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Large eddy simulation of spilling and plunging breakers
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Abstract

A Navier–Stokes solver with a free surface model is used for simulating wave breaking, undertow, and turbulence in breaking waves. The free

surface model is based on the Volume of Fluid concept. Turbulence scales larger than the grid scale are simulated directly while turbulence scales

smaller than the grid scale are represented by a sub-grid scale model. Two different approaches for the sub-grid scale model have been applied,

which are the Smagorinsky model and a model based on a k-equation for the sub-grid scale turbulence. The waves approach the shore in shore-

normal direction and break on a plane constant sloping beach. Periodic spilling and plunging breakers are simulated for 20 and 16 wave periods,

respectively. The set-up, undertow, and turbulence levels are compared to experimental results. Despite the rather coarse resolution of the

computational domain, satisfactory results for the wave height decay and undertow have been obtained. However, the turbulence levels are over-

predicted when using the standard values of the model parameters and a complete answer to this problem has not been found. Furthermore, the

evolution of vorticity over the wave period has been studied. It shows that at the initial breaking point vorticity is generated around the vertical as

well as around the transverse axis. Later vorticity around the longitudinal axis (offshore–onshore direction) is generated, probably through

deformation of vorticity around the other axis.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The study of surf zone dynamics has been subject to

extensive research during the last few decades. The following

papers give a good introduction to the subject: Peregrine

(1983), Battjes (1988), and Svendsen and Putrevu (1996).

Christensen et al. (2002) give a review of the latest research

of the flow structures across the surf zone, Longo et al.

(2002) review the research on turbulence in the surf zone, and

Elfrink and Baldock (2002) focus on the swash zone

dynamics.

One of the early optical measuring techniques, LDV, has

been used widely for the surf zone breaking wave

investigations. Stive (1980) was among the first, if not the

first, to apply the LDV technique to measure the internal

flow field under periodic breaking waves. Nadaoka and

Kondoh (1982) presented LDV measurements for the

internal velocity field within the surf zone. Nadaoka et al.
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(1989) used the LDV technique to study the structures of

turbulent flow field of spilling breakers in the surf zone.

One of the recent comprehensive studies on turbulence

transport under surf zone breaking waves using LDA

technique was that of Ting and Kirby (1994, 1995, 1996).

The turbulence transport was studied in detail by determin-

ing each term in the k-equation. Interesting results were

reported especially on the different mechanisms between

different types of breaking waves. The cross-shore sediment

transport, which is associated with the correlation between

the mean and turbulent flow, was found from simple

reasoning to be offshore under spilling breakers but onshore

under plunging breakers.

Experimental investigations of the aerated region in the

upper part of breaking waves cannot use optical measuring

techniques as air bubbles too often corrupt the optical signal.

Therefore other techniques are employed as in Jansen (1986)

and more recently Lin and Hwung (1992). They used a flow

visualisation technique with the use of ultraviolet light to

illuminate fluorescent tracer particles, which were fed into

the air bubble region. Their photographic and video images
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revealed a well-known sequence of jet-splash motions in

both plunging and spilling breakers. In Jansen’s (1986)

results, smooth trajectories of the particles inside the jet-

splash motions suggested so-called coherent motions in the

flow. In Lin and Hwung’s (1992) results, the main

mechanism that drives the motion in the bubble zone was

found to be the vortex system that was generated from the

jet-splash cycles. Vortex stretching was also found to occur

due to the interaction between the jets, the vortices, and the

effect of the rising buoyant bubbles. These effects are

perhaps the main causes of the development of the obliquely

descending eddies observed by Nadaoka et al. (1988) and

Nadaoka et al. (1989). In the field experiments eddies were

found to involve large amounts of air bubbles which

enhanced the upwelling of sediment. Due to scale effects

the amount of entrained air is relatively larger in large waves

(field experiments) compared to small waves (laboratory

experiments).

The most direct way to investigate the flow in the surf zone

numerically is to solve the basic equations for Newtonian

fluids, called the Navier–Stokes equations. In many other areas

than coastal hydrodynamics, such as aerodynamics and fluid

mechanics, the method has gained much attention during the

last few decades evolving into a whole discipline called

Computational Fluid Dynamics (CFD). The method is capable

of calculating the flow in complex geometries to give very

refined information about velocities, turbulence, transport

properties, etc.

A highly recognised method for free surface flow is the

marker and cell method, which was invented by Harlow and

Welch (1965). It is based on markers that are distributed all

over the fluid domain. Each marker follows the velocity field in

a Lagrangian way. An example of the MAC method used for

breaking waves is given in Sakai et al. (1986). A similar

method to the MAC method is the surface markers method

presented by Chen et al. (1991) and used for breaking waves in

Christensen and Deigaard (2001). Here the markers are only

situated at the surface, which reduces the computational costs

and improves the accuracy.

The above methods find the position of the surface in a

Lagrangian manner. Another approach that has been widely

used during recent years is based on a continuity equation for a

conservative quantity F that is solved in a Eulerian way. A

straightforward way to solve the problem is to use a very

accurate higher order convection scheme such as QUICK, used

by Kawamura and Miyata (1994). In their case both the air and

fluid flow were simulated around ships and submerged bodies.

In Hirt and Nichols (1981) a special advection scheme was

used to avoid smearing of the surface, which they called the

‘‘Volume of Fluid’’, also known as VOF. This method has been

extensively used, modified, and improved by several research-

ers. The approach described in Ubbink (1997) is used in this

work.

An early attempt to model flow and turbulence in the surf

zone was undertaken by Lemos (1992). He applied the

original VOF method invented by Hirt and Nichols (1981)

together with a k –(-model to represent the turbulence scales
in the simulations. The results showed that the approach

could be used for simulating surf zone turbulence, though

turbulence levels were over-predicted. Lin and Liu (1998a,b)

used a similar approach to Lemos (1992), but with a further

developed code of Hirt and Nichols (1981) by Kothe et al.

(1991). Again the k–(-model was used for representing the

turbulence scales. As in Lemos (1992), Lin and Liu

(1998a,b) found that the turbulence levels at breaking were

overestimated. The error was of the order of 2 to 3 times the

measured quantity. In the inner zone the turbulence is in

general 25% to 50% higher than measured in Ting and

Kirby (1994). A similar approach as the one sketched above

was used in Lin and Liu (1998b) to investigate the

turbulence transport and vorticity dynamics in the surf zone

under plunging breakers. Compared to the results of a

spilling breaker the results for the plunging breaker case

compare better with measurements with respect to the

undertow. The turbulence levels are too high just after the

breaking point but closer to the shoreline the turbulence

levels seem to be of the same order of magnitude as in the

experiments by Ting and Kirby (1995). Bradford (2000)

made a comparative study of three turbulence models. All

three turbulence models used the turbulent viscosity concept

combined with different formulations of the k–( model. In

general the model like k –(-model and k-model gave an

average turbulence level that was twice as large as the

experimental levels reported by Ting and Kirby (1994) for

the spilling breaker, while the RNG-model gave slightly

smaller overestimations. The turbulence levels were found to

be very close to the measured ones in the case of a plunging

breaker, which agreed well with the results shown in Lin

and Liu (1998a). The undertow found by both Bradford

(2000) and Lin and Liu (1998a) was in general too low or

directed towards the shore instead of offshore in the spilling

breaker, which perhaps indicates that a periodic solution had

not been found yet.

