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Abstract—In this paper, a model which computes both com-
pressional- and shear-wave transmissions and reflections through
a sediment layer is utilized to formulate a single bottom reflec-
tion coefficient which is shown to successfully predict resonance
effects due to shear-wave conversion in various types of sediment.
Comparisons of model results to published bottom loss curves
are presented. Propagation results obtained by implementing the
bottom loss calculations in a normal mode model are compared
to other model results and measured data sets over a variety of
bottom types.

Index Terms—Acoustics, bottom sediment propagation, elastic
media, shear, underwater sound propagation, wave equation.

I. INTRODUCTION

T HE effect of elastic sediment properties on underwater
acoustic propagation has been an area of active research

for decades. Two papers byVidmar, published in 1980, analyzed
the effects of sediment shear-wave propagation on acoustic
bottom loss by numerical integration of the wave equation [1],
and by a ray path decomposition method based on expansion
of the reflection and transmission coefficients as a function of
a parameter defined by the ratio of the sediment shear sound
speed to the compressional sound speed in the water [2]. The
dependence of loss on compressional-to-shear conversion and
the resultant high losses at low and resonance frequencies were
measured and studied by a number of researchers throughout
the 1980s [3]–[12]. Reflection and refraction coefficients for
a plane wave at a solid plane layer for the liquid–solid–liquid
case were expanded into series representations by Deschamps
and Cao in 1991 [13], and the case of a thin anisotropic layer
between two anisotropic solids was published by Rokhlin and
Huang in 1992 [14]. Also in 1992, Hovem and Kristensen
showed that Stonely interface waves excited by evanescence
from compressional-waves incident on the sediment at angles
below critical can also account for these high losses, without
shear-wave conversion [15].
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A closed form for the plane-wave bottom reflection coeffi-
cient for the case of a thin elastic–solid layer over a hard base-
ment, and an analysis of the contributions of specific families
of paths through the sediment were achieved by Chapman and
Chapman in 1993 [16]. The results of Chapman and Chapman
were generalized in a paper by Ainslie published in 1995 [17],
and Ainslie and Burns rederived the reflection and transmission
coefficients with complex Lamé parameters to satisfy conser-
vation of energy, also in 1995 [18]. Criteria for distinguishing
the effects of interface waves from the excitation of propagating
shear waves in the sediment were subsequently discussed by
Tollefsen in conjunction with analysis of measured shallow-
water data sets [19] and also by Ainslie [20].
This paper presents another derivation of a closed-form

reflection coefficient which includes all paths through an elastic
bottom sediment overlying a hard basement. It consolidates
compressional and shear reflections and transmissions through
a layered sediment into a single reflection coefficient for use
in conjunction with the normal mode model described in [24].
The derivation is accomplished by formulating the various con-
versions as an infinite sum of matrices and expressing the result
as a convergent series. The overall bottom reflection coefficient
thus derived is utilized in the mode model to satisfy the bottom
boundary condition in forming the modes. The motivation for
the approach is the efficiency of the resultant algorithm and
the ability to isolate the acoustic effects resulting from the
interaction of various path types with the bottom sediment. A
number of the data sets referenced above will be utilized as
a means of verifying the accuracy of the model documented
herein. Although the agreement with measurements is not
exact, resonance effects with frequency are clearly reproduced,
and the agreement is comparable to that of the other models
represented. We begin with an overview of the measured data
sets in Section II.
Section III presents the elastic components which are

assumed to be continuous at the water/sediment and sedi-
ment/basement boundaries. Section IV includes a derivation
for shear and compressional reflection and transmission coef-
ficients at each boundary, and Section V shows a comparison
of results to published curves of shear and compressional
reflection and transmission coefficients as a function of grazing
angle [21]–[23]. Section VI discusses the combination of
the individual coefficients into a single reflection coefficient
representing compressional-wave energy returning from the
bottom sediment into the water column. In Section VII, the
bottom reflection coefficient is utilized in the propagation
model described in [24], and the results are compared to bottom
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and propagation loss calculations and measured data from the
references listed in Section II [3]–[26].

