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A third-order asymptotic solution in Lagrangian description for nonlinear water waves
propagating over a sloping beach is derived. The particle trajectories are obtained as
a function of the nonlinear ordering parameter 3 and the bottom slope a to the third
order of perturbation. A new relationship between the wave velocity and the motions
of particles at the free surface profile in the waves propagating on the sloping bottom is
also determined directly in the complete Lagrangian framework. This solution enables the
description of wave shoaling in the direction of wave propagation from deep to shallow
water, as well as the successive deformation of wave profiles and water particle trajectories
prior to breaking. A series of experiments are conducted to investigate the particle
trajectories of nonlinear water waves propagating over a sloping bottom. It is shown
that the present third-order asymptotic solution agrees very well with the experiments.
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1. Introduction

In the process of a wave propagating from deep to shallow water, the wave
will deform and eventually break. The wave changes in height and its profile
becomes asymmetrical during the process of shoaling. In this connection, many
researchers have paid much attention to solving the wave transformation on
sloping bottoms. Moreover, it is also very important for the tsunami issue as
discussed by Segur [1] and Constantin & Johnson [2]. However, since the sloping
bottom was approximated by a large number of steps, the effects of the bottom
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1544 Y.-Y. Chen et al.

slope could not be fully explained in many models. Biesel [3] suggested a plausible
approximation method to account for the normal incident waves propagating
on a sloping plane where the bottom slope was first considered in the velocity
potential as a perturbation parameter. Chen & Tang [4] modified Biesel’s [3]
theoretical model and obtained a linear solution to the first order of the bottom
slope. For nonlinear waves on a beach, Carrier & Greenspan [5] gave an analytical
solution for the shallow water wave motion of finite-amplitude, non-breaking
waves on a beach of constant slope. Chu & Mei [6] and Liu & Dingemans [7]
presented perturbation solutions for weakly nonlinear waves propagating over
an uneven bottom. Chen et al. [8] derived a fourth-order asymptotic solution of
nonlinear water waves propagating normally towards a mild beach. Chen et al.
[8] used the transformation from Eulerian to Lagrangian coordinates to calculate
the water particle motion up to the second order, by which the profile of a
shoaling wave sequence until the breaking point can be evaluated. However, a
straightforward expansion of the Eulerian solution of Stokes waves up to the third
order cannot be transformed into the corresponding Lagrangian solution. Chen &
Hsu [9] presented a modified Euler–Lagrange transformation method to obtain
the third-order trajectory solution in a Lagrangian form for the water particles in
nonlinear water waves. Unlike an Eulerian surface, which is given as an implicit
function, a Lagrangian form is expressed through a parametric representation of
particle motion. Hence, the Lagrangian description is more appropriate for the
free surface motion, whereas this unique feature cannot be represented by the
classical Eulerian solutions [3,8,10–17].

The first water wave theory in Lagrangian coordinates was obtained by
Gerstner [18] who assumed the flow possesses non-constant vorticity in infinite
depth. Miche [19] proposed a perturbation method for Lagrangian solution to the
second order for a gravity wave motion. Pierson [20] also applied perturbation
expansion to water wave problems with Lagrangian formulae and obtained a
first-order Lagrangian solution. Buldakov et al. [16] developed a Lagrangian
asymptotic formulation up to the fifth order for nonlinear water waves in deep
water. Recently, for travelling waves in irrotational flow over a flat bed, the general
features of the particle paths have been obtained without the assumption of small
amplitude (necessary for a power-series approach) by Constantin [21]; the particle
trajectories in solitary water waves have also been obtained by Constantin &
Escher [22]; and Constantin & Strauss [23] have extended the work to describe
the pressure beneath a Stokes wave. Additionally, Constantin & Escher [24] have
further exposed the analyticity of periodic travelling free surface water waves with
vorticity. Chen & Hsu [9] obtained a third-order solution for irrotational finite
amplitude standing waves in Lagrangian coordinates. The particle path is similar
to Ehrnström & Wahlen [25]. Hsu et al. [26] derived a Lagrangian asymptotic
solution up to the second order for short-crested waves. Asymptotic solutions
up to the fifth order which describe irrotational finite amplitude progressive
gravity water waves were recently derived in Lagrangian description by Chen et
al. [27]. All the theories mentioned above are limited to the condition of uniform
water depth. To date, only a few analytical solutions have been derived for
wave transformation on a planar beach in Lagrangian coordinates. Among them,
Sanderson [28] obtained a second-order solution in a uniformly stratified fluid
with a small bottom slope in a Lagrangian system. Constantin [29] considered
the Lagrangian solution for edge waves on a sloping beach. Chen & Huang [30]
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Particle trajectories for water waves 1545
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Figure 1. Definition sketch for surface-wave propagation on a uniformly sloping bottom.

derived a linear Lagrangian solution in terms of beach slope a to the second order
for a progressive wave propagating over a gentle plane slope, while Kapinski [31]
studied the run-up of a long wave over a uniform sloping bottom in Lagrangian
description.