Even though Lin and Liu (1998a,b) used a more advanced

description of the Reynolds stresses than Bradford (2000),

their formulation did not show substantial improvements over

the isotropic models. The choice of the boundary conditions,

grid resolution, and the model coefficients all seem to have

more impact on the solution. Mayer and Madsen (2000)

found that the traditional turbulence models never find a

stationary level of turbulence and eddy viscosity. The problem

arises due to stability problems in the k–x model in wave

driven orbital motion. In Zhao et al. (2000) a multi-scale

turbulence model is set-up based on a k� l model. Since the

production term is still related to the strain rate the waves

produce turbulence before they actual have broken. The

instability reported by Mayer and Madsen (2000) was

avoided, and therefore the simulated water elevations agreed

well with measurements. Recently, Emarat et al. (2000)

studied the mechanics of a surf zone plunging breaker.

Results from 2D PIV measurements were compared against

those from a numerical model based on the Navier–Stokes

equations and the VOF method. Good agreement between

both results was found for the comparison of the flow field
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and velocity magnitude distribution. This study actually

shows that the main problem in modelling the surf zone

with Navier–Stokes solvers is the turbulence and perhaps the

effect of air and the dynamics.

Large eddy simulation (LES) is another way of simulating

turbulence in wave breaking, with turbulence model for the

sub-grid turbulence only. Since it is a smaller part of the

turbulence regime the model has to take account for, the

model can be much simpler than the models used in Reynolds

Averaged Navier–Stokes equation (RANS). Two-dimensional

modelling cannot be said to be true LES, since the simulation

of eddies is only two-dimensional, therefore the stretching of

eddies that is characteristic for true turbulence is not

simulated at all. However, the work of Zhao and Tanimoto

(1998) shows a surprisingly good comparison with measure-

ments of the vertical distribution of for instance the maximum

and minimum orbital velocities. The wave height and mean

water level distribution also compared well with measure-

ments. Despite the defects of only two dimensions and that

the slope of the submerged reef was 1 :2, the model surely

gave some good indications of the strength of an LES model.

This work was continued in Zhao et al. (2004), where the

multi-scale turbulence model was used to simulate breaking

waves that were compared to Ting and Kirby (1994, 1995,

1996). Again a better agreement of the wave set-up is found.

Further, the modelling of the undertow is improved; however,

the shape of the undertow profile does not seem to follow the

measured profiles in all cases. This was recognised by the

authors who argued that the measurements had stronger

mixing perhaps from air bubbles. The reason for these

discrepancies is a matter of discussion. For instance a full

three-dimensional flow field will change the mixing and

therefore also the undertow profiles no matter how good a

turbulence model is. No direct comparisons of turbulence

levels were made to the measurements by Ting and Kirby

(1994, 1995, 1996). This would have been a valuable

contribution to the discussion of the mixing. It is clear that

Zhao et al. (2004) predict wave set-up and the overall

continuity better than found in previous studies. This might

be explained by the fact that they avoid the stability

mechanism described in Mayer and Madsen (2000), when

using the multi-scale model.

Christensen and Deigaard (2001) used a full three-dimen-

sional Navier–Stokes solver combined with a two-dimensional

free-surface model based on the surface markers method to

study the three-dimensional turbulent flow structures in the

breaking zone. A Smagorinsky sub-grid model, Smagorinsky

(1963), was used for the simulations. Watanabe and Saeki

(1999) found similar results from three-dimensional simula-

tions of breaking waves. The coherent flow structures were

generated almost instantly at the breaker point and were

enhanced by the breaking process. Finally, the flow structures

broke down outside the region affected by the surface roller.

The processes of growth of vorticity around vertical and

transverse axis were further discussed in Watanabe et al.

(2000). Watenabe and Saeki (2002) studied the velocity field

after wave breaking.
The present study concerns numerical simulation of

spilling and plunging breakers. The model is a full three-

dimensional model solving the Navier–Stokes equations. The

free surface model is based on the Volume of Fluid concept.

In contrast to the study in Christensen and Deigaard (2001)

the free surface is fully three-dimensional. Further, the

problem with mass-conservation has been minimised by

introducing another free surface method based on Volume

of Fluid (VOF). The solver is based on a non-orthogonal

curvilinear finite volume solver instead of the Cartesian finite

difference solver used in Christensen and Deigaard. Introduc-

ing these changes made it possible to make comparisons to

the time averaged quantities of undertow and turbulence in

Ting and Kirby (1994).

The turbulence scales larger than the grid scale are

simulated directly, Large Eddy Simulation (LES), while the

effect of the smaller turbulence scales is represented by a sub-

grid scale model. Two sub-grid scale models are tested. The

first is the Smagorinsky model and the second is a sub-grid

model based on a k-equation. The wave parameters and

geometry resemble the physical experiments reported in Ting

and Kirby (1994). This provides a rather comprehensive

comparison between numerical and experimental results in

order to provide validation of the use of LES for studying

breaking waves.

2. The numerical model

The Navier–Stokes equations consist of a continuity

equation and a momentum equation as sketched below:

Continuity equation:

Bui

Bxi
¼ 0 ð1Þ

Momentum equations:

q
Bui

Bt
þ quj

Bui

Bxj
¼ � Bp

Bxi
þ B

Bxj
l

Bui

Bxj
þ Buj

Bxi

� �
ð2Þ

where q is the density of the fluid, ui is the velocity

components, p is the pressure, l is the dynamical viscosity,

and t and x are the time and spatial independent variables.

For small Reynolds numbers the Navier–Stokes equations

can be solved directly without a turbulence model. This

approach is called Direct Numerical Simulation (DNS), as it

does not include a turbulence model. It is only small-scale

flows that can be solved by DNS such as a wave boundary

layer for small Reynolds numbers. Another approach is

Large Eddy Simulation (LES), which is quite similar to

DNS, the difference being that only the larger eddies are

directly simulated, while the smaller scale eddies, i.e. smaller

than the grid scale, are accounted for through a sub-grid

scale model. In general DNS and LES require a fine

resolution in three spatial dimensions, thus the CPU-time

for such calculations is rather excessive and therefore the

practical engineering applications can be limited with today’s

computers.
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2.1. The sub-grid model for large eddy simulation

The basis for the Large Eddy Simulation is the spatial

filtering of the Navier–Stokes equations. Using a top-hat

filter the grid can be used as the filter itself. This is the most

common way of filtering when the solution method is based

on the finite volume method. The velocity scales smaller than

the grid can naturally not be simulated anyway. The following

equation summarizes the filtering process for the momentum

equation:

q
Bu

;
i

Bt
þ q

Buiuj
;

Bxj
¼ � Bp

;

Bxi
þ B

Bxj
l

Bu
;
i

Bxj
þ

Bu
;
j

Bxi

� �
ð3Þ

In Eq. (3) the second term on the left-hand side has to be

split up in a part that can be simulated directly:

Buiuj
;

Bxj
¼

Bu
;
iu
;
j

Bxj
þ

B uiuj
; � u

;
iu
;
j

� �
Bxj

0
@

1
A: ð4Þ

The first part is simulated directly while the second part is

moved to the right-hand side and has to be modelled. This part

is also called the sub-grid scale Reynolds stress:

ssij ¼ � q uiuj
; � u

;
iu
;
j

� �
: ð5Þ

Eq. (5) is the closure problem for which we have to use a

model. If no model is applied resolved turbulent kinetic energy

can only dissipate due to the physical viscosity and the artificial

numerical viscosity. This will often lead to a too slow

dissipation of energy giving too high turbulence levels.

