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Langmuir circulation is a convective motion commonly observed in the oceanic mixed
layer. Internal waves are a prominent feature of stratified regions, particularly the
thermocline bounding the mixed layer. Here, the potential for Langmuir-circulation–
internal-wave coupling is investigated using a two-layer ocean model. The density
jump across the sharp thermocline confines all rotational motions, including the wind-
aligned Langmuir vortices, to the upper (‘mixed’) layer. Linear analysis indicates:
(i) that thermocline compliance enhances the onset of Langmuir circulation, and
(ii) that the ‘vortex force’ arising from the interaction of surface waves with the wind-
driven shear modifies the dynamics of cross-wind propagating internal waves. Weakly
nonlinear analysis reveals that resonant cross-wind propagating internal waves can
be nonlinearly reflected from stationary Langmuir circulation, a dynamic reminiscent
of the ‘Bragg reflection’ of surface waves propagating over sand bars. A key feature
of the reflection mechanism is the modification of the linear internal-wave dynamics
by the vortex force.

1. Introduction
Langmuir circulation is a convective motion that dominates the observed kinematics

of the upper oceanic mixed layer (Smith 2001). According to the widely accepted
Craik–Leibovich (hereinafter referred to as CL) theory (Craik & Leibovich 1976;
Craik 1977; Leibovich 1977b), the counter-rotating wind-aligned Langmuir vortices
arise as an instability of a wind-driven shear flow on which surface waves propagate.
There is ample observational and theoretical evidence that Langmuir circulation
plays a prominent role in maintaining the well-mixed character of the upper ocean,
accomplishing much of the transport of heat, mass and momentum within that region
(Leibovich 1983). Internal waves also play a critical role in the dynamics of the upper
ocean by transmitting energy and momentum and, in regions of wave degradation,
by driving local mixing. The most energetic internal waves propagate along the sharp
density-gradient zone – termed the pycno- or thermocline – at the base of the mixed
layer (Phillips 1977).

Although Langmuir circulation and internal-wave propagation have each been
studied extensively, little is known about possible interactions between these two
phenomena. Leibovich (1977a) examined the linear stability of inviscid stably stratified
shear flows in the presence of surface waves, but coupling between Langmuir-
circulation and internal-wave modes was not considered. In many theoretical and
numerical investigations of Langmuir circulation, the mixed layer is assumed to be
bounded below by a rigid (planar) thermocline (e.g. Cox et al. 1992; Cox & Leibovich
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1993; Li & Garrett 1995; Tandon & Leibovich 1995), eliminating a priori the
possibility of internal-wave motion. Several investigators have simulated Langmuir
circulation in a deep ‘numerical ocean’ (Lele 1985; Li & Garrett 1995, 1997;
Skyllingstad & Denbo 1995; McWilliams, Sullivan & Moeng 1997), but none has
isolated or studied Langmuir circulation–internal wave interactions.

Observational evidence of coexisting Langmuir circulation and internal waves is
given in figure 13 of Smith (1992). A comparison of Skyllingstad & Denbo’s large-
eddy simulations (LES) with data collected during the Coupled Ocean–Atmosphere
Response Experiment also reveals the simultaneous occurrence of internal waves
(see e.g. figures 1 and 9 of Skyllingstad & Denbo 1999) and Langmuir vortices.
Temperature measurements obtained by Farmer during a period of intense Langmuir
circulation clearly show a correlation between thermal plumes, which impinge the
mixed-layer base in downwelling zones between pairs of adjacent vortices, and
temperature fluctuations in the stratified water beneath the mixed layer (Farmer,
Vagle & Li 2001). These data, in particular, suggest an interaction between the
mixed-layer vortices and downward-radiating internal waves. Similarly, in their LES
of ‘Langmuir turbulence’, McWilliams et al. (1997) attributed downward radiation of
momentum beneath the mixed layer to the interaction of the Langmuir circulation
with ‘the stable mean stratification by a process that is not quantitatively well
understood (nor accurately calculated with typical LES grid resolution).’

Thorpe (1997) has noted that small-scale internal waves and large-scale Langmuir
cells have commensurate length and time scales, i.e. O(100) m wavelengths and
half-hour periods or eddy-turnover times. Although restricted to linearized inviscid
dynamics, his analytical investigation of a two-layer ocean model was the first study
to specifically address interactions between Langmuir circulation and internal (more
properly, ‘interfacial’) waves. Thorpe’s results suggest that coupling between the waves
and vortices may occur over a realistic range of the imposed wind stress, mixed-layer
depth and stratification.

We follow Thorpe by investigating the dynamics of a two-layer ocean model in
which the discrete stratification confines the Langmuir circulation to the upper layer
(see § 2). Our objectives are three-fold. First, we study the influence of thermocline
compliance on the linear stability characteristics of Langmuir circulation: in all
previous stability analyses of Langmuir circulation in a viscous fluid layer of
finite depth, vertical displacements of the thermocline have been suppressed (see
e.g. Leibovich 1985; Leibovich, Lele & Moroz 1989; Cox et al. 1992; Leibovich &
Tandon 1993; Gnanadesikan & Weller 1995). By using a constant upper-layer eddy
viscosity to parameterize the incoherent turbulence in that region, we avoid two
non-physical results of Thorpe’s inviscid linear-stability analysis: (i) that Langmuir
modes of all wavelengths are amplified whenever the surface-wave Stokes drift has
a component in the direction of the horizontally averaged shear flow, and (ii) that
the wavenumber of the fastest growing mode is infinite. These two results were
shown by Leibovich (1977a) for an unstratified upper layer. Next, we aim to identify
the physical mechanism by which the Craik–Leibovich ‘vortex force’ modifies the
linear dynamics of cross-wind propagating internal waves. As discussed in § 3, the
vortex force arises from the interaction of downwind propagating surface waves with
the mean shear. While the role of the vortex force in the generation of Langmuir
circulation is commonly acknowledged, its effect on internal-wave propagation –
first noted by Leibovich (1977a) and, later, by Thorpe (1997) – does not seem
to be widely appreciated. In fact, this vortex-force effect plays an important role
in the weakly nonlinear interaction of cross-wind propagating internal waves with
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Langmuir circulation. Our third objective is to obtain an asymptotic description of
this interaction when attention is restricted to counter-propagating waves having a
wavelength twice that of the Langmuir circulation. Such waves satisfy a quadratic
nonlinear resonance condition with the Langmuir circulation, and, owing to the
phase-matching that occurs between the modes (Phillips 1977), interact more strongly
with the Langmuir circulation than do the non-resonant components of the internal
wave spectrum. Our central result is that the imposed resonant internal waves are
nonlinearly reflected from the stationary Langmuir circulation, a dynamic reminiscent
of the ‘Bragg reflection’ of surface waves propagating over sand bars (Mei 1985).

In § 2, we motivate consideration of a two-layer ocean model. The governing
equations and boundary conditions are formulated in § 3. In § 4, we employ a
long-wavelength approximation to obtain analytical expressions for the Langmuir
circulation growth rate, the internal-wave phase speed and the nonlinear coupling
coefficients in the resonant interaction equations. Our results are summarized in § 5.

