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Abstract

For gravity wave trains propagating over an arbitrary wavy bottom, a perturbation expansion is developed to the second order so that

the Bragg resonance effect of the ripple bottom on the free-surface wave can be analyzed. Both the resonant and non-resonant cases are

treated and the singular behavior at resonance is avoided. This theory is successfully verified by reducing to simpler situations. Then, the

analytical results for the special case of a unidirectional sinusoidal bottom are compared with experimental data for validation.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Periodic topographic variation plays an important role in the evolution of wave motion as they travel from deep sea to
shallow water. The first experiment of Heathershaw (1982) showed that a significant amount of wave energy can be
reflected from submerged bars if the bar interval is about one-half wavelength of the normally incident waves and that
these reflections are due to resonant interactions between surface waves and the bottom topography. Furthermore, the
experiment of Davies and Heathershaw (1984) shows that the maximum reflection coefficient increases with the ripple
amplitude and decreases with the water depth. Since then, the interaction of surface gravity waves with periodic bottom
topography has been investigated extensively through theoretical, experimental and numerical studies. These studies have
motivated various ideas for the design of submerged breakwaters that can effectively protect the beach against erosion and
have less visual impact on coastal landscapes. From the engineering point of view, it is worthwhile to study the mechanism
of this strong reflection of water waves so that a more economical and efficient design of sea-bottom structures in the
nearshore zone is possible.

The first theoretical study on the effect of a wave-shaped bottom was given by Jeffreys (1944). He considered a long train
of surface waves propagating over a sea bottom of regularly distributed sandbars and studied the variation of the resulting
reflection coefficient. Ursell (1947) pointed out that this phenomenon is exactly what is called the Bragg resonance of
optics. Davies (1980,1982), Heathershaw (1982) and Davies and Heathershaw (1984) made a series of systematic studies of
this topic. They considered incident waves propagating over the ripple bottom with an amplitude small compared with the
water depth. By applying linear wave theory, they obtained the reflection coefficient caused by the bottom topography.
However, their theoretical results are not applicable at resonance; hence, a proper comparison with their experiments is not
available. Mitra and Greenberg (1984) gave the reflection coefficient at resonance, but the coefficient is time-dependent
e front matter r 2006 Elsevier Ltd. All rights reserved.
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instead of varying from place to place. Thus, a direct comparison with the space-varying reflection coefficient of the
experiment is not possible. To overcome this shortcoming, Mei (1985) and Hara and Mei (1987) found a space-varying
solution at resonance that is validated by their experiments. Kirby(1986) employed the mild-slope approximation to predict
waves propagating over slowly varying topography.

By first introducing two perturbation parameters explicitly, the same problem of regular progressive gravitational water
waves propagating over a wavy bottom was solved by Chen and Tang (1990). They assumed the ratio of the wavy bottom
amplitude b to the water depth d is small and discussed both the resonant and non-resonant situations. Chen (1991) investigated
the growing mechanism in resonance and the same approach is extended to the three-dimensional situation of the present study.
An integrated theory containing all kinds of unidirectional wavy bottoms of finite length was developed by Chen (1992) and the
theoretical results are validated by comparing with the experimental research of Davies and Heathershaw (1984).

More recently, Charberlain and Porter (1995) developed a decomposition method to obtain the scattering matrix for
periodic bottom undulations. Rey et al. (1996) derived an analytical theory for subharmonic Bragg resonance caused by the
interaction between small-amplitude surface waves and unidirectional doubly sinusoidal beds. Liu and Yue (1998) studied
the generalized Bragg scattering of surface waves over a wavy bottom. On the basis of Phillips’ (1960) resonance condition
for nonlinear wave–wave interactions, they provided a Bragg resonance condition for second-order and third-order
wave–bottom interactions. Cho and Lee (2000) developed a numerical model that contains both propagating and
evanescent modes and compared the results with the experiment of Guazzelli et al. (1992). Yu and Mei (2003) gave some
numerical calculations and showed that if waves are reflected by both the bottom and the shore, the monotonically
decreasing tendency of the spatial wave-energy distribution over the ripple patch will be changed.

The studies mentioned above have concentrated on two-dimensional cases only. Due to the complex sand-dune
topography in the coastal zone and the varying direction of incident waves, a three-dimensional study is desirable. By
treating normally incident waves whose frequency is slightly different from that of the Bragg resonance, Mei et al. (1988)
considered oblique incidence of detuned waves on a finite strip of bars. Zhang et al. (1999) extended the idea of Kirby
(1986) and proposed a hybrid model for Bragg scattering of water waves that has both slowly-varying and rapidly varying
undulating bottom components. The higher-order terms neglected by Kirby are retained for a better estimate of the
reflection coefficient. Porter and Porter (2001) examined the existence of trapped Rayleigh-Bloch waves and the Bragg
resonance effect in three-dimensional context by numerical computation in which the mild-slope approximation was
employed. However, a complete three-dimensional theory that gives analytic results for wavy periodic bottoms has
not been reported yet. In the following, an analytic approach is employed for a thorough understanding of the 3-D
Bragg resonance mechanism. By employing three small perturbation parameters, this problem is explicitly solved to
the second order exactly without utilizing the mild slope approximation. The accuracy and generality of the solutions are
also verified.