Furthermore, the artificial numerical dissipation depends on

the resolution, the numerical discretation, the algorithm and is

normally not known, which adds uncertainty to the solution.

Therefore a clear definition of how the excess energy should be

dissipated is important even in cases where the turbulence is

not of main interest.

2.1.1. Smagorinsky sub-grid model

A number of different sub-grid scale models (sgs models)

have been proposed. Many of these are based on the

Smagorinsky sgs model. This is an eddy viscosity model that

is closely connected to the strain rate and the grid size. The

sub-grid scale stresses:

ssij ¼ � q uiuj
; � u

;
iu
;
j

� �
ð6Þ

are modelled in the following way:

ssij �
1

3
sskkdij ¼ 2ltS

;

ij;

S
;

ij ¼
1

2

Bu
;
i

Bxj
þ

Bu
;
j

Bxi

� � : ð7Þ

The eddy viscosity is found according to:

lt ¼ q CsDð Þ2jS;j ð8Þ
where D is the filter length scale and |S̄| = (2S̄ijS̄ij)
1 / 2. Cs is the

Smagorinsky constant that is in the order of 0.065 to 0.2. The

model is rather simple which is an advantage in the

computation. However, the optimal value of the Smagorinsky

constant varies from flow to flow. For instance close to a wall

the Smagorinsky constant can be reduced according to the van

Driest damping.

2.1.2. K-equation sub-grid model

The sub-grid scale stresses:

ssij ¼ � q uiuj
; � u

;
iu
;
j

� �
ð9Þ

are modelled based on a k-equation for the sub-grid scale

turbulence:

ksgs ¼ �
1

2
uiui
; � u

;
iu
;
i

� �
ð10Þ

Bksgs

Bt
þ u

;
j

Bksgs

Bxj
¼ � 1

q
sij

Bu
;
i

Bxj
� Cek

3=2
sgs

þ B

Bxj
yþ yt=rkð Þ Bksgs

Bxj

� �
ð11Þ

The eddy viscosity is found according to:

yt ¼ qCk

ffiffiffiffiffiffiffi
ksgs

p
D ð12Þ

From this the sub-grid scale stresses can be found using a

viscosity concept as follows:

ssij �
1

3
sskkdij ¼ 2qytS

;

ij;

S
;

ij ¼
1

2

Bu
;
i

Bxj
þ

Bu
;
j

Bxi

� � ð13Þ

Ck is a coefficient, which in homogeneous, isotropic

turbulence has been found to be in the order of 0.05 to

0.065, Yoshizawa (1986) and Menon et al. (1996). In Kim and

Menon (1999) a dynamic version of the model estimated the

coefficient close to a wall as:

Ck ¼ 0:055)1� exp � yþð Þ2= Aþð Þ2
� �

2 ð14Þ

The term in brackets is similar to a van Driest damping,

but the coefficient is damped even more close to the bed

compared to the van Driest profile. The dissipation coeffi-

cients, C( and rk, are set equal 1 according to Menon et al.

(1996).

2.1.3. Dynamic models

A rather successful extension of the model is the

dynamic model. Here a test filter is introduced where the

sub-grid stresses on each grid level and an optimal choice of

Cs can be elaborated. Additional averaging of the method is



Fig. 1. The computational domain. The slope is 1 :35 and the depth is 0.4 m. The width is 0.3 m.
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needed due to large variation in the preliminary estimate of

Cs. In a channel flow the quantities are averaged in the

longitudinal and transverse directions. Due to the necessity

of averaging in one or more directions the method cannot be

used for general complicated flows, like for instance the

simulation of the flow over a submerged structure in the

surf zone.

2.2. Numerical algorithm

The solution of the Navier–Stokes equations is based on the

finite volume method for general non-orthogonal mesh. The

basic solver was described in Mayer et al. (1998), later

extended to include the VOF method and several turbulence

models. The solver was used to study green water incidents on

ships in Nielsen and Mayer (2004). The spatial discretation is

given in the Appendix and the algorithm is outlined in the

following.
Fig. 2. The curvilinear grid consists of 320�48�32 cells. It is
The velocity at the Finlet_ boundary where the waves are

generated is specified according to the 5th order Stokes theory

or 5th order Cnoidal theory. A general method as a stream

function theory could have been used, but at the beginning of

the study the two wave theories were already implemented and

sufficient for this study.

2.2.1. The algorithm

The solution procedure is based on the fractional step

method, which is a higher order time integration scheme. The

procedure in the method used here is based on an explicit time

stepping. This gives some limitations by the CFL criteria, but

the use of the VOF method to track the free surface implies

similar restrictions on the time step.

The algorithm is:

1. Move the surface by the VOF method (see the next

section)
stretched towards the bed and towards the area breaking.



Table 1

Wave parameters for the simulations

Breaker type H0 (m) Hh (m) T (s) H0 /L0 n0 xb (m) db (m)

Spilling 0.127 0.125 2.0 0.020 0.20 10.1 0.196

Plunging 0.089 0.128 5.0 0.0023 0.60 11.495 0.156
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2. The tentative velocity u* field is found from the fractional

step method

3. The velocity correction potential / is found

4. The corrected velocity and fluxes are found

5. The pressure is found and the right-hand side for u*

Step 1 and the modifications of the spatial scheme due to the

free surface are treated in Section 2.3.

The tentative velocity u* is found from the following

equation (step 2):

VolIui4

Dt
¼ VolIuni

Dt
� C

nþ1=2
i þ D

nþ1=2
i � Gi pnþ1=2

� �
ð15Þ

where Vol is the volume of the cell, Dt is the time step between

time step n and n +1. Ci and Di are the volume integrated

convection and diffusion term, respectively. Gi(/) is a

discretised operator which computes volume integrated gradi-

ent of the scalar / in the x i direction (in the equation / is equal

to p). All the spatial operators are given in the Appendix.

The integrated convective term Ci is found by QUICK

interpolation. In the original fractional step methods the
Fig. 3. An example of the free surface and vorticity for the spilling breaker after 19 w

axis is the vertical direction, and the z-axis is the transverse direction.
explicit Adams–Bashforth method is used for predicting

Ci
n+1/2. This is also the case in this application:

C
nþ1=2
i ¼ 1

2
3
X

Uj;nIQ uni
� �

�
X

Uj;n�1IQ un�1i

� �� �
ð16Þ

where U j,n is the flux into the cell domain at face j at time step

n and Q j denotes the QUICK interpolation operator over the

cell faces, i.e. Q j(ui
n) gives the QUICK interpolated value of ui

at cell face j which is convected into the cell by the cell face

flux U jn, see above.

