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ABSTRACT

The nonlinear interaction of wave-induced air motion and the turbulent wind is examined in spectral space
with the aid of a model developed through two averaging processes. The averaging periods are determined
by the time scales of turbulent and of wave-induced air motion. It is shown that an interaction subrange
spectrum characterized by a —1 slope may exist in the turbulent wind over the air-water interface.
A method which involves the calculation of energy spectra in frequency and in wavenumber-frequency

space is described. It permits an assessment of nonlinear interactions in these spectral domains.

We are

concerned particularly with interactions with the wave-induced motion and with the contribution which

this may make to the total turbulent kinetic energy.

1. Introduction

The displacement and deformation of air caused by
traveling water waves may cause the airflow in the
vicinity of the air-water interface to have observable
wave disturbance. The purpose of this paper is to ex-
amine the nonlinear interaction of wave-induced air
motion and turbulent wind in spectral space. By trans-
forming the energy equation into frequency and wave-
number-frequency spaces, a method is outlined to assess
the contribution to the total turbulent kinetic energy
of a particular component due to nonlinear interaction
in the spectral domain. It allows one to examine in
detail the effect of the wave-induced motion on the
structure of turbulent wind.

The coupling between wind and waves has been
formulated by Phillips (1966), Miles (1967) and re-
cently by Yefimov and Pososhkov (1970). For the con-
venience of later discussion, this coupling model is
derived here alternatively by defining two averaging
processes, one over a time scale T of the wave-induced
motion and the other over a time scale 7 of the turbulent
motion:
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The time scale 7" which has the magnitude of the domi-
nant period of water waves is generally much greater
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than 7, which may have the order of the integral time
scale of turbulence and is still long enough to yield
meaningful averages.

Let the instantaneous velocity and pressure fields be
decomposed into the forms

Ui=Uit Uit U
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where U;, P are the total instantaneous velocity and
pressure, U;, P the steady, time mean velocity and pres-
sure, Ui, Py the wave-induced velocity component and
pressure, and U,, P’ the turbulent fluctuations of
velocity and pressure. It can be shown from the equa-
tions of motion and continuity that the energy equations
for the wave-induced motion and the turbulent motion
take the forms:
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where fg; is the external force.

The interaction or production terms, the first terms
on the right of (3) and (4), are of primary interest.
Since the variation of U;U; in general is zero, (3) indi-
cates that the wave-induced motion can draw energy
from the mean flow through the wave-induced Reynolds
stresses U,;U,;0U;/0x; and that it can grow due to
the work done by the turbulent Reynolds stresses

UwidU;/U;/3x;. While turbulence constantly draws
energy from the mean flow through turbulent Reynolds

stresses U;/U;/dU;/ox;, the growth of wave-induced
motion, which enhances the local velocity gradient
through vortex stretching, will help the growth of turbu-
lent kinetic energy through U/ U, dU:/dx; as shown in
(4). This interaction process indicates that the rapidly
varying turbulent motion could help the growth of the
wave-induced motion while in return the wave-induced
motion may enhance the rapidly varying turbulence.

2. Interaction subrange spectra

It is well known from the equation of total energy
dissipation that the energy associated with wavenum-
bers not exceeding £ may interact with the remainder
of the spectrum in the forms of inertial transfer, shear
production, and inhomogeneous diffusion. Several equi-
librium subranges are thus obtained by considering the
relative predominance of the processes.

As shown initially by Tchen (1953) and discussed in
more detail by Gisina (1966), there can exist a —1 sub-
range in the energy spectra of turbulent shear flow.
This occurs as a consequence of strong interaction be-
tween turbulence and a large mean velocity gradient
inside the boundary layer. It results in a strong pro-
duction of turbulence energy. For a turbulent wind over
the air-water interface, this interaction mechanism of
Tchen and Gisina may be enhanced through the ap-
pearance of wave-induced motion, which increases the
local. velocity gradient and produces additional inter-
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action terms U;'U; Ui/ 9x;. Consequently, the effects
of wave-induced motion will show up in the turbulence
not only as a spectral peak at the frequency of the water
waves, but possibly as a modification of the spectrum
over a broad range of frequencies. If the interaction
mechanism of the motion induced by the waves and
that due to mechanical turbulence can be considered
as equivalent to the mechanism of Tchen, then one may
expect to find a —1 region in a spectrum of turbulence
over waves which is caused by this interaction.