The purpose of this paper is to develop a nonlinear solution for surface waves
propagating over a sloping bottom in a Lagrangian description and to compare
the theory with a series of experiments. In order to examine the effect of a sloping
bottom and wave steepness on surface waves, a perturbation expansion is used
to derive an expression for the particle trajectories in terms of wave steepness 3
and the bottom slope a to the third power. The asymptotic solutions for physical
quantities related to the wave motion are then obtained up to the third order.
Finally, to validate the accuracy of the analytical results, a series of laboratory
experiments are performed. The Lagrangian properties of particle trajectories are
shown to agree with the experimental data very well.

2. Formulation of the problem

Consider a two-dimensional monochromatic wave propagating on a uniform gentle
slope without refraction as shown in figure 1. The negative x-axis is outward to
the sea from the still water level (SWL) shoreline, while the y-axis is taken positive
vertically upward from the SWL, and the sea bottom is at y = −d = ax0, in which
a denotes the bottom slope.

The fluid motion in the Lagrangian representation is described by keeping
track of individual fluid particles. For two-dimensional flow, a fluid particle is
identified by the horizontal and vertical parameters (x0, y0) known as Lagrangian
labels. Then fluid motion is described by a set of trajectories x(x0, y0, t) and
y(x0, y0, t), where x and y are the Cartesian coordinates. The dependent variables
x and y denote the position of any particle at time t and are functions of the
independent variables x0, y0 and t. In a system of Lagrangian description, the
governing equations and boundary conditions for two-dimensional irrotational
free-surface flow are summarized as follows:

J = v(x , y)
v(x0, y0)

= xx0yy0 − xy0yx0 = 1, (2.1)

xx0tyy0 − xy0tyx0 + xx0yy0t − xy0yx0t = v(xt , y)
v(x0, y0)

+ v(x , yt)
v(x0, y0)

= 0, (2.2)

xx0txy0 − xy0txx0 + yx0tyy0 − yy0tyx0 = v(xt , x)
v(x0, y0)

+ v(yt , y)
v(x0, y0)

= 0, (2.3)

Phil. Trans. R. Soc. A (2012)
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1546 Y.-Y. Chen et al.

vf

vx0
= xtxx0 + ytyx0 ,

vf

vy0
= xtxy0 + ytyy0 (2.4)

and
P
r

= −vf

vt
− gy + 1

2
(x2

t + y2
t ). (2.5)

In equations (2.1)–(2.5), subscripts x0, y0 and t denote partial differentiation
with respect to the specified variable, P(x0, y0, t) is water pressure and f(x0, y0, t)
is a velocity potential function in Lagrangian system. Except for equations
(2.4) and (2.5) by Chen [32], the fundamental physical relationships defining
the equations above have been derived previously [19,20,33,34]. Equation
(2.1) is the continuity equation that sets the invariant condition on the
volume of a Lagrangian particle and y0 = 0 is the vertical label marked for
a particle at free surface; equation (2.2) is the differentiation of equation
(2.1) with respect to time. Equations (2.3) and (2.4) govern the irrotational
flow condition and define the corresponding Lagrangian velocity potential,
respectively. Equation (2.5) is the Bernoulli equation for irrotational flow in
Lagrangian description.

The wave motion has to satisfy a number of boundary conditions at the bottom
and on the free water surface.

— On an immovable and impermeable sloping plane with an inclination to
the horizon, the no-flux bottom boundary condition gives

yt − axt = 0 and y = y0 = −d = ax0. (2.6)

— The dynamic boundary condition of zero pressure at the free surface is

P = 0, y0 = 0. (2.7)

— A time-averaged and stationary mass flux conservation condition is
required: as waves propagate towards the beach, a horizontal hydrostatic
pressure gradient to balance the radiation stress of the progressive wave
will produce a return flow and a boundary condition should be imposed.
The additional condition usually employed is the condition of time-
averaged mass flux conservation. This condition is necessary for the
uniqueness of the solution and requires that at any cross section of the
x–y plane, the time-averaged mass flux should vanish [8,35,36]

y direction :
1
T

∫T

0

∫ 0

−d
v dy0 dt = 1

T

∫T

0

∫ 0

−d
yt dy0 dt = 0 (2.8)

x direction :
1
T

∫T

0

∫ 0

−d
u dy0 dt = 1

T

∫T

0

∫ 0

−d
xt dy0 dt

− U (a)
T

∫T

0

∫ 0

−d0

xc
t dy0 dt =

∫ 0

−d
u dy0

− U (a)
∫ 0

−d0

uc dy0 = 0, U (a) =
{
0, a �= 0,
1, a = 0.

(2.9)
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Particle trajectories for water waves 1547

Both the superscript c and the subscript 0 express the physical quantity at
x → −∞. Because of the nonlinear effect, waves over constant depth induce a
net flux of water. Thus, a constant depth streaming term is introduced in (2.9)
which is adjusted by a unit function U (a) to ensure that it can be reduced to the
constant depth condition when the bottom slope is equal to zero.

