solution of the problem
���
�
�� ���
����

Moreover� if the TVBM version of the slope limiter %&k
h�� is used� the weak

solution is the entropy solution and the whole sequence converges�
Finally� if the generalized slope limiter %&h is such that

k vh � %&h�vh� kL������ � C�x j vh jTV ������
then the above results hold not only to the sequence of the means fuhgh�� but to
the sequence of the functions fuhgh���

���� Computational results

In this section� we display the performance of the RKDG schemes in a simple
but typical test problem� We use piecewise linear �k � �� and piecewise quadratic
�k � �� elements� the %&k

h generalized slope limter is used� Our purpose is to show
that �i� when the constant M is properly chosen� the RKDG method using polyno�
mials of degree k is is order k�� in the uniform norm away from the discontinuities�
that �ii� it is computationally more e�cient to use high�degree polynomial approx�
imations� and that �iii� shocks are captured in a few elements without production
of spurious oscillations

We solve the Burger�s equation with a periodic boundary condition�

ut � �
u�

�
�x � ��

u�x� �� � u��x� �
�

�
�

�

�
sin�
��x� ����

The exact solution is smooth at T � ��� and has a well developed shock at
T � ���� Notice that there is a sonic point� In Tables ���� and 	� the history
of convergence of the RKDG method using piecewise linear elements is dsplayed
and in Tables ���� and �� the history of convergence of the RKDG method using
piecewise quadratic elements� It can be seen that when the TVDM generalized
slope limiter is used� i�e�� when we takeM � �� there is degradation of the accuracy
of the scheme� whereas when the TVBM generalized slope limiter is used with a
properly chosen constant M � i�e�� when M � �� � �
�� the scheme is uniformly
high order in regions of smoothness that include critical and sonic points�
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Next� we compare the e�ciency of the RKDG schemes for k � � and k � �
for the case M � �� and T � ����� We de�ne the inverse of the e�ciency of
the method as the product of the error times the number of operations� Since the
RKDG method that uses quadratic elements has ��	���� times more time steps� 	��
times more inner iterations per time step� and 	�� time more unknowns in space�
its number of operations is ���� times bigger than the one of the RKDH method
using linear elements� Hence� the ratio of the e�ciency of the RKDG method with
quadratic elements to that of the RKDG method with linear elements is

r �
�

��

error�RKDG�k � ��

error�RKDG�k � ��
�

The results are displayed in Table �� We can see that the e�ciency of the RKDG
scheme with quadratic polynomials is several times that of the RKDG scheme with
linear polynomials even for very small values of �x� We can also see that the ratio
r of e�ciencies is proportional to ��x���� which is expected for smooth solutions�
This indicates that it is indeed more e�cient to work with RKDG methods using
polynomials of higher degree�

That this is also true when the solution displays discontinuities can be seen
�gures �� and �� In the �gure �� it can be seen that the shock is captured in
essentially two elements� A zoom of these �gures is shown in �gure �� where the
approximation right in front of the shock is shown� It is clear that the approximation
using quadratic elements is superior to the approximation using linear elements�

���� Concluding remarks

In this section� which is the core of these notes� we have devised the general
RKDG method for nonlinear scalar conservation laws with periodic boundary con�
ditions�

We have seen that the RKDG are constructed in three steps� First� the Discon�
tinuous Galerkin method is used to discretize in space the conservation law� Then�
an explicit TVB�Runge�Kutta time discretizationis used to discretize the result�
ing ODE system� Finally� a generalized slope limiter is introduced that enforces
nonlinear stability without degrading the accuracy of the scheme�

We have seen that the numerical results show that the RKDG methods using
polynomials of degree k� k � �� � are uniformly �k � ���th order accurate away
from discontinuities and that the use of high degree polynomials render the RKDG
method more e�cient� even close to discontinuities�

All these results can be extended to the initial boundary value problem� see
����� In what follows� we extend the RKDG methods to multidimensional systems�
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P �� M � �� CFL� ��	� T � �����

L���� ��� error L���� ��� error

�x ��
 � error order ��
 � error order
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Figure �� Comparison of the exact and the approximate solution
obtained with M � ��� �x � ���� at T � ��� Piecewise linear
elements �top� and piecewise quadratic elements �bottom�
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Figure �� Detail of previous �gure� Behavior of the approximate
solutions four elements in front of the shock� Exact solution �solid
line�� piecewise linear solution �dotted line�� and piecewise qua�
dratic solution �dashed line��

���� Appendix� Proof of the L��error estimates in the linear case

������ Proof of the L��stability� In this section� we prove the the stability
result of Proposition ���� To do that� we �rst show how to obtain the correspond�
ing stability result for the exact solution and then mimic the argument to obtain
Proposition ����

The continuous case as a model� We start by rewriting the equations
������� in compact form� If in the equations ������� we replace v�x� by v�x� t�� sum
on j from � to N � and integrate in time from � to T � we obtain

B �u� v� � �� � v � v�t� is smooth � t � ��� T �� ������
�

where

B �u� v� �

Z T

�

Z �

�

�
�tu�x� t� v�x� t� � c u�x� t� �x v�x� t�

�
dx dt� �����	��

Taking v � u� we easily see that we see that

B �u� u� �
�

�
ku�T � k�L������ �

�

�
ku� k�L�������

and since

B �u� u� � ��
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by ������
�� we immediately obtain the following L��stability result�

�

�
ku�T � k�L������ �

�

�
ku� k�L�������

This is the argument we have to mimic in order to prove Proposition ����
The discrete case� Thus� we start by �nding the discrete version of the form

B ��� ��� If we replace v�x� by vh�x� t� in the equation �������� sum on j from � to N �
and integrate in time from � to T � we obtain

B h �uh� vh� � �� � vh � vh�t� � V k
h � t � ��� T �� �����	��

where

B h �uh� vh� �

Z T

�

Z �

�

�tuh�x� t� vh�x� t� dx dt �����	��

�
Z T

�

X
��j�N

Z
Ij

c uh�x� t� �x vh�x� t� dx dt

�
Z T

�

X
��j�N

h�uh�j�����t� � vh�t� �j���� dt�

Following the model provided by the continuous case� we next obtain an ex�
pression for Bh �wh� wh�� It is contained in the following result which will proved
later�

Lemma ����� We have

Bh �wh� wh� �
�

�
kwh�T � k�L������ �"T �wh�� �

�
kwh��� k�L�������

where

"T �wh � �
j c j
�

R T
�

P
��j�N �wh�t� �

�
j���� dt�

Taking wh � uh in the above result and noting that by �����	���

Bh �uh� uh� � ��

we get the equality

�
�kuh�T � k�L������ �"T �uh� �

�
�kuh��� k�L�������

from which Proposition ��� easily follows� since

�

�
kuh�T � k�L������ � �

�
ku� k�L�������

by �������� It only remains to prove Lemma �����
Proof of Lemma ����� After setting uh � vh � wh in the de�nition of Bh �

�����	��� we get

B h �wh� wh� �
�

�
kwh�T � k�L������ �

Z T

�

"diss�t� dt� �

�
kwh��� k�L�������
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where

"diss�t� � �
X

��j�N

	
h�wh�j�����t� �wh�t� �j���� �

Z
Ij

cwh�x� t� �x wh�x� t� dx



�

We only have to show that
R T
�

"diss�t� dt � "T �wh�� To do that� we proceed as
follows� Dropping the dependence on the variable t and setting

wh�xj����� �
�

�
�wh�x

�
j����� � wh�x

�
j����� ��

we have� by the de�nition of the �ux h� ���������

�
X

��j�N

Z
Ij

h�wh�j���� �wh �j���� � �
X

��j�N
f cwh �wh �� j c j

�
�wh �

� gj�����

and

�
X

��j�N

Z
Ij

cwh�x� �x wh�x� dx �
c

�

X
��j�N

�w�
h �j����

� c
X

��j�N
fwh �wh �gj����

Hence

"diss�t� �
j c j
�

X
��j�N

�uh�t��
�
j�����

and the result follows� This completes the proof of Lemma �����
This completes the proof of Proposition ����

������ Proof of the Theorem ���� In this section� we prove the error esti�
mate of Theorem ��� which holds for the linear case f�u� � c u� To do that� we
�rst show how to estimate the error between the solutions w� � �u� � q��

t� 	 � �� ��
of

�t u� � �x f�u�� � � in ��� T �� ��� ���

u��t � �� � u��� � on ��� ���

Then� we mimic the argument in order to prove Theorem ����
The continuous case as a model� By the de�nition of the form B ��� ���

�����	��� we have� for 	 � �� ��

B �w� � v� � �� � v � v�t� is smooth � t � ��� T ��

Since the form B ��� �� is bilinear� from the above equation we obtain the so�called
error equation�

B �e� v� � �� � v � v�t� is smooth � t � ��� T �� �����		�

where e � w� � w�� Now� since

B �e� e� �
�

�
k e�T � k�L������ �

�

�
k e��� k�L�������

and

B �e� e� � ��
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by the error equation �����		�� we immediately obtain the error estimate we sought�

�

�
k e�T � k�L������ �

�

�
ku��� � u��� k�L�������

To prove Theorem ���� we only need to obtain a discrete version of this argument�
The discrete case� Since�

Bh �uh� vh� � �� � vh � v�t� � Vh � t � ��� T ��

Bh �u� vh� � �� � vh � vh�t� � Vh � t � ��� T ��

by ������� and by equations �������� respectively� we easily obtain our error equation�

B h �e� vh� � �� � vh � vh�t� � Vh � t � ��� T �� �����	��

where e � w � wh�
Now� according to the continuous case argument� we should consider next the

quantity B h �e� e�� however� since e�t� is not in the �nite element space Vh� it is more
convenient to consider Bh �Ph�e��Ph�e��� where Ph�e�t�� is the L��projection of the
error e�t� into the �nite element space V k

h �
The L��projection of the function p � L���� �� into Vh� Ph�p�� is de�ned as the

only element of the �nite element space Vh such that

R �
�

�
Ph�p��x�� p�x�

�
vh�x� dx � �� � vh � Vh� �����	��

Note that in fact uh�t � �� � Ph�u��� by ��������
Thus� by Lemma ����� we have

B h �Ph�e��Ph�e�� �
�

�
kPh�e�T �� k�L������ �"T �Ph�e��� �

�
kPh�e���� k�L�������

and since

Ph�e���� � Ph�u� � uh���� � Ph�u��� uh��� � ��

and

Bh �Ph�e��Ph�e�� � Bh �Ph�e�� e�Ph�e�� � B h �Ph�u�� u�Ph�e���

by the error equation �����	��� we get

�

�
kPh�e�T �� k�L������ �"T �Ph�e�� � Bh �Ph�u�� u�Ph�e��� �����	��

It only remains to estimate the right�hand side

B �Ph�u�� u�Ph�e���

which� according to our continuous model� should be small�
Estimating the right�hand side� To show that this is so� we must suitably

treat the term B �Ph�w��w�Ph�e��� We start with the following remarkable result�

Lemma ����� We have

Bh �Ph�u�� u�Ph�e�� � �
Z T

�

X
��j�N

h�Ph�u�� u�j�����t� �Ph�e��t� �j���� dt�



�� �� THE SCALAR CONSERVATION LAW IN ONE SPACE DIMENSION

Proof Setting p � Ph�u� � u and vh � Ph�e� and recalling the de�nition of
Bh ��� ��� �����	��� we have