For the diffusive term Di in Eq. (15) a mixed central and

Adams–Bashforth method is used:

D
impl
i ¼ 1

2

X
j

S1
j
i u*ið Þ

D
expl
i ¼ 1

2

X
j

S1
j
i u

n
i

� �
þ 1

2
3
X
j

S2 j
m uni
� �

�
X
j

S2
j
i un�1m

� � !

ð17Þ
where m is the kinematic viscosity and S1 and S2 are special

terms of the viscous stress tensor found from the stress tensor

defined as:

S
j
i ¼ m

Bui

Bxk
þ Buk

Bxi

� �
n
j
k : ð18Þ

The diffusion term is then found as integration over the cell

faces. An implicit treatment of Eq. (18) would result in a very
ave periods after the start of the simulation. The x-axis is along the flume, the y-



Fig. 4. An example of the free surface and vorticity for the plunging breaker after 15.25 wave periods after the start of the simulation. The x-axis is along the flume,

the y-axis is the vertical direction, and the z-axis is the transverse direction.
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large matrix where u1, u2, and u3 are coupled. Therefore, the

viscous stress flux is split into two parts as:

S
j
i ¼ me

Bui

Bxk

� �
n
j
k þ me

Buk

Bxi

� �
n
j
k

* *
S1

j
i S2

j
i

: ð19Þ

The implicit part of the diffusion term in Eq. (17) can be

solved by the use of a band matrix of which the width is 19 in

three-dimensional cases. The bandwidth can be reduced to 7 by

moving off-diagonal terms in S1 into S2, if the grid is nearly

orthogonal.
Fig. 5. Envelope of water surface from 28 to 32 s. Spilling break
Step 3:

The velocity is corrected by the pressure correction term /.

/ is found by solving the Poisson equation:X
j

G j /ð Þ ¼ 1

Dt

X
j

U j* ð20Þ

Step 4:

The velocities and the fluxes at time step n +1 are then

found by correcting the tentative quantities as follows:

unþ1i ¼ ui4�
Dt

Vol
IGi /ð Þ;

Uj;nþ1 ¼ Uj4� DtIG j /ð Þ
ð21Þ
er with the Smagorinsky sgs formulation. Dimensions in m.



Fig. 7. Close view of the coarse grid resolution around the breaking point.
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The found velocities and fluxes have to be modified at the

surface according to the free surface method described in the

next section.

Now the velocity field and the position of the free surface

are known at time step n +1. In a traditional fractional step

method the pressure could be updated by the pressure

correction term /. In usual fractional step methods, the

pressure forcing is evaluated in the predictor step and is

updated in time by the incrementation procedure.

Step 5:

The absolute value of the pressure field has to comply

accurately with the dynamic free-surface condition. This is not

possible since the pressure at time step n was found for another

position of the surface. Instead another pressure equation is set-

up. It is known that the velocity at time step n +1 and time step

n fulfills the continuity equation, therefore the divergence of

the convective and diffusive terms has to be equal to the

pressure gradients. That gives the following Poisson equation

for the pressure that is solved in the same manner as the one for

the pressure correction term.

Uj;nþ1
mom ¼ IF � Cnþ1

i þ Dnþ1
i

� �
In j

i ;X
j

G j pnþ1
� �

¼
X
j

U j;nþ1
mom

: ð22Þ

All computations are carried out with a variable time

increment, Dt, at every time step keeping the maximum cell

Courant number within the limit UDt /Dx <Ccfl, the courant

number being Ccfl =0.25. Smaller time steps have not shown

to give different results of for instance the breaking point

and the averaged quantities such as the undertow profiles.

Basically, using a time step smaller than the specified

Courant number is rather restrictive for the major part of the

flow as it is the minimum of all the cells that determines the

time step.

2.2.2. Solution of algebraic equations

The implicit part of the discretised momentum Eq. (15) is

written with 7-point stencils, whereas the Poisson Eqs. (20) and

(22) are written with 19-point stencils in a cell-by-cell form.

Line relaxation techniques solve the discretised momentum

equation, while the Poisson Eqs. (20) and (22) are solved by a

multigrid method or a Preconditioned Conjugate Gradient

method with a multigrid smoother as the pre-conditioner. The
Fig. 6. Envelope of water surface from 28 to 32 s. Spilling breaker with the k-equation sgs formulation. Dimensions in m.
multigrid smoother uses a standard coarsening and V-cycle

relaxation. On every multigrid level an ILLU smoother is

employed. A general introduction to these techniques can be

found in Ferziger and Peric (1999).

2.3. Volume of fluid (VOF)

Since the Navier–Stokes equations are solved on a rigid

grid, the free surface has to cut through the cells. An approach

that has become very popular during recent years is based on a

continuity equation for a conservative quantity, F, as sketched

by the following equation:

BF

Bt
þ BuiF

Bxi
¼ 0: ð23Þ

The fluid is located where F is equal to 1.0 and the air/void

region where it is equal to 0. F =0.5 determines the position of

the free surface.

Eq. (23) is solved in a Eulerian way. A straightforward way

to solve the problem is to use a very accurate higher order

convection scheme such as the QUICK or even higher.

Kawamura and Miyata (1994) used this approach. In their

case both the air and fluid flow were simulated around ships

and submerged bodies. In Hirt and Nichols (1981), a special

advection scheme was used for avoiding the smearing of the

surface, which they called the ‘‘Volume of Fluid’’ also known

as VOF. This method has been extensively used and modified

by several researchers.

The scheme introduced by Hirt and Nichols (1981) was later

modified and improved by Ubbink (1997). The Compressive

Interface Capturing Scheme for Arbitrary Meshes, CICSAM,

was developed by Ubbink (1997) and is a blending of Hyper-C,

Leonard (1991), the upper bound of the convection bounded-

ness criteria (CBC), and ULTIMATE-QUICKEST Leonard

(1991), the transient bounded version of QUICK. The blending



Fig. 8. Envelope of a plunging breaker, Smagorinsky sgs model. Dimensions in m.
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of the schemes is determined by the orientation of the interface

and the flow direction. The full description of the method is

rather comprehensive and the reader is advised to consult the

original PhD-thesis for a more detailed description of the

method.

2.3.1. Time integration

The time integration of the function F follows the second

order Adams–Bashforth scheme, which was the same scheme

used for the momentum equations. Eq. (24) shows the scheme

with the use of the VOF scheme for the spatial fluxing of the

quantity F.

F nþ1 ¼ F n � Dt
1

2
3
X
j

F
j;n
flux �

X
j

F
j;n�1
flux

 !
: ð24Þ

When the CICSAM advection scheme is applied the

Adams–Bashforth scheme is applied on the fluxes instead

(i.e. the velocity fluxes as determined in Eq. (16)). This is due

to a predictor-corrector step in the CICSAM that would be

violated if the Adams–Bashforth scheme was applied on the F

fluxes. In the estimation of Fn+1 it is the predicted fluxes at

n +1 /2, that are used, wherefore the prediction of F becomes

nearly of 2nd order.