2. Two-layer model
Frequently, as a result of wind-driven mixing events, the mean density of the upper

ten to fifty metres of the ocean in low to moderate latitudes is very nearly uniform
with depth (Phillips 1977). The density increases rapidly across the thermocline, which
bounds the mixed layer from below; beneath the sharp thermocline, the water column
is only weakly (stably) stratified. Numerical and observational data indicate that the
density jump across the thermocline is sufficiently strong to confine much of the
turbulent motion (including the Langmuir circulation) to the mixed layer (see e.g.
figure 2 of McWilliams et al. 1997 and figure 2 of Ostrovsky et al. 1996). Consequently,
wind-driven currents typically are much faster within the mixed layer than they are
beneath the thermocline.

With these conditions in mind, we employ a two-layer ocean model to investigate
the interaction of Langmuir circulation, maintained near marginal stability by the
wind and surface-wave forcing, with free internal waves imposed via non-zero initial
conditions. The discrete stratification confines all rotational motions – the wind-driven
shear flow Ub(z), the Langmuir circulation, and the incoherent small-scale turbulence –
to the mixed layer. The Stokes drift velocity, U s(z) = Us(z) ı̂ , associated with the
surface-wave field is aligned with the applied wind stress vector, τ . The influence
of the earth’s rotation is neglected, so Ub(z) is also aligned with τ . For analytical
simplicity, U s(z) is assumed to be a linear function of depth, z, vanishing at the mean
position of the thermocline. Near threshold, the fastest growing Langmuir modes take
the form of rolls invariant in the wind (x) direction. Here, we restrict attention solely
to windward-invariant motions; hence, we focus on internal waves which propagate
along the thermocline in a direction normal to the axes of the Langmuir vortices.

We model the effects of the small-scale turbulence in the mixed layer with a
constant eddy viscosity (νe). In addition to the eddy viscosity prescription, we also
phenomenologically model the vertical flux of horizontal momentum caused by
continual turbulent entrainment of abyssal fluid into the mixed layer. This entrainment
velocity (we) is very small once the mixed layer has been established: we is of the order
of a few metres per day, under constant forcing conditions – see Phillips (1977) and
McWilliams et al. (1997). We neglect the implied (gradual) change in the mixed-layer
depth.

Finally, we model the abyss as a semi-infinite inviscid region. In the absence of
entrainment, viscous transport of momentum in the lower layer would be confined to
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Figure 1. Two-layer schematic depicting (a) stationary Langmuir cells and (b) propagating
internal waves. Note that the cells induce a static deformation of the thermocline.

an asymptotically thin boundary layer beneath the interface; we neglect this boundary
layer in our model. Given these assumptions, the vorticity in the lower layer must
remain zero for all time if it is initially zero. Thus, the lower layer is quiescent
apart from inviscid irrotational disturbances driven by time-dependent interfacial
displacements. Figure 1 is a schematic of the two-layer model with Langmuir-
circulation and internal-wave modes separately depicted.

3. Problem formulation
As shown in figure 1, we adopt a Cartesian coordinate system in which the wind

direction is aligned with the x-axis, the z-axis is vertical, with z = 0 corresponding to
the mean position of the air–sea interface, and the y-axis is directed across the wind.

ı̂ , ̂ and k̂ are unit vectors in the x-, y- and z-directions, respectively. The motion in
the upper layer, which has an average depth h, is governed by the two-dimensional
CL equations (Craik & Leibovich 1976; Craik 1977; Leibovich 1977b) with constant
eddy viscosity:

Dṽ

Dt̃
= − ∇̃p̃

ρ
− g k̂ + Ũ s(z̃)ı̂ × (∇̃ × ṽ) + νe∇̃2ṽ. (3.1)

Throughout this section, tildes are used to denote dimensional upper-layer variables. ṽ
is the filtered Eulerian velocity field (averaged over the ‘fast’ time scale associated with
the period of the dominant surface waves); ρ is the constant density of the upper-
layer fluid; and p̃ is a filtered modified pressure, referred to simply as ‘pressure’ unless
otherwise stated. The vortex force Ũ s(z̃) ı̂ ×

(
∇̃ × ṽ

)
accounts for the rectified effects

of the surface waves. Since the lower-layer motion is assumed to be incompressible,
inviscid and irrotational, the corresponding momentum equation is

Dv̆

Dt̆
= − ∇̆p̆

(ρ + �ρ)
− g k̂. (3.2)

Here, as throughout, the breves denote dimensional lower-layer variables. The density
in the lower layer is greater than that in the upper layer by �ρ, with typical values of
�ρ/ρ ranging from O(10−4) to a maximum O(10−3) (Phillips 1977). Since �ρ/ρ � 1,
internal-wave periods are much longer than those of the surface waves, so there is no
contribution to the Stokes drift from the internal-wave spectrum. The internal-wave
dynamics are resolved – not filtered, as for the surface waves in the CL equations.

In accord with the CL filtering operation, boundary conditions may be applied
at the mean position of the air–sea interface. Because sea-surface displacements due
to the internal waves are negligible (since �ρ/ρ is small; Phillips 1977, p. 211), this
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interface may be assumed to remain coincident with z̃ = 0, i.e. the CL-filtered vertical
velocity component must vanish there:

w̃(ỹ, 0, t̃) = 0. (3.3)

Continuity of tangential stress across the sea surface requires

νe

∂ ṽ

∂z
(ỹ, 0, t̃) = u2

∗ ı̂, (3.4)

where u∗ is the water friction velocity (defined to equal [|τ |/ρ]1/2). At great depth, all
velocity components tend to zero:

v̆(y̆, z̆, t̆) → 0 as z̆ → −∞. (3.5)

The motion in the upper and lower layers is related by imposing appropriate kinematic
and dynamic constraints at the deformed position of the thermocline, z̃ = z̆ = −h + η̂,
where η̂ is the (CL filtered) dimensional interfacial displacement. The kinematic
constraints requiring the interface to move with the fluid are

w̃ =
Dη̂

Dt̃
, w̆ =

Dη̂

Dt̆
. (3.6)

The normal and tangential stress balances across the interface yield three additional
conditions. In terms of the stress tensors,

Σ̃ij = −p̃δij + µe

(
∂ṽi

∂x̃j

+
∂ṽj

∂x̃i

)
, Σ̆ ij = −p̆δij ,

and the unit normal and tangent vectors to the interface,

n =

−∂η

∂y
̂ + k̂[

1 +

(
∂η

∂y

)2]1/2
, ty =

̂ +
∂η

∂y
k̂[

1 +

(
∂η

∂y

)2]1/2
, tx = ı̂,

where y ≡ ỹ/h ≡ y̆/h and η ≡ η̂/h, these conditions can be written compactly as:

Σ̃ijninj = Σ̆ij ninj , (3.7)

Σ̃ij txinj = Σ̆ij txinj + we

[
1 +

(
∂η

∂y

)2]−1/2

ρ (ṽ · ı̂), (3.8)

Σ̃ij tyinj = Σ̆ij tyinj + we

[
1 +

(
∂η

∂y

)2]−1

×
{

[ρṽ − (ρ + �ρ)v̆] +
∂η

∂y
[ρw̃ − (ρ + �ρ)w̆]

}
. (3.9)

Note that (3.8) and (3.9) require discontinuities in the x- and y-directed tangential
stresses across the thermocline (if present) to be balanced by the vertical flux of
horizontal momentum carried by we, the prescribed turbulent entrainment speed.
This momentum flux is non-zero whenever tangential velocity differences exist across
the thermocline.