2. Formulation of wave motion system

Consider a three-dimensional wave field with undulated bottom form z ¼ �d þ b1cos ðm
*

1 � X
*
þjÞ þ b2cos ðm

*
2 � X

*
Þ that

is constructed by two sinusoidal wave trains of wave number vectors m
*

1, m
*

2 and amplitudes b1, b2. X
*

is the horizontal

position vector i
*

xþ j
*

y. The corresponding wave numbers are m1 ¼ jm
*

1j ¼ 2p=L1 and m2 ¼ jm
*

2j ¼ 2p=L2, where L1 and

L2 are the corresponding wavelengths. d is the mean depth of the sea bed and j is the phase angle of the m
*

1 component. To
describe surface gravity water waves propagating over such a bottom topography, a Cartesian rectangular coordinate
system is adopted with the x�y plane coincident with the mean still water level and the z axis pointing vertically upwards.

The origin is chosen so that the phase angle for the m
*

2 component is zero. The fluid is assumed to be inviscid and
incompressible, and the flow irrotational and represented by the velocity potential f(x,y,z,t) that satisfies the Laplace
equation over the entire flow field:

r2f ¼ fxx þ fyy þ fzz ¼ 0 for � d þ b1cos ðm
*

1 � X
*
þjÞ þ b2 cos ðm

*
2 � X

*
ÞpzpZ, (1)

where Z(x, y, t) is the elevation of the water surface. The fluid velocity can be derived from f(x, y, z, t) by

V
*
¼ rf ¼ ðfx;fy;fzÞ ¼ ðu; v;wÞ.

Let y be the angle between the x-axis and the wavenumber vector of the incident wave k
*
. The incident wavenumber is

k ¼ j k
*
j ¼ 2p=L, where L is its wavelength. y1 and y2 are the angles between the x-axis and the vectors m

*
1 and m

*
2,

respectively, and the angle between these two vectors is defined as b ¼ y2 � y1. Graphical descriptions of the progressive
wave together with the coordinate system are depicted in Fig. 1.

It should be noted that the problem treated here can be extended to an arbitrary periodic bottom bathymetry because a
sea bottom periodic in any two directions can be expressed as a superposition of two Fourier series.
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Fig. 1. Definition for a 3D wave motion system and a wavy bottom.
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The boundary conditions on the free surface are:
(A)
 Free surface kinematic boundary condition (FSKBC)

fz ¼ dZ=dt ¼ Zt þ fxZx þ fyZy at z ¼ Zðx; y; tÞ; and (2)
(B)
 Free surface dynamic boundary condition (FSDBC)

ft þ gZþ ðf2
x þ f2

y þ f2
zÞ=2 ¼ 0 at z ¼ Zðx; y; tÞ, (3)
where g is gravitational acceleration.
Besides, the bottom kinematic boundary condition that the fluid particles have zero velocity normal to the rigid bottom

boundary has to be satisfied. That is, qf=qn ¼ rf � n
*
¼ rf � rf = rf

�� �� ¼ 0; where n
*

is the unit vector normal to the
surface. After some manipulations, this bottom condition becomes

fx m1b1 cos y1sin ðm
*

1 � X
*
þjÞ þm2b2 cos y2sin ðm

*
2 � X

*
Þ

h i
þ fy m1b1 sin y1 sin ðm

*
1 � X

*
þjÞ þm2b2 sin y2 sin ðm

*
2 � X

*
Þ

h i
þ fz ¼ 0; z ¼ �d þ b1 cos ðm

*
1 � X

*
þjÞ þ b2 cos ðm

*
2 � X

*
Þ. ð4Þ

An additional condition for the conservation of mass, combined with the periodicity of the bottom topography, isZ 2mp

0

Z 2np

0

Zðx; y; tÞ dðm
*

1 � X
*
Þ dðm

*
2 � X

*
Þ ¼ 0. (5)

Note that Eq. (5) is an integration with respect to non-dimensional quantities m
*

1 � X
*

and m
*

2 � X
*
. The integer n is the ratio

of the common multiple of L1 and L/cos(y�y1) to L/cos(y�y1), and m is that of L2 and L/cos(y�y2) to L/cos(y�y2).

L/cos(y�y1) and L/cos(y�y2) represent the wavelength of the incident surface wave in the direction of m
*

1 and m
*

2,
respectively. Graphical descriptions of this condition are shown in Fig. 2.

3. Theoretical Analysis

The FSKBC can be modified by combining with the FSDBC. First, multiply the FSKBC, (2), by g and then subtract it
from the substantive (total) derivative of (3) with respect to t. The result, as presented in Longuet-Higgins (1962), is

ftt þ gfz þ 2rf � rft þ rf � r rfð Þ
2=2 ¼ 0 at z ¼ Z. (6)

Note that both this condition and the FSDBC are established on the varying water level z ¼ Z which is not known yet.

Besides, the bottom boundary condition is set up on the undulating bottom z ¼ �d þ b1 cos ðm
*

1 � X
*
þjÞ þ b2 cos ðm

*
2 � X

*
Þ.