Bh �p� vh� �

Z T

�

Z �

�

�tp�x� t� vh�x� t� dx dt

�
Z T

�

X
��j�N

Z
Ij

c p�x� t� �x vh�x� t� dx dt

�
Z T

�

X
��j�N

h�p�j�����t� � vh�t� �j���� dt

� �
Z T

�

X
��j�N

h�p�j�����t� � vh�t� �j���� dt�

by the de�nition of the L��projection �����	��� This completes the proof�
Now� we can see that a simple application of Young�s inequality and a stan�

dard approximation result should give us the estimate we were looking for� The
approximation result we need is the following�

Lemma ����� If w � Hk���Ij 
 Ij���� then

jh�Ph�w�� w��xj����� j � ck ��x�
k���� j c j

�
jw jHk���Ij�Ij����

where the constant ck depends solely on k�

Proof� Dropping the argument xj���� we have� by the de�nition �������� of
the �ux h�

jh�P�w�� w� j �
c

�
�Ph�w�

� � Ph�w�
��� j c j

�
�Ph�w�

� � Ph�w�
��� cw

�
c� j c j

�
�Ph�w�

� � w� �
c� j c j

�
�Ph�w�

� � w�

� j c j maxf jPh�w�� � w j� jPh�w�� � w j g
and the result follows from the properties of Ph after a simple application of the
Bramble�Hilbert lemma� see ����� This completes the proof�

An immediate consequence of this result is the estimate we wanted�

Lemma ����� We have

Bh �Ph�u�� u�Ph�e�� � c�k ��x�
�k�� j c j

�
T ju� j�Hk������� �

�

�
"T �Ph�e���

where the constant ck depends solely on k�

Proof� After using Young�s inequality in the right�hand side of Lemma �����
we get

Bh �Ph�u�� u�Ph�e�� �
Z T

�

X
��j�N

�

j c j jh�Ph�u�� u�j�����t� j�

�

Z T

�

X
��j�N

j c j
�

�Ph�e��t� �
�
j���� dt�
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By Lemma ���� and the de�nition of the form "T � we get

Bh �Ph�u�� u�Ph�e�� � c�k ��x�
�k�� j c j

�

Z T

�

X
��j�N

ju j�Hk���Ij�Ij��� �
�

�
"T �Ph�e��

� c�k ��x�
�k�� j c j

�
T ju� j�Hk������� �

�

�
"T �Ph�e���

This completes the proof�
Conclusion� Finally� inserting in the equation �����	�� the estimate of its right

hand side obtained in Lemma ����� we get

kPh�e�T �� k�L������ �"T �Ph�e�� � ck ��x�
�k�� j c jT ju� j�Hk��������

Theorem ��� now follows from the above estimate and from the following inequality�

k e�T � kL������ � ku�T �� Ph�u�T �� kL������ � kPh�e�T �� kL������
� c�k ��x�

k�� ju� jHk������� � kPh�e�T �� kL�������
������ Proof of the Theorem ���� To prove Theorem ���� we only have to

suitably modify the proof of Theorem ���� The modi�cation consists in replacing
the L��projection of the error� Ph�e�� by another projection that we denote by
Rh �e��

Given a function p � L���� �� that is continuous on each element Ij � we de�ne
Rh �p� as the only element of the �nite element space Vh such that

� j � �� � � � � N � Rh�p��xj���� p�xj��� � �� � � �� � � � � k������	��

where the points xj�� are the Gauss�Radau quadrature points of the interval Ij � We
take

xj�k � xj����� if c � �� and xj�� � xj����� if c � �� �����	��

The special nature of the Gauss�Radau quadrature points is captured in the follow�
ing property�

�� � P ��Ij�� � � k� � p � P �k���Ij� �Z
Ij

�Rh �p��x�� p�x����x� dx � �� �����	
�

Compare this equality with �����	���
The quantity B h �Rh �e��Rh �e��� To prove our error estimate� we start by

considering the quantity Bh �Rh �e��Rh �e��� By Lemma ����� we have

Bh �Rh �e��Rh �e�� �
�

�
kRh�e�T �� k�L������ �"T �Rh �e��� �

�
kRh�e���� k�L�������

and since

B h �Rh �e��Rh �e�� � B h �Rh �e�� e�Rh�e�� � B h �Rh �u�� u�Rh�e���
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by the error equation �����	��� we get

�

�
kRh�e�T �� k�L������ �"T �Rh �e�� �

�

�
kRh�e���� k�L������ � Bh �Rh �u�� u�Rh �e���

Next� we estimate the term B �Rh �u�� u�Rh�e���
Estimating B �Rh �u�� u�Rh �e��� The following result corresponds to Lemma

�����

Lemma ����� We have

Bh �Rh �u�� u� vh� �

Z T

�

Z �

�

�Rh ��tu��x� t�� �tu�x� t�� vh�x� t� dx dt

�
Z T

�

X
��j�N

Z
Ij

c �Rh �u��x� t�� u�x� t�� �x vh�x� t� dx dt�

Proof Setting p � Rh �u� � u and vh � Rh�e� and recalling the de�nition of
Bh ��� ��� �����	��� we have

Bh �p� vh� �

Z T

�

Z �

�

�tp�x� t� vh�x� t� dx dt

�
Z T

�

X
��j�N

Z
Ij

c p�x� t� �x vh�x� t� dx dt

�
Z T

�

X
��j�N

h�p�j�����t� � vh�t� �j���� dt�

But� from the de�nition �������� of the �ux h� we have

h�R�u� � u� �
c

�
�Rh �u�

� � Rh �u�
��� j c j

�
�Rh �u�

� � Rh �u�
��� c u

�
c� j c j

�
�Rh �u�

� � u� �
c� j c j

�
�Rh �u�

� � u�

� ��

by �����	�� and the result follows�
Next� we need some approximation results�

Lemma ���
� If w � Hk���Ij�� and vh � P k�Ij�� then����
Z
Ij

�Rh �w� � w��x� vh�x� dx

���� � ck ��x�
k�� jw jHk���Ij� k vh kL��Ij������

Z
Ij

�Rh �w� � w��x� �x vh�x� dx

���� � ck ��x�
k�� jw jHk���Ij � k vh kL��Ij��

where the constant ck depends solely on k�

Proof� The �rst inequality follows from the property �����	
� with � � k and
from standard approximation results� The second follows in a similar way from the
property ����	
 with � � k � � and a standard scaling argument� This completes
the proof�

An immediate consequence of this result is the estimate we wanted�
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Lemma ����� We have

Bh �Rh �u�� u�Rh �e�� � ck ��x�
k�� ju� jHk�������

Z T

�

kRh�e�t�� kL������ dt�

where the constant ck depends solely on k and j c j�
Conclusion� Finally� inserting in the equation �����	�� the estimate of its right

hand side obtained in Lemma ����� we get

kRh�e�T �� k�L������ � "T �Rh �e�� � kRh �e���� k�L������

�ck ��x�
k�� ju� jHk�������

Z T

�

kRh �e�t�� kL������ dt�
After applying a simple variation of the Gronwall lemma� we obtain

kRh �e�T �� kL������ � kRh �e�����x� kL������ � ck ��x�
k�� T ju� jHk�������

� c�k��x�
k�� ju� jHk��������

Theorem ��� now follows from the above estimate and from the following in�
equality�

k e�T � kL������ � ku�T �� Rh �u�T �� kL������ � kRh �e�T �� kL������
� c�k ��x�

k�� ju� jHk������� � kRh �e�T �� kL�������
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CHAPTER 	

The RKDG method for multidimensional systems

���� Introduction

In this section� we extend the RKDG methods to multidimensional systems�

ut �rf�u� � �� in �� ��� T �� �	�����

u�x� �� � u��x�� � x � �� �	�����

and periodic boundary conditions� For simplicity� we assume that � is the unit
cube�

This section is essentially devoted to the description of the algorithms and
their implementation details� The practitioner should be able to �nd here all the
necessary information to completely code the RKDG methods�

This section also contains two sets of numerical results for the Euler equations
of gas dynamics in two space dimensions� The �rst set is devoted to transient com�
putations and domains that have corners� the e�ect of using triangles or rectangles
and the e�ect of using polynomials of degree one or two are explored� The main
conclusions from these computations are that �i� the RKDG method works as well
with triangles as it does with rectangles and that �ii� the use of high�order polyno�
mials does not deteriorate the approximation of strong shocks and is advantageous
in the approximation of contact discontinuities�

The second set concerns steady state computations with smooth solutions� For
these computations� no generalized slope limiter is needed� The e�ect of �i� the
quality of the approximation of curved boundaries and of �ii� the degree of the
polynomials on the quality of the approximate solution is explored� The main
conclusions from these computations are that �i� a high�order approximation of the
curve boundaries introduces a dramatic improvement on the quality of the solution
and that �ii� the use of high�degree polynomials is advantageous when smooth
solutions are shought�

This section contains material from the papers ����� ����� and ��
�� It also
contains numerical results from the paper by Bassi and Rebay ��� in two dimensions
and from the paper by Warburton� Lomtev� Kirby and Karniadakis ���� in three
dimensions�

���� The general RKDG method

The RKDG method for multidimensional systems has the same structure it has
for one�dimensional scalar conservation laws� that is�

� Set u�h � %&h PVh�u���

� For n � �� ���� N � � compute un��h as follows�

	�
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�� set u
���
h � unh�

�� for i � �� ���� k � � compute the intermediate functions�

u
�i�
h � %&h

�
i��X
l��

�ilu
�l�
h � �il�t

nLh�u
�l�
h �



�

	� set un��h � u
�k���
h �

In what follows� we describe the operator Lh that results form the DG�space
discretization� and the generalized slope limiter %&h�

������ The Discontinuous Galerkin space discretization� To show how
to discretize in space by the DG method� it is enough to consider the case in which
u is a scalar quantity since to deal with the general case in which u� we apply the
same procedure component by component�

Once a triangulation Th of � has been obtained� we determine Lh��� as follows�
First� we multiply �	����� by vh in the �nite elemen space Vh� integrate over the
element K of the triangulation Th and replace the exact solution u by its approxi�
mation uh � Vh�

d

dt

Z
K

uh�t� x� vh�x� dx �

Z
K

div f�uh�t� x�� vh�x� dx � �� �vh � Vh�

Integrating by parts formally we obtain

d
dt

R
K uh�t� x� vh�x� dx �

P
e��K

R
e f�uh�t� x�� � ne�K vh�x� d)