The above equations and boundary conditions admit a simple quasi-steady ‘basic-
state’ shear flow when slow changes in the mixed-layer depth are neglected:

Ũ b(z̃) = u∗R∗

(
z̃

h
+

α + 1

α

)
, (3.10)
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where

R∗ ≡ u∗ h

νe

, α ≡ we h

νe

. (3.11)

R∗ is an order-unity rather than asymptotically large Reynolds number, as it is
based on the eddy (rather than molecular) viscosity (Cox & Leibovich 1993). The
stress-parameter α is the non-dimensional turbulent entrainment velocity across the
thermocline. The basic-state pressure variation,

p̃b(z̃) = P̃ b +

∫ z̃

−h

ρŨ s(ζ̃ )
dŨ b

dζ̃
(ζ̃ ) dζ̃ − ρg(z̃ + h), (3.12)

p̆b(z̆) = P̃ b − (ρ + �ρ)g(z̆ + h), (3.13)

where P̃ b is the pressure at the thermocline, differs from a purely hydrostatic
distribution by the integral term, which arises from the vertical component of the
vortex force.

We are interested in the evolution of perturbations (associated with the Langmuir
circulation and the internal-wave motion) to this structureless equilibrium. Hence, we
decompose the velocity and pressure fields as follows:

ṽ(ỹ, z̃, t̃) = Ũ b(z̃)ı̂ + ũ(ỹ, z̃, t̃), v̆(y̆, z̆, t̆) = ŭ(y̆, z̆, t̆),

p̃(ỹ, z̃, t̃) = p̃b(z̃) + π̃(ỹ, z̃, t̃), p̆(y̆, z̆, t̆) = p̆b(z̆) + π̆(y̆, z̆, t̆).

After scaling velocity by u∗, distance by h, time by h/u∗, and density by ρ, we obtain
a set of non-dimensional equations and boundary conditions governing the evolution
of perturbations to the basic state. Upper-layer perturbations satisfy the following
non-dimensional equations:

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
= −wR∗ +

1

R∗

(
∂2u

∂y2
+

∂2u

∂z2

)
, (3.14)

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
= −∂π

∂y
+ S(1 + z)

∂u

∂y
+

1

R∗

(
∂2v

∂y2
+

∂2v

∂z2

)
, (3.15)

∂w

∂t
+ v

∂w

∂y
+ w

∂w

∂z
= −∂π

∂z
+ S(1 + z)

∂u

∂z
+

1

R∗

(
∂2w

∂y2
+

∂2w

∂z2

)
, (3.16)

∂v

∂y
+

∂w

∂z
= 0. (3.17)

A velocity potential, φ, which satisfies the two-dimensional Laplace equation

∂2φ

∂y2
+

∂2φ

∂z2
= 0, (3.18)

where vl ≡ ∂φ/∂y and wl ≡ ∂φ/∂z are the lower-layer cross-wind velocity components,
is used to describe the irrotational lower-layer motion. The non-dimensional free-
surface and large-depth boundary conditions are given by

∂u

∂z
(y, 0, t) =

∂v

∂z
(y, 0, t) =w(y, 0, t) = 0, (3.19)

and

φ(y, z, t) → 0 as z → −∞, (3.20)
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respectively, while the interfacial conditions (evaluated at z = −1 + η) are:

w =
∂η

∂t
+ v

∂η

∂y
, (3.21)

∂φ

∂z
=

∂η

∂t
+

∂φ

∂y

∂η

∂y
, (3.22)

−(1 + γ )
∂φ

∂t
− (1 + γ )

2
|∇φ|2 = π + γFη +

∫ −1+η

−1

S(1 + z)
d Ub(z)

dz
dz

+

[
1 +

(
∂η

∂y

)2]−1
2

R∗

[
− ∂w

∂z
+

∂η

∂y

(
∂v

∂z
+

∂w

∂y

)
−

(
∂η

∂y

)2
∂v

∂y

]
, (3.23)

∂u

∂z
+

dUb

dz
− ∂η

∂y

∂u

∂y
= α

(
u + Ub

)
, (3.24)

[
1 −

(
∂η

∂y

)2](
∂v

∂z
+

∂w

∂y

)
+ 4

∂η

∂y

∂w

∂z

= α

{[
v −

(
1 + γ

)∂φ

∂y

]
+

∂η

∂y

[
w −

(
1 + γ

)∂φ

∂z

]}
. (3.25)

In addition to R∗ and α, three additional non-dimensional parameters have been
introduced:

S ≡ Us(0)

u∗
, γ ≡ �ρ

ρ
, F ≡ gh

u2
∗
. (3.26)

S is the normalized value of the Stokes drift velocity at the sea surface; γ is the
normalized density jump across the thermocline; and F is the square of an inverse
Froude number for the layer.

We close this section by estimating the order-of-magnitude of each of these non-
dimensional parameters under typical oceanic conditions. Observations indicate that S

can range from O(1) to O(10) (see e.g. Smith 1998). A typical value of γ is O(10−4), as
indicated previously. F = O(106) for a 10–50 m deep mixed layer exposed to a 10 m s−1

wind (corresponding to a value of u∗ ≈ 0.01 m s−1). Thus, the product γF =O(100).
As suggested in Cox & Leibovich (1997), various estimates place the value of R∗
between 2.5 and 50; we take R∗ to be O(1). Again assuming h to be O(10) m and
u∗ ≈ 0.01 m s−1, this value implies νe = O(10−1) m2 s−1; this (rather large) eddy viscosity
is well within the range of estimates cited in Huang (1979). Indeed, McWilliams et al.
(1997) extract a ‘bulk eddy viscosity’ greater than O(10−2) m2 s−1 from the results of
their LES of Langmuir turbulence.

An estimate for α can be derived from typical values of we. The magnitude of the
entrainment velocity is a function of the external parameters specifying the flow: u∗,
h and γ . Thus, the normalized entrainment velocity depends on the quantity γF , an
overall Richardson number characterizing the flow (Phillips 1977, p. 299). For γF

between 100 and 1000 (in accord with the estimates given above), the normalized
entrainment velocity, we/u∗, is roughly 0.01 according to the two-layer Kantha–
Phillips experiment (Phillips 1977, p. 300); the numerical experiments of McWilliams
et al. (1997) also lend credence to this value. Based on this estimate of the entrainment
velocity, α ranges from 0.1 to 0.01 for νe ranging between 0.01 and 0.1 m2 s−1. With
α ≈ 0.1, the hypothesized equilibrium shear flow, Ũ b(z̃), has a maximum velocity of
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roughly 10u∗R∗ = O(0.1) m s−1 – a physically reasonable value. As a final note, based
on the Kantha–Phillips experiment, we = O(10−4) m s−1, which implies a relatively
slow change in the mixed-layer depth of only several metres per day.