All these conditions should be expanded about z ¼ 0 and �d, respectively, and Taylor series expansion should be utilized.
These conditions, viz. Eqs. (3), (6) and (4) thus become

ft þ Z
qft

qz
þ

1

2
Z2

q2ft

qz2
þ gZþ

1

2
ðrfÞ2 þ Z

q
qz

1

2
ðrfÞ2

� �
þHOT . . . ¼ 0 at z ¼ 0, (7)
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Fig. 2. Conservation of mass for the case of n ¼ 4 and m ¼ 3.
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ftt þ Z
qftt

qz
þ

1

2
Z2

q2ftt

qz2
þ gfz þ Z

qðgfzÞ

qz
þ

1

2
Z2

q2ðgfzÞ

qz2
þ 2rf � rft þ Z

qð2rf � rftÞ

qz
þ

1

2
rf � rðrfÞ2

þHOT . . . ¼ 0 at z ¼ 0. ð8Þ

m1b1 cos y1 sin ðm
*

1 � X
*
þjÞ þm2b2 cos y2 sin ðm

*
2 � X

*
Þ

h i
� fx þ b1 cos ðm

*
1 � X

*
þjÞ þ b2 cos ðm

*
2 � X

*
Þ

h i
fxz

n
þ b1 cos ðm

*
1 � X

*
þjÞ þ b2 cos ðm

*
2 � X

*
Þ

h i2
fxzz=2

�
þ m1b1 sin y1 sin ðm

*
1 � X

*
þjÞ þm2b2 sin y2 sin ðm

*
2 � X

*
Þ

h i

� fy þ b1 cos ðm
*

1 � X
*
þjÞ þ b2 cos ðm

*
2 � X

*
Þ

h i
fyz

n
þ b1 cos ðm

*
1 � X

*
þjÞ þ b2 cos ðm

*
2 � X

*
Þ

h i2
fyzz=2

�

þ fz þ ½b1 cos ðm
*

1 � X
*
þjÞ þ b2 cos ðm

*
2 � X

*
Þ�fzz

n
þ b1 cos ðm

*
1 � X

*
þjÞ þ b2 cos ðm

*
2 � X

*
Þ

h i2
fzzz=2

�
þHOT . . . ¼ 0 at z ¼ �d. ð9Þ

From the boundary conditions, it is evident that the velocity potential f, surface elevation Z and angular frequency s are all
influenced by both the regular progressive gravity waves and the uneven bottom topography. Therefore the entire solutions can
be written as the summation of these two contributions, viz. f ¼ fw þ fb; Z ¼ Zw þ Zb; s ¼ sw þ sb, where the subscript w

denotes the contribution of the wave alone, and the subscript b denotes the bottom effect. In order to solve Eq. (1) together
with boundary conditions (7)–(9), three small parameters are proposed: �1 ¼ a=L represents the steepness of the incident wave
of amplitude a, while �2 ¼ b1=L1 and �3 ¼ b2=L2 represent the bottom slope. For convenience, the three different parameters
are assumed to be of the same order �1 ffi �2 ffi �3 ffi �. For example, a second order term may consist terms of components

Oða=LÞ2 ffi �21 ffi �2; Oða=LÞ � ðb1=L1Þ ffi �1�2 ffi �2;Oða=LÞ � ðb2=L2Þ ffi �1�3 ffi �2,

Oðb1=L1Þ
2
ffi �22 ffi �2 and Oðb2=L2Þ

2
ffi �23 ffi �2.

Note that this scale assumption is very general. When one parameter is significantly smaller than the other two, the solution
so obtained is still correct to the same order. A simpler solution of the same accuracy can easily be obtained by dropping terms
with this smaller parameter. The perturbative analysis is established by expanding the velocity potential f, surface elevation Z,
and angular frequency s as

f ¼
X1
n¼1

fn ¼ f1 þ f2 þ f3 þ � � �

Z ¼
X1
n¼1

Zn ¼ Z1 þ Z2 þ Z3 þ � � �

s ¼
X1
n¼0

sn ¼ s0 þ s1 þ s2 þ � � � . ð10Þ

where the subscripts denote the order of magnitude associated with the perturbation analysis.
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As the wave field fluctuates with st, a specific quantity after differentiating with respect to t is magnified by s. Following
Chen (1989, 1990), a new variable t1 ¼ st was proposed and the following chain rule was applied:

qf
qt
¼

qf
qt1

dt1

dt
¼ s

qf
qt1

;
q2f
qt2
¼

q
qt1

qf
qt

� �
dt1

dt
¼ s2

q2f
qt21

viz:;
qf
qt
¼

X1
n¼0

sn

 !
qf
qt1

;
q2f
qt2
¼

X1
n¼0

sn

 !2
q2f
qt21

. ð11Þ

The governing equations, (1)–(5), can then be expanded and solved order by order, as will be shown in the following
sections.
3.1. First-order approximation

The boundary-value problem correct to the first order is given by

r2f1 ¼ 0 for � dpzp0, (12)

s0f1t1
þ gZ1 ¼ 0 at z ¼ 0, (13)

s20f1t1t1
þ gf1z ¼ 0 at z ¼ 0, (14)

f1z ¼ 0 at z ¼ �d, (15)

Z 2mp

0

Z 2np

0

Z1ðx; y; tÞ dðm
*

1 � X
*
Þ dðm

*
2 � X

*
Þ ¼ 0, (16)

and can be solved as

f1 ¼
ag

s0

cosh kðd þ zÞ

cosh kd
sin ðk

*
�X
*
�stþ dÞ, (17)