2.3.2. Boundary conditions for the pressure at the free surface

The fulfillment of Eq. (23) is a way to satisfy the kinematic

boundary condition. The surface tension has been neglected,

whereby setting the pressure equal to the atmospheric pressure

or as an approximation equal to 0 satisfies the dynamical

boundary condition at the free surface.
Fig. 9. Envelope of a plunging breaker, k-e
Instead of specifying the exact pressure at the surface a

Dirichlet boundary condition for the excess pressure is applied

as:

psurface ¼ patm � gI rsurface � r0ð Þ ð25Þ

where g and patm denote the gravitational force vector and the

atmospheric pressure in the air (normalised by fluid density),

respectively. rsurface is the vector from origo to the surface, and

r0 a vector from origo to the still water level. In the present

work the atmospheric pressure is set to zero, patm=0. In this

way the inclusion of a gravitational term in the Navier Stokes

equations is avoided.

3. Computational set-up

The computational domain consists of a 3 m flat bed

followed by a slope of 1 :35. The water depth before the slope

is 0.4 m. The computational domain reflects the physical tests

presented in Ting and Kirby (1994), with a minor difference. In

their experiments the slope was started with a small step of

0.02 m, however, this difference is assumed not to have any

significant influence on the comparison between measurements

and numerical results.

Fig. 1 shows the computational domain. The width of the

domain is 0.3 m. The curvilinear grid consists of

320�48�32 cells (longitudinal, nearly vertical, transverse).

It is stretched towards the bed and towards the area of initial

breaking. The relatively coarse grid is shown in Fig. 2. The

choice of a finer grid resolution is limited by the number of

different scenarios that should be simulated and the length of
quation sgs model. Dimensions in m.



Fig. 10. Undertow profile under a spilling breaker compared to the measurements of Ting and Kirby (1994). The Smagorinsky sub-grid scale model was

used.
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the simulations. The main purpose of this study is to model

realistic scenarios of breaking waves in the surf zone with a

full three-dimensional model based on Large Eddy Simula-

tion. The computations have been carried out on fast PCs,

however, the possibility of using supercomputers such as a

parallel computer would enhance the capability of performing

this kind of computations.

4. Results

The table below gives the wave parameters for the different

scenarios that are investigated, which are spilling and plunging

breakers (Table 1).
Fig. 11. Undertow profile under a spilling breaker compared to the measureme

used.
The waves are based on fifth order Stokes and Cnoidal wave

theory. For the spilling breaker fifth order Stokes theory is

valid, while Cnoidal theory is valid for the plunging breaker at

the inlet boundary. Both the velocities and the surface elevation

are specified at the Finlet_ boundary.

4.1. Flow structures and envelope

To give an indication of the results the free surface and the

vorticity around the three axes are shown in Fig. 3. In the

inner part of the surf zone high levels of vorticity are present.

The x and z components of the vorticity are relatively strong,

which could be linked to longitudinal and transverse eddies. It
nts of Ting and Kirby (1994). The k-equation sub-grid scale model was



Fig. 12. Undertow profile under a plunging breaker compared to the measurements of Ting and Kirby (1994). The Smagorinsky sub-grid scale model was

used.
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could be argued that the x-component to some extent

represents obliquely descending eddies as observed in for

instance Nadaoka et al. (1989).

Fig. 4 shows the vorticity around the three axes under the

plunging breaker. Compared to the spilling breaker the

vorticity almost disappears between the two breakers. Espe-

cially the vorticity around the vertical axis is non-existent

around x =15 m. Just under the broken waves all three vorticity

components are rather strong. As the major part of the turbulent

kinetic energy is related to eddies the results indicate that the

turbulence is relatively evenly distributed under the spilling

breaker and located under the breaker in the plunging breaker

case. This is in good agreement with turbulent kinetic energy
Fig. 13. Undertow profile under a plunging breaker compared to the measurem

used.
measurements in Ting and Kirby (1994). The study of the

vortex dynamics has been limited to these few qualitative

observations. A more detailed qualitative study is not given

here as the focus is on the undertow and turbulence.

Figs. 5 and 6 show the envelope of the wave for the spilling

breaker for the Smagorinsky and k-equation sgs models,

respectively. The agreement is quite good except just after

the laboratory breaking point. Here the wave heights are over-

predicted for both sgs turbulence models. The initiation of

breaking is too late which explains the larger wave heights just

after the laboratory flume breaking point. The coarse resolution

of the fluid domain is the main reason for that, cf. Fig. 7. The

wave top is only resolved by a few computational cells.
ents of Ting and Kirby (1994). The k-equation sub-grid scale model was
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Therefore the breaking is delayed in the spilling breaker case.

However, the resolution has been a choice between acceptable

computational turn around times, sufficient resolution close to

the bed to resolve the effect of the wave boundary layer, and

sufficient resolution of the initial breaker. The present work

focuses on the generation of undertow and turbulence

quantities under the broken wave and therefore a rather coarse

resolution was necessary in the upper part of the wave. As the

waves break too late in the spilling breaker case the analyses of

undertow and turbulence will focus on the inner part of the surf

zone. The breaking point is rather sensitive to for instance

imperfections in the wave generation and the effect of the

previous broken wave. It could be argued that this gives an

artificial contribution to the turbulence, as discussed in

Nadaoka et al. (1989).

The picture for the plunging breaker is slightly different

from the spilling breaker as the waves break too early in this
Fig. 14. Comparison of average turbulence levels for the spilling breaker with the

: modelled ðu V2=ghÞ1=2, >: measured ðu V2=ghÞ1=2, : modelled ðv V2=
case, cf Figs. 8 and 9. This results in a large wave height before

the laboratory breaking point and too early breaking. No major

difference is seen between the two different sgs turbulence

models. In the inner part of the surf zone a reasonable

agreement is found between the measured and modelled wave

envelopes. Again this suggests that the analysis should focus

on the inner part of the surf zone.

4.2. Undertow

During the breaking process potential wave energy is

transformed into kinetic energy where a part of the water in

the top of the wave is thrown in front of the wave or rushes

down from the wave top. The water is transported towards the

shoreline in the upper part of the water column. This results in

a set-up that generates an offshore directed flow under the still

water level called the undertow, and hereby continuity of mass
Smagorinsky sgs model. : Modelled (k / gh)1 / 2, n measured (k / gh)1 / 2,

ghÞ1=2, : modelled ðw V2=ghÞ1=2.
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will be fulfilled. The undertow is found by averaging the flow

velocities over the transverse direction for the last 5 wave

periods of the simulations.

Figs. 10 and 11 show the undertow profiles under the

spilling breaker based on the Smagorinsky sub-grid scale

model and the k-equation sub-grid scale model, respectively.

The simulated undertow profiles are of the same order of

magnitude as the measured undertow profiles. The shift

between the onshore directed and the offshore directed flow

over the vertical is located at the same place as in the

experiments. This shows that the overall continuity equation is

fulfilled.

The shape or gradient of the velocity profiles is determined

by the mixing of momentum. If the mixing is large the gradient

(flu /flz) will be close to zero and increase as the mixing

decreases. The mixing in standard RANS models like for

instance the k –x model is maintained through the eddy

viscosity. In LES a major part of the mixing of momentum
Fig. 15. Comparison of average turbulence levels for the spilling breaker with the

: modelled ðu V2=ghÞ1=2, >: measured ðu V2=ghÞ1=2, : modelled ðv V2=
takes place through the large-scale eddies and the eddy viscosity

accounts for a minor part. It is quite clear from the figures that

the vertical gradient (flu /flz) in the simulated velocity profiles is

smaller than the one found from measurements in the inner part

of the breaking zone. This might be due to a stronger mixing in

the simulations compared to the measurements.