4. Asymptotic analysis
In this section, we outline an asymptotic analysis of (3.14)–(3.25) that yields

analytical estimates for the Langmuir circulation growth rate, the vortex-force-
modified internal-wave phase speed, and the nonlinear interaction coefficients. The
derivation of these results is straightforward but algebraically involved; hence, the
perturbation calculations are summarized in Appendix A; further details can be
found in Chini (1999). We restrict attention to small-amplitude internal waves and
Langmuir circulation maintained near marginal stability; for typical mixed-layer
forcing conditions, as measured by S, the latter restriction is consistent with our use
of a large-eddy viscosity (so that R∗ = O(1)). Following Cox & Leibovich (1993), we
also exploit a small-wavenumber limit, formally appropriate for internal waves and
Langmuir cells having horizontal scales large compared to the mixed-layer depth.
The first instability of the quasi-equilibrium shear flow is, in fact, to long-wavelength
Langmuir circulation whenever the perturbation shear stresses at the air–sea interface
and the mixed-layer base are small (Cox & Leibovich 1993). Here, the perturbation
shear stress is assumed to vanish at the sea surface and to be proportional to α at
the bottom of the mixed layer. We focus on the physically relevant scenario in which
α is small because the density jump across a pre-existing thermocline is sufficiently
large to permit only weak turbulent entrainment of abyssal fluid into the upper layer.
As shown by Cox & Leibovich (1993), the critical Langmuir circulation wavenumber,
kc

LC , scales in proportion to α1/4 as α → 0† – also see (5.7) below.
We begin by expressing each dependent variable – for example, u(y, z, t) – as

the superposition of the three modes and by performing a double expansion in
terms of the small-amplitude parameters, ε, δ+ and δ−, and the small internal-wave
wavenumber, k:

u(y, z, t) = ε[u0100(z, T ) + ku1100(z, T ) + k2u2100(z, T ) + . . .]ei2ky

+ δ+[u0010(z, T ) + ku1010(z, T ) + k2u2010(z, T ) + . . .]ei(ky−ωt)

+ δ−[u0001(z, T ) + ku1001(z, T ) + k2u2001(z, T ) + . . .]ei(ky+ωt)

+ c.c. + h.o.t. (4.1)

Here, ε is the small parameter indicative of the Langmuir circulation amplitude
(i.e. the maximum cell-induced downwind current anomaly), while δ+ and δ− are the
corresponding small parameters characterizing the amplitudes of the internal waves
travelling in the positive and negative y-directions, respectively. We assume that ε,
δ+ and δ− are of the same order of magnitude; three separate small parameters are
retained simply to facilitate the bookkeeping in the perturbation analysis. (Other
orderings of the small parameters, yielding different interaction equations, also may
be of interest.) The four subscripts indicate the order of the given dependent variable

† In this limit, the maximum basic-state velocity must become very large – see (3.10) – since a finite
flux of downwind momentum across the thermocline is required to balance the applied wind stress.
Nevertheless, only the vertical gradient of the basic-state shear, rather than the maximum absolute
speed, influences the downwind-invariant Langmuir-circulation and internal-wave dynamics.
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in k, ε, δ+ and δ−, respectively; e.g. u2010 arises at O(k2δ+). ω is the O(k) internal-wave
frequency; c.c. denotes complex conjugate quantities; and h.o.t. indicates higher-order
(i.e. nonlinear) terms. We permit the vertical eigenfunctions to depend on a sequence
of slow time scales, represented by T , in anticipation of the weak time variability that
results from finite wavelength and amplitude effects. Note that the three modes satisfy
the lowest-order conditions for resonance through a quadratic nonlinear interaction;
namely, k + k = 2k and −ω + ω = 0.

Employing the perturbation algorithm described in Appendix A, we find
that the leading-order downwind velocity components satisfy u0100(z, T ) = U0100(T ),
u0010(z, T ) = U0010(T ) and u0001(z, T ) = U0001(T ), where capital letters are used to denote
depth-independent dependent variables. We impose a normalization condition on the
amplitude of each mode by defining the depth average of the total downwind velocity
perturbation to equal the sum of the leading-order perturbations (Cox & Leibovich
1993),

ū(y, t) = εU0100(T ) ei2ky + δ+U0010(T )ei(ky−ωt) + δ−U0001(T )ei(ky+ωt) + c.c., (4.2)

where (̄·) ≡
∫ 0

−1
(·)dz. The form of the equations governing the slow evolution of the

modal amplitudes E ≡ εU0100, A ≡ δ+U0010 and B ≡ δ−U0001 follows from symmetry
considerations:

dE

dt
= σE + enrAB, (4.3)

dA

dt
= (alr + iali)A + (anr + iani)EB∗, (4.4)

dB

dt
= (alr − iali)B + (anr − i ani)EA∗. (4.5)

The coefficients, however, must be determined by carrying out the perturbation
analysis.

5. Results
As discussed in § 1, we have performed an asymptotic analysis of a simple ocean

model primarily to derive physical insight. We now summarize the results of our
linear and nonlinear analysis, highlighting the simple physical mechanisms revealed
by the theory.

5.1. Vortex-force-modified linear internal-wave dynamics

Using the expressions for the linear Langmuir-circulation (‘LC’) and internal-wave
(‘IW+’) fields given in Appendix A.1, we now describe the long-wavelength kinematics
of these modes. As expected for a thin fluid layer, the leading-order Langmuir-
circulation and internal-wave pressure perturbations are depth-independent, and the
vertical velocity perturbations are O(k) relative to the (horizontal) cross-wind flows.
The results given in Appendix A.1 indicate that a stationary depth-independent cross-
wind-periodic O(ε) x-velocity perturbation, uLC , drives an O(εk) horizontal vortex-
force component that decays linearly with depth and is directed toward planes of
maximum (positive) uLC . To conserve mass, a depth-independent cross-wind-periodic
O(ε) pressure perturbation, πLC =(S/2)uLC , is induced, with maximum (positive)
pressures coinciding with planes of maximum uLC (see figure 2a). The associated
depth-independent O(εk) cross-wind pressure gradient opposes the horizontal vortex-
force component. Near the air–sea interface, the vortex force is sufficiently strong
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(a)

(b)

LLL LLLHHH

LLL HHH

Figure 2. Kinematics of long-wavelength stationary Langmuir circulation (upper) and
cross-wind propagating internal waves (lower). The upper-layer pressure is independent of
depth, with ‘H’ and ‘L’ denoting regions of high and low pressure, respectively. The horizontal
vortex-force component induced by downwind current anomalies opposes cross-wind pressure
gradients, thereby driving cellular motions in the case of the Langmuir circulation and reducing
the phase speed of cross-wind travelling internal waves.

to overcome this pressure gradient, driving an O(εk) horizontal cross-wind flow,
vLC , toward planes of maximum uLC . At the base of the upper layer, however, the
vortex force is weak (since the Stokes drift decays with depth), and the pressure
gradient drives fluid away from these planes, with cellular motions emerging at
O(εk2). Near the marginal stability threshold, transport of basic-state momentum by
this cellular flowfield maintains the Langmuir circulation against viscous dissipation.
Finally, we note that the vortex-force induced O(ε) pressure perturbations deform
the thermocline: ηLC = −πLC/(γF ) = −uLC S/(2γF ), so the thermocline is depressed
beneath Langmuir-circulation downwind surface jets.