II. MEASURED DATA SETS

The following data sets and references were selected because
they evidence shear effects in bottom-interacting sound propa-
gation. The data sets are described in more detail in Section VII,
but a brief introductory overview is provided for the sake of
clarity.
1) Experimental data gathered on the Scotian Shelf in 1978 in
a joint program with the Applied Research Laboratory of
Pennsylvania State University (Reston, VA) and the De-
fence Research Establishment Atlantic (DREA, Halifax,
NS, Canada) is described by Beebe and Holland [3], with
supporting environmental and geoacoustic parametrization
provided by Beebe andMcDaniel [4], [5]. The bottom for a
set of measurements at a range of 8.3 km consisted of a thin
sediment over granite bedrock, with high losses below 250
Hz believed to be attributable to shear losses in the granite.

2) In a later paper, Beebe and Holland discuss propagation
effects as a function of frequency from the same data set,
but at a (different) range of 4 km [6]. Beebe and Holland
varied bottom parameter values to obtain a “best fit” to the
data, and attributed low-frequency losses to shear effects
in the sediment layer in addition to those resulting from
interaction with the underlying granite.

3) Measurements using a bottom-mounted array on the Con-
tinental Shelf of the British Isles in the summer are doc-
umented by Ellis, Staal, and Chapman of DREA [7], [8].
The data utilized herein show resonance effects observed
at a range of 55 km which are associated with acoustic in-
teraction with a chalk bottom.

4) Data gathered on the Eastern Canadian Continental Shelf
over a hard rock (granite) seabed are documented by Ellis,
Chapman, Staal, and Hughes of DREA [9]–[12]. High
losses between 10 and 100 Hz observed at a range of 13
km are believed to be the result of shear resonance effects.

III. BOUNDARY CONDITIONS

We begin the derivation of the bottom reflection coefficient
with a discussion of the boundary conditions to be satisfied.
From [27, p.31, (5.1)], given the particle displacement vector

, we assume the horizontal and vertical compo-
nents of the stress tensor must be continuous at the boundary
between the water and the sediment

(1)

where we assume continuous propagation of a plane acoustic
wave of radian frequency over time; the boundary is hori-
zontal (normal to the -axis); the wavefronts lie in the -plane;

are the Lamé constants, and the positive -axis is assumed
down. We also assume that the shear stress tensor vanishes in

Fig. 1. Shear- and compressional-wave reflection and transmission.

the water. From [27, p. 33, (5.8)], with and representing
compressional and shear waves, respectively, we have

(2)

Let represent the horizontal wave number and the vertical
wave number, i.e.,

and (3)

where and , the compressional and shear sound speeds, are
assumed constant within layers. The compressional and shear
plane waves can then be written as

and (4)

Through the remainder of this section, we suppress the factor
, which is understood to multiply all of the wave func-

tions.
The geometry for a single cycle of reflections and transmis-

sions through a single sediment layer overlying a basement half-
space is depicted in the -plane in Fig. 1, where the reflection
and transmission coefficients are subscripted by and to de-
note compressional and shear waves, respectively, and the sub-
script 0 indicates reflection or transmission at the water–column
interface. Since we wish to compute compressional propagation
in the water, we will be concerned with the five paths propa-
gating upward from the water/sediment boundary in Fig. 1.
To formulate the continuity conditions at the boundaries,

from (1) and (2), we have

(5)
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From the wave equation

and from (3) and (4)

and

Substituting into (5) and simplifying

(6)

But

and (7)

where is density, so we have

(8)

Since the factor is constant over the layers and it will
cancel in the reflection coefficient, it is omitted to simplify the
equations. Thus, we formulate the normal stress as

(9)

where and .
Similarly, from (1) and (2), we have

(10)

Substituting

and

into (10), we have

Again, the factor may be neglected, and we formulate
the tangential stress as

(11)

with and defined as in (9).

From (2), the conditions for horizontal and vertical displace-
ment or continuity of and are simply

and

since and .
To summarize, for the water/sediment interface, the three

boundary conditions, normal stress, vertical displacement, and
tangential stress are expressed as continuity of the quantities

and (12)

respectively, with and as in (9). The boundary at the sed-
iment/basement interface also requires continuity of horizontal
displacement

(13)

in addition to the conditions in (12).