In the inner part of the breaking zone good agreement is

found at around x =12 m. Here the undertow profile has almost

the same gradient in the experiment as found in the simula-

tions. The differences between the results obtained with the two

different sgs models are very small. Further inshore at x =13.4

m the profiles are slightly different, where the gradient of the

modelled undertow is smaller than the one found in the

experiment.

The undertow profiles for the plunging breaker are shown in

Figs. 12 and 13. In the inner part of the breaking zone a very

good agreement between the model and the experiments is

found. The Smagorinsky sgs model performs slightly better
k-equation sgs model. : Modelled (k / gh)1 / 2, n measured (k / gh)1 / 2,

ghÞ1=2, : modelled ðw V2=ghÞ1=2.
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than the k-equation sgs model at x =13.5 m. In the outer part of

the breaking zone the simulations over-predict the strength of

the undertow compared to the measurements. Earlier it was

found that the wave in this case breaks too early. Therefore

water is transported towards the shoreline in the upper part of

the water column and it has to be compensated with a stronger

undertow.

4.3. Turbulence levels

For each phase the components are averaged in the

transverse direction. The average of the quantity can therefore

be interpreted as belonging to the ordered motion and the

deviation from the average as the turbulent fluctuation. This

analysis has the advantage that a detailed spatial distribution

of the turbulence can be obtained from few data sets with

the instantaneous velocities from the entire computational
Fig. 16. Comparison of average turbulence levels for the plunging breaker with the

: modelled ðu V2=ghÞ1=2, >: measured ðu V2=ghÞ1=2, : modelled ðv V2=
area. Furthermore, the data are phase averaged for the last

five wave periods in order to improve the statistics. The use

of the transverse direction in estimation of the turbulence

was discussed in detail in Christensen and Deigaard (2001).

If the dimension in the transverse directions is infinitely long

the estimation of turbulence could be determined as the

deviation from the average taken in that direction. Therefore

using the transverse direction together with ensemble

averaging reduces the necessary number of periods to

achieve stable statistics. Whether 5 wave periods are

sufficient is a question that is difficult to answer as only

20 and 16 wave periods are simulated. However, a few tests

with 7 periods gave turbulence levels within the same range.

Therefore the averaging technique is found adequate in the

comparison to the measurements by Ting and Kirby (1994).

The study by Christensen et al. (2000) indicated that stable

statistics in the numerical model were obtained after around
Smagorinsky sgs model. : Modelled (k / gh)1 / 2, n measured (k / gh)1 / 2,

ghÞ1=2, : modelled ðw V2=ghÞ1=2.
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15 wave periods after start of the simulation. Note that it was

with a two-dimensional RANS two-equation turbulence model

and therefore the conclusion might not be applicable in this case.

The velocity is thus split into a mean quantity, ū, averaged

in the direction parallel to the coastline and phase averaged

over the last five wave periods in the simulations, and a

turbulent fluctuation, uV:

u ¼ u
; þ uV ð26Þ

and the turbulent fluctuation on the grid scale is:

kGS ¼ 1=2 uV2
;

þ mV2
;

þ wV2
;� �

ð27Þ

However, this only accounts for the turbulence resolved by

the computational grid. The full turbulence level is found by

adding the sub-grid scale turbulence. For the k-equation this is

straightforward as the ksgs is calculated as a part of the
Fig. 17. Comparison of average turbulence levels for the plunging breaker with th

modelled ðu V2=ghÞ1=2, >: measured ðu V2=ghÞ1=2, : modelled ðv V2=ghÞ1=2,
computations. For the Smagorinsky model the sub-grid scale

turbulence is estimated from the sgs viscosity and the

corresponding mixing length as the length scale:

ksgs ¼
ysgs

CsD

� �2

ð28Þ

The total amount of turbulence is:

k ¼ kGS þ ksgs ð29Þ

After the phase averaged turbulence levels the quantities

were averaged over the entire wave period for comparison

with the measurements in Ting and Kirby (1994). It is the

turbulence kinetic energy given by Eq. (29) that is compared

to the measurements in Ting and Kirby (1994). It should be

noted that in Ting and Kirby (1994) the total turbulent kinetic

energy is set equal to k ¼ 1
2

�
uV2
;
þ mV2
;�
þ 1

3
1
2

�
uV2
;
þ mV2
;�

,

e k-equation sgs model. : Modelled (k / gh)1 / 2, n measured (k / gh)1 / 2,:

: modelled ðw V2=ghÞ1=2.
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where it is assumed that wV2
;
¼ 1

3
1
2

�
uV2
;
þ mV2
;�

. This assump-

tion has been used in several studies as Stive (1980),

Svendsen (1987), and Ting and Kirby (1994, 1995, 1996)

among others. The assumption will be discussed later in this

chapter.

Figs. 14 and 15 show the comparison between the

measured and simulated averaged turbulence levels for the

Smagorinsky and k-equation sub-grid scale model, respec-

tively. Note that the velocity component along the flume is u,

the vertical v, and the transverse w. The panels show the

turbulence levels at x =10.365, 10.975, 11.585, 12.195, 12.81,

13.425 m. The first panel is outside the actual breaking zone.

Here the simulated levels are larger than the measured one.

Especially the u-component tends to be large. This could be

due to turbulent flow configurations that have not been

dissipated before it is convected offshore from the breaking
Fig. 18. Comparison of average turbulence levels for the spilling breaker with the S

0.2. : Modelled (k / gh)1 / 2, n measured (k / gh)1 / 2, : modelled ðu V

modelled ðw V2=ghÞ1=2.
zone. The k-equation seems to give smaller turbulence levels

at this position. In the Smagorinsky model the dissipation of

energy through the sub-grid scale eddy viscosity is directly

linked to the local strain rate whereas the eddy viscosity in

the k-equation sgs model can be effected by previously

produced turbulence energy. Therefore it continues to

dissipate energy even in regions where the strain rate locally

is small. This leads to an increased dissipation of turbulent

kinetic energy outside the breaking zone and therefore a

better prediction of the turbulence levels in these regions. In

the inner part of the breaking zone the average turbulence

levels are in the order of two times larger than the measured

ones.

Figs. 16 and 17 show similar results for a plunging breaker

found with the Smagorinsky and k-equation sub-grid scale

model, respectively. The panels show the turbulence levels at
magorinsky sgs model. In this case the Smagorinsky constant Cs was equal to
2=ghÞ1=2, >: measured ðu V2=ghÞ1=2, : modelled ðv V2=ghÞ1=2, :
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x =10.995, 11.495, 12.045, 12.995, 13.495, 14.095 m. The first

panel is outside the actual breaking zone. In this case the

simulated turbulence levels are at all panels larger than found

in the measurements. As shown earlier the plunging breaker

starts to break too early compared to the measurements.

Therefore the production of turbulent kinetic energy starts

earlier as well. In the inner surf zone the turbulence levels are

found to be around twice as large as the levels found in the

experiments.