An interesting feature which emerges from our analysis (see Appendix A.1) is
the way in which the CL vortex force modifies the linear dynamics of cross-wind
propagating internal waves – even in the absence of a nonlinear interaction with
Langmuir circulation. One manifestation of this vortex-force effect is a reduction in
the phase speed of cross-wind propagating internal waves,

ω = k

[
γF − R∗S

4

]1/2

, (5.1)

as indicated by the presence of the Stokes drift parameter S in (5.1); this result
is in qualitative agreement with Thorpe (1997). The reduction in phase speed is
not a simple advection effect, since the internal waves propagate in a direction
normal to the Stokes drift (see figure 1). Instead, an imposed O(δ+) time-periodic
cross-wind-periodic deflection of the thermocline, ηIW+, with frequency ω = O(k) and
O(δ+) depth-independent pressure perturbations, πIW+, drives an O(δ+) horizontal and
O(δ+k) vertical cross-wind flow field. Vertical advection of the basic-state shear creates
cross-wind-periodic downwind velocity anomalies, uIW+, with a depth-independent
component arising at O(δ+) and a vertically varying component (with zero depth
average) arising at O(δ+k). Although negative anomalies are initiated above internal-
wave upwelling sites, there is a phase lag associated with the vertical advection of
basic-state momentum; consequently, cross-wind minima of uIW+ are aligned with
internal-wave crests, while maxima are aligned with internal-wave troughs, as depicted
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in the lower schematic of figure 2. In the absence of the vortex force, these downwind
velocity perturbations would not feed back upon the (downwind-invariant) cross-
wind flow. In the presence of an x-directed surface-wave Stokes drift, however, an
O(δ+k) horizontal vortex-force component is induced. This vortex-force component is
directed toward planes of maximum (positive) downwind velocity perturbations – as
in the case of the Langmuir circulation. Thus, the cross-wind pressure gradient and,
hence, the internal wave phase speed are reduced.

The distinction between the internal-wave and Langmuir circulation modes is
blurred slightly because of the influence of the vortex force. For example, both
modes exhibit O(εk2) cellular motions (taking ε ≡ δ+). However, the modes are
distinguished by the relative size of the cross-wind velocity fields: O(vLC) = O(kvIW+)
and O(wLC) = O(kwIW+), for O(uLC) = O(uIW+). Moreover, even though the internal-
wave vertical velocity is non-zero at O(δ+k), cellular motions do not arise at this order.
Most significantly, the time-dependence of (propagating or standing) internal waves
evidently inhibits the feedback mechanism that sustains the stationary Langmuir
circulation, so free internal waves are damped due to the non-zero upper-layer
viscosity. Nevertheless, we emphasize that the vortex-force-modified internal-wave
dynamics play a central role in the nonlinear interaction between Langmuir circulation
and resonant cross-wind propagating internal waves.

5.2. Linear stability characteristics

In the small-α limit, the Langmuir circulation growth rate, σ , must be O(k4) if spatial
amplitude modulation is to be incorporated in a consistent manner (Cox & Leibovich
1993). Although we do not consider spatial modulation in this work, we have extended
our analysis to O(k4) – see (A 13) – to compare the linear stability characteristics of
wind-driven shear flows above sharp-compliant and rigid-planar thermoclines. Setting

R3
∗S ≡ 120 + P, P = O(k2), (5.2)

and defining kLC ≡ 2k, we find

σ =
R∗γF

(R2
∗γF − 30)

[
−α

(
1 − 60

R2
∗ γF

)
+

P

120
k2

LC − 1091

5544
k4

LC

]
, (5.3)

where α = O(k4). The growth rate of large aspect-ratio Langmuir cells above a planar
thermocline may be recovered by taking the limit of (5.3) as γ → ∞ (cf. Cox &
Leibovich 1993):

lim
γ →∞

σ ≡ σγ →∞ =
1

R∗

[
−α +

P

120
k2

LC − 1091

5544
k4

LC

]
. (5.4)

The expressions for the growth rates given in (5.3) and (5.4) are both purely real:
Langmuir cells in a homogeneous layer of fluid are born in a stationary bifurcation,
whether the thermocline bounding that layer is assumed to be rigid or deformable
(at least in the small-α, i.e. large aspect-ratio, limit and in the absence of background
rotation). Forming the ratio of (5.3) to (5.4),

σ

σγ →∞
=


 1

1 −
(

30

R2
∗ γF

)




1 +


 60 α

−α +
P

120
k2

LC − 1091

5544
k4

LC


 1

R2
∗ γF


 , (5.5)
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Figure 3. Langmuir circulation marginal stability curves for R∗ = 2, γF = 100, and α = 0
(dotted curve) and α = 0.03 (solid curve). When α = 0, the first disturbance to be amplified
as the ‘reduced forcing’ (P/120) increases through zero has an infinite wavelength (i.e. zero
wavenumber). For finite α, the first disturbance to be amplified (as the reduced forcing is
increased through some finite value) has a finite wavenumber. However, if α is small, so too is
this critical wavenumber.

where the term in braces is {1+O(1/R2
∗γF )}, it is evident that the Langmuir circulation

growth rate is amplified by the compliance of the thermocline. Consideration of the
expression for the O(k) internal-wave frequency, (5.1), suggests that a bifurcation
occurs when γF/R∗S is less than 1/4 – or, equivalently, when R2

∗γF/30 < 1 for
R3

∗ S = 120 + O(k2). The two-layer system is then unstable to large-scale Langmuir
cells having zero phase speed and exponential (i.e. finite rather than infinite) real
growth rate σ = k(R∗S/4 − γF )1/2. Here, we restrict attention to R2

∗ γF = O(100),
so these modes (which would cause complete overturning of the thermocline) are
not realized. The resulting amplification of the Langmuir circulation growth rate is
modest, though not negligible; σ is increased by almost 50% relative to the rigid
thermocline scenario.

The wavenumber of the fastest-growing linear mode, k
f
LC , is readily obtained by

setting the derivative of (5.3) with respect to kLC to zero and solving for k
f
LC:

k
f
LC =

√(
2772

1091

)(
P

120

)
. (5.6)

Thus, in the small-wavenumber limit, kf
LC is independent of the magnitude of both the

density jump across the thermocline and the turbulent entrainment velocity, instead
depending only on P/120, the ‘reduced’ forcing parameter. The marginal stability
curve shown in figure 3 is obtained by setting σ = 0 in (5.3). Its minimum occurs at a
critical wavenumber

kc
LC =

{
α

(
5544

1091

)[
1 − 60

R2
∗ γF

]}1/4

(5.7)



Resonant Langmuir-circulation–internal-wave interaction. Part 1 47

and ‘critical reduced forcing’

P c

120
=

√
α

4364

5544

[
1 − 60

R2
∗ γF

]
. (5.8)

From (5.7) and (5.8), we observe that the compliance of the thermocline reduces both
the critical wavenumber and the critical reduced forcing. In fact, as R2

∗ γF → 60,
both P c and kc

LC tend to zero, independently of α. We note that Pavithran &
Redekopp (1994) obtained a similar result in their analysis of thermal convection
with a deformable surface; they found that the critical wavenumber and Rayleigh
number pass through zero as the density jump across the deformable interface is
reduced through a finite value. We emphasize, as they do, that the presence of the
deformable interface enhances the onset of convective activity.