3. Asymptotic solutions

To solve equations (2.1)–(2.9), it is assumed that relevant physical quantities
can be expanded as a double power series in terms of the bottom slope a and
nonlinear parameter 3. Thus, the particle displacements x and y, the potential
function f, wave pressure P, wavenumber k and Lagrangian wave frequency s
can be obtained as the following:

x = x0 +
∞∑

m=0

∞∑
n=0

3man[fm,n(x0, y0, st) + f ′
m,n(x0, y0, s0,0t)]

= x0 +
∞∑

m=0

∞∑
n=0

3man[Am,n,iFm,n,i(S) + A′
m,n,iF

′
m,n,i(S)], (3.1)

y = y0 +
∞∑

m=0

∞∑
n=0

3man[gm,n(x0, y0, st) + g ′
m,n(x0, y0, s0,0t)]

= y0 +
∞∑

m=0

∞∑
n=0

3man[Bm,n,iGm,n,i(S) + B ′
m,n,iG

′
m,n,i(S)], (3.2)

f =
∞∑

m=0

∞∑
n=0

3man
[

fm,n(x0, y0, st) + f′
m,n(s0,0t) +

∫
Mm,n,0(x0, s0,0t)dx0

]

=
∞∑

m=0

∞∑
n=0

3man
[

fm,n,iFm,n,i(S) + f′
m,n(s0,0t) +

∫
Mm,n,0(x0, s0,0t)dx0

]
,

(3.3)

P = −rgy0 +
∞∑

m=0

∞∑
n=0

3manPm,n(x0, y0, st), (3.4)

k =
∞∑

m=0

∞∑
n=0

3mankm,n(x0, y0) (3.5)

and s =
∞∑

m=0

3mansm,n(x0, y0), (3.6)

where S is the phase function S = ∫
k dx0 − st, x(x0, y0, t) and y(x0, y0, t) are

the particle displacements and the Lagrangian variable (x0, y0) are any two
characteristic parameters, 3 is the nonlinear ordering parameter characterizing the
wave steepness and Mm,n,0 is the return flow. s = 2p/T is the angular frequency of
the particle motion or the Lagrangian angular frequency for a particle reappearing

Phil. Trans. R. Soc. A (2012)
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1548 Y.-Y. Chen et al.

at the same phase, where T is the period of particle motion. For a relatively
gentle bottom slope a, it may be assumed that the q-th differentiations of Am,n,i ,
A′

m,n,i , Bm,n,i , B ′
m,n,i , fm,n,i , Mm,n,0 and km,n with respect to x0 are in the order

of aq : (
dqkm,n

dxq
0

,
vqMm,n,0

vxq
0

,
dqAm,n,i

dxq
0

,
dqA′

m,n,i

dxq
0

,
dqBm,n,i

dxq
0

,
dqB ′

m,n,i

dxq
0

,
dqfm,n,i

dxq
0

)
= O(aq), q, n ∈ 0, 1, 2, . . . N . (3.7)

Substituting equations (3.1)–(3.6) into equations (2.1)–(2.9) and collecting the
terms of the like order in 3 and a, we obtain the necessary equations to each
order of approximation. Then different orders of 3(m), a(n) and harmonic (i)
may be separated, yielding a set of partial differential equations for each index
(m, n, i). Following these assumptions, analytical solutions for the problem under
consideration can then be obtained.

(a) 31a0-order approximation

Upon collecting terms of order 31a0, the governing equations of the conti-
nuity equation, irrotational flow condition and Bernoulli equation can be
expressed as

(f1,0x0 + f ′
1,0y0

) + (g1,0y0 + g ′
1,0y0

) + [s0,0x0(f1,0t1 + f ′
1,0t0)

+ s0,0y0(g1,0t1 + g ′
1,0t0)]t = 0, (3.8a)

s0,0[(f1,0x0t1 + f ′
1,0x0t0) + (g1,0y0t1 + g ′

1,0y0t0)]
+ [s0,0x0(f1,0t1 + f ′

1,0t0) + s0,0y0(g1,0t1 + g ′
1,0t0)]

+ s0,0[s0,0x0(f1,0t21
+ f ′

1,0t2
0
) + s0,0y0(g1,0t2

1
+ g ′

1,0t2
0
)]t = 0, (3.8b)

s0,0[(f1,0y0t1 + f ′
1,0y0t0) − (g1,0x0t1 + g ′

1,0x0t0)]
+ [s0,0y0(f1,0t1 + f ′

1,0t0) − s0,0x0(g1,0t1 + g ′
1,0t0)]

+ s0,0[s0,0y0(f1,0t21
+ f ′

1,0t20
) − s0,0x0(g1,0t21

+ g ′
1,0t20

)]t = 0, (3.8c)

f1,0x0 + f′
1,0x0

+ s0,0x0t(f1,0t1 + f′
1,0t0) + M1,0,0 = s0,0(f1,0t1 + f ′

1,0t0), (3.8d)

f1,0y0 + f′
1,0y0

+ s0,0y0t(f1,0t1 + f′
1,0t0) = s0,0(g1,0t1 + g ′

1,0t0) (3.8e)

and
P1,0

r
= −s0,0(f1,0t1 + f′

1,0t0) − g(g1,0 + g ′
1,0) − gy0. (3.8f )

