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Abstract

Numerical analyses for the Bragg resonant reflection of carrier waves associated long waves due
to sinusoidally varying seabeds are performed by using a set of coupled ordinary differential
equations derived from the Boussinesq equations. The Boussinesq equations are firstly approximated
with the Fourier decomposition. The coupled governing equations are then derived and used to
simulate evolution of both short and long wave components. It is also found that wave groups are
generated by two carrier waves with slightly different frequencies. The wave energy of the initial
wave components is transferred to other harmonic components during propagation over a long
distance. Evolution and reflection of both short and long waves were largely affected by nonlinearity.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Water waves observed in shallow-water region are much irregular and simultaneously
regular for a long time period. In general, short waves have periods of 3—15 s, while wave
groups composed by carrier waves and long waves associated with wave groups have
periods of 30 s to a few minutes (Liu and Cho, 1993). Long waves generated by wave
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groups are called infragravity waves and these long period waves are believed to be
responsible for harbor resonance and formation of rippled sand bars (Bowers, 1977; Mei
and Agnon, 1989; Mei and Liu, 1993).

Since the laboratory demonstration by Heathershaw (1982), the Bragg resonant
reflection has been studied by many researchers. Kirby (1986) calculated the Bragg
reflection of propagating waves over sinusoidal and doubly sinusoidal seabeds. Yoon and
Liu (1987) studied the near resonant reflection of cnoidal waves in shallow water with a
couple of governing equations derived from the Boussinesq equations. Guazzelli et al.
(1992) studied a higher order Bragg reflection. They carried out laboratory experiments for
reflection of surface waves by doubly sinusoidally rippled beds. Liu et al. (1992) analyzed
evolution of long waves generated by wave groups and shoaling effects with the
Boussinesq equations. Liu and Cho (1993) studied the Bragg reflection of infragravity
waves. They considered the reflection of long waves additionally and studied Bragg
reflection of long waves generated by wave groups with a multiple-scale perturbation
approach. They also showed that long waves associated with a wave group could be
resonantly reflected by a sinusoidally varying topography. However, they neglected the
reflection of short wave components.

Recently, Cho and Lee (2000) studied the Bragg reflection with the eigen function
expansion method. They included evanescent modes created by a rippled bed. Ardhuin
and Herbers (2002) investigated the Bragg reflection of random waves propagating over
the irregular bottom topography. Cho and Lee (2003) extended Yoon and Liu’s (1987)
study by including fast varying terms and beach slope effects.

In this study, the Boussinesq equations derived by Peregrine (1967) were employed
as the governing equations. The Boussinesq equations are well known to describe
weakly nonlinear, weakly dispersive shallow-water waves. Following to Liu and Cho
(1993), long and short wave components were not divided mathematically in this
study. Incident waves were assumed to be long waves having an angular frequency of
magnitude of Q as compared with the nondimensional angular frequency of short
waves. Thus, the higher order terms of long wave components represent short waves.
Furthermore, waves satisfying the condition of nQ>1.0 are regarded as short
waves and investigated the strong reflection of carrier (short) waves composing wave
groups.

A brief derivation of the governing equations is firstly introduced for completeness
in the Section 2. Numerical example is given in Section 3. Particular attention is paid
to the characteristics of the Bragg reflection of carrier waves composing wave groups.
Finally, careful discussion on the solutions and concluding remarks are made in
Section 4.

2. Modulation equations

In this section, a set of modulation equations for groups of sea swells in shallow
water is derived from the one-dimensional Boussinesq equations. By employing wq as
the characteristic short wave frequency, a, as the characteristic short wave amplitude,
and hg as the characteristic water depth, the following dimensionless variables may be
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introduced as

Wy I, ho ! L,
t=wt', xX=—x, h=—H", u=————mu, (=—°C,
’ Jgh ho ag(ghy)” ag 0
1 /
w=—w
Wo

where £ is the free surface displacement, u denotes the depth-averaged horizontal
velocity, and g denotes the gravitational acceleration.

Using these dimensionless variables, the Boussinesq equations can be written in the
following dimensionless form (Liu and Cho, 1993; Cho and Lee, 2003).
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and ¢ and u” are small parameters representing the nonlinearity and frequency dispersion,
respectively.

To investigate reflection and shoaling of incident waves over a slowly varying
topography, the water depth is described as (Fig. 1)

h=h+h 5)

in which 0(%) = 0(,u2) has been assumed.
Assuming a periodic motion in time, the free surface displacement and the horizontal
velocity can be expressed as Fourier series given by
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Fig. 1. A definition sketch of a slowly varying seabed.
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with n=0,%1,£2. By differentiating Eq. (7) with respect to x and ¢, the following
relations can be obtained
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By substituting Eqgs. (5)-(7) into Egs. (2) and (3) and collecting the nth Fourier
components, the followings can be derived
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where s=0,%1,%2,4. The leading order terms of Egs. (8) and (9) yield
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for n=0. Eq. (11) represents steady components which do not have any contributions to
other harmonics up to O(e). Thus, the steady components are not considered in this study.

