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Abstract

Numerical analyses for the Bragg resonant reflection of carrier waves associated long waves due

to sinusoidally varying seabeds are performed by using a set of coupled ordinary differential

equations derived from the Boussinesq equations. The Boussinesq equations are firstly approximated

with the Fourier decomposition. The coupled governing equations are then derived and used to

simulate evolution of both short and long wave components. It is also found that wave groups are

generated by two carrier waves with slightly different frequencies. The wave energy of the initial

wave components is transferred to other harmonic components during propagation over a long

distance. Evolution and reflection of both short and long waves were largely affected by nonlinearity.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Bragg resonant reflection; Boussinesq equations; Carrier waves; Wave group; Nonlinearity

1. Introduction

Water waves observed in shallow-water region are much irregular and simultaneously

regular for a long time period. In general, short waves have periods of 3–15 s, while wave

groups composed by carrier waves and long waves associated with wave groups have

periods of 30 s to a few minutes (Liu and Cho, 1993). Long waves generated by wave
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groups are called infragravity waves and these long period waves are believed to be

responsible for harbor resonance and formation of rippled sand bars (Bowers, 1977; Mei

and Agnon, 1989; Mei and Liu, 1993).

Since the laboratory demonstration by Heathershaw (1982), the Bragg resonant

reflection has been studied by many researchers. Kirby (1986) calculated the Bragg

reflection of propagating waves over sinusoidal and doubly sinusoidal seabeds. Yoon and

Liu (1987) studied the near resonant reflection of cnoidal waves in shallow water with a

couple of governing equations derived from the Boussinesq equations. Guazzelli et al.

(1992) studied a higher order Bragg reflection. They carried out laboratory experiments for

reflection of surface waves by doubly sinusoidally rippled beds. Liu et al. (1992) analyzed

evolution of long waves generated by wave groups and shoaling effects with the

Boussinesq equations. Liu and Cho (1993) studied the Bragg reflection of infragravity

waves. They considered the reflection of long waves additionally and studied Bragg

reflection of long waves generated by wave groups with a multiple-scale perturbation

approach. They also showed that long waves associated with a wave group could be

resonantly reflected by a sinusoidally varying topography. However, they neglected the

reflection of short wave components.

Recently, Cho and Lee (2000) studied the Bragg reflection with the eigen function

expansion method. They included evanescent modes created by a rippled bed. Ardhuin

and Herbers (2002) investigated the Bragg reflection of random waves propagating over

the irregular bottom topography. Cho and Lee (2003) extended Yoon and Liu’s (1987)

study by including fast varying terms and beach slope effects.

In this study, the Boussinesq equations derived by Peregrine (1967) were employed

as the governing equations. The Boussinesq equations are well known to describe

weakly nonlinear, weakly dispersive shallow-water waves. Following to Liu and Cho

(1993), long and short wave components were not divided mathematically in this

study. Incident waves were assumed to be long waves having an angular frequency of

magnitude of U as compared with the nondimensional angular frequency of short

waves. Thus, the higher order terms of long wave components represent short waves.

Furthermore, waves satisfying the condition of nUR1.0 are regarded as short

waves and investigated the strong reflection of carrier (short) waves composing wave

groups.

A brief derivation of the governing equations is firstly introduced for completeness

in the Section 2. Numerical example is given in Section 3. Particular attention is paid

to the characteristics of the Bragg reflection of carrier waves composing wave groups.

Finally, careful discussion on the solutions and concluding remarks are made in

Section 4.
2. Modulation equations

In this section, a set of modulation equations for groups of sea swells in shallow

water is derived from the one-dimensional Boussinesq equations. By employing u0 as

the characteristic short wave frequency, a0 as the characteristic short wave amplitude,

and h0 as the characteristic water depth, the following dimensionless variables may be
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introduced as
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where x is the free surface displacement, u denotes the depth-averaged horizontal

velocity, and g denotes the gravitational acceleration.