The condition for zero pressure at the free surface is

P1,0 = 0 and y0 = 0, (3.8g)

while the bottom boundary condition is

g1,0t1 + g ′
1,0t0 = 0 and y = y0 = −d (3.8h)

Phil. Trans. R. Soc. A (2012)
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Particle trajectories for water waves 1549

and time-averaged and stationary mass flux conservation conditions in x- and
y-direction are

1
T

∫T

0

∫ 0

−d
s0,0(g1,0t1 + g ′

1,0t0) dy0 dt = 0 (3.8i)

and

1
T

∫T

0

∫ 0

−d
s0,0(f1,0t1 + f ′

1,0t0) dy0 dt − 1
T

∫T

0

∫ 0

−d0

s0,0(f c
1,0t1 + f ′c

1,0t0) dy0 dt = 0. (3.8j)

The solutions for equations (3.8a)–(3.8j) can be easily obtained as

f1,0 = A1,0,1(x0) cosh k0,0(y0 + d) sin S ,

g1,0 = B1,0,1(x0) sinh k0,0(y0 + d) cos S ,

A1,0,1 = −B1,0,1, f ′
1,0 = g ′

1,0 = s0,0a = s0,0b = f′
1,0 = 0,

f1,0 = −s0,0

k0,0
A1,0,1(x0) cosh k0,0(y0 + d) sin S ,

P1,0

r
= −gy0 + gA1,0,1(x0)

sinh k0,0y0

cosh k0,0d
cos S

and s2
0,0 = gk0,0 tanh k0,0d.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

It is obvious that the solutions are not affected by the sloping bottom at this order.

(b) 31a1-order approximation

To the next order in O(31a1), the governing equations are given by

[A1,0,1x0 cosh k0,0(y0 + d) + A1,0,1k0,0x0(y0 + d) sinh k0,0(y0 + d)

+ A1,0,1k0,0dx0 sinh k0,0(y0 + d)] sin S + ak0,1A1,0,1 cosh k0,0(y0 + d) cos S

+ a[−A1,1,1k0,0 sin S + B1,1,1y0 sin S ] = 0, (3.10a)

− s0,0[A1,0,1x0 cosh k0,0(y0 + d) + A1,0,1k0,0x0(y0 + d) sinh k0,0(y0 + d)

+ A1,0,1k0,0dx0 sinh k0,0(y0 + d)] cos S + as0,0k0,1A1,0,1 cosh k0,0(y0 + d)

× sin S + as0,0[A1,1,1k0,0 cos S − B1,1,1y0 cos S ] = 0, (3.10b)

− s0,0[B1,0,1x0 sinh k0,0(y0 + d) + B1,0,1k0,0x0(y0 + d) cosh k0,0(y0 + d)

+ B1,0,1k0,0dx0 cosh k0,0(y0 + d)] sin S + as0,0k0,1B1,0,1 sinh k0,0(y0 + d)

× cos S + as0,0[−B1,1,1k0,0 sin S + A1,1,1y0 sin S ] = 0, (3.10c)

[f1,0,1x0 sin S + ak0,1f1,0,1 cos S − ak0,0f1,1,1 sin S + M1,1,0]
= as0,0A1,1,1 sin S , (3.10d)

Phil. Trans. R. Soc. A (2012)
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1550 Y.-Y. Chen et al.

af1,1,1y0 cos S = −as0,0B1,1,1 cos S (3.10e)

and a
P1,1

r
= −as0,0f1,1,1 sin S − gaB1,1,1 sin S , (3.10f )

and the boundary conditions at the free surface and the bottom are

P1,1 = 0, y0 = 0 (3.10g)

and

s0,0a[−B1,1,1 cos S + A1,0,1 cosh k0,0(y0 + d) cos S ] = 0, y = y0 = −d. (3.10h)

A general solution for A1,1,1 and B1,1,1, which satisfies both continuity equation
and irrotational flow condition, can be assumed as

aA1,1,1 = [M12(y0 + d)2 + M11(y0 + d) + M10] cosh k0,0(y0 + d)

+ [N11(y0 + d) + N10] sinh k0,0(y0 + d)
(3.11)

and

aB1,1,1 = [M12(y0 + d)2 + M11(y0 + d) + M10] sinh k0,0(y0 + d)

+ [N11(y0 + d) + N10] cosh k0,0(y0 + d).
(3.12)

Substituting equations (3.11) and (3.12) into equations (3.10a), (3.10b) and
(3.10c) and omitting the secular term, the complex constants M1n and N1n are
found to be

M12 = 1
2
B1,0,1k0,0x0 , M11 =B1,0,1k0,0dx0 , M10 = aB1,0,1

D2 tanh k0,0d
, D = 1+ 2k0,0d

sinh 2k0,0d

and N12 = 0, N11 = B1,0,1x0 , N10 = aA1,0,1, k0,1 = M1,1,0 = 0.