The high levels of turbulent kinetic energy seem to be one of

the main problems in simulating breaking waves. Therefore an

additional test case was made for the spilling breaker with a

Smagorinsky constant equal to Cs=0.2. However, this did not

change the result significantly, cf Fig. 18.

For the plunging breaker case another way of estimating the

turbulence was tested. In that case the turbulence was only

related to the deviation from the mean velocity taken in the
Fig. 19. Comparison of average turbulence levels for the plunging breaker with the

: modelled ðu V2=ghÞ1=2, >: measured ðu V2=ghÞ1=2, : modelled ðv V2=
transverse direction. This means that the phase averaging is

omitted. The turbulence levels were averaged over the last 5

wave periods of the simulation. It was pointed out by Nadaoka

et al. (1989) that the turbulence in the surf zone from one

breaking wave to another may affect the exact position of the

breaking point of the next, thereby adding a non-deterministic

component. Fig. 19 compared to Fig. 16 shows that the

difference between the turbulence between the phase averaged

values and the ones without phase averaged values is very

small. Therefore the major contribution to the turbulence stems

from turbulent fluctuations that have a much smaller time-scale

than the wave period. Furthermore, the non-deterministic but

ordered velocity contribution that was discussed in Nadaoka et

al. (1989) has only little influence on the levels of turbulence.

Therefore the approach by using phase averaged quantities in

order to find the turbulence levels in periodic breaking waves is

a sufficient approach.
Smagorinsky sgs model. : Modelled (k / gh)1 / 2, n measured (k / gh)1 / 2,

ghÞ1=2, : modelled ðw V2=ghÞ1=2.
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In Ting and Kirby (1994) only the horizontal and the

vertical velocity components were measured. Therefore they

used the following relation to estimate the turbulence levels:

k ¼ 1:33=2I uV2
;

þ mV2
;� �

ð30Þ

This relationship was also used by Stive and Wind

(1982) and discussed in Svendsen (1987) and found

adequate based on similarity between a spilling breaker

and a plane wake.

It is straightforward to test this assumption in this case and

two examples are shown in Fig. 20.

In the spilling breaker case the assumption is in good

agreement with the direct estimation of turbulence intensity.

However, close to the bed at the breaking point the assumption

gives a rather low prediction of the turbulence level. This might

be explained by the generation of large-scale turbulent flow
Fig. 20. Comparison of the modelled ( ) average turbul
structures at this point, which cannot be represented by the

simple approximation.

In the plunging breaker case Eq. (30) over-predicts the

turbulence level in the middle of the water column whereas

closer to the bed a good agreement is achieved. The reason for

disagreement is due to a different distribution of the turbulence

on the components uV2
;
; mV2
;
; and wV2

;
. When examining Figs.

14–17 it appears that the square root of the turbulent

component
ffiffiffiffiffi
uV2
;p

is in the order of 1.5 times larger than the

other two components
ffiffiffiffiffi
mV2
;p

and
ffiffiffiffiffiffi
wV2
;p

whereas the factor is in

the order of 1.75 in the plunging breaker case.

In Eq. (30) a factor of 1.5 seems reasonable since the square

is approximately 2 and therefore the transverse component can

be set equal to 1
3

2IwV2
;
þ wV2
;� �

; 1
3

2IuV2
;
þ mV2
;� �

.

In the plunging breaker case the following relationship

seems more correct from the analysis: 1
4

3IwV2
;
þ wV2
;� �

; 1
4

2IuV2
;
þ mV2
;� �

which shows a clear difference in the turbulent

structure between spilling and plunging breakers.
ence intensity to the relation given in Eq. (30) ( ).
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5. Concluding remarks

The set-up, undertow, and turbulence levels have been

studied with a Navier–Stokes solver with a free surface. The

turbulence simulation is based on the Large Eddy Simulation

concept where the major part of the turbulence kinetic energy

is simulated while the small-scale energy is modelled by a

sub-grid scale model. The computations are full three-

dimensional and therefore very time-consuming since a

number of wave periods have to be modelled in order to

achieve stable statistics.

There is a good agreement between the modelled and

measured set-up in the inner part of the surf zone. However, the

exact breaking point is not captured in the simulations due to

the coarse resolution, and therefore some discrepancies are

seen close to the breaking point. The modelled undertow

profiles have a smaller gradient (du / dy) than found in the

experiments. This may be explained by a stronger mixing in the

simulations than in the experiments.

The reason for the stronger mixing is difficult to point out.

The coarse resolution might be a part of the explanation.

However, the effect of air has not been modelled at all. The

mixture of air and water in the upper part of the water column

perhaps dissipates a major part of the energy before it

penetrates down through the water column.

As it is found that the mixing is too strong it is not

surprising that the turbulence levels in general were too high

compared to the measurements. It is found that the simplifi-

cation in estimating the turbulent kinetic energy in spilling

breaking from two velocity components is sufficient in the

inner part of the surf zone, whereas the assumption might not

be valid in plunging breakers.
Fig. A.1. Sketch of the structured non-orthogonal grid situated in a global co-ord

component in the x or y direction in the global co-ordinate system (x, y) in two di
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Appendix A. Spatial discretisation

Due to the complexity of showing all three dimensions in a

plane plot some of the explanations will be based on

illustrations in two dimensions. However, the extension to

three dimensions is rather straightforward.

The discretisation uses two co-ordinate systems; one related

to the physical orientation (x, y, z) and another that follows the

mesh lines (n, g, f), as sketched in Fig. A.1. In three

dimensions the sup-scripts refer to the cell numbering in the

structured grid (i, j, k) and the sub-scripts to the global co-

ordinate system (x, y, z). For instance the velocities u, v, w and

the pressure are located at cell centres and the velocities relate

to the physical co-ordinate system (x, y, z). The fluxes through

the cell faces Ui are related to the (n, g, f) co-ordinate system.
inate system. Sup-scripts refer to the structured grid (n, g) and sub-scripts to the

mensions.
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The discretisation is described by a number of operators. For

simplicity the discretisation is given in two dimensions in the

following.

A.1. Interpolation operators

Linear interpolation (or central interpolator) where IF
denotes the averaging operation which interpolates a value of

cell centred variables to cell faces. ni
j is the i-component ((x, y)

co-ordinate system), e denotes the east cell face.

Ie /ð Þ ¼ 1

2
/i; j þ /iþ1; j
� �

ðA:1Þ

The QUICK interpolation operator, which is a third order

upwind scheme of the spatial discretisation, looks as:

Qw uið Þ ¼
1

2
ui; j þ ui�1; j
� �

� 1

8
ui�2; j � 2ui�1; j þ ui; j
� �

Qe uið Þ ¼
1

2
uiþ1; j þ ui; j
� �

� 1

8
ui�1; j � 2ui; j þ uiþ1; j
� � ðA:2Þ

where w and e refer to the western and eastern cell face,

respectively. An example is given in Fig. A.2.

The use of other interpolators is straightforward, however,

only these have been applied in the study of breaking waves.

A.2. Flux operator

The fluxes at the eastern cell face are found by interpolation

from the cell centre values to the cell face, e.g. ue=1 /

2(up+uE) and we =1 /2(wp +wE), whereby U1=ue In1
1+we In2

1.