Z1 ¼ a cos ðk
*
�X
*
�stþ dÞ, (18)

s20 ¼ gk tanh kd, (19)

where a is the amplitude of Z1 and d is its phase angle at the origin X
*
¼ 0 and t ¼ 0. The phase angle is chosen to be zero for

convenience. The results are exactly a linear surface wave over constant water depth. Note that the bottom undulation has
the same order as the velocity potential f. Their interaction occurs in the second order and hence in the first order solution,
the contribution of the parameters b1/L1 and b2/L2 are so small that the wavy bottom effect is not appreciable.
3.2. Second-order approximation

The governing equation and the boundary conditions of the problem, after substituting the first order solutions, are
expressed as

r2f2 ¼ 0 for � dpzp0, (20)

s0f2t1
þ gZ2 ¼ s1

ag

s0
cos ðk

*
�X
*
�stÞ �

1

4

a2s20
sinh2 kd

þ
k2a2g2ð2sinh2 � 1Þ

4s20cosh
2 kd

cos 2ðk
*
�X
*
�stÞ at z ¼ 0, (21)

s20f2t1t1
þ gf2z ¼ 2s1ag sin ðk

*
�X
*
�stÞ �

3a2g2

2s0cosh
2 kd

sin 2ðk
*
�X
*
�stÞat z ¼ 0, (22)

f2z ¼ �
ag

2s0 cosh kd
b1 k

*
� lþ1
*

sin ðlþ1
*

�X
*
þj� stÞ

��
þ k

*
� l�1
*

sin ðl�1
*
�X
*
þjþ t1Þ

�

þ b2 k
*
� lþ2
*

sin ðlþ2
*

�X
*
�t1Þ þ k

*
� l�2
*

sin ðl�2
*
�X
*
þt1Þ

� ��
at z ¼ �d, ð23Þ
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where l�i
*

¼ m
*

i � k
*
; j l�i

*

j ¼ l�i ; i ¼ 1�2; andZ 2mp

0

Z 2np

0

Z2ðx; y; tÞ dðm
*

1 � ~X Þdðm
*

2 � ~X Þ ¼ 0. (24)

These equations can be solved for either non-resonant or resonant cases.

3.2.1. Non-resonant case

The second order solution of Eqs. (20)–(24) can be solved explicitly and the entire wave field, correct to the second order,
can be written as

s1 ¼ 0; s ¼ sw þ sb ¼ s0; s20 ¼ gk tanh kd, (25)

f ¼ f1 þ f2 ¼
ag

s0

cosh kðd þ zÞ

cosh kd
sin ðk

*
�X
*
�stÞ þ

3

8
s0a2 cosh 2kðd þ zÞ

sinh4 kd
sin 2ðk

*
�X
*
�stÞ

�
1

4

s20a
2t

sinh2 kd

� �
þ

gab1

2s0 cosh kd

� �

�
k
*
� lþ1
*

lþ1

lþ1 cosh ðlþ1 zÞ þ k tanh ðkdÞ sinh ðlþ1 zÞ

cosh ðlþ1 dÞ lþ1 tanh ðlþ1 dÞ � k tanh ðkdÞ
	 


" #8<
: sin ðlþ1

*

�X
*
�stþ jÞ

þ
~k � l�1

*

l�1

l�1 cosh ðl�1 zÞ þ k tanh ðkdÞ sinh ðl�1 zÞ

cosh ðl�1 dÞ l�1 tanh ðl�1 dÞ � k tanh ðkdÞ
	 


" #
sin ðl�1

*
�X
*
þstþ jÞ

9=
;

þ
gab2

2s0 cosh kd

� � ~k � lþ2
*

lþ2

lþ2 cosh ðlþ2 zÞ þ k tanh ðkdÞ sinh ðlþ2 zÞ

cosh ðlþ2 dÞ lþ2 tanh ðlþ2 dÞ � k tanh ðkdÞ
	 


" #8<
: sin ðlþ2

*

�X
*
�stÞ

þ
~k � l�2

*

l�2

l�2 cosh ðl�2 zÞ þ k tanh ðkdÞ sinh ðl�2 zÞ

cosh ðl�2 dÞ l�2 tanh ðl�2 dÞ � k tanh ðkdÞ
	 


" #
sin ðl�2

*
�X
*
þstÞ

9=
; ¼ fw þ fb, ð26Þ

Z ¼ Z1 þ Z2 ¼ a cos ðk
*
�X
*
�stÞ

þ ka2
ð2sinh2 kd þ 3Þ cosh kd

4sinh3 kd
cos 2ðk

*
�X
*
�stÞ

þ
ab1

2 cosh kd

� �
ðk
*
� lþ1
*

Þ cos ðlþ1
*

�X
*
�stþ jÞ

cosh ðlþ1 dÞ lþ1 tanh ðlþ1 dÞ � k tanh ðkdÞ
	 


8<
: �

ðk
*
� l�1
*
Þ cos ðl�1

*
�X
*
þstþ jÞ

cosh ðl�1 dÞ l�1 tanh ðl�1 dÞ � k tanh ðkdÞ
	 


9=
;

þ
ab2

2 cosh kd

� �
ðk
*
� lþ2
*

Þ cos ðlþ2
*

�X
*
�stÞ

cosh ðlþ2 dÞ lþ2 tanh ðlþ2 dÞ � k tanh ðkdÞ
	 


8<
: �

ðk
*
� l�2
*
Þ cos ðl�2

*
�X
*
þstÞ

cosh ðl�2 dÞ l�2 tanh ðl�2 dÞ � k tanh ðkdÞ
	 


9=
; ¼ Zw þ Zb.