⎫⎪⎬
⎪⎭

(3.13)

Further substituting equation (3.13) into equation (3.10e) and using the free
surface boundary condition, equation (3.10g), we can obtain

B1,0,1 = a
sinh k0,0d

, a = a0√
k0,0d sech2 k0,0d + tanh k0,0d

= aoKs, (3.14)

where a0 is the amplitude of the incident waves in deep water and a is that on
the sloping bottom; a0 and a are related as follows:

a = a0√
D tanh k0d

= aoKs, (3.15)

where parameter Ks is the conventional shoaling coefficient. Based on the solu-
tions derived, let us briefly discuss the effect of bottom slope on the free surface
displacement y(x0, y0 = 0, t). First, the correction to the free surface displacement
at O(31a1) is 90◦ out of phase with respect to the leading order solution (31a0).

Phil. Trans. R. Soc. A (2012)
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Particle trajectories for water waves 1551

Second, the wave amplitude is enhanced and the phase is modified owing to the
effect of the slope. The solutions of 31a1 are completely determined as

A1,1,1 = B1,0,1

{[
k2
0,0(y0 + d)2

D sinh 2k0,0d
− k0,0(y0 + d) + 1

D2 tanh k0,0d

]
cosh k0,0(y0 + d)

+
[

k0,0(y0 + d)
D2 tanh k0,0d

+ 2k0,0(y0 + d)
D sinh 2k0,0d

− 1
]

sinh k0,0(y0 + d)

}
,

B1,1,1 = B1,0,1

{[
k2
0,0(y0 + d)2

D sinh 2k0,0d
− k0,0(y0 + d) + 1

D2 tanh k0,0d

]
sinh k0,0(y0 + d)

+
[

k0,0(y0 + d)
D2 tanh k0,0d

+ 2k0,0(y0 + d)
D sinh 2k0,0d

− 1
]

cosh k0,0(y0 + d)

}
,

f1,1,1 = −s0,0

k0,0
B1,0,1

{[
k2
0,0(y0 + d)2

D sinh 2k0,0d
− k0,0(y0 + d)

]
cosh k0,0(y0 + d)

+ k0,0(y0 + d)
D2 tanh k0,0d

sinh k0,0(y0 + d)

}
,

P1,1

r
= −[s0,0f1,1,1 + gB1,0,1] sin S

and k0,1 = s0,1 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.16)

The parametric functions for the water particle at any position in Lagrangian
coordinates (x , y) up to the 31a1 order are given as

(x − x0)2

(B1,0,1 cosh(k0,0(b + d)))2 + (aA1,1,1)2
+ (y − y0)2

(B1,0,1 sinh(k0,0(b + d)))2 + (aB1,1,1)2
= 1.

(3.17)

Figure 2 shows the trajectories up to 31a1 order of a progressive wave over a
sloping bottom; the orbital shape is clearly varying with the depth. The angle b
between its main axis and the horizontal axis can also be calculated by coordinate
transformation. Neglecting terms of orders higher than O(32a0), the inclination
b can be given by

tan b = −a

[
k0,0(y0 + d)

D2 tanh k0,0d
+ 2k0,0(y0 + d)

D sinh 2k0,0d
− 1

]
. (3.18)

In equation (3.18), tan b increases as the water depth d decreases. It eventually
approaches a maximum (tan b = a) at bottom y0 = −d, where the slope of the
main axis coincides with the slope along the direction of a wave ray over the
sloping bottom. This implies that a water particle moves along the bottom
surface. Figure 2 also shows that the inclination b of a water particle trajectory
increases with the decrease in water depth (k ′

0,0d) and bottom slope.

Phil. Trans. R. Soc. A (2012)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 A

pr
il 

20
23

 



1552 Y.-Y. Chen et al.

0.8(a)

(b)

(d)

(c)

(e)

( f ) (g)

