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PULSE DISTORTION AND HILBERT TRANSFORMATION IN MULTIPLY 
REFLECTED AND REFRACTED BODY WAVES 

BY GEORGE L.  CHOY AND PAUL G .  R1CHARDS 

ABSTRACT 

Many seismic body waves are associated with rays which are not minimum 
travel-time paths. Such arrivals contain pulse deformation due to a phase shift in 
each frequency component. For sufficiently high frequencies, the phase shift each 
time a ray touches an internal caustic is ~/2 and frequency-independent. The 
distorting effect of a frequency-independent phase shift is successfully observed in 
seismograms from events in several regions. The data examined are long-period 
(T > 9 sec). They include deep earthquakes (depth > 500 km), in which a series 
of well-separated S phases (S, sS, SS and sSS) are available. These show that the 
wave form of SS, which has been distorted in propagation through the Earth, can 
be derived from the wave form of sS, which is not distorted. Shallow events, in 
which multiple S phases overlap, also exhibit behavior predicted by phase distor- 
tion. Rays supercritically reflected or refracted at a discontinuity in the Earth also 
suffer a constant phase shift, which in general can have any value. An important 
case is SKKS: its undistorted wave form resembles that of SKS, which has a 
minimum travel-time path. 

Without exception, all the distorted wave forms bear little or no resemblance to 
the original wave form. That is, neither the first arrival of energy nor the subsequent 
relative position of peaks and troughs on a distorted wave form appear at the ray 
theoretical times. Thus, T-A curves constructed by choosing arrival times to cor- 
respond to the first arrival of energy may be biased. Similarly, doubt is cast on 
differential travel times chosen from first motions, or from averaging several points 
on what appear to be corresponding peaks and troughs of two wave forms. Some of 
the rays most important to seismology, in which the distortion phenomenon 
occurs, include P and S (where d2T/dA z > 0), PKP~B, PP, SS, and SKKS. 
Removal of phase distortion in the data is computationally straightforward. By 
exploiting the resulting wave forms to full advantage in correctly picking arrival 
times, we may hope to improve velocity models of the Earth. It is shown that 
matched filtering to obtain differential travel times is appropriate for certain pairs 
of body waves if they are phase-corrected. 

INTRODUCTION 

Wave form distortion may be imposed on a pulse propagating through the Earth by a 
variety of mechanisms. These include amplitude and phase effects such as attenuation 
and dispersion. The distortion to be described in this paper occurs in the context of 
geometrical ray theory, and is present for rays which have touched an internal caustic 
surface (as in Figure 1). Such rays have the property o f  a non-minimum travel-time path. 
Jeffreys and Lapwood (1957) have shown that the deformation incurred at a caustic is, 
at sufficiently high frequencies, a constant ~/2 phase shift in each frequency component. 
This type of pulse distortion has been studied in acoustics (Arons and Yennie, 1950; 
Tolstoy, 1968; Blatstein, 1971; Sachs and Silbiger, 1971). However, it appears the effect 
has not been explicitly demonstrated in actual seismograms. 
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It would be important to confirm if the distortion of original pulse shapes is present on 
seismograms, since the distortion of an impulsive signal will in general develop a pre- 
cursor. This would invalidate the usual method of making travel-time picks (which is to 
mark the earliest indication of energy). Furthermore, the distorted body wave bears little, 
if any, resemblance to the original pulse. Consequently the usual method of calculating 
differential travel times by picking what appear to be corresponding points (e.g., the 
peaks or troughs) on two wave forms would be unreliable. This effect is expected to occur 
in many rays. Some of the more important are PP, SS and the receding branches of P, S 
and PKP. Additional phase distortion that is frequency-independent may be introduced 
by complex transmission and reflection coefficients of a ray which is supercritically 
reflected or refracted along its path. We shall discuss this for SKKS, which also touches 
an internal caustic, causing an additional ~/2 phase shift. 