Combining the continuity and the momentum equations, the following equation can be
derived.
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The leading order of Eq. (12) yields
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Eq. (13) is the linear wave equation and can be solved as
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By using Eq. (13), Eq. (12) may be rewriten as
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Following Liu and Cho’s (1993) approach, the wave field can be split into the right- and
the left-going wave components as:

Co=0F+¢ (16)

in which £} and ¢, denote the right and the left-going wave components, respectively.
Then, the following coupled equations have been assumed
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where the coupling term Fr is to be determined. By substituting Eqs. (16) and (17) into Eq.
(15) and after a lengthy algebra, the coupling term can be determined as
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After assuming a periodic motion in space again, the wave components can be
expressed as

:;:_ =An(x)einQb" Cn_ — Bn(x)e—inﬂﬂ (19)

in which 0= fﬁdx has been used. By differentiating Eq. (19) with respect to x, the
following relations are obtained.
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Substituting Eqs. (18)—(20) into Eq. (17) yields a set of coupled nonlinear first-order

(20)
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ordinary differential equations given as
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for the left-going waves. Once A,, and B,, are determined, the free surface displacement can
be recovered from Eqgs. (7) and (19). That is,

C(x’ l) — E Z[Anem!)ﬂ + Bne—lngﬁ]e—ant (23)

3. Numerical example

In this section, numerical results for the propagation and reflection of carrier waves
composing wave groups by a sinusoidally varying bottom topography are presented. The
coupled nonlinear governing equations for waves derived in the previous section are
integrated by using the fourth-order Runge-Kutta method. Egs. (21) and (22) should be
solved simultaneously with prescribed boundary and initial conditions for A,,.

An iterative scheme is adopted from Liu and Cho (1993) to solve the governing
equations. In the scheme, the transmitted wave field is first solved without consideration of
a reflected wave field. The reflected wave is then calculated with transmitted wave
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solutions. The transmitted wave field is finally updated with the newly obtained reflected
wave field. This procedure is repeated until converged solutions are obtained. The
convergence condition is defined as

1A, — 14,157 <10~ 1B,I* — 1B, <]

<1074 (24)
|An|k71 |Bn|k71

where k—1 and k represent a previous and a current iteration steps, respectively.
Fig. 2 shows the propagation of carrier waves composing wave groups and evolution of
long wave components. The following initial conditions are employed for carrier waves.

A, =10, A, =10 Q=1 (25)

in which n is equal to 10 because the value of Q is 0.1 in Fig. 2. In the first example,
numerical results are obtained for p=0.12 and 6 =2.0. The rippled bed begins at x(=L,)=
70 and ends at x(= L,)= 80m. Therefore, there are 10 sinusoidal ripples within the ripple
bed. In both Figs., n,,x =20 is used, and the frequency of a wave group represented by Q
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Fig. 2. The evolution of wave groups and transmitted long waves over a rippled bed: (a) ¢=0.02, u>*=0.1;
(b) e=0.08, u>=0.1.
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Fig. 3. Bragg reflection of long waves (p=0.08, n=20, 2=0.2, ¢=0.02, u>=0.09).

is 0.1. In Fig. 2, free surface profiles and the transmitted long waves over the rippled bed
at t=0 are presented. The amplitude of the transmitted long waves in Fig. 2(b) is larger
than that of Fig. 2(a). In Fig. 2(a) and (b), the free surface profile becomes more irregular
and noisy as the nonlinearity increases. That is, more energy transfers to other harmonic
components as the nonlinearity increases due to active interactions among other
harmonic components.

To ensure the accuracy of the numerical scheme used for integrating Eqgs. (21) and (22),
numerical solutions for the Bragg reflection of long waves are first obtained and compared to
those by Liu and Cho (1993). As shown in Fig. 3, the numerical solutions for long waves agree
very well. Thus, the present model can be applicable for long waves associated with the wave
groups. The present model includes reflections of short wave components as well as long wave
components. However, Liu and Cho considered reflection of only long wave components.
Thus, Liu and Cho’s study can be viewed as a limiting case of the present study.

Fig. 4 shows incident and reflected wave profiles propagating over the rippled bed
connected two equally constant depth regions. The rippled zone begins at x="70m and ends
at x=90m. The conditions of the rippled seabed are also the Bragg reflection condition for
incident carrier waves. When the nonlinearity is relatively small, the reflected wave
amplitude increases for a less amount of energy transfer from initial wave components to
others. The magnitude of resonant effects of carrier waves is also appreciable.