0.4

0

–0.4

–0.8
–8 –7 –6

0.2

0.2

–0.2

–0.2

–0.4

–0.4

–0.6
–4.9 –4.7 –4.5 –4.3 –4.1

0

0.2 0.2

–0.2

–0.4

0

–0.2

–0.4
–2.9 –2.7 –2.5 –2.3 –2.1 –2.4 –2.2 –2.0 –1.8 –1.6

0

–0.2

–0.4

–0.6

–0.8
–7.9 –7.7 –7.5 –7.3 –7.1

0

0.2

0.2

0

–0.2

–0.4

–0.6

–0.8
–6.4

–3.4 –3.2 –3.0 –2.8 –2.6

–6.2 –6.0 –5.8 –5.6

0

–5

k'0,0x0 = –4.5

k'0,0x0 = –6

k'0,0y0 = –0.09

k'0,0y0 = –0.12
k'0,0y0 = –0.24
k'0,0y0 = –0.36
k'0,0y0 = –0.48
k'0,0y0 = –0.6

k'0,0y0 = –0.27

k'0,0y0 = –0.45

k'0,0y0 = –0.18

k'0,0y0 = –0.36

k'0,0y0 = 0

k'0,0y0 = 0

k'0,0x0 = –7.5

k'0,0x

k'0,0x

k'0,0x

k'0,0y0 = –0.15

k'0,0y0 = –0.45

k'0,0y0 = –0.75

k'0,0y0 = –0.3

k'0,0y0 = –0.6

k'
0,

0
y

k'
0,

0
y

k'
0,

0
y

k'
0,

0
y

k'0,0y0 = 0

k'0,0x0 = –3

k'0,0y0 = –0.06
k'0,0y0 = –0.12
k'0,0y0 = –0.18
k'0,0y0 = –0.24
k'0,0y0 = –0.3

k'0,0y0 = 0

k'0,0x0 = –2

k'0,0y0 = –0.04
k'0,0y0 = –0.08
k'0,0y0 = –0.12
k'0,0y0 = –0.16
k'0,0y0 = –0.2

k'0,0y0 = 0

k'0,0x0 = –2.5

k'0,0y0 = –0.05
k'0,0y0 = –0.1
k'0,0y0 = –0.15
k'0,0y0 = –0.2
k'0,0y0 = –0.25

k'0,0y0 = 0

–4 –3 –2 –1 0

a = 1/10
k'0,0H = 0.06p

free surface

(b) (c) (d) (e) ( f ) (g)

Figure 2. (a–g) The particle trajectories up to 31a1 order for a progressive wave over a
sloping bottom.
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Particle trajectories for water waves 1553

(c) 32a0-order approximation

In the same manner as O(31a1) is solved, the governing equations in O(32a0)
are given by

f2,0x0 + f ′
2,0x0

+ g2,0y0 + g ′
2,0y0

= 1
2
A2

1,0,1k
2
0,0 cosh[2k0,0(y0 + d)] + 1

2
A2

1,0,1k
2
0,0 cos 2S − A1,0,1k1,0

× cosh k0,0(y0 + d) cos S − [s1,0x0t f1,0t1 + s1,0y0g1,0t1]t, (3.19a)

s0,0[f2,0x0t1 + f ′
2,0x0t0 + g2,0y0t1 + g ′

2,0y0t0] + s1,0x0f1,0t1 + s1,0y0g1,0t1

+ s1,0(f1,0x0t1 + g1,0y0t1) + s0,0(s1,0x0f1,0t20
+ s1,0y0g1,0t20

)t

= −s0,0A1,0,1B1,0,1k2
0,0 sin 2S − s0,0A1,0,1k1,0,1 cosh k0,0(y0 + d) sin S , (3.19b)

s0,0(f2,0y0t1 + f ′
2,0y0t0 − g2,0x0t1 − g ′

2,0x0t0) + s1,0y0f1,0t1 − s1,0x0g1,0t1

+ s0,0(s1,0y0f1,0t21
− s1,0x0g1,0t20

)t

= 2s0,0B2
1,0,1k

2
0,0 cosh k0,0(y0 + d) sinh k0,0(y0 + d)

+ s0,0B1,0,1k1,0 sinh k0,0(y0 + d) sin S , (3.19c)

f2,0x0 + f′
2,0x0

+ s1,0x0tf1,0t1 + M2,0,0 = s0,0(f2,0t1 + f ′
2,0t0 + s1,0f1,0t1)

− 1
2

s0,0A2
1,0,1k0,0[cosh 2k0,0(y0 + d) + cos 2S ], (3.19d)

f2,0y0 + f′
2,0y0

+ s1,0y0tf1,0t1 = s0,0(g2,0t1 + g ′
2,0t0) + s1,0g1,0t1 , (3.19e)

P2,0

r
= −s0,0(f2,0t1 + f′

2,0t1) − g(g2,0 + g ′
2,0) + 1

2
(s2

0,0f
2
1,0t1 + s2

0,0g
2
1,0t1), (3.19f )

s0,0(g2,0t1 + g ′
2,0t0) = −s1,0B1,0,1 sinh k0,0(y0 + d) sin S = 0, y = y0 = −d, (3.19g)

P2,0 = 0, y0 = 0, (3.19h)

1
T

∫T

0

∫ 0

−d
s0(g2,0t1 + g ′

2,0t0)dy0 dt = 0 (3.19i)

and

1
T

∫T

0

∫ 0

−d
s0(f2,0t1 + f ′

2,0t0)dy0 dt

− U (a)
T

∫T

0

∫ 0

−d0

s0(f c
2,0t1 + f ′c

2,0t0 + f ′′c
2,0t0)dy0 dt = 0, U (a)

{
0, a �= 0,
1, a = 0.

(3.19j)
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1554 Y.-Y. Chen et al.

Although laborious, the procedure to obtain the solutions at this order is lengthy,
but using straightforward manipulations, the solutions can be given by

f2,0 = −3
8
a2k0,0

cosh 2k0,0(y0 + d)

sinh4 k0,0d
sin 2S + 1

4
a2k0,0

sin 2S

sinh2 k0,0d
,

f ′
2,0 = 1

2
a2k0,0

cosh 2k0,0(y0 + d)

sinh2 k0,0d
s0,0t − gk2

0,0a
2

2k0,0ds0,0
t + U (a)

gk0,0k ′
0,0a

2
0

2k0,0ds0,0
t,

g2,0 = 3
8
a2k0,0

sinh 2k0,0(y0 + d)

sinh4 k0,0d
cos 2S + 1

4
a2k0,0

sinh 2k0,0(y0 + d)