ð27Þ

Note that the first two terms of the velocity potential f and the surface elevation Z have nothing to do with the bottom
topography. Hence, they represent the water wave effect and are respectively replaced by fw and Zw, where the subscript w

denotes the contribution of the wave alone. The last two terms of f and Z are proportional to the bottom undulations b1
and b2, and are denoted by subscript b to represent the bottom effect. Thus, the complete f and Z can be expressed as the
summation of two terms f ¼ fw þ fb and Z ¼ Zw þ Zb.

This solution is obtained by the regular perturbation method and the singularity, when the hyperbolic tangent terms in
the denominator cancel each other, is not considered; thus, it is applicable only in the non-resonant case.

3.2.2. Resonant case

As is shown in Fig. 1, 0pbpp is the angle between m
*

1 and m
*

2. Let b1 (0pb1pp) be the angle between m
*

1 and k
*
, and b2

(0pb2pp) be the angle between m
*

2 and k
*
. Then, define l�i ¼ jm

*
i � k

*
j ; mi ¼ jm

*
ij. It is easy to see that the denominators

l�i tanhðl�i dÞ � k tanhðkdÞ; i ¼ 1 ; 2, of both Eqs. (26) and (27) will equal to zero when l�i ¼ k. In this case, the second

order terms tend to infinity and the solution becomes secular due to the resonance between the water wave and the sea
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bottom. This resonant condition can be stated as

l�i
*

� l�i
*

¼ k2 or cos bi ¼ 	
mi

2k
; i ¼ 1 ; 2. (28)

Under this resonant condition, the wavenumber vectors of the gravity wave and the wavy bottom can be sketched as
shown in Fig. 3. Since j cos bij is less than or equal to unity, the resonance can occur only when mip2k, as is predicted by

Eq. (28). Fig. 3 also shows that jm
*

i � k
*
j ¼ j k

*
j holds when 0pbipp=2, while jm

*
i þ k

*
j ¼ j k

*
j holds when p=2p0pbIop.

Of all four resonant cases that correspond to four variables l�i ¼ jm
*

i � k
*
j, i ¼ 1�2, in the resonant condition, only the

solution for the case that involves l�1 ¼ jm
*

1 � k
*
j ¼ k and satisfies (28) is explicitly given in this section. All other cases can

be solved in a similar way and the detail is not shown for brevity.
Hereafter, the symbols f�ðiÞr for the velocity potential, Z�ðiÞr for the surface elevation, and s�ðiÞr for the angular frequency

in which i ¼ 1; 2 are used to denote the resonance with respect to the ith bottom ripple, respectively. The wave field that
corresponds to the resonant condition l�1 tanh ðl�1 dÞ � k tanh ðkdÞ is obtained following Chen (1992) as

s�ð1Þ1r ¼ 0,

s�ð1Þr ¼ sw þ s�ð1Þbr ¼ s0;s20 ¼ gk tanh kd, ð29Þ

f�ð1Þr ¼ f�ð1Þ1r þ f�ð1Þ2r ¼
ag

s0

cosh kðd þ zÞ

cosh kd
sin ðk

*
�X
*
�stÞ þ

3

8
s0a2 cosh 2kðd þ zÞ

sinh4 kd
sin 2ðk

*
�X
*
�stÞ �

1

4

s20a
2t

sinh2 kd

� �

þ
gab1

2s0 cosh kd

� �
k
*
� lþ1
*

lþ1

lþ1 cosh ðlþ1 zÞ þ k tanh ðkdÞ sinh ðlþ1 zÞ

cosh ðlþ1 dÞ lþ1 tanh ðlþ1 dÞ � k tanh ðkdÞ
	 


" #8<
: sin ðlþ1

*

�X
*
�stþ jÞ

þ
k
*
� l�1
*

l�1
e�l

�
1 ðdþzÞ sin ðl�1

*
�X
*
þstþ jÞ

~k

lþ1

"
�

cosh l�1 ðd þ zÞ

sinh 2kd
ðstÞ cos ðl�1

*
�X
*
þstþ jÞ

�9=
;þ gab2

2s0 cosh kd

� �

�
k
*
� lþ2
*

lþ2

lþ2 cosh ðlþ2 zÞ þ k tanh ðkdÞ sinh ðlþ2 zÞ

cosh ðlþ2 dÞ lþ2 tanh ðlþ2 dÞ � k tanh ðkdÞ
	 


" #8<
: sin ðlþ2

*

�X
*
�stÞ

þ
k
*
� l�2
*

l�2

l�2 cosh ðl�2 zÞ þ k tanh ðkdÞ sinh ðl�2 zÞ

cosh ðl�2 dÞ l�2 tanh ðl�2 dÞ � k tanh ðkdÞ
	 


" #
sin ðl�2

*
�X
*
þstÞ

3
5
9=
; ¼ fw þ f�ð1Þbr ; l�1 ¼ k, ð30Þ
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Fig. 3. Sketch of wave number vectors at resonance.
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þ
csch kd

2
ðstÞ sin ðl�1

*
�X
*
þstþ jÞ

�9=
;þ ab2

2 cosh kd

� �
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*
� lþ2
*

Þ cos ðlþ2
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�X
*
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9=
; ¼ Zw þ Z�ð1Þbr ; l�1 ¼ k. ð31Þ

For other resonant cases, the mathematical expressions are similar to (30) and (31) and they can be easily obtained by
changing the subscript and/or changing the minus sign to plus sign.