5.3. Resonant nonlinear internal-wave reflection

The resonant interaction equations can be obtained by using the expressions for
the slow time derivatives of the modal amplitudes: (A 14), (A 20), (A 21) and (5.3).
Recalling that ε ≡ δ+ ≡ δ−, setting ε ≡ k and retaining only those terms which are cubic
in the combined small parameters, we obtain the following asymptotically consistent
set of lowest-order resonant interaction equations:

dE

dt
= 0, (5.9)

dA

dt
= (alr + iali)A + ianiEB∗, (5.10)

dB

dt
= (alr − iali)B − ianiEA∗. (5.11)

By employing long-wavelength asymptotics, we have obtained closed-form expressions
for the linear and nonlinear coefficients in the resonant interaction equations as
functions of k, R∗, α, γ , F and S. For example, the real linear coefficient,

alr = −k2

(
3

2R∗

)
, (5.12)

gives the internal-wave damping rate. This damping rate is proportional to the eddy
viscosity, implying that the internal waves lose energy to the upper-layer turbulence.
In fact, our use of an order-unity R∗ yields an unrealistically large damping rate.
The experimental results of Ostrovsky et al. (1996), for example, suggest an internal-
wave damping rate at least an order of magnitude less than that obtained from
(5.12); open-ocean damping rates may be expected to be even smaller, owing to
the absence of boundary effects. Estimation of energy transfers between internal
waves and small-scale turbulent fluctuations clearly requires sophisticated modelling
of the incoherent turbulence (see e.g. the modelling work of Ostrovsky & Zaborskikh
1996) – the constant eddy-viscosity assumption employed here is grossly inadequate.
Hereinafter, we set the internal-wave damping rate alr = o(k2), a closer approximation
to observations than (5.12). The imaginary linear coefficient,

ali = k2c

(
1 + γ

2

)
, (5.13)
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where c ≡ ω/k is the leading-order internal wave phase speed, represents a dispersive
phase-speed reduction: c 	→ c[1 − (k/2)(1 + γ )]. The imaginary nonlinear coefficient,

ani = −k

[
90(R2

∗γF − 60)

R4
∗γF (R2

∗γF − 30)1/2

]
, (5.14)

accounts for the interaction between the propagating internal waves and the stationary
Langmuir circulation. Note that, for large γF ,

ani → −k
90

R3
∗(γF )1/2

= −k
3S

4(γF )1/2
(5.15)

using (5.2); we identify the physical origin of this scaling below.
Equation (5.9) indicates that the Langmuir circulation is unaffected by the presence

of the internal waves, at least over the O(k−2) time scale considered. Indeed, (A 20)
and (A 21) imply that enr and anr are o(k), indicating that there is no energy exchange
between the Langmuir circulation and the internal waves over this time scale. (In
a companion article, we show that enr and anr are O(k2) by extending our analysis
to O(k2δ+δ−), O(k2εδ−).) Instead, the vortices simply mediate a conservative energy
exchange between the counter-propagating waves.

This result can readily be seen by integrating (5.10) and (5.11) with E = E0

(a constant). After scaling out the linear terms via the transformations Ã ≡
A exp(−(alr + iali)t), B̃ ≡ B exp(−(alr − iali)t), we obtain

Ã = A+ exp(iani|E0|t) + A− exp(−iani|E0|t), (5.16)

B̃ = B+ exp(iani|E0|t) + B− exp(−iani|E0|t), (5.17)

where B+ ≡ − A∗
−E0/|E0| and B− ≡ A∗

+E0/|E0|. This solution is displayed in figure 4.
Figure 4(a) clearly shows a conservative exchange of energy between the counter-
propagating internal waves, a dynamic more vividly depicted by the spatio-temporal
evolution of the internal-wave-induced interfacial displacement (see figure 4b). Lines
of constant phase initially are aligned in the direction of increasing y and increasing t ,
corresponding to a positively propagating wave. Although initially zero, the amplitude
of the negatively propagating wave grows owing to the nonlinear interaction between
the positive wave and the Langmuir circulation. At a non-dimensional time of
approximately six, the magnitudes of the wave amplitudes are roughly equal; the
superposition of the two waves then forms an approximate standing-wave pattern.
Subsequently, the energy of the negative wave dominates, and the lines of constant
phase reorient in the direction of decreasing y and increasing t . This process repeats –
indefinitely, in fact – not only because internal-wave damping has been neglected,
but also because spatial amplitude modulation has not been incorporated. Thus, the
internal waves cannot ‘escape’ from the infinite field of Langmuir cells. By extending
our analysis to account for spatial modulation, we have been able to investigate
the transmission and reflection of internal-wave packets incident upon a Langmuir
circulation field of finite horizontal extent; the results of these calculations will be
reported elsewhere.

The central result of this investigation is that cross-wind propagating internal
waves can be resonantly reflected from a stationary Langmuir circulation field. The
oscillation frequency is proportional to the product of the Langmuir-circulation
amplitude and the nonlinear interaction coefficient ani, which itself is proportional to
k. For the parameters used in figure 4, the oscillation period is O(10) h. The required
2:1 wavelength-relationship for resonance suggests that the dynamic is akin to the
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Figure 4. Internal-wave reflection from Langmuir circulation. k = 0.5, R∗ = 2, S = 15 and
γF =100. (a) The conservative oscillation in the internal-wave amplitudes. The Langmuir cir-
culation amplitude remains constant; the cells simply mediate the energy exchange between the
counter-propagating waves. (b) A reconstruction of the interfacial displacement field induced
solely by the internal waves. The sequence of reflections is evident by the changing orientation
of lines of constant phase.

‘Bragg reflection’ of, for example, surface waves propagating over sand bars (Mei
1985), although the physical mechanism differs.