Nextly, the Bragg resonant reflection with a fixed length of a rippled bed is investigated.
The wavelength of a ripple varies as the wavenumber varies and the rippled bed begins at
x=L,; =707 with n,,, =30. Fig. 5 shows the amplitude spectrum of the wave group at x=
707. Energy is transferred to the other harmonic components from the initial conditions
Ajp and A, due to nonlinear interactions among other components.

Figs. 6 and 7 show the energy of reflected wave components of carrier waves with e=
0.02, u*=0.1 and ¢=0.08, u>=0.1 respectively. The wave energy is proportional to
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Fig. 4. Incident and reflected carrier waves composing wave groups over a rippled seabed: (a) ¢=0.02, u>*=0.1;
(b) e=0.08, u>=0.1.
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Fig. 5. The evolution of the amplitude spectrum of a wave group.
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Fig. 6. Reflection coefficient of energy of carrier waves over a rippled bed (p=0.12, e=0.02, x*>=0.1).

the square of its amplitude. Thus, the reflection coefficient of wave energy could be
(26)

expressed by
2
_ 2oalBil
in which A,, and B, represent incident and reflected wave components, respectively. In
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Fig. 6, the wave component with the angular frequency of nQ2=1.0 is the largest. Thus,
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Fig. 7. Reflection coefficient of energy of carrier waves over a rippled bed (p=0.12, e=0.08, u>*=0.1).
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a Bragg reflection occurs at 6=2.6. In Fig. 7, wave components which have angular
frequency of nQ=1.2~ 1.4 are large. The Bragg reflection occurs about at 6 =2. When the
nonlinearity is relatively small, reflection coefficients increase largely at the Bragg
reflection condition. However, the reflection coefficient of strong nonlinear waves change
slightly as the wavenumber of a seabed varies. For conditions of ¢=0.02, u=0.1, L, —
L =10 the reflected wave energy is about 30% of the incident wave energy at the Bragg
reflection condition.

4. Concluding remarks

In this paper, a set of governing equations is newly derived from the Boussinesq
equations to investigate the evolution of wave groups and carrier waves composing wave
groups over a sinusoidally varying topography. A splitting technique is used to derive the
coupled nonlinear first-order ordinary differential equations describing transmitted and
reflected wave fields.

The newly derived governing equations are then used to study the evolution of wave
groups and Bragg resonant reflection of carrier waves. Incident waves are wave groups
generated by two short waves with slightly different frequencies. The energy of the initial
wave components is transferred to other harmonic components during propagation over a
long distance. Evolution and reflection of short and long waves are influenced largely by
nonlinearity. The reflection coefficient of carrier waves can be enhanced by decrease of
nonlinearity.

References

Ardhuin, F., Herbers, T.H.C., 2002. Bragg scattering of random surface gravity waves by irregular seabed
topography. J. Fluid Mech. 451, 1-33.

Bowers, E.C., 1977. Harbour resonance due to set-down beneath wave groups. J. Fluid Mech. 79, 71-92.

Cho, Y.S., Lee, C.H., 2000. Resonant reflection of waves over sinusoidally varying topographies. J. Coastal Res.
16 (3), 870-876.

Cho, Y.S., Lee, J.I., 2003. Resonant reflection of cnoidal waves on a sloping beach. J. Coastal Res. 19 (4), 1011-
1017.

Guazzelli, E., Rey, V., Belzons, M., 1992. Higher-order Bragg reflection of gravity surface waves by periodic
beds. J. Fluid Mech. 245, 301-317.

Heathershaw, A.D., 1982. Seabed-wave resonance and sand bar growth. Nature 296, 343-345.

Kirby, J.T., 1986. A general wave equation for waves over rippled bed. J. Fluid Mech. 162, 171-186.

Liu, P.L.F,, Cho, Y.S., 1993. Bragg reflection of infragravity waves by sandbars. J. Geophys. Res. 98, 22733—
22741.

Liu, P.L.F., Yoon, S.B., Cho, Y.S., 1992. Shoaling of wave groups in shallow water. In: Debnath, L. (Ed.),
Nonlinear Dispersive Wave Systems. World Scientific Publishing Co., pp. 41-56.

Mei, C.C., Agnon, Y., 1989. Long-period oscillations in a harbour induced by incident short waves. J. Fluid
Mech. 208, 595-608.

Mei, C.C., Liu, P.L.F., 1993. Surface waves and coastal dynamics. Ann. Rev. Fluid Mech. 25, 215-240.

Peregrine, D.H., 1967. Long waves on a beach. J. Fluid Mech. 25, 321-330.

Yoon, S.B., Liu, P.L.F., 1987. Resonant reflection of shallow-water waves due to corrugated boundaries. J. Fluid
Mech. 180, 451-469.



	Bragg resonant reflection of carrier waves composing wave groups
	Introduction
	Modulation equations
	Numerical example
	Concluding remarks
	References