RAYS THAT TOUCH A CAUSTIC 

Theory 
Several theoretical papers have described the existence of pulse distortion for specific 

rays in simple models. Jeffreys and Lapwood (1957) for a homogeneous fluid sphere and 
Burridge (1963) for a homogeneous solid sphere, have shown that pP and sS are minimum 
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Fro. 1. A point source showing some direct rays and rays returned to the surface after touching a 
caustic. The caustic surface may be envisioned as the envelope of receding rays. Rays 1 and 2 are each 
within the surface of a ray tube of cross-sectional area OA. The relative positions of I and 2 are reversed 
at points on opposite sides of the caustic. 

time paths and consequently are not phase deformed. PP and SS, on the other hand, are 
mini-max travel-time paths for A < 180 °, and are phase deformed by ~/2 upon touching 
an internal caustic. Hill (1974), for a point source in a homogeneous fluid half-space 
overlying a fluid half-space with positive velocity gradient, has shown that higher-order 
multiple reflections of P from below the interface form a series of internal caustics. He 
predicts which reflections are phase shifted by zc/2. In this and similar fluid models, the 
phase shift also is in a backward branch of direct P (Tolstoy; 1968; Sachs and Silbiger, 
1970; and Hill, 1974). We shall show that whenever d2T/dA z > 0, the travel time is not a 
minimum, provided the ray has a turning point. 

There are two brief heuristic ways to describe how the phase shift arises in rays which 
touch a single caustic. 

The first way uses geometrical properties of a caustic. Figure 1 sketches a point source 
and several rays radiating from it which touch an internal caustic surface before returning 
to the free surface. The ray approximation for a field at a point x due to a steady-state 
point source has the form 

Field (x, co) = f(x)(rf~/rA)1/2 exp[ito(t-~)] (1) 
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where 6A is the cross-sectional area at x of the ray tube which departs to x within some 
small solid angle 6f2 at the source; z is the travel time along the ray; o is radian frequency; 
and f(x) is a real function, which is different for the different physical fields under con- 
sideration. The quantity 5A has a different sign for two points situated on the same ray 
and such that the ray touches a caustic between them. Thus, a phase shift of plus or 
minus 7r/2 is introduced by (6A)-2/2. Since there is a requirement that the synthesized 
field in the time domain be real, 

Field (x, -09) = [Field (x, +co)]* 

(where [F]* denotes the complex conjugate of F). Thus, the phase shift has a different 
sign for positive and negative frequencies. That is, the phase jump is either sgn (co) 7r/2, 
or - sgn (co) 7r/2, (where sgn (09) = ___ 1 according as co ,~ 0). The final choice of sign 
here depends on the convention of our Fourier transform. 

A second way of viewing the phase shift is to consider how one might evaluate the 
displacement due to, say, a point source, by the method of steepest descent. Multipath 
arrivals, involving different ray parameters for the arrivals corresponding to separate 
branches on a T - A  curve, can each be evaluated by an integral in the complex ray para- 
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Fro. 2. (a) A reduced T - A  curve showing a triplication. At Ao, there are three arrivals. The first and 
third fall on forward branches and the second on a receding branch. (b) Integration path in the 
complex ray parameter plane crossing three saddles, each at a value of p (ray parameter) satisfying 
A(p) = Ao. The ( - )  and ( + )  signs indicate the sign of d2T/dA 2 at each saddle point. (Modified from 
Richards, 1973). 

meter plane (see Richards, 1973, equation 13). To see that there is a phase shift in arrivals 
corresponding to the backward branch, we note that the displacement integral for a 
specific distance, Ao, has the phase factor exp[icoJ(p)], where 

J(p) = T(p)-p~5(,p) + pA o (2) 

T(p) and A(p) are the time and distance functions for the Earth, and a ray arriving at the 
distance of interest (Ao) must have a ray parameter Po such that A(po) = Ao. For high 
frequencies, the body-wave displacement can be approximated by the standard asymp- 
totic method of integrating over a saddle point. By solving forp in OJ/t3p = 0, one finds 
saddle points occurring at values ofp  such that A(p) = Ao, i.e., at just the ray parameters 
for which there is a ray between source and receiver. Near such a saddle point, Po, J(P) 
may be approximated (using a Taylor series, and dA/dp = 1/(d2T/dA2)) by 

j(p) = T(po ) _ ½(p_po)2(d;T/dA 2)- I (3) 
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In this form, it becomes clear that the sign of d2Z/dA 2 will influence the orientation (in 
the complex ray parameter plane) of the path of steepest descent. Such a path has near 
Po the property that 

exp(icoJ) = exp(icoTo) exp(-  A z) (4) 