The reflection mechanism can be understood by first noting that the dominant
contribution to ani is from the advection term vIW∂uLC/∂y, which accounts for
approximately two-thirds of the coefficient given in (5.15). Consider an internal wave
of wavenumber k and frequency ω propagating in (say) the negative cross-wind
direction past a field of stationary Langmuir cells having wavenumber 2k and axes
aligned with the wind direction. The cross-wind velocity field, vIW−, associated with the
internal wave advects the downwind current anomalies, uLC , created by the Langmuir
cells. Since vIW− ∝ exp[−i(ky + ωt)] and uLC ∝ exp[i 2ky], a pattern of downwind
current anomalies, uIW+, is created with wavenumber k and phase speed c = ω/k in
the positive cross-wind direction. From the balance ∂uIW+/∂t ≈ −vIW−∂uLC/∂y, the
scaling

uIW+ ∝ ω−1vIW−k uLC (5.18)

is obtained. The propagating vertical vorticity perturbations ∂uIW+/∂y induce a
horizontal vortex-force distribution that drives a cross-wind flow, as described in
§ 5.1. This horizontal vortex-force, which scales in proportion to SkuIW+, transfers
energy to the reflected wave by doing work on particle displacements induced by the
wave. The rate at which this energy is transferred scales as the product of the vortex
force and the reflected-wave cross-wind velocity vIW+:

P ∝ SkuIW+vIW+, (5.19)

where P is the power transferred. The energy of the reflected wave is proportional to
v2

IW+; from (A 12), vIW+ = O(cuIW+/R∗), so E ∝ [cuIW+/R∗]
2, where E is the energy
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of the wave. Since dE/dt = P, the rate of growth of the square of the reflected-
wave downwind velocity is given by R2

∗/c
2 multiplied by P. Using (5.18) and (5.19),

the implied interaction coefficient scales in proportion to kS/c. For sufficiently large
γF , this scaling estimate agrees with the form of the interaction coefficient given
in (5.15).

6. Conclusion
A two-layer model has been used to study the influence of thermocline compliance

on the dynamics of Langmuir circulation in the oceanic mixed layer. The assumptions
in our asymptotic theory preclude quantitative comparison of model results with
oceanographic observations. For example, the restriction to weak nonlinearity
suggests that the interaction time scale is very likely to be over-estimated by our
analysis. Similarly, the representation of turbulent Langmuir vortices as neutral
two-dimensional eigenfunctions of a quasi-laminar stability problem is an extreme
simplification; our rationale is that Langmuir cells are the dominant structures in
the fully turbulent mixed layer and, as such, are maintained by a hydrodynamic-
instability mechanism whose broad features we correctly capture. The strongly
nonlinear evolution of these coherent structures is, of course, far more complex.
Our neglect of Coriolis accelerations is justified only when the time scale for the
Langmuir-circulation–internal-wave interaction is small compared to the inverse of
the Coriolis parameter, f ≡ 2Ω sinΛ, where Ω is the rotation rate of the earth
and Λ is the latitude of the local water column. Thus, our analysis is likely to be
most applicable to the dynamics of equatorial or tropical waters; not only does f

tend to zero as the equator is approached, but pre-existing sharp thermoclines are
more prevalent in tropical regions. Finally, open-ocean observations suggest that
the dominant Langmuir circulation wavelength is roughly three times the mixed-
layer depth rather than an asymptotically large distance (Smith, Pinkel & Weller
1987). Fortuitously, Cox & Leibovich (1993) and Cox (1997) demonstrate that the
small-wavenumber asymptotics remains quantitatively accurate (at least close to the
instability threshold) even for wavenumbers approaching unity – and that is our
hope here. The actual (rather than formal) range of validity of the asymptotic model
ultimately should be assessed by comparisons with numerical simulations of the
primitive equations.

Our purpose, rather, has been to identify qualitative differences between the
dynamics of wind-driven mixed layers bounded below by compliant and rigid
thermoclines and to elucidate the physical mechanisms responsible for those
differences. We briefly summarize our key results. First, thermocline compliance
enhances the growth rate of Langmuir cells, but does not (in the large aspect-
ratio limit, at least) change the nature of the bifurcation: the cells are born in a
stationary, rather than Hopf, bifurcation. Next, the dynamics of low-mode internal
waves, propagating along the thermocline in the cross-wind direction, are modified
by the vortex force arising from the interaction of surface waves with the wind-driven
shear. Since the early work of Craik & Leibovich (1976), the role of the vortex
force in the generation of Langmuir circulation has gained wide acceptance; however,
its role in modifying other aspects of time-averaged upper-ocean dynamics – e.g.
internal-wave propagation – is, perhaps, less well appreciated. The vortex force fully
couples downwind and cross-wind motions, even when all (time-averaged) flows are
invariant in the downwind direction, as in this investigation. Consequently, cross-wind
travelling internal waves experience a reduction in phase speed, because the vortex
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force induced by the internal-wave motion opposes the cross-wind pressure gradient
driving the wave.

The vortex-force modification of the (linear) internal-wave dynamics is crucial to
the central result of this investigation; namely, that cross-wind propagating internal
waves can be nonlinearly reflected from a stationary Langmuir circulation field, if
the wavelength of the internal waves is twice that of the Langmuir circulation –
that is, if a Bragg resonance condition is satisfied. As an incident internal wave
propagates past the stationary cells, the wave’s cross-wind horizontal velocity advects
the Langmuir-cell downwind current anomalies. The result is a pattern of downwind
current anomalies propagating with the same phase speed and wavelength as the
incident wave, but in the opposite direction. The vortex force induced by the
vertical vorticity perturbations associated with the propagating downwind current
anomalies drives cross-wind velocity perturbations. Together, the downwind and
cross-wind flows comprise a reflected (vortex-force modified) internal wave. Over the
time scale characterizing this reflection process, the Langmuir circulation mediates
a conservative transfer of energy between counter-propagating internal waves, but
is otherwise unaffected by the interaction. Energy exchanges between the Langmuir
circulation and internal waves occur over a longer time scale and give rise to more
complex mixed-layer dynamics.

This work was supported by the US Navy under contracts ONR N00014-93-1-
0476 and ONR AASERT N00014-95-1-0820. G. P. C. also gratefully acknowledges
the support he received from an NDSEG fellowship administered through the US
Navy.

Appendix A. Perturbation calculations
Equation (3.18) can be solved immediately; the solution satisfying the large-depth

condition (3.20) is:

φ(y, z, t) = ε [Φ0100(T ) + kΦ1100(T ) + . . .] ei2ky e2k(z+1)

+ δ+ [Φ0010(T ) + kΦ1010(T ) + . . .] ei(ky−ωt) ek(z+1)

+ δ− [Φ0001(T ) + kΦ1001(T ) + . . .] ei(ky+ωt) ek(z+1) + c.c. + h.o.t. (A 1)

A.1. Linear analysis

Upon linearization, the partial differential equations, (3.14)–(3.17), boundary
conditions, (3.19)–(3.20), and interfacial conditions, (3.21)–(3.25), become:

∂w

∂z
= −∂v

∂y
, (A 2)

1

R∗

∂2u

∂z2
=

∂u

∂t
+ R∗w − 1

R∗

∂2u

∂y2
, (A 3)

1

R∗

∂2v

∂z2
=

∂v

∂t
+

∂π

∂y
− S (1 + z)

∂u

∂y
− 1

R∗

∂2v

∂y2
, (A 4)

∂π

∂z
= S (1 + z)

∂u

∂z
− ∂w

∂t
+

1

R∗

(
∂2w

∂z2
+

∂2w

∂y2

)
, (A 5)
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and

w(y, 0, t) = 0, w(y, −1, t) =
∂η

∂t
(y, t), (A 6a, b)