Note that in this paper, the perturbation theory is developed only to the second order. Thus, among the three
perturbation parameters a/L, b1/L1 and b2/L2, only two of them couple together; that is, either a/L couples with b1/L1, or
a/L couples with b2/L2. Consequently, the induced bottom effects can be obtained by directly superimposing terms of these
two pairs of parameters.

3.2.3. Amplification with propagating distance

As was pointed out in Chen (1992), in resonance the water wave is amplified along with its traveling distance. This
growth is related only to the resonant terms of the water wave solution (30) and (31)

f�ð1Þ
br0
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� l�1
*
Þ

4s0k sinh kd
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*
�X
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þstþ jÞ ; l�1 ¼ k; and (32)
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*
�X
*
þstþ jÞ (33)

because all other terms do not grow.
The average energy flux of the resonant wave per unit wavelength, DF�ð1Þ, can be obtained by employing the resonant

velocity potential (32) as
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r
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128s20k
2sinh2 kd � cosh4 kd

s3t2 ; l�1 ¼ k, ð34Þ

where r is the density of the fluid. SG is an arbitrary vertical cross-section of unit width, extending from the sea bottom to
the free surface. This means the integration is taken along the direction of resonant waves, in this case the direction of

m
*

1 � k
*
, from the bottom z ¼ �d þ b1 cos ðm

*
1 � X

*
Þ þ b2 cos ðm

*
2 � X

*
Þ to the top z ¼ Z in the vertical direction, and within a

wavelength range that corresponds to phase l�1
*
�X
*

ranging from 1 to 2p. The outward normal vector is defined as

n
*�ð1Þ

¼ ðm
*

1 � k
*
Þ=jm

*
1 � k

*
j.

Based on the conservation of energy, C
�ð1Þ
gb , which in resonance is the rate of energy transfer, should include both the

incident group velocity Cg and a growth rate of energy flux due to resonance DC�ð1Þg ¼ DF�ð1Þ=E. That is

C
�ð1Þ
gb

Cg

¼ 1þ
DC�ð1Þg

Cg

¼ 1þ
DF�ð1Þ

ECg

, (35)

where E ¼ 1
2
rga2 is the averaged energy of the regular incident wave per unit width, and the group velocity Cg is given by

linear wave theory as

Cg ¼
ds
dk
¼

1

2
1þ

2kd

sinh 2kd

� �
s
k
. (36)

Substituting (34) and (36) into (35), the desired energy transfer velocity at resonance, C
�ð1Þ
gb , can be obtained as

C
�ð1Þ
gb ¼ 1þ

DF�ð1Þ

ECg

� �
Cg ¼ 1þ

ðk
*
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*
Þ
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1s
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2
4

3
5Cg. (37)
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The growth of the resonant reflected wave with its traveling distance now is explicitly expressed by (37). The resonant

wave has energy velocity C
�ð1Þ
gb and moves some distance x

�ð1Þ
0 within the time t. The direction of x

�ð1Þ
0 is the same as the

direction of C
�ð1Þ
gb , and both are identical to the resonant wave direction m

*
1 � k

*
. The relationship between velocity, time,

and distance gives

C
�ð1Þ
gb ¼

x
�ð1Þ
0

t
or x

�ð1Þ
0 ¼ C

�ð1Þ
gb � t. (38)

Substituting the former equation into (37) and solving the resulting cubic equation for the unknown t, the relation

between the displacement x
�ð1Þ
0 and the corresponding time t is derived as
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After using (39), the growth of the resonant wave with time can then be represented as a form that grows with distance.
The resonant terms of the velocity potential and the surface elevation become
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In the resonant case, the complete wave field and surface elevation at a constant location x are

f�ð1Þr ðx; y; tÞ ¼ f1 þ f�ð1Þ
br0
ðx; y; t ; x

�ð1Þ
0 Þ þ other non�resonant terms of ð30Þ, (42)

Z�ð1Þr ðx; y; tÞ ¼ Z1 þ Z�ð1Þ
br0
ðx; y; t ; x

�ð1Þ
0 Þ þ other non�resonant terms of ð31Þ (43)

4. Theory verification

In this study, a set of analytical solutions have been developed for waves propagating over a ripple bottom. To verify the
mathematical results, the problem is reduced to simpler situations that can be compared with previous studies.
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4.1. Extreme cases

The following two extreme cases can be easily shown to be satisfied:
(1) When the bottom becomes flat, b1 ¼ b2 ¼ 0, the solutions are successfully reduced to regular waves propagating over

a uniform depth d.
(2) When the water is infinitely deep, d-N, the bottom effect vanishes.

4.2. Bottom boundary condition

Up to the second-order solution derived in the previous section, it can be easily proven that the sea bottom is a
streamline. This condition is always satisfied for arbitrary incident wave direction.

4.3. Reduced to unidirectional bottom topography

Comparing with field measurement or laboratorial tests is the most effective way to validate the accuracy of the present
theory. However, there is no experiment that allows a wavy bottom to vary in two directions. Thus, the three-dimensional
solution obtained in the previous sections should be reduced to a two-dimensional flow with just unidirectional bottom
topography.