where A is real and positive. It follows from (3) and (4) that 

p - p o  = A [ ( -  2i/co)(a2~/aA2)] 1/~ (5) 

so the path of integration makes an angle _ 7r/4 to the real p axis, according as d2T/dA 2 
is >< 0. Figure 2a shows a T -  A curve with a triplication, and Figure 2b gives the integra- 
tion path. For each successive arrival, d2T/dA 2 is alternately negative and positive: the 
steepest descent contribution from each saddle then has a frequency-independent factor 
of either exp(irc/4) or exp(-ire~4), giving rise to the re/2 phase shift we seek to explain. 
(The phase shift we have just found is -7r/2 for the positive frequencies in the non- 
minimum time arrival, with respect to the minimum time arrival. This discussion was 
based on full wave theory which conventionally uses F(co) = S_ ~ ~o f ( t )  exp(icot) dt for the 
Fourier transform off(t). In the following we shall use the other, more common, sign 
convention for the Fourier transform, so the associated phase shift used below is + 7r/2.) 

We note that whenever d2T/dA 2 > 0 and the ray has a turning point, the ray path has a 
"maximum time" property for perturbations in the vertical plane containing source and 
receiver. To see this, consider a slight perturbation in which the ray parameter p become 
p + ~p, so that the perturbed ray passes through a point somewhat displaced radially from 
the original turning point. The corresponding perturbation in travel time is given by 
Richards (1971, p. 466) as 

fiT = - I/2(6p)2(d2T/dA 2)-  i (6) 

v~here 8p = ray parameter increment. A travel-time for this particular perturbation is 
thus minimum (maximum) if 8T is positive (negative), but the sign of 6T is opposite that 
of d2T/dA 2. 

Although the analysis of Figure 1 is directly applicable to SS  (for it touches an internal 
caustic), the configuration of saddle points in Figure 2 does not apply to the relationship 
of sS and SS, since both these arrivals have d2T/dA 2 < 0. However, SS  has one more 
turning point than sS, which introduces an extra re/2 phase shift in the integrand for which 
a saddle point analysis is carried out. 

In the time domain, several equivalent methods can be used to find the effect of a 
sgn(co)Tr/2 phase shift in each frequency component. For the signal f ( t ) ,  with Fourier 
transform F(co) = S-~o~ f(t) exp(-  icot) dr, the phase-distorted signal in the time domain is 

~ f ~  exp,- T['+iTrsgn(co))F(co)exp(icot)dco (7) 

Substituting for F(co) in (7), we obtain the equivalent formula 

f: dco f('c) sin co(z- t) dz, (8) 
oO 

which Titchmarsh (1926) and Jeffreys and Jeffreys (1956) have called the allied function 
off(t). Integrating over co in (8), one finds also the form 

1 ~® f(z) dz (9) 
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in which the singularity at z = t is handled by taking the principal value of the integral, 
i.e., by canceling the singular contributions from z just greater and just less than t. 

The form (9) is one definition of the Hilbert transform off(t) ,  which we symbolize by 
H[f'(t)]. It can also be seen as a convolution (denoted by *) so the final equivalent form 
for the distorted signal is 

f ( t )  * ( -  I/Trt). (10) 

We shall loosely refer to any one of the versions (7), (8), (9), (10) as the Hilbert transform 
off(t) .  In practice, when this transform is to be computed, the original form (7) is most 
straightforward: one fast Fourier transform gives F(c0), and the re/2 phase shift reduces 
to an interchange of real and imaginary parts of F(co) (with a sign change in the resulting 
real part). An inverse finite Fourier transform then returns the required H[f(t)]. 

If  the Hilbert transform pair, f(t)  and H[f(t)], are themselves Hilbert transformed, the 
resulting pair is H[f(t)] and - f ( t ) .  The polarity reversal is simply a result of two 7r/2 
phase shifts. 

The instrument response is not needed in the computation to remove distortion. This 
follows because the signal on a seismogram is, say, sl(t) = f(t)*g(t), for incident wave 
formf(t),  where g(t) is the unit pulse response of the instrument. When the incident wave 
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FIG. 3. (a) A delta function arriving at a time t = 0. (b) The Hilbert t ransform of  6(t), (-1~nO. 