� RK f�uh�t� x�� � grad vh�x� dx � �� �vh � Vh�

where ne�K is the outward unit normal to the edge e� Notice that f�uh�t� x�� �
ne�K does not have a precise meaning� for uh is discontinuous at x � e � �K�
Thus� as in the one dimensional case� we replace f�uh�t� x�� � ne�K by the function

he�K�uh�t� x
int�K��� uh�t� x

ext�K���� The function he�K��� �� is any consistent two

point monotone Lipschitz �ux� consistent with f�u� � ne�K �

In this way we obtain

d
dt

R
K uh�t� x�vh�x� dx �

P
e��K

R
e he�K�t� x� vh�x� d)

� R
K
f�uh�t� x�� � grad vh�x� dx � �� � vh � Vh�

Finally� we replace the integrals by quadrature rules that we shall choose as follows�

R
e
he�K�t� x� vh�x� d) �

PL
l�� �l he�K�t� xel� v�xel�jej� �	���	�R

K f�uh�t� x�� � grad vh�x� dx �PM
j�� �j f�uh�t� xKj�� � grad vh�xKj�jKj� �	�����
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Thus� we �nally obtain the weak formulation�

d
dt

R
k
uh�t� x�vh�x�dx �

P
e��K

PL
l�� �l he�K�t� xel� v�xel�jej

�PM
j�� �j f�uh�t� xKj�� � gradvh�xKj�jKj � �� �vh � Vh� �K � Th�

These equations can be rewritten in ODE form as d
dtuh � Lh�uh� �h�� This

de�nes the operator Lh�uh�� which is a discrete approximation of �div f�u�� The
following result gives an indication of the quality of this approximation�

Proposition 	��� Let f�u� � W k�������� and set � � trace�u�� Let the
quadrature rule over the edges be exact for polynomials of degree ��k���� and let
the one over the element be exact for polynomials of degree ��k�� Assume that the
family of triangulations F � fThgh�� is regular� i�e�� that there is a constant � such
that�

hK
�K

� �� �K � Th� �Th � F� �	�����

where hK is the diameter of K� and 
K is the diameter of the biggest ball included
in K� Then� if V �K� � P k�K�� � K � Th�

kLh�u� �� � div f�u�kL���� � C hk��jf�u�jWk��������

For a proof� see �����

������ The form of the generalized slope limiter %&h� The construction
of generalized slope limiters %&h for several space dimensions is not a trivial matter
and will not be discussed in these notes� we refer the interested reader to the paper
by Cockburn� Hou� and Shu �����

In these notes� we restrict ourselves to displaying very simple� practical� and
e�ective generalized slope limiters %&h which are closely related to the generalized
slope limiters %&k

h of the previous section�
To compute %&huh� we rely on the assumption that spurious oscillations are

present in uh only if they are present in its P � part u�h� which is its L��projection
into the space of piecewise linear functions V �

h � Thus� if they are not present in u�h�
i�e�� if

u�h � %&h u
�
h�

then we assume that they are not present in uh and hence do not do any limiting�

%&h uh � uh �

On the other hand� if spurious oscillations are present in the P � part of the solution
u�h� i�e�� if

u�h 	� %&h u
�
h�

then we chop o� the higher order part of the numerical solution� and limit the
remaining P � part�

%&h uh � %&h u
�
h�

In this way� in order to de�ne %&h for arbitrary space Vh� we only need to actually
de�ne it for piecewise linear functions V �

h � The exact way to do that� both for the
triangular elements and for the rectangular elements� will be discussed in the next
section�
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���� Algorithm and implementation details

In this section we give the algorithm and implementation details� including
numerical �uxes� quadrature rules� degrees of freedom� �uxes� and limiters of the
RKDG method for both piecewise�linear and piecewise�quadratic approximations
in both triangular and rectangular elements�

������ Fluxes� The numerical �ux we use is the simple Lax�Friedrichs �ux�

he�K�a� b� �
�

�
� f�a� � ne�K � f�b� � ne�K � �e�K �b� a� � �

The numerical viscosity constant �e�K should be an estimate of the biggest eigen�

value of the Jacobian �
�u f�uh�x� t�� � ne�K for �x� t� in a neighborhood of the edge

e�
For the triangular elements� we use the local Lax�Friedrichs recipe�

� Take �e�K to be the larger one of the largest eigenvalue �in absolute value�

of �
�u f�'uK� � ne�K and that of �

�u f�'uK�� � ne�K � where 'uK and 'uK� are the
means of the numerical solution in the elements K and K � sharing the edge
e�

For the rectangular elements� we use the local Lax�Friedrichs recipe �

� Take �e�K to be the largest of the largest eigenvalue �in absolute value� of
�
�u f�'uK��� � ne�K � where 'uK�� is the mean of the numerical solution in the
element K ��� which runs over all elements on the same line �horizontally or
vertically� depending on the direction of ne�K� with K and K � sharing the
edge e�

������ Quadrature rules� According to the analysis done in ����� the quad�
rature rules for the edges of the elements� �	���	�� must be exact for polynomials of
degree �k��� and the quadrature rules for the interior of the elements� �	������ must
be exact for polynomials of degree �k� if P k methods are used� Here we discuss the
quadrature points used for P � and P � in the triangular and rectangular element
cases�

������ The rectangular elements� For the edge integral� we use the follow�
ing two point Gaussian ruleZ �

��
g�x�dx � g

�
� �p

	

�
� g

�
�p
	

�
� �	�	���

for the P � case� and the following three point Gaussian ruleZ �

��
g�x�dx � �




�
g

�
�	

�

�
� g

�
	

�

��
�

�



g��� � �	�	���

for the P � case� suitably scaled to the relevant intervals�
For the interior of the elements� we could use a tensor product of �	�	���� with

four quadrature points� for the P � case� But to save cost� we *recycle+ the values
of the �uxes at the element boundaries� and only add one new quadrature point in

the middle of the element� Thus� to approximate the integral
R �
��
R �
�� g�x� y�dxdy�
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we use the following quadrature rule�

� �

�

�
g

�
��� �p

	

�
� g

�
���� �p

	

�
� g

�
� �p

	
���

�
� g

�
�p
	
���

�

�g

�
��� �p

	

�
� g

�
��

�p
	

�
� g

�
�p
	
� �

�
� g

�
� �p

	
� �

��
� � g��� ���

For the P � case� we use a tensor product of �	�	���� with 
 quadrature points�

������ The triangular elements� For the edge integral� we use the same two
point or three point Gaussian quadratures as in the rectangular case� �	�	��� and
�	�	���� for the P � and P � cases� respectively�

For the interior integrals �	������ we use the three mid�point ruleZ
K

g�x� y�dxdy � jKj
	

�X
i��

g�mi� �

where mi are the mid�points of the edges� for the P � case� For the P � case� we
use a seven�point quadrature rule which is exact for polynomials of degree � over
triangles�

������ Basis and degrees of freedom� We emphasize that the choice of
basis and degrees of freedom does not a�ect the algorithm� as it is completely de�
termined by the choice of function space V �h� � the numerical �uxes� the quadrature
rules� the slope limiting� and the time discretization� However� a suitable choice of
basis and degrees of freedom may simplify the implementation and calculation�

������ The rectangular elements� For the P � case� we use the following
expression for the approximate solution uh�x� y� t� inside the rectangular element
�xi� �

�
� xi� �

�
�� �yj� �

�
� yj� �

�
��

uh�x� y� t� � 'u�t� � ux�t��i�x� � uy�t��j�y� �	�	�	�

where

�i�x� �
x� xi
�xi��

� �j�y� �
y � yj
�yj��

� �	�	���

and

�xi � xi� �
�
� xi� �

�
� �yj � yj� �

�
� yj� �

�
�

The degrees of freedoms� to be evolved in time� are then

'u�t�� ux�t�� uy�t��

Here we have omitted the subscripts ij these degrees of freedom should have� to
indicate that they belong to the element ij which is �xi� �

�
� xi� �

�
�� �yj� �

�
� yj� �

�
��

Notice that the basis functions

�� �i�x�� �j�y��

are orthogonal� hence the local mass matrix is diagonal�

M � �xi�yj diag

�
��

�

	
�
�

	

�
�
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For the P � case� the expression for the approximate solution uh�x� y� t� inside
the rectangular element �xi� �

�
� xi� �

�
�� �yj� �

�
� yj� �

�
� is�

uh�x� y� t� � 'u�t� � ux�t��i�x� � uy�t��j�y� � uxy�t��i�x��j �y�

�uxx�t�

�
��i �x��

�

	

�
� uyy�t�

�
��j �y��

�

	

�
� �	�	���

where �i�x� and �j�y� are de�ned by �	�	���� The degrees of freedoms� to be evolved
in time� are

'u�t�� ux�t�� uy�t�� uxy�t�� uxx�t�� uyy�t��

Again the basis functions

�� �i�x�� �j�y�� �i�x��j�y�� ��i �x� �
�

	
� ��j �y��

�

	
�

are orthogonal� hence the local mass matrix is diagonal�

M � �xi�yj diag

�
��

�

	
�
�

	
�
�



�
�

��
�
�

��

�
�

������ The triangular elements� For the P � case� we use the following ex�
pression for the approximate solution uh�x� y� t� inside the triangle K�

uh�x� y� t� �

�X
i��

ui�t��i�x� y�

where the degrees of freedom ui�t� are values of the numerical solution at the
midpoints of edges� and the basis function �i�x� y� is the linear function which
takes the value � at the mid�point mi of the i�th edge� and the value � at the
mid�points of the two other edges� The mass matrix is diagonal

M � jKjdiag
�
�

	
�
�

	
�
�

	

�
�

For the P � case� we use the following expression for the approximate solution
uh�x� y� t� inside the triangle K�

uh�x� y� t� �

�X
i��

ui�t��i�x� y�

where the degrees of freedom� ui�t�� are values of the numerical solution at the
three midpoints of edges and the three vertices� The basis function �i�x� y�� is the
quadratic function which takes the value � at the point i of the six points mentioned
above �the three midpoints of edges and the three vertices�� and the value � at the
remaining �ve points� The mass matrix this time is not diagonal�

������ Limiting� We construct slope limiting operators %&h on piecewise lin�
ear functions uh in such a way that the following properties are satis�ed�

�� Accuracy� if uh is linear then %&h uh � uh�
�� Conservation of mass� for every element K of the triangulation Th� we have�Z

K

%&h uh �

Z
K

uh�

	� Slope limiting� on each element K of Th� the gradient of %&h uh is not
bigger than that of uh�
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The actual form of the slope limiting operators is closely related to that of the
slope limiting operators studied in ���� and �����

����
� The rectangular elements� The limiting is performed on ux and uy
in �	�	�	�� using the di�erences of the means� For a scalar equation� ux would be
limited �replaced� by

'm �ux� 'ui���j � 'uij � 'uij � 'ui���j� �	�	���

where the function 'm is the TVB correctedminmod function de�ned in the previous
section�

The TVB correction is needed to avoid unnecessary limiting near smooth ex�
trema� where the quantity ux or uy is on the order of O��x�� or O��y��� For an
estimate of the TVB constant M in terms of the second derivatives of the function�
see ����� Usually� the numerical results are not sensitive to the choice of M in a
large range� In all the calculations in this paper we take M to be ���

Similarly� uy is limited �replaced� by

'm�uy� 'ui�j�� � 'uij � 'uij � 'ui�j����

with a change of �x to �y in �	�	����
For systems� we perform the limiting in the local characteristic variables� To

limit the vector ux in the element ij� we proceed as follows�

� Find the matrix R and its inverse R��� which diagonalize the Jacobian
evaluated at the mean in the element ij in the x�direction�

R��
�f��'uij�

�u
R � % �

where % is a diagonal matrix containing the eigenvalues of the Jacobian�

Notice that the columns of R are the right eigenvectors of
�f���uij�

�u and the

rows of R�� are the left eigenvectors�
� Transform all quantities needed for limiting� i�e�� the three vectors uxij �

'ui���j � 'uij and 'uij � 'ui���j � to the characteristic �elds� This is achieved by
left multiplying these three vectors by R���

� Apply the scalar limiter �	�	��� to each of the components of the transformed
vectors�

� The result is transformed back to the original space by left multiplying R
on the left�

�����
� The triangular elements� To construct the slope limiting opera�
tors for triangular elements� we proceed as follows� We start by making a simple
observation� Consider the triangles in Figure �� where m� is the mid�point of the
edge on the boundary of K� and bi denotes the barycenter of the triangle Ki for
i � �� �� �� 	�

Since we have that

m� � b� � �� �b� � b�� � �� �b� � b���

for some nonnegative coe�cients ��� �� which depend only onm� and the geometry�
we can write� for any linear function uh�

uh�m��� uh�b�� � �� �uh�b��� uh�b��� � �� �uh�b��� uh�b����
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Figure �� Illustration of limiting�

and since

'uKi
�

�

jKij
Z
Ki

uh � uh�bi�� i � �� �� �� 	�

we have that

,uh�m��K�� � uh�m��� 'uK�
� �� �'uK�

� 'uK�
� � �� �'uK�

� 'uK�
� � �'u�m��K��

Now� we are ready to describe the slope limiting� Let us consider a piecewise linear
function uh� and let mi� i � �� �� 	 be the three mid�points of the edges of the
triangle K�� We then can write� for �x� y� � K��

uh�x� y� �

�X
i��

uh�mi��i�x� y� � 'uK�
�

�X
i��

,uh�mi�K���i�x� y��

To compute %&huh� we �rst compute the quantities

�i � 'm�,uh�mi�K��� 	�'u�mi�K����

where 'm is the TVB modi�ed minmod function and 	 � �� We take 	 � ��� in our
numerical runs� Then� if

P�
i���i � �� we simply set

%&huh�x� y� � 'uK�
�

�X
i��

�i �i�x� y��

If
P�

i���i 	� �� we compute

pos �

�X
i��

max����i�� neg �

�X
i��

max�����i��

and set

�� � min

�
��
neg

pos

�
� �� � min

�
��
pos

neg

�
�
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Then� we de�ne

%&huh�x� y� � 'uK�
�

�X
i��

-�i �i�x� y��

where
-�i � ��max����i�� ��max�����i��

It is very easy to see that this slope limiting operator satis�es the three properties
listed above�

For systems� we perform the limiting in the local characteristic variables� To
limit �i� we proceed as in the rectangular case� the only di�erence being that we
work with the following Jacobian

�

�u
f�'uK�

� � mi � b�
jmi � b�j �

���� Computational results� Transient	 nonsmooth solutions

In this section we present several numerical results obtained with the P � and
P � �second and third order accurate� RKDG methods with either rectangles or
triangles in the triangulation� These are standard test problems for Euler equations
of compressible gas dynamics�

������ The double�Mach re�ection problem� Double Mach re�ection of
a strong shock� This problem was studied extensively in Woodward and Colella
���� and later by many others� We use exactly the same setup as in ����� namely a
Mach �� shock initially makes a ��� angle with a re�ecting wall� The undisturbed
air ahead of the shock has a density of ��� and a pressure of ��

For the rectangle based triangulation� we use a rectangular computational do�
main ��� ��� ��� ��� as in ����� The re�ecting wall lies at the bottom of the computa�
tional domain for �

� � x � �� Initially a right�moving Mach �� shock is positioned

at x � �
� � y � � and makes a ��� angle with the x�axis� For the bottom boundary�

the exact post�shock condition is imposed for the part from x � � to x � �
� � to

mimic an angled wedge� Re�ective boundary condition is used for the rest� At the
top boundary of our computational domain� the �ow values are set to describe the
exact motion of the Mach �� shock� In�ow(out�ow boundary conditions are used
for the left and right boundaries� As in ����� only the results in ��� 	� � ��� �� are
displayed�

For the triangle based triangulation� we have the freedom to treat irregular
domains and thus use a true wedged computational domain� Re�ective boundary
conditions are then used for all the bottom boundary� including the sloped portion�
Other boundary conditions are the same as in the rectangle case�

Uniform rectangles are used in the rectangle based triangulations� Four di�er�
ent meshes are used� ��� � �� rectangles ��x � �y � �

�� �� ��� � ��� rectangles

��x � �y � �
��� �� 
������ rectangles ��x � �y � �

�	� �� and �
������ rectangles

��x � �y � �
	�� �� The density is plotted in Figure � for the P � case and in 	 for

the P � case�
To better appreciate the di�erence between the P � and P � results in these

pictures� we show a *blowed up+ portion around the double Mach region in Figure
� and show one�dimensional cuts along the line y � ��� in Figures � and �� In Figure
�� w can see that P � with �x � �y � �

�	� has qualitatively the same resolution as
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P � with �x � �y � �
	�� � for the �ne details of the complicated structure in this

region� P � with �x � �y � �
	�� gives a much better resolution for these structures

than P � with the same number of rectangles�
Moreover� from Figure �� we clearly see that the di�erence between the results

obtained by using P � and P �� on the same mesh� increases dramatically as the mesh
size decreases� This indicates that the use of polynomials of high degree might be
bene�cial for capturing the above mentioned structures� From Figure �� we see that
the results obtained with P � are qualitatively similar to those obtained with P � in
a coarser mesh� the similarity increases as the meshsize decreases� The conclusion
here is that� if one is interested in the above mentioned �ne structures� then one can
use the third order scheme P � with only half of the mesh points in each direction
as in P �� This translates into a reduction of a factor of � in space�time grid points
for �D time dependent problems� and will more than o��set the increase of cost
per mesh point and the smaller CFL number by using the higher order P � method�
This saving will be even more signi�cant for 	D�

The optimal strategy� of course� is to use adaptivity and concentrate triangles
around the interesting region� and(or change the order of the scheme in di�erent
regions�

������ The forward�facing step problem� Flow past a forward facing step�
This problem was again studied extensively in Woodward and Colella ���� and later
by many others� The set up of the problem is the following� A right going Mach
	 uniform �ow enters a wind tunnel of � unit wide and 	 units long� The step is
��� units high and is located ��� units from the left�hand end of the tunnel� The
problem is initialized by a uniform� right�going Mach 	 �ow� Re�ective boundary
conditions are applied along the walls of the tunnel and in��ow and out��ow bound�
ary conditions are applied at the entrance �left�hand end� and the exit �right�hand
end�� respectively�

The corner of the step is a singularity� which we study carefully in our numerical
experiments� Unlike in ���� and many other papers� we do not modify our scheme
near the corner in any way� It is well known that this leads to an errorneous
entropy layer at the downstream bottom wall� as well as a spurious Mach stem at
the bottom wall� However� these artifacts decrease when the mesh is re�ned� In
Figure �� second order P � results using rectangle triangulations are shown� for a
grid re�nement study using �x � �y � �

	� � �x � �y � �
�� � �x � �y � �

��� �

and �x � �y � �
��� as mesh sizes� We can clearly see the improved resolution

�especially at the upper slip line from the triple point� and decreased artifacts
caused by the corner� with increased mesh points� In Figure �� third order P �

results using the same meshes are shown�
In order to verify that the erroneous entropy layer at the downstream bottom

wall and the spurious Mach stem at the bottom wall are both artifacts caused by
the corner singularity� we use our triangle code to locally re�ne near the corner
progressively� we use the meshes displayed in Figure 
� In Figure ��� we plot the
density obtained by the P � triangle code� with triangles �roughly the resolution of
�x � �y � �

	� � except around the corner�� In Figure ��� we plot the entropy around
the corner for the same runs� We can see that� with more triangles concentrated
near the corner� the artifacts gradually decrease� Results with P � codes in Figures
�� and �	 show a similar trend�



���� CONCLUDING REMARKS 
�

���� Computational results� Steady state	 smooth solutions

In this section� we present some of the numerical results of Bassi and Rebay ���
in two dimensions and Warburton� Lomtev� Kirby and Karniadakis ���� in three
dimensions�

The purpose of the numerical results of Bassi and Rebay ��� we are presenting is
to assess �i� the e�ect of the quality of the approximation of curved boundaries and
of �ii� the e�ect of the degree of the polynomials on the quality of the approximate
solution� The test problem we consider here is the two�dimensional steady�state�
subsonic �ow around a disk at Mach number M� � ��	�� Since the solution is
smooth and can be computed analytically� the quality of the approximation can be
easily assessed�

In the �gures ��� ��� ��� and ��� details of the meshes around the disk are
shown together with the approximate solution given by the RKDG method using
piecewise linear elements� These meshes approximate the circle with a polygonal� It
can be seen that the approximate solution are of very low quality even for the most
re�ned grid� This is an e�ect caused by the kinks of the polygonal approximating
the circle�

This statement can be easily veri�ed by taking a look to the �gures ��� �
� ���
and ��� In these pictures the approximate solutions with piecewise linear� quadratic�
and cubic elements are shown� the meshes have been modi�ed to render exactly the
circle� It is clear that the improvement in the quality of the approximation is
enormous� Thus� a high�quality approximation of the boundaries has a dramatic
improvement on the quality of the approximations�

Also� it can be seen that the higher the degree of the polynomials� the better
the quality of the approximations� in particular from �gures �� and �
� In ����
Bassi and Rebay show that the RKDG method using polynomilas of degree k are
�k � ���th order accurate for k � �� �� 	� As a consequence� a RKDG method
using polynomials of a higher degree is more e�cient than a RKDG method using
polynomials of lower degree�

In ����� Warburton� Lomtev� Kirby and Karniadakis present the same test prob�
lem in a three dimensional setting� In Figure ��� we can see the three�dimensional
mesh and the density isosurfaces� We can also see how� while the mesh is being kept
�xed and the degree of the polynomials k is increased from � to 
� the maximum
error on the entropy goes exponentialy to zero� �In the picture� a so�called �mode�
is equal to k � ���

���� Concluding remarks

In this section� we have extended the RKDG methods to multidimensional
systems� We have described in full detail the algorithms and displayed numerical
results showing the performance of the methods for the Euler equations of gas
dynamics�

The �exibility of the RKDG method to handle nontrivial geometries and to
work with di�erent elements has been displayed� Moreover� it has been shown that
the use of polynomials of high degree not only does not degrade the resolution of
strong shocks� but enhances the resolution of the contact discontinuities and renders
the scheme more e�cient on smooth regions�

Next� we extend the RKDG methods to convection�dominated problems�




� �� THE RKDG METHOD FOR MULTIDIMENSIONAL SYSTEMS




�

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P1, ∆ x = ∆ y = 1/60

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P1, ∆ x = ∆ y = 1/120

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P1, ∆ x = ∆ y = 1/240

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P1, ∆ x = ∆ y = 1/480

Figure �� Double Mach re�ection problem� Second order P � re�
sults� Density 
� 	� equally spaced contour lines from 
 � ��	
��
to 
 � ������� Mesh re�nement study� From top to bottom�
�x � �y � �

�� �
�
��� �

�
�	� � and

�
	�� �




	 �� THE RKDG METHOD FOR MULTIDIMENSIONAL SYSTEMS

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/60

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/120

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/240

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/480

Figure �� Double Mach re�ection problem� Third order P � re�
sults� Density 
� 	� equally spaced contour lines from 
 � ��	
��
to 
 � ������� Mesh re�nement study� From top to bottom�
�x � �y � �

�� �
�
��� �

�
�	� � and

�
	�� �







2.0 2.2 2.4 2.6 2.8

0.0

0.1

0.2

0.3

0.4

0.5

Rectangles P2, ∆ x = ∆ y = 1/240

2.0 2.2 2.4 2.6 2.8

0.0

0.1

0.2

0.3

0.4

Rectangles P1, ∆ x = ∆ y = 1/480

2.0 2.2 2.4 2.6 2.8

0.0

0.1

0.2

0.3

0.4

Rectangles P2, ∆ x = ∆ y = 1/480Rectangles P2, ∆ x = ∆ y = 1/480

Figure �� Double Mach re�ection problem� Blowed�up region
around the double Mach stems� Density 
� Third order P � with
�x � �y � �

�	� �top�� second order P � with �x � �y � �
	��

�middle�� and third order P � with �x � �y � �
	�� �bottom��




� �� THE RKDG METHOD FOR MULTIDIMENSIONAL SYSTEMS

2 2.2 2.4 2.6 2.8

∆ x = ∆ y = 1/60

0

2

4

6

8

10

12

14

16

18

C

P2

P1

∆ x = ∆ y = 1/120

2 2.2 2.4 2.6 2.8

∆ x = ∆ y = 1/60

0

2

4

6

8

10

12

14

16

18

C

P2

P1

∆ x = ∆ y =1/240

2 2.2 2.4 2.6 2.8

∆ x = ∆ y = 1/60

0

2

4

6

8

10

12

14

16

18

C

P2

P1

∆ x = ∆ y = 1/480

Figure �� Double Mach re�ection problem� Cut y � ��� of the
blowed�up region� Density 
� Comparison of second order P � with
third order P � on the same mesh







2 2.2 2.4 2.6 2.8

V1

0

2

4

6

8

10

12

14

16

18

P2 P1

P2 on mesh ∆ x = ∆ y =
P1 on mesh ∆ x = ∆ y =

1/60
1/120

2 2.2 2.4 2.6 2.8

V1

0

2

4

6

8

10

12

14

16

18

P2 P1

P2 on mesh ∆ x = ∆ y =
P1 on mesh ∆ x = ∆ y =

1/120
1/240

2 2.2 2.4 2.6 2.8

V1

0

2

4

6

8

10

12

14

16

18

P2 P1

P2 on mesh ∆ x = ∆ y =
P1 on mesh ∆ x = ∆ y =

1/240
1/480

Figure �� Double Mach re�ection problem� Cut y � ��� of the
blowed�up region� Density 
� Comparison of second order P � with
third order P � on a coarser mesh




� �� THE RKDG METHOD FOR MULTIDIMENSIONAL SYSTEMS

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P1, ∆ x = ∆ y = 1/40

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P1, ∆ x = ∆ y = 1/80

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P1, ∆ x = ∆ y = 1/160

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P1, ∆ x = ∆ y = 1/320

Figure �� Forward facing step problem� Second order P � results�
Density 
� 	� equally spaced contour lines from 
 � ���
�		�
to 
 � ���	��� Mesh re�nement study� From top to bottom�
�x � �y � �

	� �
�
�� �

�
��� � and

�
��� �




�

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0
Rectangles P2, ∆ x = ∆ y = 1/40

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/80

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/160

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/320

Figure �� Forward facing step problem� Third order P � results�
Density 
� 	� equally spaced contour lines from 
 � ���
�		�
to 
 � ���	��� Mesh re�nement study� From top to bottom�
�x � �y � �

	� �
�
�� �

�
��� � and

�
��� �



�� �� THE RKDG METHOD FOR MULTIDIMENSIONAL SYSTEMS

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

σ = 1/1

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

σ = 1/2

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

σ = 1/4

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

σ = 1/8

Figure 	� Forward facing step problem� Detail of the triangula�
tions associated with the di�erent values of �� The parameter � is
the ratio between the typical size of the triangles near the corner
and that elsewhere�



��

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Triangles P1, σ = 1/1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Triangles P1, σ = 1/2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Triangles P1, σ = 1/4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Triangles P1, σ = 1/8

Figure �
� Forward facing step problem� Second order P � re�
sults� Density 
� 	� equally spaced contour lines from 
 � ���
�		�
to 
 � ���	��� Triangle code� Progressive re�nement near the
corner



�� �� THE RKDG METHOD FOR MULTIDIMENSIONAL SYSTEMS

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Triangles P1, σ = 1/1

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Triangles P1, σ = 1/2

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Triangles P1, σ = 1/4

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Triangles P1, σ = 1/8

Figure ��� Forward facing step problem� Second order P � re�
sults� Entropy level curves around the corner� Triangle code� Pro�
gressive re�nement near the corner



��

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Triangles P2, σ = 1/1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Triangles P2, σ = 1/2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Triangles P2, σ = 1/4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Triangles P2, σ = 1/8

Figure ��� Forward facing step problem� Third order P � results�
Density 
� 	� equally spaced contour lines from 
 � ���
�		� to

 � ���	��� Triangle code� Progressive re�nement near the corner



�	 �� THE RKDG METHOD FOR MULTIDIMENSIONAL SYSTEMS

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Triangles P2, σ = 1/1

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Triangles P2, σ = 1/2

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Triangles P2, σ = 1/4

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Triangles P2, σ = 1/8

Figure ��� Forward facing step problem� Third order P � results�
Entropy level curves around the corner� Triangle code� Progressive
re�nement near the corner



�


Figure ��� Grid *��� �+ with a piecewise linear approximation
of the circle �top� and the corresponding solution �Mach isolines�
using P� elements �bottom��
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Figure ��� Grid *	�� �+ with a piecewise linear approximation
of the circle �top� and the corresponding solution �Mach isolines�
using P� elements �bottom��
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Figure ��� Grid *�����+ with a piecewise linear approximation
of the circle �top� and the corresponding solution �Mach isolines�
using P� elements �bottom��
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Figure ��� Grid *���� 	�+ a piecewise linear approximation of
the circle �top� and the corresponding solution �Mach isolines� us�
ing P� elements �bottom��
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Figure ��� Grid *��� �+ with exact rendering of the circle and
the corresponding P� �top�� P��middle�� and P� �bottom� approx�
imations �Mach isolines��
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Figure �	� Grid *	�� �+ with exact rendering of the circle and
the corresponding P� �top�� P��middle�� and P� �bottom� approx�
imations �Mach isolines��
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Figure �
� Grid *��� ��+ with exact rendering of the circle and
the corresponding P� �top�� P��middle�� and P� �bottom� approx�
imations �Mach isolines��
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Figure ��� Grid *����	�+ with exact rendering of the circle and
the corresponding P� �top�� P��middle�� and P� �bottom� approx�
imations �Mach isolines��
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Figure ��� Three�dimensional �ow over a semicircular bump�
Mesh and density isosurfaces �top� and history of convergence with
p�re�nement of the maximum entropy generated �bottom�� The
degree of the polynomial plus one is plotted on the �modes� axis�
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CHAPTER �

Convection�di�usion problems� The LDG method

���� Introduction

In this chapter� which follows the work by Cockburn and Shu ����� we restrict
ourselves to the semidiscrete LDG methods for convection�di�usion problems with
periodic boundary conditions� Our aim is to clearly display the most distinctive
features of the LDG methods in a setting as simple as possible� the extension of the
method to the fully discrete case is straightforward� In x�� we introduce the LDG
methods for the simple one�dimensional case d � � in which

F�u�Du� � f�u�� a�u� �xu�

u is a scalar and a�u� � � and show some preliminary numerical results displaying
the performance of the method� In this simple setting� the main ideas of how to
device the method and how to analyze it can be clearly displayed in a simple way�
Thus� the L��stability of the method is proven in the general nonlinear case and
the rate of convergence of ��x�k in the L���� T �L���norm for polynomials of degree
k � � in the linear case is obtained� this estimate is sharp� In x	� we extend these
results to the case in which u is a scalar and

Fi�u�Du� � fi�u��
X

��j�d
aij�u� �xju�

where aij de�nes a positive semide�nite matrix� Again� the L��stability of the
method is proven for the general nonlinear case and the rate of convergence of
��x�k in the L���� T �L���norm for polynomials of degree k � � and arbitrary tri�
angulations is proven in the linear case� In this case� the multidimensionality of the
problem and the arbitrariness of the grids increase the technicality of the analysis
of the method which� nevertheless� uses the same ideas of the one�dimensional case�
In x�� the extension of the LDG method to multidimensional systems is brie�y de�
scribed some numerical results for the compressible Navier�Stokes equations from
the paper by Bassi and Rebay ��� and from the paper by Lomtev and Karniadakis
���� are presented�

���� The LDG methods for the one�dimensional case

In this section� we present and analyze the LDG methods for the following
simple model problem�

�t u� �x �f�u�� a�u� �x u� � � in ��� T �� ��� ��� �������

u�t � �� � u�� on ��� ��� �������

with periodic boundary conditions�
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������ General formulation and main properties� To de�ne the LDG
method� we introduce the new variable q �

p
a�u� �x u and rewrite the problem

�������� ������� as follows�

�t u� �x �f�u��
p
a�u� q� � � in ��� T �� ��� ��� �����	�

q � �x g�u� � � in ��� T �� ��� ��� �������

u�t � �� � u�� on ��� ��� �������

where g�u� �
R up

a�s� ds� The LDG method for �������� ������� is now obtained
by simply discretizing the above system with the Discontinuous Galerkin method�

To do that� we follow ���� and ����� We de�ne the �ux h � �hu� hq �
t as follows�

h�u� q� � � f�u��pa�u� q � �g�u� �t� �������

For each partition of the interval ��� ��� fxj���� gNj��� we set Ij � �xj����� xj������
and �xj � xj�����xj���� for j � �� � � � � N � we denote the quantity max��j�N �xj
by �x � We seek an approximation wh � �uh� qh�

t to w � �u� q�t such that for
each time t � ��� T �� both uh�t� and qh�t� belong to the �nite dimensional space