IV. REFLECTION AND TRANSMISSION COEFFICIENTS

To derive the reflection and transmission coefficients at each
boundary, consider the functions depicted in Fig. 2, i.e., let the
compressional-wave function in the water be given by

(14)

and let the compressional- and shear-wave functions in the sed-
iment layer be given by

and
(15)

respectively, and let the compressional- and shear-wave func-
tions in the basement be given by

and
(16)

respectively, where represents vertical
wave number for radian frequency and sound speed , and
depth is positive down.
We will treat each of three sets of conditions separately: (A)

reflection and transmission of the incident wave at the water/
sediment interface; (B) transmission of the reflected waves from
the sediment layer into the water column; and (C) reflection and
transmission of the waves at the sediment/basement interface,
as depicted in Fig. 3. For now, each interface will be taken to
occur at .
It should be noted that the effects of both compressional-

and shear-wave attenuations are represented in the model by
an imaginary component of wave number, i.e., all calculations
discussed below are performed using complex arithmetic with

, where is the appropriate loss in deci-
bels per unit distance and is frequency in kilohertz.
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Fig. 2. Shear- and compressional-wave functions.

Fig. 3. Depiction of three sets of reflection and transmission coefficients.

A. Water/Sediment Coefficients

For the water/sediment interface, we have

In the limit, since , we use . Refer-
ring to the wave functions defined in Fig. 2, the first boundary
condition in (12) is

Thus, assuming , and , the boundary
conditions for this case are

(17)

where and as
above. Letting at the interface, (17) becomes

(18)

Now let , and
. Then, we have

Solving for in the last equation and substituting into the first
two yields

and

Adding the two equations, we have

Solving for yields

Using this result to solve for the remaining coefficients, we have

and

B. Sediment/Water Coefficients
Expanding the (B) section of Fig. 3, we define four reflection

coefficients as depicted in Fig. 4.
To derive the coefficients identified in Fig. 4(a), let

, and . The
boundary conditions in (18) become
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Fig. 4. Sediment/water reflection and transmission coefficients.

Fig. 5. Sediment/basement reflection and transmission coefficients.

Solving for in the last equation and substituting into the
first two yields

and

Subtracting the two equations and solving for , we have

(19)

Solving for the remaining coefficients gives

and

Similarly, to derive the coefficients identified in Fig. 4(b), let
, and .

The boundary conditions in (18) become

Substituting the solution for in the last equation into the
first two and combining the results gives

Solving for the remaining coefficients, we have

and

C. Sediment/Basement Coefficients

Expanding the (C) section of Fig. 3, we define eight reflec-
tion coefficients as depicted in Fig. 5. In this case, we require a
fourth boundary condition, i.e., we assume continuity of all the
boundary conditions in (12) and (13).
To derive the coefficients identified in Fig. 5(a), with refer-

ence to the wave functions defined in Fig. 2, let
, and

. Letting , the four equations in (12) and
(13) become

(20)

For simplicity of notation, let

(21)

Solving (20) yields
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Fig. 6. Water/sediment coefficients: (a) and (see [21, Figs. 3–7, p. 82]);
(b) (see [21, Figs. 3–8, p. 82]).

TABLE I
INPUTS FOR FIGS. 6– 9

TABLE II
INPUTS FOR FIGS. 10–12

(22)

Similarly, to solve for the coefficients in Fig. 5(b), let
, and

, the four equations in (12) and (13), become

(23)

Solving (23), we have

(24)