Note  that energy arrives before the ray arrival time. 

form is the Hilbert transform, H[f(t)], then the seismic record shows s2(t ) = H[f(t)]*g(t). 
Viewing the Hilbert transform as a convolution, it is easy to see that H[sl(t)] = Sz(t). 

In general, the wave form off( t )  bears no resemblance to H[f(t)]. The Hilbert trans- 
form makes all impulsive functions emergent and makes some emergent functions impul- 
sive. A drastic example is the distortion of a unit spike, 6(0. Figure 3 shows the distortion 
in this case, and Hilbert transformation obviously obscures the true arrival time. 

Observations 

(a) Deep earthquakes. The events used here are all deeper than 500 km, and therefore 
provide a group of well-separated body waves: S, sS, SS  and sSS. All data in this paper 
use records obtained from long-period WWSSN or high-gain long-period (HGLP) 
stations (Savino et aL, 1972) or long-period seismograms from the PAL station. 

The once reflected waves, sS and SS, differ in that sS does not touch a caustic but SS  
does. To establish their Hilbert transform relationships, we introduce a symbolic notation 
for sS and SS. The body wave sS is derived from an S wave by convolution with a transfer 
function Tx 

sS = S 'T1 
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T 1 accounts for frequency-dependent crustal and mantle transfer functions along the ray 
and upon the reflection and all effects except that due to touching a caustic. Similarly, S S  
is derived from an S wave by convolution with another transfer function, Tz, but it is also 
Hilbert transformed by touching a caustic, so 

S S  = H(S*T2)  

If the data are long-period and recorded at teleseismic distances, the transfer functions 
involve only gross features of the mantle and crust. Thus, T1 and 7"2 are expected to be 
nearly identical except for a multiplicative scalar. The scalar accounts for any amplitude 
disparity between sS  and S S  caused by geometrical spreading along different paths. The 
effect of radiation pattern also reduces to a scalar provided the takeoff angles o f s S  and S S  

with respect to the slip direction of the fault plane are nearly the same. We emphasize, 
therefore, that in our data it is wave form shape, and not amplitude, that we are concerned 
with. For convenience, T will be used wherever T~ and T 2 are identical except for a 
constant. 

If  a Hilbert transform is applied to sS, a wave form resembling S S  should result, 

(a) sS = S*T SS = H ( S * T )  

(b) H(S *T )  - S * T  

FI~. 4. (a) Symbolic representation of a seismogram containing sS and SS. T is the transfer function 
which accounts for all the frequency-dependent effects along the ray path except the effect of touching a 
caustic. (b) Seismogram after Hilbert transformation. Cross arrows point to equalities in wave form 
shape, not amplitude. 

H(sS) = H ( S * 7 )  = SS 

A second Hilbert transform merely gives the opposite sign. So the Hilbert transform of 
S S  should resemble s S  with reversed polarity, 

H ( S S )  = H(H(S*T) )  = - S * T  = - s S  

The relations are summarized in Figure 4. Figure 4a represents a seismogram with s S  and 
SS.  Figure 4b represents the seismogram after the whole record is Hilbert transformed. 
Cross arrows point to the wave shape equalities to expect for the data in Figures 5 to 7. 
The notation ( -  1) denotes an equality after polarity reversal of that particular seismo- 
gram section. 

If, on the focal sphere, s S  and S S  emerge with opposite polarities, the expected rela- 
tionships displayed in Figure 4 require modification. For the cross arrow similarities to 
hold, it is sufficient to reverse polarity for the lower (Hilbert transformed) record. 

Confirmation of pulse distortion in real data is found for deep earthquakes. Examples 
from three different regions are shown in Figures 5 to 7. Only the transverse components 
are shown, since this allows us to study S H  motion uncontaminated by SV,  PL-coupled 
or mode-converted energy. The upper record in each figure is the original seismogram. 
This time series was Hilbert transformed, and is shown as the lower record in each Figure, 
after any necessary polarity correction for focal mechanism. In every case, s S  does not 
resemble SS.  However, the wave shapes related by the cross arrows verify that s S  and S S  
are a Hilbert transform pair: the wave form of either one can be derived from the Hilbert 
transform of the other. 