To test the above hypothesis, some published experi-
mental data were examined. Figs. 1a and 1b are the
horizontal velocity spectra obtained by Kato and Sano
(1969) in a wind-wave tunnel. In the case with mechani-
cal waves (Fig. 1a), the spectra of M —2 measured at
height 2=40 cm from the mean water surface display a
very dominant peak near 0.6 Hz corresponding to the
frequency of the mechanical waves. The spectra at
z=06 cm have only a small peak near f=0.6 Hz, which,
according to Kato and Sano, is due to the fact the
fluctuations induced by mechanical waves are fairly
comparable with and rather hidden in the background
turbulence which would exist without those mechanical
waves. Both spectra, however, clearly reveal the exis-
tence of a—1 subrange which is bounded between the
frequency of dominant water waves and the Kolmogo-
roff’s —5/3 inertial subrange. Similar characteristics are
observed in the turbulent spectra over pure wind waves
(Fig. 1b). Although these data do not contradict our
hypothesis of an interaction subrange, they cannot be
considered as a conclusive proof since the —1 subrange
in longitudinal turbulence results from the combined
effects of the wave-induced motion and the overall mean
velocity gradient.

In Fig. 2, two spectra of vertical velocity fluctuations
are shown which were measured by Shemdin and Lai
(1970) in a wind-wave tunnel. The spectral bump and
—1 subrange observed in the longitudinal turbulence
appear here also. Since there is no overall mean velocity
in this direction, the —1 subrange must be a sole con-
sequence of the nonlinear interaction between the wave-
induced local velocity gradient and turbulence Reynolds
stresses.

The results shown in Figs. 1 and 2 indicate that the
laboratory surface waves perturb the air flow at low
frequencies, while the inertial subrange of turbulence
appears to be unaffected by the presence of surface
waves. The turbulence in the atmosphere over the
agitated sea surface may not show this behavior as
clearly. Because of its much higher Reynolds number
and much larger turbulence scale, atmospheric turbu-
lence has a wide inertial subrange in its spectrum. The
sea wave-induced motions, unlike those due to the
laboratory-generated waves, generally have a dominant
frequency which lies inside the inertial subrange of the
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F1a. 1a. Horizontal air velocity spectra over wind waves and mechanically generated waves
(from Kato and Sano, 1969).

atmospheric turbulence. The inertial subrange is per-
sistent in preserving its similarity structure, so that
wave-induced perturbations are localized in spectral
space. The model developed in Section 1 under the
assumption that wave-induced motions and background
turbulence have distinctively different time scales does
not apply in this case. The -1 interaction subrange
may thus fail to show up in atmospheric spectra over
the sea even though a clearly discernible wave-induced
peak is obtained. These characteristics are observed in

many atmospheric turbulence spectra above the sea
such as those presented by Kitaigorodsky (1969),
Volkov (1969) and Volkov and Mordukhovich (1971).

3. Nonlinear interaction in frequency and wave-
number-frequency spaces

The previous discussions give only a qualitative pic-
ture of the effect of wave-induced motions on the struc-
ture of turbulent air. In order to estimate quantitatively
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F1c. 1b. Horizontal air velocity spectra over wind waves only (from Kato and Sano, 1969).

how the wave-induced motions with the frequency of
underlying water waves transfer energy in spectral
space through nonlinear processes, one must analyze
the motion in frequency and wavenumber-frequency
spaces.