V. VERIFICATION OF WATER/SEDIMENT/BASEMENT
BOUNDARY COEFFICIENTS

To verify the accuracy of the reflection and transmission coef-
ficients derived in Section IV, we compare the values as a func-
tion of incident angle to plots provided by [22] and [23] as re-
produced in [21]. The inputs for three cases shown in Figs. 6– 9
are provided in Table I and the inputs for the four cases shown
in Figs. 10–12 are given in Table II. The reference solutions are
indicated by solid lines and the model results by dashed lines.
Since the reference solutions are expressed as square roots of
energy ratios, the model results, which are computed as pres-
sure ratios in the absence of absorption, are multiplied by an
appropriate ratio of the form

where indicates the medium and type of the incident wave and
the medium and type of the reflected or transmitted wave (see
[21, p. 81]). For example, denoting energy by , the conversion
of to energy units is

since it represents transmission of compressional waves in the
water to compressional waves in the sediment. The conversion
of is given by

since it represents transmission of shear waves in the sediment
to compressional waves in the basement. The agreement be-
tween the model and reference solutions is generally good, al-
though differences in Figs. 11 and 12 for the curves which cor-
respond to the fourth set of inputs in Table II suggest a possible
discrepancy in the inputs for that case.

VI. TOTAL REFLECTION COEFFICIENT

With reference to Fig. 1, if we trace from the incident path
to each of the five compressional waves which reenter the water
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Fig. 7. Sediment/water reflection coefficients for incident compressional wave:
(a) (see [21, Figs. 3–9, p. 83]); (b) (see [21, Figs. 3–10, p. 84]).

Fig. 8. Sediment/water reflection coefficients for incident shear wave: (a)
(see [21, Figs. 3–13, p. 86]); (b) (see [21, Figs. 3–12, p. 85]).

Fig. 9. Sediment/water transmission coefficients: (a) (see [21, Figs. 3–11,
p. 85]); (b) (see [21, Figs. 3–14, p. 86]).

column, we see that including only the zeroth-order terms in the
overall reflection coefficient , we have

(25)
To clarify, the compressional wave emerging back into the
water column consists of components associated with each
of the terms in (25) which correspond to reflection from the
water/sediment interface , compressional transmission into

Fig. 10. Sediment/basement coefficients: (a) (see [21, Figs. 3–15(a),
p. 88]); (b) (see [21, Figs. 3–15(c), p. 88]).

the sediment followed by compressional basement reflection
and then transmission back into the water , etc.
Each of the reflection and transmission coefficients below the
water/sediment interface is understood to include a suppressed
phase term. If a subscript ends in , the suppressed phase
term is , where is the layer thickness. Likewise, if
a subscript ends in , the suppressed phase term is .
For example, is actually and is

, etc.
We represent (25) in matrix form as

(26)

The effect of an additional cycle within the sediment as depicted
in Fig. 13 can be written in matrix form as

(27)

where the suppressed phase terms are assumed. Thus, the 16
first-order terms of the reflection coefficient are

(28)

and the terms of the th order are

(29)

Including all cycles, the total reflection coefficient is given by

(30)

if the infinite series converges, which it will under normal con-
ditions, as shown in [28]. The details of the proof are repeated
here in the Appendix.
A closed-form expression for is obtained by diagonalizing

the matrix . The eigenvalues of are the solutions of

Letting
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Fig. 11. Sediment/basement reflection coefficients: (a) (see [21, Figs.
3–16(a), p. 89]); (b) (see [21, Figs. 3–16(e), p. 89]).

Fig. 12. Sediment/basement transmission coefficients: (a) (see [21, Figs.
3–16(b), p. 89]); (b) (see [21, Figs. 3–16(h), p. 89]).

Fig. 13. Depiction of a single additional sediment cycle.

the eigenvalues are

(31)

The matrix is diagonalized by finding the two eigenvectors
and such that

and forming the matrix whose columns are and

Then

and

or

Then

Writing the sums in closed form, we replace in (30)
by

(32)

Since all the elements of the matrices in (30) can be written in
terms of the reflection coefficients derived above, we may write
in a more convenient form by letting

(33)

By denoting the elements of by

(34)

and expanding (33), we have

where

To relate these terms back to the geometry of sediment paths,
we substitute (33) and (34) into (30) to obtain

(35)
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Fig. 14. Sound-speed variation and bathymetry for data sets 1 and 2.

Fig. 15. Modeled sound-speed profile for data sets 1 and 2; and denote
source and receiver, respectively.