(b) Shallow earthquakes. The Hilbert transformation is also exhibited for shallow 
earthquakes (<  30 km depth). In these cases, "S"  and " S S "  are actually Splus sS, and S S  
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4 min 
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FIG. 5. (a) Original EW (transverse) seismogram. Sea of Japan October 8, 1960, OT 05h 53m 01.1s; 

40.0N, 129.7E, depth 608 km, mb 6.5. Recorded at PAL, A = 96.3 °. (b) The Hilbert transform of (a). 
For convenience It(S) is still labeled S, and similarly for sS, SS  and sSS. The arrows indicate which pair 
of wave shapes are identical (the notation ( -  1) indicates a polarity reversal is required to see the similar- 
ity). A polarity reversal for focal mechanism correction was applied. 
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FIG. 6. (a) Original EW (transverse) seismogram. Northeast USSR, September 10, 1973, OT 07h 
43m 30.5s, 42.5N 130.9E, depth 532 km, m~ 6.0. Recorded at OGD (HGLP), A = 97.3 °. (b) The Hilbert 
transform of (a). A polarity reversal for focal mechanism was applied. 

4 min 
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FIG. 7. (a) Original NS (transverse) seismogram. Fiji, January 26, 1972, OT 23h 00m 24.2s, 20.2S, 
178.0E, mo 5.7, Ms 6.3, depth 668 km. Recorded at OGD (HGLP), A = 116.0 °. (b) The Hilbert transform 
of (a). Due to radiation pattern the relative amplitude of SS  is much greater than sS. Compare the shapes 
and not relative amplitudes. A polarity reversal for focal mechanism was applied. 
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plus sSS. I f  the ampl i tude  rat io  of  S to sS is nearly identical  to the ra t io  of  SS  to sSS, 
then, by the  l ineari ty p rope r ty  of  the Hi lber t  t ransform,  the body  wave formed by the 
sum of  S + sS and the body  wave formed by the sum of  SS + sSS are also Hi lber t  t rans-  

t a) S +sS = S +S*T SS + sSS = H(S*T)+H(S*T*T) 

~ ( - I )  
(b) H(S)+H(S*T) - (S*T) - (S*T*T)  

FIG. 8. (a) Symbolic notation of seismogram for shallow earthquake. (b) Hilbert transform of above. 
Cross arrows point to equalities in wave form shape, not amplitude equalities. 

4 m i n  
I I I I I 

0 

b ~(.i) 
FIG. 9. (a) Original EW (transverse) seismogram. East Pacific Rise, March 7, 1963, OT 05h 22m 

01.1s, 27.0S, 113.5W, depth < 30 km, m~ 5.6, Ms 6.75. Recorded at TUC, A = 59.0 °. This has a strike- 
slip focal mechanism. S is actually S+sS and SS is actually SS+sSS. (b) The Hilbert transform of (a). 
For convenience, we still use label S and SS instead H(S)and H(SS). 

4 rain 
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Fro. 10. (a) Original EW (transverse) seismogram. South Pacific Ocean, May 9, 1971, OT 08h 25m 
01.7s, 39.8S, 104.8W, depth < 30 kin, m,. 6.2, M~ 6.0. Recorded at DUG, 80.0 °. This has a thrust 
mechanism. (b) The Hilbert transform of (a). 

fo rm pairs.  The  top  of  Figure  8 represents  such a se ismogram and its Hi lber t  t ransform is 
the  lower par t  o f  the figure. The  wave shape equalit ies we expect are indicated by the 
cross arrows.  F o r  the cross a r row relat ionships  to hold,  two convolut ions  with T must  
reduce to  scalar  mul t ip l ica t ion by a constant .  This would  be the case, if  T were due simply 
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to the S H  reflection from a free surface. Figures 9 and l0 do show the Hilbert transform 
relations. The transverse components of the original seismograms are shown at the top, 
and Hilbert transformed seismograms at the bottom. The phase shift is not a source 
effect. Thus, it is observed even though the events have different focal mechanisms: 
strike-slip for the East Pacific Rise event and intraplate thrust for the South Pacific Ocean 
event. 