The general formulation of the flux estimation is as follows:

Uj ¼ If uið ÞIn j
i ðA:3Þ

where If denotes the interpolation operator, see above. ni
j is the

i-component ((x, y) co-ordinate system) of the area-vector of

the cell face j ((n, g) co-ordinate system).

A.3. Gradient operators

The gradient operator, Gi, finds the gradient located at the

cell centres. It is used when for instance in Eq. (15) the

pressure gradient is needed for finding the tentative velocity
Fig. A.2. The convective flux of the QUICK interpolated u into the cell domain

by U.
field and in Eq. (21) when the velocity field is corrected. The

Gi is found as follows when it is used for internal cells

flagged as FULL:

Gm /ð Þ ¼
X
l

I l /ð Þnlm
� �

ðA:4Þ

where Il is the interpolation operator.

Gj(/) is the gradient operator that gives the gradient at the

cell faces. This operator is used for a part of the diffusion terms

and for velocity corrections. However, this is explained in more

detail in Section 2.2.1. The operator is non-orthogonal in the

fluid domain except at the surface, which will be discussed later.

The gradient vector, l/, at the east face in two dimensions

is, cf. Fig. A.3:

B/
Bx
B/
By

0
B@

1
CA

e

¼

n1e1
Vole

/iþ1; j � /i; j

� �
þ 1

4

n2e1
Vole

/i; jþ1 � /i; j�1 þ /iþ1; jþ1 � /iþ1; j�1
� �

n1e2
Vole

/iþ1; j � /i; j

� �
þ 1

4

n2e2
Vole

/i; jþ1 � /i; j�1 þ /iþ1; jþ1 � /iþ1; j�1
� �

0
BB@

1
CCA

ðA:5Þ
The gradients at the other faces are similar. The gradient

flux operator, Gl, is found by multiplying the gradient vector

by the face vector n:

Gl /ð Þ ¼l/In
l
k ðA:6Þ

For the east face of the cell the gradient flux operator is:

Ge /ð Þ ¼
n
1;e
1

� �2
þ n

1;e
2

� �2
Vole

/iþ1; j � /i; j

� �
þ n

2;e
1 In1;e1 þ n

2;e
2 In1;e2

Vole

1

4
/i; jþ1 �

1

4
/i; j�1

�

þ 1

4
/iþ1; jþ1 �

1

4
/iþ1; j�1

�
ðA:7Þ

The general formulation of the gradient operator has the

following form:

Gl /ð Þ ¼l/In
l
k :

A.4. Boundary conditions

In the following the boundary conditions at the solid

surfaces and at the inlet will be described. The boundary

conditions at the free surface are described in the section on the

free surface method.

The boundary conditions for the velocities on all the

boundaries other than the free surface can be given in a very

general form. Different types of boundaries can be achieved by

manipulating the following equation:

a/þ b
B/
Bn
¼ c ðA:8Þ

When a=0 in Eq. (A.8) a Neumann condition emerges. This

condition is homogeneous if c =0 and inhomogeneous other-

wise. When b=0 a Dirichlet condition is obtained, and if

neither a or b is equal to zero the boundary condition becomes



Fig. A.3. The normal derivative is found from the value at the surface and the value in the surface cell, whereas the tangential derivative is found by extrapolation.
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a Cauchy condition. On a solid boundary, if a=0, b =1, and

c =0 the slip condition emerges.

The no-slip condition is used at the bed. In this case a =1

and b =c =0.

A.5. Surface position

For the estimation of the pressure the exact position of the

free surface has to be known. To do this it is necessary to know

the state of each cell, i.e. whether the cell is a part of the fluid

domain or not. Cells with F below 0.5 are flagged as VOID
Fig. A.4. Illustration of how the ‘‘legs’’ to the surface are found when the VOF-me

contents of F, as in Eq. (A.9). Case B: The position is found by interpolation as in
cells and cells above as FULL. If a FULL cell has one or more

VOID cells as neighbours the cell is reflagged as a SURFACE

cell and if all neighbours are VOID as a VOID cell.

The relative distance from the surface cell centre to the

surface compared to the distance from the surface cell centre to

the neighbour cell centre is found as:

lega;s ¼ Fi;j þ Fi;jþ1 �
1

2
ðA:9Þ

if BF
BnCell�face

> BF
Bt Cell�face

, i.e. lega I (flF /fln) cell face is the

gradient normal to the cell face and flF /flt cell face the gradient
thod is used. Case A: The position is found by the sum of the underlying cell

Eq. (A.10).



Fig. A.5. The interpolation at the surface cell. First a value is extrapolated from the known values in i, j and at the surface to the VOID neighbour cell. This value is

used in Eq. (A.12). From these operations the modified interpolation operator at the surface faces in Eq. (A.14) emerges.

Fig. A.6. On the non-orthogonal grid the corner, up and down values of / have

to be taken into account when the gradient vector,l/, is found at the cell face.
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tangential to the cell face. If the criteria are not fulfilled the

following equation gives a much better approximation of the

relative distance to the free surface:

legb;s ¼

1

2
� Fi;j

� �
Fiþ1; j � Fi; j

� � ðA:10Þ

Fig. A.4 shows two examples where Eqs. (A.9) and (A.10)

apply.

A.6. Modification of the gradient operators Gi and G j

The gradient operator Gi finds the gradient located at the

cell centres. It is used when for instance the pressure gradient in

Eq. (15) is used for finding the tentative velocity field and in

Eq. (21) when the velocity field is corrected. The Gi is found as

follows when it is used for internal cells flagged as FULL:

Gm /ð Þ ¼
X
l

I l /ð Þnlm
� �

ðA:11Þ

where Il is an interpolation operator as defined in Eq. (A.1).

At the free surface the interpolated value cannot be found by

Eq. (A.1), since the neighbour cell is not a part of the fluid

domain. Instead the value at the surface, /S, is known. If a

surface cell has a VOID cell to the east, the interpolation

operator (A.1) has to be modified by extrapolation. Using first-

order extrapolation gives (cf. Fig. A.5):

Ie /ð Þ ¼ 1

2

/S � /i;j

� �
legs

þ /i;j ðA:12Þ

The values at a surface cell face are either found by Eqs.

(A.1), (A.12) or a higher order extrapolation scheme, see
Nielsen (2003). In the following modifications made to

operators refers to the 1st order extrapolation for the sake

simplicity. When the modified interpolation operator is used in

Eq. (A.11) the correct gradient is found in the surface cells.

The gradient operator Gj(/) is non-orthogonal in the fluid

domain except at the surface. Here it is assumed that the non-

orthogonal terms are small and therefore not important to

include. This introduces a minor error at the surface on non-
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orthogonal grids, however, compared to other shortcomings at

the surface these errors may be neglected.

These approximations give the x-component of the gradient

for the surface position shown in Fig. A.6, where the cells (i, j),

(i, j +1), (i, j�1), (i�1, j +1), and (i�1, j�1) are FULL or

SURFACE cells, as follows:

B/
Bx
¼ n

1;e
1

Vole

1

leg
/s � /i;j

� �
ðA:13Þ

The gradient flux operator at the east cell face is this case

modified to:

Ge /ð Þsurface ¼
n
1;e
1

� �2
þ n

1;e
1

� �2
Vole

1

leg
/s � /i;j

� �
ðA:14Þ
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