The second term corresponds to reflected paths in the sediment
which begin and end as compressional waves and the remaining
terms likewise correspond to waves which convert from com-
pressional to shear, shear to compressional, and those which
begin and end as shear waves, respectively. In the model, this
method of representing the total reflection coefficient enables
study of the effect of individual mode types by zeroing the ap-
propriate elements of the array.

VII. PROPAGATION LOSS PREDICTIONS

The ability of the mode model of [24] to reproduce known
propagation effects as a function of frequency when coupled
with the bottommodel described herein is demonstrated through
calculations involving the four data sets listed in Section II.
Propagation loss for 1/3-octave broadband data is computed at
the 1/3-octave center frequencies.

A. Data Set 1

The first data set is from a set of experiments performed on the
Scotian Shelf in 1978 during a joint program of the Applied Re-
search Laboratory of Pennsylvania State University and DREA.

TABLE III
MODELED SOUND-SPEED PROFILE FOR DATA SETS 1 AND 2

The example is site 2 as described by Beebe and Holland [3],
with supporting environmental and geoacoustic parametrization
provided by Beebe andMcDaniel [4], [5]. The bottom consisted
of a thin sediment layer over granite bedrock. The receiver was
a vertical line array in a 32-m water column and the measure-
ments in question were received on the bottom hydrophone of
the array at a depth of 1 m above the bottom. Explosive sources
were placed at various depths depending on the bathymetry.
Sound-speed variation and bathymetry for the highly range-de-
pendent environment are shown in Fig. 14. The origin of the
range axis is at the receiver position.
The data we consider were recorded for a source at 8.3 km

from the receiver and reference to Fig. 14 reveals that the bottom
was relatively flat for ranges within about 10 km of the receive
array and only a single sound-speed profile is shown within that
range. Thus, we model a flat bottom at a depth of 32 m, and the
single sound-speed profile is shown in Fig. 15, with source and
receiver depths of 18 and 30.5 m depicted by and , respec-
tively. The sound-speed and depth values used in the model are
shown in Table III and the bottom parameters are summarized
in Table IV.
A comparison of model results and the Beebe and Holland

prediction to measured propagation loss from a source at 8.3-km
range are shown in Fig. 16. Bottom interaction is significant
due to the downward-refracting sound-speed profile, and the in-
creasing loss with decreasing frequency below 250 Hz, believed
to be a result of shear conversion at the basement, is reproduced
by the model(s).

B. Data Set 2

The second data set is taken from the same set of experiments
as the first, i.e., the data were collected using a vertical line array
on the Scotian Shelf in 1978 during a joint program of the Ap-
plied Research Laboratory of Pennsylvania State University and
DREA [6]. The modeled sound speed and bathymetry, which
are the same as data set 1, are shown in Fig. 15 and Table III.
Source and receiver depths are 18 and 30.5 m, respectively, and
the range between source and receiver is 4 km. The modeled
bottom parameters, which vary from those of data set 1, are
listed in Table V. The values in Table V were obtained by Beebe
and Holland by a “best fit” procedure using the measured data,
which is described in [6].
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Fig. 16. Model comparison to measured propagation and viscoelastic sediment
model used by Beebe and Holland to 8.3 km on the Scotian Shelf [3] (data set
1).

Fig. 17. Model comparison to measured propagation and Beebe and Holland
prediction to 4 km on the Scotian Shelf (data set 2).

A comparison of results to propagation loss measurements
and the Beebe and Holland model prediction for a solid sedi-
ment model is shown in Fig. 17.

C. Data Set 3
The third data set involves measurements taken at a range of

55 km using a bottom-mounted array on the Continental Shelf of
the British Isles in the summer in a 104-m water column as doc-
umented by Ellis, Staal, and Chapman of DREA [7], [8]. The
data utilized herein show resonance effects which are associ-
ated with acoustic interaction with a chalk bottom. The modeled
sound-speed profile is shown in Fig. 18 with source and receiver
depths of 38 and 71 m indicated by and , respectively. The
sound-speed and depth values are listed in Table VI. Since the
model is configured for a thin layer overlying the basement, the
modeled bottom parameters, which are provided in Table VII,
include a 2-m sediment layer overlying the chalk, which was
not modeled by Ellis and Chapman.
A comparison of model results and the DREA model pre-

diction to measured propagation loss from a source at 55-km
range is shown in Fig. 19. The significant drop in propagation

Fig. 18. Modeled sound-speed profile for data set 3; and denote source
and receiver, respectively.