Vh � V k
h � fv � L���� �� � vjIj � P k�Ij�� j � �� � � � � Ng� �������

where P k�I� denotes the space of polynomials in I of degree at most k� In order
to determine the approximate solution �uh� qh�� we �rst note that by multiplying
�����	�� �������� and ������� by arbitrary� smooth functions vu� vq� and vi� respec�
tively� and integrating over Ij � we get� after a simple formal integration by parts in
�����	� and ��������

R
Ij
�t u�x� t� vu�x� dx �

R
Ij
hu�w�x� t�� �x vu�x� dx

�hu�w�xj����� t�� vu�x
�
j������ hu�w�xj����� t�� vu�x

�
j����� � �� �������R

Ij
q�x� t� vq�x� dx �

R
Ij
hq�w�x� t�� �x vq�x� dx

�hq�w�xj���� � t�� vq�x
�
j������ hq�w�xj����� t�� vq�x

�
j����� � �� �����
�R

Ij
u�x� �� vi�x� dx �

R
Ij
u��x� vi�x� dx� ��������

Next� we replace the smooth functions vu� vq � and vi by test functions vh�u� vh�q � and
vh�i� respectively� in the �nite element space Vh and the exact solution w � �u� q�t

by the approximate solution wh � �uh� qh�
t� Since this function is discontinuous

in each of its components� we must also replace the nonlinear �ux h�w�xj���� � t��

by a numerical �ux -h�w�j�����t� � �-hu�wh�j�����t�� -hq�wh�j�����t�� that will be
suitably chosen later� Thus� the approximate solution given by the LDG method
is de�ned as the solution of the following weak formulation�
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� vh�u � P k�Ij� �Z
Ij

�t uh�x� t� vh�u�x� dx �
Z
Ij

hu�wh�x� t�� �x vh�u�x� dx

�-hu�wh�j�����t� vh�u�x
�
j������ -hu�wh�j�����t� vh�u�x

�
j����� � ����������

� vh�q � P k�Ij� �Z
Ij

qh�x� t� vh�q�x� dx �
Z
Ij

hq�wh�x� t�� �x vh�q�x� dx

�-hq�wh�j�����t� vh�q�x
�
j������ -hq�wh�j�����t� vh�q�x

�
j����� � ����������

� vh�i � P k�Ij� �Z
Ij

uh�x� �� vh�i�x� dx �

Z
Ij

u��x� vh�i�x� dx� ������	�

It only remains to choose the numerical �ux -h�wh�j�����t�� We use the notation�

� p � � p� � p�� and p �
�

�
�p� � p��� and p�j���� � p�x�j������

To be consistent with the type of numerical �uxes used in the RKDG methods� we
consider numerical �uxes of the form

-h�wh�j�����t� � -h�wh�x
�
j����� t��wh�x

�
j����� t���

that �i� are locally Lipschitz and consistent with the �ux h� �ii� allow for a local
resolution of qh in terms of uh� �iii� reduce to an E��ux �see Osher ����� when
a��� � �� and that �iv� enforce the L��stability of the method�

To re�ect the convection�di�usion nature of the problem under consideration�
we write our numerical �ux as the sum of a convective �ux and a di�usive �ux�

-h�w��w�� � -hconv�w
��w�� � -hdiff �w

��w��� ��������

The convective �ux is given by

-hconv�w
��w�� �

�
-f�u�� u��� ��t� ��������

where -f�u�� u�� is any locally Lipschitz E��ux consistent with the nonlinearity f �
and the di�usive �ux is given by

-hdiff �w
��w�� �

�� � g�u� �

�u �
q� �g�u� �t � C diff �w �� ��������

where
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C diff �

�
� c��

�c�� �

�
� ��������

c�� � c���w
��w�� is locally Lipschitz� ��������

c�� � � when a��� � �� ������
�

We claim that this �ux satis�es the properties �i� to �iv��

Let us prove our claim� That the �ux -h is consistent with the �ux h easily

follows from their de�nitions� That -h is locally Lipschitz follows from the fact that
-f��� �� is locally Lipschitz and from ��������� we assume that f��� and a��� are locally
Lipschitz functions� of course� Property �i� is hence satis�ed�

That the approximate solution qh can be resolved element by element in terms

of uh by using �������� follows from the fact that� by ��������� the �ux -hq � �g�u��
c�� �u � is independent of qh� Property �ii� is hence satis�ed�

Property �iii� is also satis�ed by ������
� and by the construction of the con�
vective �ux�

To see that the property �iv� is satis�ed� let us �rst rewrite the �ux -h in the
following way�

-h�w��w�� �
� ���u� �

�u �
� � g�u� �

�u �
q� �g�u� �t � C �w ��

where

C �

�
c�� c��
�c�� �

�
� c�� �

�

�u �

�
���u� �

�u �
� -f�u�� u��

�
� ��������

with ��u� de�ned by ��u� �
R u

f�s� ds� Since -f��� �� is an E��ux�

c�� �
�

�u ��
R u�
u�

�
f�s�� -f�u�� u��

�
ds � ��

and so� by ��������� the matrix C is semipositive de�nite� The property �iv� follows
from this fact and from the following result�

Theorem ���� We have�

�
�

R �
�
u�h�x� T � dx�

R T
�

R �
�
q�h�x� t� dx dt�"T�C ��wh�� � �

�

R �
�
u���x� dx�

where

"T�C ��wh�� �
R T
�

P
��j�N

	
�wh�t��

tC �wh�t��



j����

dt�

For a proof� see ����� Thus� this shows that the �ux -h under consideration does
satisfy the properties �i� to �iv�� as claimed�
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Now� we turn to the question of the quality of the approximate solution de�ned
by the LDG method� In the linear case f � � c and a��� � a� from the above stability
result and from the the approximation properties of the �nite element space Vh�
we can prove the following error estimate� We denote the L���� ���norm of the ��th
derivative of u by ju j��

Theorem ���� Let e be the approximation error w �wh� Then we have�

	 R �
�
j eu�x� T � j� dx�

R T
�

R �
�
j eq�x� t� j� dx dt�"T�C ��e��


���
� C ��x�k �

where C � C�k� ju jk��� ju jk���� In the purely hyperbolic case a � �� the constant

C is of order ��x����� In the purely parabolic case c � �� the constant C is of order
�x for even values of k for uniform grids and for C identically zero�

For a proof� see ����� The above error estimate gives a suboptimal order of
convergence� but it is sharp for the LDG methods� Indeed� Bassi et al ��� report
an order of convergence of order k � � for even values of k and of order k for odd
values of k for a steady state� purely elliptic problem for uniform grids and for C
identically zero� The numerical results for a purely parabolic problem that will be
displayed later lead to the same conclusions� see Table � in the section x��b�

The error estimate is also sharp in that the optimal order of convergence of
k � ��� is recovered in the purely hyperbolic case� as expected� This improvement
of the order of convergence is a re�ection of the semipositive de�niteness of the
matrix C � which enhances the stability properties of the LDG method� Indeed�
since in the purely hyperbolic case

"T�C ��wh�� �
R T
�

P
��j�N

	
�uh�t��

t c�� �uh�t��



j����

dt�

the method enforces a control of the jumps of the variable uh� as shown in Proposi�
tion lemenergy� This additional control is re�ected in the improvement of the order
of accuracy from k in the general case to k � ��� in the purely hyperbolic case�

However� this can only happen in the purely hyperbolic case for the LDG
methods� Indeed� since c�� � � for c � �� the control of the jumps of uh is not
enforced in the purely parabolic case� As indicated by the numerical experiments
of Bassi et al� ��� and those of section x��b below� this can result in the e�ective
degradation of the order of convergence� To remedy this situation� the control of
the jumps of uh in the purely parabolic case can be easily enforced by letting c�� be
strictly positive if j c j� j a j � �� Unfortunately� this is not enough to guarantee an
improvement of the accuracy� an additional control on the jumps of qh is required$
This can be easily achieved by allowing the matrix C to be symmetric and positive
de�nite when a � �� In this case� the order of convergence of k � ��� can be
easily obtained for the general convection�di�usion case� However� this would force
the matrix entry c�� to be nonzero and the property �ii� of local resolvability of
qh in terms of uh would not be satis�ed anymore� As a consequence� the high
parallelizability of the LDG would be lost�

The above result shows how strongly the order of convergence of the LDG
methods depend on the choice of the matrix C � In fact� the numerical results of
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section x��b in uniform grids indicate that with yet another choice of the matrix
C � see ���	����� the LDG method converges with the optimal order of k � � in the
general case� The analysis of this phenomenon constitutes the subject of ongoing
work�

���� Numerical results in the one�dimensional case

In this section we present some numerical results for the schemes discussed in
this paper� We will only provide results for the following one dimensional� linear
convection di�usion equation

�t u� c �x u� a ��x u � � in ��� T �� ��� �
��

u�t � �� x� � sin�x�� on ��� �
��

where c and a � � are both constants� periodic boundary conditions are used� The
exact solution is u�t� x� � e�at sin�x � ct�� We compute the solution up to T � ��
and use the LDG method with C de�ned by

C �

�
jcj
� �

p
a
�p

a
� �

�
� ���	����

We notice that� for this choice of �uxes� the approximation to the convective term
cux is the standard upwinding� and that the approximation to the di�usion term
a ��x u is the standard three point central di�erence� for the P � case� On the other
hand� if one uses a central �ux corresponding to c�� � �c�� � �� one gets a spread�
out �ve point central di�erence approximation to the di�usion term a ��x u�

The LDG methods based on P k� with k � �� �� 	� � are tested� Elements with
equal size are used� Time discretization is by the third�order accurate TVD Runge�
Kutta method ����� with a su�ciently small time step so that error in time is
negligible comparing with spatial errors� We list the L� errors and numerical
orders of accuracy� for uh� as well as for its derivatives suitably scaled �xm�mx uh
for � � m � k� at the center of of each element� This gives the complete description
of the error for uh over the whole domain� as uh in each element is a polynomial
of degree k� We also list the L� errors and numerical orders of accuracy for qh at
the element center�

In all the convection�di�usion runs with a � �� accuracy of at least �k � ���th
order is obtained� for both uh and qh� when P k elements are used� See Tables � to
	� The P 	 case for the purely convection equation a � � seems to be not in the as�
ymptotic regime yet with N � �� elements �further re�nement with N � �� su�ers
from round�o� e�ects due to our choice of non�orthogonal basis functions�� Table
�� However� the absolute values of the errors are comparable with the convection
dominated case in Table 	�
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Table �� The heat equation a � �� c � �� L� errors and numerical order of
accuracy� measured at the center of each element� for �xm�mx uh for � � m � k�
and for qh�

k variable N � �� N � �� N � ��

error error order error order

u ����E�� ���
E�� ��
� ����E�� ��


� �x �xu 
���E�	 ����E�	 ���� ����E�� ����

q ����E�� ����E�� ���� ���	E�� ����

u ���	E�� ����E�� 	��� ���
E�� 	���
� �x �xu ����E�� ���	E�� ��
	 ��	�E�� ��
�

��x�� ��xu ����E�	 ���
E�� ��
� ����E�� ��


q ����E�� ����E�� 	��� ���
E�� 	���

u ����E�� 
���E�� ���� ����E�� 	�
�
�x �xu 	���E�� ��	�E�� 	�

 ����E�� ����

	 ��x�� ��xu ��
�E�� ����E�� ���� ��	�E�� 	�


��x�� ��xu ����E�� ����E�� ���� 
���E�� ����

q ����E�� 
���E�� 	�
	 ����E�� 	�
�

u ����E�� ����E�
 ���� ���	E��� ����
�x �xu ����E�� ����E�� ���� ����E�
 ����

� ��x�� ��xu ��	�E�� ����E�� ��
� ����E�
 ��


��x�� ��xu ��
�E�� 
���E�� ��
� ��

E�� ��


��x�	 �	xu 	��	E�� 
���E�� ��
� ��

E�� ����

q ����E�� ����E�
 ���� ���	E��� ����
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Table �� The convection di�usion equation a � �� c � �� L� errors and numerical
order of accuracy� measured at the center of each element� for �xm�mx uh for � �
m � k� and for qh�

k variable N � �� N � �� N � ��

error error order error order

u ����E�� ����E�� ��	� ���
E�� ��
�
� �x �xu 
���E�	 ����E�	 ���� ����E�� ����

q ��
�E�	 ����E�� ���	 ����E�� 	���

u ����E�� ����E�� 	��� ����E�� 	���
� �x �xu ��
	E�� ����E�� ��
	 ��	�E�� ��



��x�� ��xu ����E�	 ���
E�� ��
� ����E�� 	���
q ����E�� ���	E�� ��
� ����E�� ��
�

u ���	E�� 
���E�� 	�
� ����E�� 	�


�x �xu 	���E�� ��	�E�� ���� ����E�� 	�



	 ��x�� ��xu ���
E�� ����E�� ���� ��	�E�� ����
��x�� ��xu ����E�� ����E�� ���� 
���E�� 	�



q ����E�� 
�
	E�� 	�
� ����E�� ����

u ����E�� ����E�
 ���� ����E��� ����
�x �xu ����E�� ���
E�� ���� ����E�
 ����

� ��x�� ��xu ��	�E�� ����E�� ��
� ����E�� ����
��x�� ��xu ��

E�� 
���E�� ��
� ��

E�� ����
��x�	 �	xu ��
�E�� 
���E�� ��
� 	���E�� ��



q ��
�E�� ��	�E�
 ���
 ����E��� ����
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Table �� The convection dominated convection di�usion equation a � ����� c � ��
L� errors and numerical order of accuracy� measured at the center of each element�
for �xm�mx uh for � � m � k� and for qh�

k variable N � �� N � �� N � ��

error error order error order

u ����E�	 
�	�E�� ��
� ����E�� ��
�
� �x �xu ����E�� ����E�� ��
	 ����E�	 ��
�

q ����E�� ���
E�� 	��� ��	�E�� 	���

u 
��
E�� ����E�� ��
� ����E�� ��


� �x �xu ����E�	 ����E�� ��
� 
���E�� 	���

��x�� ��xu ����E�� ����E�	 	��� ��
�E�� ��
�
q ��

E�� ����E�� 	��� ����E�� 	�	�

u ����E�� ����E�� 	�
� ���	E�� ����
�x �xu ����E�� ����E�� 	��� ����E�� ����

	 ��x�� ��xu ��	�E�	 ����E�� ���� ��		E�� ����
��x�� ��xu ����E�	 ���	E�� 	�
� ����E�� 	�



q ����E�� ����E�� ���� ����E�� 	�
�

u ����E�� ����E�� ���	 ���
E�
 ����
�x �xu ���
E�� 	���E�� ���� ����E�� ����

� ��x�� ��xu ���
E�� ����E�� ���	 ����E�� ��


��x�� ��xu ����E�� ��
	E�� ��

 ����E�� ����
��x�	 �	xu ����E�� ���
E�� ���	 ����E�� ��



q 	���E�� 	���E�
 ���� ����E��� ��
�
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Table �� The convection equation a � �� c � �� L� errors and numerical order of
accuracy� measured at the center of each element� for �xm�mx uh for � � m � k�

k variable N � �� N � �� N � ��

error error order error order

� u ����E�	 
���E�� ��
� ����E�� ��
�
�x �xu ���
E�� ����E�� ��
� ���
E�	 ��
�

u 
�
�E�� ����E�� ��
� ����E�� ��


� �x �xu ����E�	 ����E�� ��
� 
���E�� 	���

��x�� ��xu ���	E�� ����E�	 	��� ��
�E�� ��



u ����E�� ����E�� ���� ����E�� ����
	 �x �xu ���	E�� ����E�� 	��	 ����E�� ����

��x�� ��xu ����E�	 
��	E�� ���� ����E�� ����
��x�� ��xu ��	�E�	 ����E�� 	��� ���
E�� ����

u 	���E�� ���
E�� ��	� 	���E��� ���	
�x �xu ���
E�� ����E�� ���� ����E�� 	���

� ��x�� ��xu ���
E�� ����E�� ���� ��		E�� ����
��x�� ��xu ��	�E�� ����E�� ��	� ��	�E�� ����
��x�	 �	xu ����E�� ��
	E�� ��
� ����E�� ����
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Finally� to show that the order of accuracy could really degenerate to k for P k�
as was already observed in ���� we rerun the heat equation case a � �� c � � with
the central �ux

C �

�
� �
� �

�
� ���	����

This time we can see that the global order of accuracy in L� is only k when
P k is used with an odd value of k�

Table �� The heat equation a � �� c � �� L� errors and numerical order of
accuracy� measured at the center of each element� for �xm�mx uh for � � m � k�
and for qh� using the central �ux�

k variable N � �� N � �� N � ��

error error order error order

u 	��
E�	 ��
�E�� ���� ����E�� ��
�
� �x �xu ����E�� ����E�� ��
� ��	�E�	 ����

q ��	
E�	 ���
E�� ��
� ����E�� ��



u ��
�E�� ����E�� ���� ����E�� ����
� �x �xu ����E�� ���	E�� ��
� ��	�E�� ��
�

��x�� ��xu ��
�E�� ����E�� ���� ���	E�� ����
q ����E�� ����E�� 	�

 ����E�� ����

u ����E�� ����E�� ���� ����E�� 	�
�
�x �xu ����E�� ��	�E�� 	��� ����E�� 	���

	 ��x�� ��xu ��

E�� ����E�� ���	 ����E�� 	�


��x�� ��xu ����E�� ����E�� ��
� ���
E�� ��



q ����E�� ����E�� 	�
	 ����E�� 	�
�

u ����E�� ��	�E�
 ��
� ����E��� ��
�
�x �xu ����E�� ����E�� ��
� ����E�
 ����

� ��x�� ��xu ����E�� ����E�� ���� 	���E��� ����
��x�� ��xu ��
�E�� 
���E�� ��
� ��

E�� ��


��x�	 �	xu ���	E�� ���
E�� ���� ����E�
 ����

q ����E�� ��	�E�
 ��
� ����E��� ��
�
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���� The LDG methods for the multi�dimensional case

In this section� we consider the LDG methods for the following convection�
di�usion model problem

�t u�
X
��i�d

�xi �fi�u��
X

��j�d
aij�u� �xj u� � � in ��� T �� ��� ��d�������	�

u�t � �� � u�� on ��� ��d� ��������

with periodic boundary conditions� Essentially� the one�dimensional case and the
multidimensional case can be studied in exactly the same way� However� there are
two important di�erences that deserve explicit discussion� The �rst is the treatment
of the matrix of entries aij�u�� which is assumed to be symmetric� semipositive
de�nite and the introduction of the variables q�� and the second is the treatment of
arbitrary meshes�

To de�ne the LDG method� we �rst notice that� since the matrix aij�u� is
assumed to be symmetric and semipositive de�nite� there exists a symmetric matrix
bij�u� such that

aij�u� �
P

����d bi��u� b� j�u�� ��������

Then we de�ne the new scalar variables q� �
P

��j�d b� j�u� �xj u and rewrite the

problem ������	�� �������� as follows�

�t u�
X
��i�d

�xi �fi�u��
X

����d
bi��u� q�� � � in ��� T �� ��� ��d���������

q� �
X

��j�d
�xj g� j�u� � �� � � �� � � � d� in ��� T �� ��� ��d� ��������

u�t � �� � u�� on ��� ��d� ��������

where g� j�u� �
R u

b� j�s� ds� The LDG method is now obtained by discretizing the
above equations by the Discontinuous Galerkin method�

We follow what was done in x�� So� we set w � �u�q�t � �u� q�� � � � � qd�t and�
for each i � �� � � � � d� introduce the �ux

hi�w� � � fi�u��
P

����d bi��u� q���g�i�u�� � � � � �gdi�u� �t� ������
�

We consider triangulations of ��� ��d� T�x � fK g� made of non�overlapping poly�

hedra� We require that for any two elements K and K �� K 
 K
�
is either a face

e of both K and K � with nonzero �d � ���Lebesgue measure j e j� or has Hausdor�
dimension less than d � �� We denote by E�x the set of all faces e of the border
of K for all K � T�x� The diameter of K is denoted by �xK and the maximum
�xK � for K � T�x is denoted by �x� We require� for the sake of simplicity� that
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the triangulations T�x be regular� that is� there is a constant independent of �x
such that

�xK

K

� � �K � T�x�

where 
K denotes the diameter of the maximum ball included in K�
We seek an approximation wh � �uh�qh�

t � �uh� qh�� � � � � qhd�t to w such that
for each time t � ��� T �� each of the components of wh belong to the �nite element
space

Vh � V k
h � f v � L����� ��d� � vjK � P k�K� � K � T�xg� �����	��

where P k�K� denotes the space of polynomials of total degree at most k� In or�
der to determine the approximate solution wh� we proceed exactly as in the one�
dimensional case� This time� however� the integrals are made on each element K of
the triangulation T�x� We obtain the following weak formulation on each element
K of the triangulation T�x�

R
K �t uh�x� t� vh�u�x� dx �

P
��i�d

R
K hi u�wh�x� t�� �xi vh�u�x� dx

�
R
�K

-hu�wh�n�K��x� t� vh�u�x� d)�x� � �� � vh�u � P k�K�� �����	��

For � � �� � � � � d �R
K qh��x� t� vh�q��x� dx �

P
��j�d

R
K hj q��wh�x� t�� �xj vh�q��x� dx

�
R
�K

-hq��wh�n�K��x� t� vh�q��x� d)�x� � �� � vh�q� � P k�K�� �����	��R
K
uh�x� �� vh�i�x� dx �

R
K
u��x� vh�i�x� dx� � vh�i � P k�K�� �����		�

where n�K denotes the outward unit normal to the element K at x � �K� It
remains to choose the numerical �ux �-hu� -hq� � � � � � -hqd�t � -h � -h�wh�n�K��x� t��

As in the one�dimensional case� we require that the �uxes -h be of the form

-h�wh�n�K��x� � -h�wh�x
intK � t��wh�x

extK � t��n�K��

where wh�x
intK � is the limit at x taken from the interior of K and wh�x

extK � the
limit at x from the exterior of K� and consider �uxes that �i� are locally Lipschitz�
conservative� that is�

-h�wh�x
intK ��wh�x

extK ��n�K� � -h�wh�x
extK ��wh�x

intK ���n�K� � ��
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and consistent with the �ux X
��i�d

hi n�K�i�

�ii� allow for a local resolution of each component of qh in terms of uh only� �iii�
reduce to an E��ux when a��� � �� and that �iv� enforce the L��stability of the
method�

Again� we write our numerical �ux as the sum of a convective �ux and a di�usive
�ux�

-h � -hconv � -hdiff �

where the convective �ux is given by

-hconv�w
��w��n� �

�
-f�u�� u��n�� ��t�

where -f�u�� u��n� is any locally Lipschitz E��ux which is conservative and consis�
tent with the nonlinearity

X
��i�d

fi�u�ni�

and the di�usive �ux -hdiff �w
��w��n� is given by

�� X
��i���d

� gi��u� �

�u �
q� ni� �

X
��i�d

gi��u�ni� � � � � �
X
��i�d

gid�u�ni
�t � C diff �w ��

where

C diff �

�
BBBBB�

� c�� c�� � � � c�d
�c�� � � � � � �
�c�� � � � � � �
���

���
���

� � �
���

�c�d � � � � � �

�
CCCCCA �

c�j � c�j�w
��w�� is locally Lipschitz for j � �� � � � � d�

c�j � � when a��� � � for j � �� � � � � d�

We claim that this �ux satis�es the properties �i� to �iv��
To prove that properties �i� to �iii� are satis�ed is now a simple exercise� To

see that the property �iv� is satis�ed� we �rst rewrite the �ux -h in the following
way�
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�� X
��i���d

� gi��u� �

�u �
q� ni� �

X
��i�d

gi��u�ni� � � � � �
X
��i�d

gid�u�ni
�t � C �w ��

where

C �

�
BBBBB�

c�� c�� c�� � � � c�d
�c�� � � � � � �
�c�� � � � � � �
���

���
���

� � �
���

�c�d � � � � � �

�
CCCCCA �

c�� �
�

�u �

�P
��i�d

��i�u� �

�u �
ni � -f�u�� u��n�

�
�

where �i�u� �
R u

fi�s� ds� Since -f��� ��n� is an E��ux�

c�� �
�

�u ��
R u�
u�

�P
��i�d fi�s�ni � -f�u�� u��n�

�
ds � ��

and so the matrix C is semipositive de�nite� The property �iv� follows from this
fact and from the following result�

Theorem ��	� We have�

�

�

Z
�����d

u�h�x� T � dx�

Z T

�

Z
�����d

jqh�x� t� j� dx dt�"T�C ��wh�� � �

�

Z
�����d

u���x� dx�

where

"T�C ��wh�� �
R T
�

P
e�E�x

R
e �wh�x� t��

tC �wh�x� t�� d)�x� dt�

We can also prove the following error estimate� We denote the integral over
��� ��d of the sum of the squares of all the derivatives of order �k��� of u by ju j�k���

Theorem ���� Let e be the approximation error w �wh� Then we have� for
arbitrary� regular grids�

	 R
�����d j eu�x� T � j� dx�

R T
�

R
�����d j eq�x� t� j� dx dt�"T�C ��e��


���
� C ��x�k �

where C � C�k� ju jk��� ju jk���� In the purely hyperbolic case aij � �� the constant

C is of order ��x����� In the purely parabolic case c � �� the constant C is of order
�x for even values of k and of order � otherwise for Cartesian products of uniform
grids and for C identically zero provided that the local spaces Qk are used instead
of the spaces P k� where Qk is the space of tensor products of one dimensional
polynomials of degree k�
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���� Extension to multidimensional systems

In this chapter� we have considered the so�called LDG methods for convection�
di�usion problems� For scalar problems in multidimensions� we have shown that
they are L��stable and that in the linear case� they are of order k if polynomials
of order k are used� We have also shown that this estimate is sharp and have
displayed the strong dependence of the order of convergence of the LDG methods
on the choice of the numerical �uxes�

The main advantage of these methods is their extremely high parallelizabil�
ity and their high�order accuracy which render them suitable for computations
of convection�dominated �ows� Indeed� although the LDG method have a large
amount of degrees of freedom per element� and hence more computations per ele�
ment are necessary� its extremely local domain of dependency allows a very e�cient
parallelization that by far compensates for the extra amount of local computations�

The LDG methods for multidimensional systems� like for example the com�
pressible Navier�Stokes equations and the equations of the hydrodynamic model
for semiconductor device simulation� can be easily de�ned by simply applying the
procedure described for the multidimensional scalar case to each component of u�
In practice� especially for viscous terms which are not symmetric but still semi�
positive de�nite� such as for the compressible Navier�Stokes equations� we can use
q � ��x� u� ���� �xd u� as the auxilary variables� Although with this choice� the L��
stability result will not be available theoretically� this would not cause any problem
in practical implementations�

���� Some numerical results

Next� we present some numerical results from the papers by Bassi and Rebay
��� and Lomtev and Karniadakis �����

� Smooth	 steady state solutions� We start by displaying the convergence
of the method for a p�re�nement done by Lomtev and Karniadakis ����� In Figure
�� we can see how the maximum errors in density� momentum� and energy decrease
exponentially to zero as the degree k of the approximating polynomials increases
while the grid is kept �xed� details about the exact solution can be found in �����

Now� let us consider the laminar� transonic �ow around the NACA���� airfoil at
an angle of attack of ten degrees� freestream Mach number M � ���� and Reynolds
number �based on the freestream velocity and the airfoil chord� equal to �	� the
wall temperature is set equal to the freestream total temperature� Bassy and Rebay
��� have computed the solution of this problem with polynomials of degree �� ��
and 	 and Lomtev and Karniadakis ���� have tried the same test problem with
polynomials of degree �� �� and � in a mesh of �
� elements which is about four times
less elements than the mesh used by Bassi and Rebay ���� In Figure 	� taken from
����� we display the pressure and drag coe�cient distributions computed by Bassi
and Rebay ��� with polynomials on degree 	 and the ones computed by Lomtev
and Karniadakis ���� computed with polynomials of degree �� We can see good
agreement of both computations� In Figure �� taken from ����� we see the mesh
and the Mach isolines obtained with polynomials of degree two and four� note the
improvement of the solution�

Next� we show a result from the paper by Bassi and Rebay ���� We consider
the laminar� subsonic �ow around the NACA���� airfoil at an angle of attack of
zero degrees� freestream Mach number M � ���� and Reynolds number equal to
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Figure �� Maximum errors of the density �triangles�� momemtum
�circles� and energy �squares� as a function of the degree of the
approximating polynomial plus one �called *number of modes+ in
the picture��

����� In �gure �� we can see the Mach isolines corresponding to linear� quadratic�
and cubic elements� In the �gures �� �� and � details of the results with cubic
elements are shown� Note how the boundary layer is captured withing a few layers
of elements and how its separation at the trailing edge of the airfoil has been clearly
resolved� Bassi and Rebay ��� report that these results are comparable to common
structured and unstructures �nite volume methods on much �ner grids� a result
consistent with the computational results we have displayed in these notes�

Finally� we present a not�yet�published result kindly provided by Lomtev and
Karniadakis about the simulation of an expansion pipe �ow� The smaller cylinder
has a diameter of � and the larger cylinder has a diameter of �� In Figure �� we
display the velocity pro�le and some streamlines for a Reynolds number equal to ��
andMach number ���� The computation was made with polynomials of degree � and
a mesh of ��� tetrahedra� of course the tetrahedra have curved faces to accomodate
the exact boundaries� In Figure 
� we display a comparison between computational
and experimental results� As a function of the Reynolds number� two quantities are
plotted� The �rst is the distance between the step and the center of the vertex �lower
brach� and the second is the distance from the step to the separation point �upper
branch�� The computational results are obtained by the method under considera�
tion with polynomials of degree � for the compressible Navier Stokes equations� and
by a standard Galerkin formulation in terms of velocity�pressure �NEKTAR�� by
Sherwin and Karniadakis ����� or in terms of velocity�vorticity �IVVA�� by Trujillo
����� for the incompressible Navier Stokes equations� results produced by the code
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called PRISM are also included� see Newmann ����� The experimental data was
taken from Macagno and Tung ��
�� The agreement between computations and
experiments is remarkable�

� Unsteady solutions� To end this chapter� we present the computation
of an unsteady solution by Lomtev and Karniadakis ����� The test problem is the
classical problem of a �ow around a cylinder in two space dimensions� The Reynolds
number is ��� ��� and the Mach number ����

In Figure ��� the streamlines are shown for a computation made on a grid of
��� triangles �with curved sides �tting the cylinder� and polynomials whose degree
could vary from element to element� the maximum degree was �� In Figure ���
details of the mesh and the density around the cylinder are shown� Note how the
method is able to capture the shear layer instability observed experimentally� For
more details� see �����
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Figure �� Mesh �top� and Mach isolines around the NACA����
airfoil� �Re � �	�M � ���� angle of attack of ten degrees� for
quadratic �middle� and quartic �bottom� elements�
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Figure �� Pressure �top� and drag�bottom� coe�cient distribu�
tions� The squares were obtained by Bassi and Rebay ��� with
cubics and the crosses by Lomtev and Karniadakis ���� with poly�
nomials of degree ��
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Figure �� Mach isolines around the NACA���� airfoil� �Re �
�����M � ���� zero angle of attack� for the linear �top�� quadratic
�middle�� and cubic �bottom� elements�
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Figure �� Pressure isolines around the NACA���� airfoil� �Re �
�����M � ���� zero angle of attack� for the for cubic elements
without �top� and with �bottom� the corresponding grid�
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Figure �� Mach isolines around the leading edge of the
NACA���� airfoil� �Re � �����M � ���� zero angle of attack�
for the for cubic elements without �top� and with �bottom� the
corresponding grid�
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Figure �� Mach isolines around the trailing edge of the
NACA���� airfoil� �Re � �����M � ���� zero angle of attack�
for the for cubic elements without �top� and with �bottom� the
corresponding grid�
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Figure �� Expansion pipe �ow at Reynolds number �� and Mach
number ���� Velocity pro�le and streamlines computed with a mesh
of ��� elements and polynomials of degree ��
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Figure �
� Flow around a cylinder with Reynolds number ��� ���
and Mach number ���� Streamlines� A mesh of ��� elements was
used with polynomials that could change degree from element to
element� the maximum degree was ��
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