sinh2 k0,0d

+ a2
0k

′
0,0

2 sinh 2k ′
0,0d0

− a2k0,0

2 sinh 2k0,0d
,

g ′
2,0 = s1,0 = k1,0 = 0,

f′
2,0 = −1

4
a2

0s2
0,0

1

sinh2 k ′
0,0d0

t

and f2,0 = 3
8
a2s0,0

cosh 2k0,0(y0 + d)

sinh4 k0,0d
sin 2S − 1

2
a2s0,0

1

sinh2 k0,0d
sin 2S

+
∫ [

− gk2
0,0a

2

2k0,0ds0
+ U (a)

gk0,0k ′
0,0a

2
0

k0,0ds0

]
dx0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.20a–g)

In equation (3.20a–g), k ′
0,0 is the wavenumber in deep water. The horizontal

Lagrangian particle trajectory in the second-order approximation includes a
periodic component f2,0, which is similar to the form of the second-order
Lagrangian oscillatory term of constant depth, non-periodic function f ′

2,0 that
increases linearly in time and represents the mass transport and the return flow
term. This implies that on average, a fluid particle moves forward and does not
form a closed orbit as occurs in the first-order approximation. Differentiating
non-periodic function f ′

2,0 with respect to time, we can obtain the mass transport
velocity UL of particle as

UL = 1
2
a2s0,0k0,0

cosh 2k0,0(y0 + d)

sinh2 k0,0d
− gk2

0,0a
2

2k0,0ds0,0
+ U (a)

gk0,0k ′
0,0a

2
0

2k0,0ds0,0
. (3.21)

The first term in equation (3.21) is the drift velocity over the whole range of
depths. It is a second-order correction quantity that has been obtained previously
by Longuet-Higgins [37] in the limit of constant water depth. The last two terms in
equation (3.21) are for the return flow. This term has not yet been fully discussed
besides Chen and co-workers [8,36] and can be used to estimate the return flow
for waves progressing over a sloping bottom. In figure 3a, the horizontal mass
transport velocity is given for different dimensionless water depths with initial

Phil. Trans. R. Soc. A (2012)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 A

pr
il 

20
23

 



Particle trajectories for water waves 1555

0(a)

(b)

–0.2

–0.4

–0.6

–0.8

–1.0
–5 0 5

k'0,0H0 = 0.06p

10

10–3)(×

10–3)(×

k'0,0UL / s0,0

–4 –2 2 40 8
k'0,0UL / s0,0

y0/d

y0/d

0

–0.2

–0.4

–0.6

–0.8

–1.0
k'0,0x0 = –4

Figure 3. (a) Dimensionless mass transport velocity k ′
0,0UL/s0,0 versus dimensionless water depth

y0/d on three different positions over the slope (solid line, k ′
0,0x0 = −2; dashed line, k ′

0,0x0 = −4;
dashed-dotted line, k ′

0,0x0 = −6). (b) Dimensionless mass transport velocity k ′
0,0UL/s0,0 versus

dimensionless water depth y0/d on three different water steepnesses at k ′
0,0x0 = −4 (solid line,

k ′
0,0H = 0.06p; dashed line, k ′

0,0H = 0.04p; dashed-dotted line, k ′
0,0H = 0.02p).

wave steepness k ′
0,0H0 = 0.06p and bottom slope a = 1/10. The velocity decreases

when the dimensionless water depth increases and the mass transport velocity is
outward to the sea near the sea bottom. Figure 3b shows the mass transport
velocity for different wave steepnesses, a = 1/10 and k ′

0,0x0 = 1.5. For a given
dimensionless water depth, the mass transport velocity increases as the wave
steepness increases.

The vertical trajectory y in this order includes a second harmonic component,
a Lagrangian mean level that is a function of y0 and independent of time and
a mean sea-level change. This second-order vertical mean level g ′

2,0 of particles
decays with water depth. Equation (3.20d),

1
4
a2k0,0

sinh 2k0,0(y0 + d)

sinh2 k0,0d
,

also confirms that the Lagrangian mean level of gravity waves is higher than
the Eulerian mean level. Unlike Longuet-Higgins [38] who used the Euler–
Lagrange transformation to derive the above result, the present theory is entirely
constructed in the Lagrangian framework. The mean sea-level change was first
predicted by Longuet-Higgins & Stewart [39] as the consequence of radiation
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1556 Y.-Y. Chen et al.

stresses. If we consider the case of waves originating from deep-water depth, the
wave set-down,

a2
0k

′
0,0

2 sinh 2k ′
0,0d0

− a2k0,0

2 sinh 2k0,0d
,

is exactly the one that has been obtained by Longuet-Higgins & Stewart.
Figure 4 shows the second-order trajectories of a progressive wave over a

sloping bottom. Owing to the second-order mass transport velocity that decreases
exponentially with the water depth, the particles do not move in closed orbital
motion and each particle advances a larger horizontal movement at the free
surface. Near the bottom, the trajectory becomes more like an ellipse since the
vertical excursion of the particle is less than its horizontal excursion, in contrast to
the trajectories near the mean water level. Even though, the particle in the large
amplitude wave has the same features as those noted by Constantin & Varvaruca
[40]. Figure 4f ,g shows that the particle orbit near the surface has an upward
convex point or even a secondary loop prior to the wave breaking point. This is
due to a secondary wave that will occur in the second-order solution for large
wave steepness or highly nonlinear water waves. Hence, the Lagrangian second-
order solution presented in this paper is not appropriate for simulating the profile
near the wave breaking point owing to the highly nonlinear effects. It remains to
extend the present theory to higher order solutions to quantitatively describe the
wave-breaking phenomenon.