If ¢(x,0) is a real, single-valued function which is
piecewise differentiable, ¢(x,f) may be transformed into
wavenumber-frequency space or into frequency space
for a long period of time at a certain point (Kao, 1968).
The Fourier transforms and their inverse transforms
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for these two cases are as follows:

In frequency space only

1 T
o= / (Oeird, )
o= / 0(f)erdf. ©)

In wavenumber-frequency space

1 T L
Q(k,f)=4—~2 / f q(x, e =+ 0dxdt,  (7)

q(x,t)=/ / Q(k, N)eitket0d fdk, (8)

where % and f represent wavenumber and frequency,
respectively.

Considering another scalar function s{x,f) with
Fourier transform S(k,f), it can be shown that:

In frequency space
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I'n wavenumber-frequency space
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where
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The above convolution relations are useful for trans-
forming the nonlinear terms in the equations of motion
into frequency and wavenumber-frequency spaces. This
is illustrated in the following by transforming the
x-component equations of motion and energy for two-
dimensional flow (x,2).

To obtain the energy equation in frequency and wave-
number-frequency spaces, the following notation for the
Fourier coefficients is introduced:

Q(x,Z,t) u, W, P, fBl
Q(k,Z,f) U7 W: P: FBI
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F16. 2. Vertical air velocity spectra over an air-water interface
(from Shemdin and Lai, 1970): solid symbols, over wind waves
only; open symbols, over wind waves and mechanical waves.

The resulting energy equation can be shown to take
the form:

In frequency space

LU= / (ULm)U(= U (f—m)
fJ
(U

.
UM U(= YW (=)} dmt— ;Px(f)U(—f)
(U2) g
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I'n wavenumber-frequency space
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The subscripts # and z indicate partial differentiation
with respect to x and z, respectively, and i= V=1. The
relation Q*(k,f)=Q(—k, —f), which denotes the com-
plex conjugate of Q(k,f), has been used to derive these
equations.

The terms on the left-hand side of (11) and (12)
represent the total spectral energy at a given frequency
f, or at given wavenumber & and frequency f. The non-
linear terms represented by Ul in (11) and (12) stem

10
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from the transformed horizontal advection of the x-com-
ponent kinetic energy while those represented by U2
arise from the transformed convection of z-component
kinetic energy. The rest of the terms derive from the
linear terms of the equations of motion.

The nonlinear terms in transform space involve sums
of products of transforms for various wavenumbers and
frequencies. In actual computations these are replaced
by appropriate summation. For example, the trans-
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F1c. 3. Horizontal velocity spectrum in a periodic turbulent boundary layer with a dominant disturbing frequency of 1.88 Hz
(from Cheng and Chang, 1971).
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formed horizontal advection terms in the x-component
equation in terms of summation is

LS vmu(i—m),

m=—mg

(13)

where m, is the upper and lower limit of frequency used
in the computation. Each product may be considered
as an interaction between frequencies represented by
(m) and (f—m). When (13) is multiplied by U(—J), it
becomes the term denoted by U1 in the energy equation
(11) and represents a contribution to the spectral
energy |U(f){? for a given frequency f, through non-
linear interaction of various frequencies of motion. If
m is allowed to vary over their entire range, the term
U1 represents the total contribution from all possible
interactions. The calculations of Ul and U2 may thus
allow one to determine the contribution to the kinetic
energy due to nonlinear interactions at a particular
frequency, especially the portion associated with the
wave-induced motion.

The technique outlined above has recently been em-
ployed by Cheng and Chang (1971) to investigate the
effects of a periodic motion on turbulence in a periodic
turbulent boundary layer. Since that problem and the
one discussed in this paper have similar features, both
involving the effect of a periodic motion on the charac-
teristics of background air turbulence, one of their
results in frequency space is given in the following sec-
tion for the purpose of illustration.