Using these dimensionless variables, the Boussinesq equations can be written in the

following dimensionless form (Liu and Cho, 1993; Cho and Lee, 2003).
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and 3 and m2 are small parameters representing the nonlinearity and frequency dispersion,

respectively.

To investigate reflection and shoaling of incident waves over a slowly varying

topography, the water depth is described as (Fig. 1)

h Z �h C ~h (5)

in which O dh
dx

� �
zOðm2Þ has been assumed.

Assuming a periodic motion in time, the free surface displacement and the horizontal

velocity can be expressed as Fourier series given by
0
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Fig. 1. A definition sketch of a slowly varying seabed.
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with nZ0,G1,G2. By differentiating Eq. (7) with respect to x and t, the following

relations can be obtained
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By substituting Eqs. (5)–(7) into Eqs. (2) and (3) and collecting the nth Fourier

components, the followings can be derived
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where sZ0,G1,G2,L. The leading order terms of Eqs. (8) and (9) yield
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for nZ0. Eq. (11) represents steady components which do not have any contributions to

other harmonics up to O(3). Thus, the steady components are not considered in this study.

Combining the continuity and the momentum equations, the following equation can be

derived.
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The leading order of Eq. (12) yields
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Eq. (13) is the linear wave equation and can be solved as
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By using Eq. (13), Eq. (12) may be rewriten as
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Following Liu and Cho’s (1993) approach, the wave field can be split into the right- and

the left-going wave components as:

zn Z zC
n CzK

n (16)

in which zC
n and zK

n denote the right and the left-going wave components, respectively.

Then, the following coupled equations have been assumed
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where the coupling term Fn is to be determined. By substituting Eqs. (16) and (17) into Eq.

(15) and after a lengthy algebra, the coupling term can be determined as
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After assuming a periodic motion in space again, the wave components can be

expressed as
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inUq; zK
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in which qZ
Ð

1ffiffi
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p dx has been used. By differentiating Eq. (19) with respect to x, the

following relations are obtained.
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Substituting Eqs. (18)–(20) into Eq. (17) yields a set of coupled nonlinear first-order
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ordinary differential equations given as
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for the right-going waves, and
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for the left-going waves. Once An and Bn are determined, the free surface displacement can

be recovered from Eqs. (7) and (19). That is,
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3. Numerical example

In this section, numerical results for the propagation and reflection of carrier waves

composing wave groups by a sinusoidally varying bottom topography are presented. The

coupled nonlinear governing equations for waves derived in the previous section are

integrated by using the fourth-order Runge-Kutta method. Eqs. (21) and (22) should be

solved simultaneously with prescribed boundary and initial conditions for An.

An iterative scheme is adopted from Liu and Cho (1993) to solve the governing

equations. In the scheme, the transmitted wave field is first solved without consideration of

a reflected wave field. The reflected wave is then calculated with transmitted wave



Y.-S. Cho, J.-S. Jung / Ocean Engineering 33 (2006) 82–9288
solutions. The transmitted wave field is finally updated with the newly obtained reflected

wave field. This procedure is repeated until converged solutions are obtained. The

convergence condition is defined as

jjAnj
k K jAnj

kK1j

jAnj
kK1

!10K4;
jjBnj

k K jBnj
kK1j

jBnj
kK1

!10K4 (24)

where kK1 and k represent a previous and a current iteration steps, respectively.

Fig. 2 shows the propagation of carrier waves composing wave groups and evolution of

long wave components. The following initial conditions are employed for carrier waves.