∂u

∂z
(y, 0, t) = 0,

∂u

∂z
(y, −1, t) = αu(y, −1, t) + αR∗η(y, t), (A 7a, b)

∂v

∂z
(y, 0, t) = 0,

∂v

∂z
(y, −1, t) = −∂w

∂y
(y, −1, t) + α

[
v(y, −1, t) − (1 + γ )

∂φ

∂y
(y, −1, t)

]
, (A 8a, b)

π(y, −1, t) = −γFη(y, t) +
2

R∗

∂w

∂z
(y, −1, t) − (1 + γ )

∂φ

∂t
(y, −1, t), (A 9)

∂φ

∂z
(y, −1, t) =

∂η

∂t
(y, t), (A 10)

where the form of (A 2)–(A 10) suggests the algorithm for the perturbation calculation.
We proceed by omitting h.o.t. from (4.1) and substituting the truncated expansion

into the linearized system (A 2)–(A 10). The vertical eigenfunctions depend on the
slow time scales T20 ≡ k2t , T30 ≡ k3t and T40 ≡ k4t (where the first subscript indicates
the order in k, and the second refers to the order in one of the small-amplitude
parameters), implying

∂

∂t
	−→ ∂

∂t
+ k2 ∂

∂T20

+ k3 ∂

∂T30

+ k4 ∂

∂T40

.

A sequence of linear inhomogeneous problems is generated at O(εkn) and O(δ+kn),
where n � 0. When n=0, u0100(z, T ) satisfies ∂2u0100(z, T )/∂z2 = 0 subject to
∂u0100(z, T )/∂z =0 at z = 0 and z = −1 (and similarly for u0010(z, T )), which has
the non-trivial solution u0100(z, T ) = U0100(T ), an arbitrary function of T . Thus, the
linear operator has a zero eigenvalue, and the sequence of problems can only be
solved if certain solvability conditions are satisfied. Non-trivial solvability conditions
determine the Langmuir circulation growth rate and the internal-wave phase speed.

Although analytically tractable, the perturbation calculations become unwieldy
beyond O(εk) and O(δ+k). For this reason, the symbolic algebra package Maple was
used to complete the calculations; see Appendix B of Chini (1999) for details. Here,
we simply summarize the main results. The leading-order linear Langmuir-circulation
fields are:

u0100 = U0100, π0100 =
S

2
U0100, η0100 = − S

2γF
U0100,

v1100 = iR∗S

(
1

12
− z2

2
− z3

3

)
U0100, w2100 = R∗S

(
z

6
− z3

3
− z4

6

)
U0100.


 (A 11)

The leading-order linear (positively-propagating) internal-wave fields are:

u0010 = U0010, v0010 =
2c

R∗
U0010, w1010 = −i

(
2c

R∗

)
zU0010,

π0010 =
2γF

R∗
U0010, η0010 = − 2

R∗
U0010, Φ0010 = i

(
2c

R∗

)
U0010.




(A 12)
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The O(εk2), O(εk3) and O(εk4) solvability conditions require:

∂ U0100

∂T20

=
γF

30R∗c2

[
R3

∗S − 120
]

U0100, (A 13a)

∂ U0100

∂T30

= 0, (A 13b)

∂ U0100

∂T40

=

(
γF

R∗ c2

)[
α

k4

(
60

R2
∗ γF

− 1

)
− 2182

693

]
U0100, (A 13c)

where α = O(k4). The O(δ+k), O(δ+k2) and O(δ+k3) solvability conditions require:

ω = k

[
γF − R∗S

4

]1/2

, (A 14a)

∂U0010

∂T20

=

{
−
[

3

2 R∗

]
+ i c

[
(1 + γ )

2

]}
U0010, (A 14b)

∂ U0010

∂T30

=

{
3

2

[
(1 + γ )

R∗

]
+ i

(
1

56 R2
∗ c

)[
(383 + 1260γ + 630γ 2)

− R2
∗ γF

(
53

6
+ 42γ + 21γ 2

)]}
U0010. (A 14c)

A.2. Nonlinear analysis

To complete the derivation of the interaction equations, we include resonant quadratic
nonlinear terms in the expansion (4.1); that is, we retain terms of the form

δ+δ−ei2ky, εδ+ei(ky+ωt), εδ−ei(ky−ωt),

as well as the complex conjugates of these terms (which will be denoted with asterisks).
Furthermore, we retain the quadratic nonlinear terms in equations (3.14)–(3.16) and
in the Taylor series expansions of the interfacial boundary conditions, (3.21)–(3.25),
about z = −1. For example, when expanded, (3.24) becomes:{[

1+η(y, t)
∂

∂z
+ · · ·

]
∂ u

∂z

}
(y,−1,t)

− ∂ η(y, t)

∂y

{[
1+η(y, t)

∂

∂z
+ · · ·

]
∂ u

∂y

}
(y,−1,t)

= α

{[
1 + η(y, t)

∂

∂z
+ · · ·

]
u

}
(y,−1,t)

+ α η(y, t)
dUb

dz
(−1). (A 15)

Since the nonlinearity in the governing equations and interfacial conditions invalidates
the exponential time-dependence ansatz, we introduce an additional slow time scale,

T11 ≡ kεt = kδ+t = kδ−t, (A 16)

to permit the modal amplitudes to exhibit more complex temporal behaviour. Thus,
U0100(T20, T30, T40) 	−→ U0100(T11, T20, T30, T40), etc., and all time-derivatives transform
according to:

∂

∂t
	−→ ∂

∂t
+ kε

∂

∂T11

+ k2 ∂

∂T20

+ k3 ∂

∂T30

+ k4 ∂

∂T40

, (A 17)

where, again, ε ≡ δ+ ≡ δ−, as implied by (A 16). The perturbation algorithm is anal-
ogous to that followed in Appendix A.1. Rather than determining finite-wavelength
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corrections to σ and ω, the solvability conditions that arise yield the nonlinear
coupling coefficients in the resonant interaction equations. Again, the calculations are
lengthy, and we merely summarize the key steps and results. At O(δ+δ−), we find for
the Langmuir circulation:

w0011 = 0, u0011 = 0, v0011 = V0011, π0011 = Π0011,

η0011 = −Π0011

γF
− R∗S

γF
η0010 η0001. (A 18)

The corresponding internal-wave fields, at O(εδ−), are:

w0101 = 0, u0101 = 0, v0101 = V0101, π0101 = Π0101,

η0101 = −Π0101

γF
− R∗S

γF
η0100 η∗

0001. (A 19)

The O(kδ+δ−) solvability condition for the Langmuir circulation,

∂U0100

∂T11

= 0 , (A 20)

indicates that there is no energy exchange between the Langmuir circulation and the
internal waves over the T11 time scale. Consideration of the internal-wave dynamics
at O(kεδ−), however, yields the following non-trivial solvability condition:

∂U0010

∂T11

= −i

[
90(R2

∗γF − 60)

R5
∗γFc

]
U0100 U ∗

0001. (A 21)

Thus, the O(kεδ−) quadratic nonlinear interaction between the stationary Langmuir
circulation and the negatively propagating internal wave modulates the O(δ+)
amplitude of the positively propagating wave.
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