4. Computation example of nonlinear interaction

The horizontal velocity spectrum obtained by Cheng
and Chang (1971) in a periodic turbulent boundary
layer (see Fig. 3) possesses a pronounced spectral bump
at the disturbing frequency of 1.88 Hz followed by a
well defined —1 subrange. This feature is very similar
to that observed in the turbulent wind over an air-
water interface as discussed in Section 2. To perform the
nonlinear interaction calculation, they divided the fre-
quency range of interest equally into ten intervals,
I1 to I10, in which the frequency range I1 contains the
dominant low-frequency wave and the frequency ranges
12 to I9 are inside the —1 subrange. The results of the
interaction contribution to each frequency range are
displayed in a block diagram form as shown in Fig. 4
for interval I3. In this diagram the important interac-
tion combinations are designated by placing the fre-
quency range symbols side by side with an asterisk
separating them, (I3)*(I1), for example. The total con-
tributions by the terms Ul and U2 are shown in the
small blocks in the center of the diagram and labeled
with the symbols for the terms they represent. The sum
of the quantities Ul and U2 is displayed below the
appropriate blocks. Under these sums is shown the
sums of the spectral energy over the frequency range.
The percentages indicate the energy of the nonlinear
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(16)*(13) = - 0.0532 0.2520 (13)*(1N) = 0.1326
(17)*(18) = - 0.0291 (18)x(1) = 0.0614
(19)*(16) = - 0.0285 (13)*(12) = 0.0502
(Ix(n) = -0.0182 I (15)*(12) = 0.0306
: 0.7272 (17)*(14) = 0.0305
(46.1%) (18)*(11) = 0.0240
(18)*( 16) = 0.0194

e[

- 0.1494 0.4014

unit: ftlsec™?

Fi1c. 4. Contributions of nonlinear interactions in frequency
range (I3) which is inside the —1 subrange (from Cheng and
Chang, 1971).

interaction terms as compared to the total energy, that
is, |U(f)|?, in each frequency range.

The larger blocks, connected with arrows to the small
blocks labeled U1 and U2, contain positive and negative
interactions which represent the major contributions to
the totals in the small blocks. The figures at the bottom
of the large blocks represent the total positive and nega-
tive contributions from all the interaction combinations.
Since the spectral energy | U(f)|?is inherently a positive
quantity, a negative value for an interaction combina-
tion for a given frequency range is interpreted as a
transfer from the spectral band considered to some other
band, while positive values represent a transfer of
spectral energy to the band considered from some other
band.

As the results shown in Fig. 4 for the interval I3, the
most important nonlinear interaction in each fre-
quency range within the —1 interaction subrange
spectra is found to be always the interaction of the
disturbing wave component I1 and the frequency range
under consideration, e.g., (I3)*(I1). Furthermore, the
percentage of the nonlinear interactions to the total
spectral energy persistently remains high in the —1
subrange, ranging up to 50%,. When the frequency
range nears the end of the —1 subrange and enters
the —5/3 subrange, the nonlinear interaction decreases
gradually. Similar interaction processes are expected for
turbulent air over the air-water interface. Since these
computations give detailed information about the effects
of wave-induced motion in spectral spaces, such an ex-
perimental investigation over the air-water interface is
suggested.

In actual data collection over the air-water surface,
two-point measurements along the x and z directions
are sufficient to calculate U, and U, terms in frequency
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space. In the wavenumber-frequency space, on the other
hand, one has to carry out several measurements along
the x direction in addition to the two-point measure-
ments along the z direction for each fixed x position.
The number of x positions will depend on the wave-
number of interest. All the measurements can be
achieved by using hot-wire or hot-film probes. In prac-
tice, because of the extremely large number of possible
interactions, it is necessary for analysis purposes to
make use of a system of classification which places the
energy over specified groups of frequencies into particu-
lar frequency ranges (Cheng and Chang, 1971). One has
to be careful in the selection of an upper limit of fre-
quency m,; generally this is a compromise between ac-
curacy of computation and computer time.
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