(1) Singly sinusoidal topography. The simplest unidirectional bottom topography has just one sinusoidal component and
is a special case of the present study. Both the incident wave and the sand wave are of only one direction, the x-direction,
and the following substitutions are used:

m
*

1 ¼ i
*

m1 ¼ i
*

m ; b2 ¼ 0 ; k
*
¼ i

*
k ; j ¼ 0,

X
*
¼ i

*
x ; y ¼ y1 ¼ 0,

z ¼ �d þ b1 cos ðm
*

1 � X
*
þjÞ þ b2 cos ðm

*
2 � X

*
Þ ¼ �d þ b1 cos ðmxÞ,

l�1
*

¼ jm
*

1 � k
*
j ¼ jm� kj ; k

*
� l�1
*

¼ k m� kð Þ. ð44Þ

For the non-resonant case, the dispersion relation, velocity potential, and surface elevation are reduced to

s1 ¼ 0; s ¼ sw þ sb ¼ s0;s20 ¼ gk tanh kd, (45)

f ¼
ga
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�
, ð46Þ

Z ¼ a cos ðkx� stÞ þ
ka2

4

ð2sinh2 kd þ 3Þ cosh kd

sinh3 kd
cos 2ðkx� stÞ

þ
1

2

ab1k

cosh kd

ðmþ kÞ cos ½ðmþ kÞxþ j� st�

cosh ðmþ kÞd½ðmþ kÞ tanh ðmþ kÞd � k tanh ðkdÞ�

�

�
ðm� kÞ½cos ðm� kÞxþ st�

cosh ðm� kÞd½ðm� kÞ tanh ðm� kÞd � k tanh ðkdÞ�

�
, ð47Þ

and the reflection coefficient is simply

R ¼
kb1ð1� ð2k=2m1ÞÞsech ðð2k=2m1Þm1b1ðd=b1ÞÞsech ½ð1� ð2k=2m1ÞÞm1b1ðd=b1Þ�

2ð1� ð2k=2m1ÞÞ tanh ½ð1� ð2k=2m1ÞÞm1b1ðd=b1Þ� � ð2k=2m1Þ tanh ðð2k=2m1Þm1b1ðd=b1ÞÞ

����
����. (48)

If the Bragg resonance exists and the case l�1 ¼ jm
*

1 � k
*
j ¼ k is taken for example, the dispersion relation, velocity

potential, and surface elevation are reduced to

s�ð1Þ1r s1r ¼ 0,

s�ð1Þr ¼ sr ¼ sw þ sbr ¼ s0; s20 ¼ gk tanh kd, ð49Þ
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and the reflection coefficient at resonance is reduced to
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Fig. 4. Reflection coefficients over a singly sinusoidal topography: (a)–(c) are the comparison between the present theory, Eq. (48), and the experiments of

Davies and Heathershaw (1984); (d) compares the present theory, Eq. (52), to the experiments of Heathershaw (1982) and the theory of Mei (1985).
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The reduced results of Eqs. (45)–(52), are all coincident with Chen (1991,1992) which applied the same approach
as the present study to waves propagating over a singly sinusoidal bottom. This 2-D flow field has been validated
by comparing with the laboratorial experiments of Heathershaw (1982) and Davies and Heathershaw (1984) and the
results are shown in Fig. 4, which are exactly the same as Figs. 2(a)–(c) and (d) of Chen (1992). In Figs. 4(a) and (b),
where there are only two and four bottom ripples, the length of undulated bottom is so short that the bottom and
the surface wave cannot fully interact, as is shown by the scattered experimental data. However, the average of the
experimental reflection coefficient differs from the theoretical value for only 0.0039 in Fig. 4(a) and the averaged
difference is 0.0553 in Fig. 4(b). There are 10 bottom ripples in Fig. 4(c) and the observed reflection coefficients are
much more concentrated in the vicinity of the theoretical curve. In Fig. 4(d), the reflection coefficient is plotted during
and after the ripple bottom zone for various ripple amplitude. The error between the experimental data and Chen’s (1992)
result is quite small: 3.87% for the case b1=d ¼ 0:08, 3.20% for b1=d ¼ 0:10, 2.13% for b1=d ¼ 0:12, and 2.55% for
b1=d ¼ 0:14.

(2) Doubly sinusoidal topography. There are two ways to reduce the three-dimensional results to the doubly sinusoidal
case where the wavy bottom has two sinusoidal components in the same direction. One way is by direct superposition of
two singly sinusoidal solutions, and the other is by applying the following substitution:

m
*

1 ¼ i
*

m ; m
*

2 ¼ i
*

m ; k
*
¼ i

*
k ; j ¼ 0,

X
*
¼ i

*
x ; y ¼ y1 ¼ 0,

z ¼ �d þ b1 cos ðm
*

1 � X
*
þjÞ þ b2 cos ðm

*
2 � X

*
Þ ¼ �d þ b1 cos ðmxÞ þ b2 cos ðmxÞ,

l�i
*

¼ jm
*

i � k
*
j ¼ jm� kj ; k

*
� l�i
*

¼ k m� kð Þ ; i ¼ 1�2. ð53Þ

The theoretical reflection coefficient then is plotted in Fig. 5 to compare with the experimental data of Guazzelli
et al. (1992), and reasonable agreement is obtained. The dimensions of the bottom topography in each case are listed in
Table 1, and the length of the ripple zone is 48 cm. The present theory predicts that the first order Bragg resonance will
occur when either 2k ¼ m1 or m2 is satisfied, and this is consistent with the peak of the reflection coefficient in the
experiment of Guazzelli et al. As demonstrated by Guazzelli et al. (1992), the second order superharmonic Bragg resonance
occurs when 2k ¼ 2m1, 2m2 or m1+m2, while the subharmonic reflection occurs at 2k ¼ m1�m2, (m14m2). This higher
order Bragg reflection cannot be predicted by the present theory and will be described in an extension of the present work
to the third order (Cheng and Chen, 2005).