We emphasize that in none of the events studied were there any failures: the Hilbert 
transformation was always observed as long as the transverse component was used. 
Except in isolated instances, the radial and vertical components did not show the Hilbert 
transformation property for reflected S V  or PP. Apparently, mode-converted and PL 
energy severely contaminated the phase spectra of these body waves. Polarization filters 
(e.g., see Choy and McCamy, 1972) applied to these components can help by suppressing 
energy with other than body-wave polarization. Nevertheless, it is clear from Figures 5 to 
10 that phase distortion does occur for rays touching a caustic. Thus, it is still appropriate 
and necessary to remove the ~/2 phase distortion, even if not readily seen, prior to using 
arrivals like PP or S S  for travel-time or normal mode purposes. This is equally true for 
P, S and PKP where d2T/dA 2 > O. 

SUPERCRITICALLY REFLECTED AND REFRACTED WAVES 

Theory 

Arons and Yennie (1950) have pointed out that if an incoming wavef(t) suffers a phase 
shift e, with reflection or refraction coefficient R, then the outgoing wave fg ( t )  may be 
calculated from a linear combination off( t )  and its Hilbert transform. The large class of 
seismological examples of such phase shifts includes all rays which are supercritically 
reflected or refracted at a discontinuity such as the Earth's free surface, ocean bottom, 
crust or core-mantle boundary. Constants in the linear relation are dependent on the 
phase shift and may be derived as follows 

f~ ( t )  = (1/2x) S_~o~ R exp[i sgn(c0)e]F(co) exp(icot) dco 
= (1/2~) S ~  R[cos e+i  sgn(co) sin e]F(co) exp(icot) dco 
= R{cos e f ( t )+ sin e H[f(t)]). (11) 

Seeking to retrieve the original pulse shape, we go one step further and take the Hilbert 
transform of(11), 

H[fR(t)] = R{- s in  e f ( t )+cos  e H[f(t)]}. (12) 

From (11) and (12) it follows that the original pulsef(t) is found in terms of the recorded 
signal and its Hilbert transform, 

f ( t )  = (1/R) {cos e fR(t)  -- sin e It[fR(t)] } (13) 

(this is equivalent to reversing the role o f f a n d f  R in (11), and phase shifting by -e) .  

Data Analysis 

To simulate the effect of different phase shifts on an undistorted wave form, we phase 
shifted an original S wave in 10 ° increments between 0 ° and 90 ° (Figure 11) by using 
equation (11). Typically, for long-period data, a fairly wide range of phase shifts (say, 
_+ 15 °) still results in a small time shift (about 1.5 sec). 

An important example of a phase shift other than n/2 occurs in the core phase SKKS. 
A phase shift is introduced for each of the three interactions of SKKS with the core- 
mantle boundary, provided the ray parameter would make the turning point for P waves 
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FIG. 11. An S wave is subjected to phase shift in 10 ° increments, starting with the original signal (0 ° 
and ending with the Hilbert transform (90°). The S wave is from the event in Figure 6. 
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in the mantle. The resulting inhomogeneous P waves decay with depth and a phase shift 
arises from the reflection-transmission coefficients at the core-mantle boundary. This 
deformation is in addition to the re/2 phase shift incurred at a caustic. Thus, SKKS 
recorded on a seismogram has the form H[fR(t)]. Phase distortion of SKKS can be 

2 m i n  
I i i i 

b 

SKS SKKS~ 

FIc. 12. (a) An SKS-SKKS  pair. Original EW (radial) seismogram. Fiji, November 20, 1971, OT 
07h 28m 01.Is, 23.4S, 179.9W, depth 551 km, mb 6.0. Recorded at OGD (WWSSN), A = 116.0 °. 
(b) A composite seismogram in which SKS  and SKKS, separated by a vertical line, are processed with 
different windows. The SKS  here, having been phase shifted the same amount S K K S  was shifted in the 
Earth, now resembles SKKS. Conversely, SKKS, after removing distortion, now resembles the original 
SKS. Time base relative to the original record is preserved. 