TABLE IV
MODELED BOTTOM PARAMETERS FOR DATA SET 1; IS FREQUENCY IN HERTZ

TABLE V
MODELED BOTTOM PARAMETERS FOR DATA SET 2; IS FREQUENCY IN HERTZ

at frequencies below about 300 Hz is again reproduced by the
model(s).

D. Data Set 4
The fourth data set is taken from efforts to model data gath-

ered on the Eastern Canadian Continental Shelf over a hard rock
(granite) seabed in a 150-m water column, as documented by
Ellis, Chapman, Staal, and Hughes of DREA [9]–[12]. High
losses between 10 and 100 Hz observed at a range of 13 km
are believed to be the result of shear resonance effects. The
modeled (near-iso) sound-speed profile is shown in Fig. 20 with
source and receiver depths of 18.3 and 71 m indicated by and
, respectively. The sound-speed and depth values are listed in
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Fig. 19. Model comparison to measured propagation and DREA results to 55
km on the Continental Shelf of the British Isles (data set 3).

Fig. 20. Modeled sound-speed profile for data set 4; and denote source
and receiver, respectively.

TABLE VI
MODELED SOUND-SPEED PROFILE FOR DATA SET 3

Table VIII and the modeled bottom parameters are provided in
Table IX.
A plot of the total reflection loss magnitude as a function of

grazing angle and frequency is shown in Fig. 21. Comparison
of Fig. 21 to [12, Fig. 10(a)] indicates the agreement with the
calculations documented therein. Comparison of model results
to propagation loss from a source at 13-km range, in addition
to corresponding calculations made using the DREA [12] and
Seismo-Acoustic Fast field Algorithm for Range-Independent
environments (SAFARI) [26] models, are shown in Fig. 22. Al-
though agreement with the measurements is generally poor, the
significant resonance at about 25 Hz is reproduced by all of the
models.

TABLE VII
MODELED BOTTOM PARAMETERS FOR DATA SET 3; IS FREQUENCY IN HERTZ

TABLE VIII
MODELED SOUND-SPEED PROFILE FOR DATA SET 4

TABLE IX
MODELED BOTTOM PARAMETERS FOR DATA SET 4; IS FREQUENCY IN HERTZ

Fig. 21. Total bottom reflection loss in decibels for the Continental Shelf En-
vironment of [12] (data set 4) (compare to [12, Fig. 10(a)]).

VIII. SUMMARY

A bottom sediment model which incorporates compressional
and shear reflection and transmission through a layered sedi-
ment into a single reflection coefficient for use in conjunction
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Fig. 22. Model comparison to measured propagation, SAFARI, and DREA
predictions to 13 km in the Continental Shelf Environment of [12] (data set
4) (compare to [12, Fig. 7]).

with the normal mode model described in [24] has been pre-
sented. Calculation of individual transmission and reflection co-
efficients as a function of grazing angle has been benchmarked
against known results [21]. The consolidation of bottom effects
into a single reflection coefficient has been shown to enable suc-
cessful reproduction of losses associated with bottom shear ef-
fects in a number of environments. The ability of the model to
reproduce the measured data sets studied is comparable to that
of the other models represented [3], [8], [26]. In addition, the
approach enables isolation of the acoustic effects resulting from
the interaction of various path types with the bottom sediment.

APPENDIX

To show that the infinite series in (30) converges, consider
the elements of as represented in (27). If we assume that

, and likewise the sums of the magnitudes of
the coefficients in the rows of the two arrays comprising are
less than unity, then it is easy to show that the same is true of
the matrix , i.e., the sums of the magnitudes of the elements
in each row are less than unity. Thus, if we multiply times an
arbitrary vector and, without loss of generality, assume

, we have

Similarly, , and since are eigenvalues
for , we have, for either eigenvalue

, which implies , sufficing to ensure conver-
gence.
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