(3) Obliquely incident waves. The present theory describes the wave field propagating on a bidirectionally periodic bottom
of arbitrary directions. To verify the theory, the present theory was simplified so that the bottom topography varies in the
x-direction only. The resulting reflection coefficient is compared with Cho and Lee (2000) in Fig. 6. As incident angle y
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Fig. 5. Reflection coefficients over a doubly sinusoidal topography. The cross is the measurement of Guazzelli et al. (1992) and the solid line is the present

theory.
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Table 1

Dimensions of the doubly sinusoidal topographies of Fig. 5

d(cm) b1 ¼ b2 (cm) L1 (cm) L2 (cm)

(a) 2.5 1.0 12.0 6.0

(b) 4.0 1.0 12.0 6.0
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Fig. 6. Reflection coefficients for obliquely incident waves over singly sinusoidal topography.
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increases, the reflection peak occurs for higher wave number k. The trend agrees with the numerical calculation of Cho and
Lee (2000).
5. Discussion

5.1. The effect of the wavy bottom

In general non-resonant cases, the surface fluctuations deduced from undulated bottom topography decrease
as the relative water depth d/L increases, and decrease as the ratio of b1/d or b2/d decreases. The bottom effects due to
different incident angles y and different ratios of L/L1 or L/L2 were controlled by the resonant conditions (28).
For a specified ratio in which the bottom effects become more remarkable, the angle between the incident wave
and any of the ripple wave vectors approaches the resonant angle calculated from the resonant condition (28)
to a certain extent. The closer the incident angle is to the resonant angle, the more intensely the water surface rises
and falls.

Fig. 7 exhibits the appearance of the resonant wave: (1) is the surface fluctuation due to the wavy bottom effect, (2) is the
total surface elevation over wavy bottom, and (3) is the wavy bottom topography. In all three diagrams, the contours are
shown on the left side, while the 3-D elevation is shown on the right.

The growth of the resonant wave can be seen from Fig. 8. As the relative water depth kd decreases, the resonant wave
grows more significantly with both space and time.
6. Conclusions

This paper provides the mathematical derivations for three-dimensional progressive waves propagating over a
bidirectionally sinusoidal bottom topography. By introducing three small perturbation parameters, the analytical
solution correct to the second order is obtained. This result can be easily reduced to the two extreme cases of a flat
bottom or infinitely deep water, and its agreement with the experimental data of Guazzelli et al. (1992) is reasonable. Thus,
the accuracy and the generality of the explicit expressions are verified. Several concluding remarks and suggestions are
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given as follows:

1. The accuracy and the generality of the mathematical analysis can be firmly established. Although there are no suitable
three-dimensional numerical solutions or laboratorial tests to compare with the results, it still can be successfully reduced
to the two-dimensional situation and are consistent with previous research.

2. As can be easily understood, the effect of the bottom topography is more remarkable as the water depth becomes
shallower, and the effect vanishes as the water depth becomes infinity.

3. Bragg resonance can occur when the incident wave travels over a bidirectionally periodic ripple bottom. The resonant
condition can be explicitly derived from the secularity of the solution, and a separate resonant solution is found as well.

4. In the case of Bragg resonance, the growth rate of the energy flux and its relation to the traveling distance is explained.
The resonant-motions also decay exponentially as the water depth increases and disappear in deep-water.

5. After reducing the three-dimensional results to two-dimensional, reasonable agreement with experiment is obtained.
6. The present study considers only a bottom of sinusoidal variation in two directions. However, when the real ripple

bottom is idealized as being bidirectionally periodic, the bottom can always be treated as the superposition of sine and
cosine functions and the bottom effect can be obtained by means of Fourier analysis. Therefore, this theory can be applied
to a broad range of bottom bathymetries.
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APPENDIX A. NOTATION

The following symbols are used in this paper:

a amplitude of incident waves
b1 amplitude of bottom topography
b2 amplitude of bottom topography
Cg group velocity
C
�ð1Þ
gb energy transfer velocity at resonance

d mean water depth
E averaged energy of the regular incident wave per unit width
g gravitational acceleration
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k wave number of incident waves

k
*

wave number vector of incident waves
L wavelength of incident waves
L1 wavelength of bottom topography
L2 wavelength of bottom topography

m
*

1 wave number vector of bottom topography

m
*

2 wave number vector of bottom topography
t time
u velocity component in x-direction

V
*

velocity vector
v velocity component in y-direction
w velocity component in z-direction

X
*

position vector
x,y,z components of Cartesian rectangular coordinate
b angle between m

*
1 and m

*
2

Z surface elevation
y angle between k

*
and x-axis

y1 angle between m
*

1 and x-axis
y2 angle between m

*
2 and x-axis

r density of fluid
s angular frequency
f velocity potential
j phase angle at origin

Subscripts:

x partial derivative with respect to x

y partial derivative with respect to y

z partial derivative with respect to z

t partial derivative with respect to t
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