4 min 
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FIc. 13. (a) An SKS-SKKS  pair. Original EW (radial) seismogram. Fiji, July 21, 1973, OT 04h 19m 
17.1s, 24.8S, 179.2W, 411 km, mb 5.9. Recorded at OGD (WWSSN), A = 116.5 °. (b) Composite seismo- 
gram. See Figure 12b for explanation. 

removed by applying equation (13). Since SKS is a minimum travel-time ray, and its ray 
parameter is small enough not to incur phase shifts in crossing the core-mantle boundary, 
its wave form is a reasonable approximation to what f(t),  the undistorted wave form, 
would look like. Furthermore, knowing the phase shift, SKS can be phase-shifted to look 
like SKKS using equation (11). Three events showing SKS-SKKS pairs are shown in 
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Figures 12 to 14. The top trace in each figure is the radial component of the original 
seismogram. The bottom trace is a composite seismogram in which two windows, con- 
taining SKS and SKKS, are treated with different operations. SKKS, after being corrected 
for the phase deformation introduced at the caustic and at each core-mantle interaction, 
now looks like SKS. Conversely, after being phase-shifted by the same angle but with the 
opposite orientation, SKS now resembles SKKS of the original seismogram. 

CONSEQUENCES OF PULSE DEFORMATION IN SEISMOGRAMS 

The analysis of pulse distortion predicts that a sufficiently impulsive function will 
develop a precursor upon Hilbert transformation. In having verified the existence of 
pulse distortion in data, we must question the present methodology of constructing travel- 
time curves. T-A curves for non-minimum travel-time rays like SKKS may actually be 
based on times picked earlier than the true ray theoretical time. To test for bias, absolute 
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FI~. 14. (a) An SKS-SKKS pair. Original EW (radial) seismogram. South Kermadec, August 22 
1973, OT 06h 39m 21.4s, 32.8S, 179.2W, m, 5.5, Ms 6.0, depth < 30 km. Recorded at OGD (HGLP), 
A = 122.0 °. (b) Composite seismogram. See Figure 12b for explanation. 

and differential travel times for SS and SKKS were compared before and after these 
waves were corrected for phase shift. We examined several long-period records, including 
the examples shown so far. 

The data we used for absolute travel time fall into two classes. The first is where the 
phase-corrected wave form of a seismically recorded signal has an unambiguous nearly 
impulsive first motion (see SS in Figures 9 and 10; and SKKS in Figures 12 and 13). A 
preliminary result is that the arrival times of these phase-corrected wave forms are found 
to be systematically later with respect to the originally recorded form by up to about four 
or more seconds. The second class of data is the case where both the recorded and phase- 
corrected signals have an emergent or ambiguous first motion (see SS in Figures 6 and 7), 
which could be due to a wave form which is inherently emergent or to high noise level, 
including unwanted seismic energy like codas of body waves. For this type of data, the 
travel times picked before and after phase-correction usually did not differ significantly. 
This is not surprising, for in signals with a narrow frequency band such as long-period 
data, the effect of pulse distortion is manifested more conspicuously as a constant shift of 
the peaks and troughs of a wave form than as an emergent onset. 
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Differential travel times between two body waves are commonly used in studies of the 
Earth's interior. We now examine the error where, because one of the body waves is too 
emergent to choose a time of first arrival, the differential travel time is taken as the interval 
between the first prominent features (peaks and troughs) of the two body waves. The 
intervals between several peaks and troughs may be averaged if the two wave forms 
appear very similar. We have already pointed out, however, that the positions of peaks 
and troughs are even more subject to phase shifts than the first arrivals. For example, the 
relative positions of the first peak of SKKS in a and b in Figures 12 and 13 differ by about 
4 sec. Two sources of scatter in differential travel times are possible. First, as discussed 
previously, a systematic bias can be introduced if the phase shift of a peak (or trough) is 
not corrected. Second, there is no simple relation governing the behavior of peaks and 
troughs of any individual body wave before and after distortion: so, in using an original 
but distorted wave form, it is not predictable whether a record reader would pick a peak 
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Fro. 15. (a) Composite seismogram with sS and H(SS). This event is from the Sea of Japan (see 
Figure 6). Left of the vertical line, S and sS come from Figure 6a. Right of the vertical line, H(SS) and 
H(sSS) come from Figure 6b with a polarity reversal. Time base relative to the original record is pre- 
served. (b) sS from the Sea of Japan event. It is used as the match filter for the composite seismogram. 
(c) The autocorrelation of sS. (d) Seismogram in (a) after match filtering with sS. The two central peaks 
look like the autocorrelation function of the match filter and correspond to the times of best correlation 
of sS with itself and with H(SS). 

later or earlier with respect to the position of the phase-corrected peak. This would 
result in non-systematic errors. We used our data to obtain peak-to-peak differential 
travel times: one set of values chosen before and one set chosen after phase-correction. 
We found that the two sets of values did not differ systematically, suggesting that the 
second error was dominant. 