An Z 1:0; AnC1 Z 1:0 ðnUz1Þ (25)

in which n is equal to 10 because the value of U is 0.1 in Fig. 2. In the first example,

numerical results are obtained for rZ0.12 and dZ2.0. The rippled bed begins at x(ZL1)Z
70p and ends at x(ZL2)Z80p. Therefore, there are 10 sinusoidal ripples within the ripple

bed. In both Figs., nmaxZ20 is used, and the frequency of a wave group represented by U
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Fig. 2. The evolution of wave groups and transmitted long waves over a rippled bed: (a) 3Z0.02, m2Z0.1;

(b) 3Z0.08, m2Z0.1.
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is 0.1. In Fig. 2, free surface profiles and the transmitted long waves over the rippled bed

at tZ0 are presented. The amplitude of the transmitted long waves in Fig. 2(b) is larger

than that of Fig. 2(a). In Fig. 2(a) and (b), the free surface profile becomes more irregular

and noisy as the nonlinearity increases. That is, more energy transfers to other harmonic

components as the nonlinearity increases due to active interactions among other

harmonic components.

To ensure the accuracy of the numerical scheme used for integrating Eqs. (21) and (22),

numerical solutions for the Bragg reflection of long waves are first obtained and compared to

those by Liu and Cho (1993). As shown in Fig. 3, the numerical solutions for long waves agree

very well. Thus, the present model can be applicable for long waves associated with the wave

groups. The present model includes reflections of short wave components as well as long wave

components. However, Liu and Cho considered reflection of only long wave components.

Thus, Liu and Cho’s study can be viewed as a limiting case of the present study.

Fig. 4 shows incident and reflected wave profiles propagating over the rippled bed

connected two equally constant depth regions. The rippled zone begins at xZ70p and ends

at xZ90p. The conditions of the rippled seabed are also the Bragg reflection condition for

incident carrier waves. When the nonlinearity is relatively small, the reflected wave

amplitude increases for a less amount of energy transfer from initial wave components to

others. The magnitude of resonant effects of carrier waves is also appreciable.

Nextly, the Bragg resonant reflection with a fixed length of a rippled bed is investigated.

The wavelength of a ripple varies as the wavenumber varies and the rippled bed begins at

xZL1Z70p with nmaxZ30. Fig. 5 shows the amplitude spectrum of the wave group at xZ
70p. Energy is transferred to the other harmonic components from the initial conditions

A10 and A11 due to nonlinear interactions among other components.

Figs. 6 and 7 show the energy of reflected wave components of carrier waves with 3Z
0.02, m2Z0.1 and 3Z0.08, m2Z0.1 respectively. The wave energy is proportional to
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the square of its amplitude. Thus, the reflection coefficient of wave energy could be

expressed by

RE Z

P
n jBnj

2P
n jAnj

2
(26)

in which An and Bn represent incident and reflected wave components, respectively. In

Fig. 6, the wave component with the angular frequency of nUZ1.0 is the largest. Thus,
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δ
1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

RE

Fig. 7. Reflection coefficient of energy of carrier waves over a rippled bed (pZ0.12, 3Z0.08, m2Z0.1).
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a Bragg reflection occurs at dZ2.6. In Fig. 7, wave components which have angular

frequency of nUZ1.2w1.4 are large. The Bragg reflection occurs about at dZ2. When the

nonlinearity is relatively small, reflection coefficients increase largely at the Bragg

reflection condition. However, the reflection coefficient of strong nonlinear waves change

slightly as the wavenumber of a seabed varies. For conditions of 3Z0.02, mZ0.1, L2K
L1Z10p the reflected wave energy is about 30% of the incident wave energy at the Bragg

reflection condition.
4. Concluding remarks

In this paper, a set of governing equations is newly derived from the Boussinesq

equations to investigate the evolution of wave groups and carrier waves composing wave

groups over a sinusoidally varying topography. A splitting technique is used to derive the

coupled nonlinear first-order ordinary differential equations describing transmitted and

reflected wave fields.

The newly derived governing equations are then used to study the evolution of wave

groups and Bragg resonant reflection of carrier waves. Incident waves are wave groups

generated by two short waves with slightly different frequencies. The energy of the initial

wave components is transferred to other harmonic components during propagation over a

long distance. Evolution and reflection of short and long waves are influenced largely by

nonlinearity. The reflection coefficient of carrier waves can be enhanced by decrease of

nonlinearity.
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