As a further test, we read differential times from first motions of body waves which 
were sufficiently impulsive after phase-correction, and compared this new set of times 
with the peak-to-peak differential times. Indeed, the peak-to-peak times obtained from 
corrected wave forms agreed much better with this new set of values by several seconds 
than those values obtained from uncorrected wave forms. It appears that the scatter of 
differential times will be reduced if waves which have been phase-shifted in propagation 
through the Earth are corrected prior to use. 

The similarity in wave form after phase correction makes matched filtering an appro- 
priate tool to obtain differential travel times for body waves which are Hilbert transform 
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pairs. The process involves cross-correlating one signal, the filter, with another signal. 
The composite seismograms of Figures 15a and 16a, for instance, show that sS and SKS 
because of their similarity in wave form to H(SS) and phase-corrected SKKS, respectively, 
would be ideal matched filters to obtain true sS-SS and SKS-SKKS differential travel 
times. The filters chosen for our examples (Figures 15b and 16b) are first matched with 
themselves to obtain their autocorrelation functions (Figures 15c and 16c). They are next 
cross-correlated with the composite seismograms to give Figures 15d and 16d. The peaks 
which resemble the autocorrelation functions indicate the time of best correlation between 
sS, H(SS), SKS and phase-corrected SKKS with their respective matched filters. The 
differential travel time is the interval between the appropriate peaks. 

This technique has two advantages. First, the times of best correlation obtained from 
matched filtering effectively average differential times over the entire wave form of each 
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FIG. 16. (a) Composite seismogram with SKS and phase corrected SKKS. This event is from Fiji 
(see Figure 14). Left of the vertical line, SKS comes from Figure 14a. Right of the line, phase corrected 
SKKS comes from Figure 14b. The time base is preserved. (b) SKS from the Fiji event. It is used as the 
match filter for the composite seismogram. (c) The autocorrelation of SKS. (d) Seismogram in (a) after 
match filtering with SKS. The two peaks look like the autocorrelation function of the match filter and 
correspond to the times of best correlation of SKS with itself and with phase-corrected SKKS. 

body wave. Second, the window of the wave form used as a match filter is not critical. As 
long as the principal part of the wave form is recognizable and is included in the filter, the 
output will have peaks resembling the autocorrelation function at the arrival time of the 
matching signals. This is a particularly valuable feature where the first arrival of energy is 
ambiguous. 

The wave form of Hilbert transform pairs may also be exploited in studies of multi- 
branched travel-time curves. A major problem here is in deciding to which branch 
(receding or forward) a particular arrival belongs. By first deciding whether the arrival 
has the n/2 phase distortion, one finds justification for placing it on a forward (d2T/dA a < 
0) or receding (d2T/dA 2 > 0) branch of the travel-time curve. Note this procedure is 
valid in the general case of cusps, as well as caustics. 

Amplitude attenuation studies are not affected by the phase deformation we are 
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describing in this paper, since any frequency which is phase shifted due to an attenuation 
process will still be phase shifted ~/2 when a ray touches a caustic. The data have shown 
that a single Hilbert transform, along with a correction for any phase shift due to super- 
critical reflection or refraction, is sufficient to invert the phase shift introduced upon 
touching a caustic. 

CONCLUSIONS 

We have demonstrated that phase distortion is observable in real seismic data. This has 
been explicitly shown for several events from different regions at different depths with 
different focal mechanisms. Pulse distortion may be removed with Hilbert transform 
techniques, whether the phase shift was incurred by touching a caustic and/or by super- 
critical reflection or refraction. 

We have suggested ways to exploit phase-corrected wave forms to fuller advantage. In 
particular, differential travel times can be improved by removal of phase distortion in the 
wave forms, and by matched filtering of phase-corrected wave forms. 

One must be extremely wary of pulse distortion when choosing travel times. The 
observations strongly suggest that existing travel-time data be re-examined for possible 
systematic biases. Bias must be suspected for the receding branches of P, S and PKP, as 
well as the body waves SKKS, PP and SS. 
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