(d) 33a0-order approximation

Collecting terms of order 33a0, the governing equations and the boundary
conditions are
xx0yy0 − xy0yx0 − 1 = 3{f1,0x0} + 32 {[

f2,0x0 + f ′
2,0x0

+ f ′′
2,0x0

] + [f1,0x0g1,0y0 − f1,0y0g1,0x0 ]
}

+ 33 {
f3,0x0 + f ′

3,0x0
+ s2x0tf1,0t1 + g3,0y0 + g ′

3,0y0
+ s2y0tg1,0t1 + (f1,0x0)(g2,0y0)

+ (g1,0y0)(f2,0x0 + f ′
2,0x0

) − (f2,0y0 + f ′
2,0y0

)(g1,0x0) − (f1,0y0)(g2,0x0 + g ′
2,0x0

)
}
,
(3.22a)

xx0tyy0 − xx0tyx0 + xx0yy0t − xy0yx0t = 3{s0f1,0x0t1} + 32s0{(f2,0x0t1

+ f ′
2,0x0t0) + (g1,0y0 × f1,0x0t1) − (g1,0x0 × f1,0y0t1) + (g2,0y0t1 + g ′

2,0y0t0)

+ (g1,0y0t1 × f1,0x0) − (g1,0x0t1 × f1,0y0)}

+ 33s0

{[
(f3,0x0t1 + f ′

3,0x0t0) + s2x0tf1,0t20
+ s2x0

s0
f1,0t1 + s2

s0
f1,0x0t1

]
+ (g1,0y0)(f2,0x0t1 + f ′

2,0x0t0) + (f1,0x0t1)(g2,0y0)

− [(g2,0x0)(f1,0y0t1) + (g1,0x0)(f2,0y0t1 + f ′
2,0y0t0)]

+
[
(g3,0y0t1 + g ′

3,0y0t0) + s2y0

s0
(s0tg1,0t21

+ g1,0t1) + s2

s0
g1,0y0t1

]
+ [(g1,0y0t1)(f2,0x0 + f ′

2,0x0
) + (g2,0y0t1)(f1,0x0)] − [(g2,0x0t1)(f1,0y0)

+ (g1,0x0t1)(f2,0y0 + f ′
2,0y0

)
] }

, (3.22b)
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Figure 4. (a–g) The particle trajectories up to 32a0 order for a progressive wave over a
sloping bottom.
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1558 Y.-Y. Chen et al.

xy0txx0 − xx0txy0 + yy0tyx0 − yx0tyy0 = 3s0{−g1,0x0t1} + 32s0{(f1,0y0t1 × f1,0x0)

− (f1,0x0t1 × f1,0y0) + (g1,0y0t1 × g1,0x0) − (g1,0x0t1 × g1,0y0) − (g2,0x0t1)}

+ 33s0

{
(f3,0y0t1 + f ′

3,0y0t0) + s2y0

s0
(s0tf1,0t21

+ f1,0t1) + s2

s0
f1,0y0t1

+ (f2,0y0t1 + f ′
2,0y0t0)(f1,0x0) + (f1,0y0t1)(f2,0x0 + f ′

2,0x0
)

− [(f2,0x0t1 + f ′
2,0x0t0)(f1,0y0) + (f1,0x0t1)(f1,0y0 + f ′

1,0y0
)] + (g2,0y0t1)(g1,0x0)

+ (g1,0y0t1)(g2,0x0) − [g2,0x0t1 × g1,0y0 + g1,0x0t1 × g2,0y0]

−
[
g3,0x0t1 + g ′

3,0x0t0 + s2x0

s0
(s0tg1,0t20

+ g1,0t1) + s2

s0
g1,0x0t1

]}
, (3.22c)

f3,0x0 + f′
3,0x0

+ M3,0,0 + s2x0tf1,0t1 + f1,0x0 = 32s0{f1,0t1 × f1,0x0 + g1,0t1 × g1,0x0}

+ 33s0

{(
f3,0t1 + f ′

3,0t0 + f ′′
3,0t0 + s2

s0
f1,0t1

)
+ [(f2,0t1 + f ′

2,0t0 + f ′′
2,0t0)(f1,0x0)

+ (f1,0t1)(f2,0x0 + f ′
2,0x0

)] + (g2,0t1)(g1,0x0) + (g1,0t1)(g2,0x0)
}
, (3.22d)

f3,0y0 + f′
3,0y0

+ s2y0tf1,0t1 = s0

{
(f2,0t1 + f ′

2,0t0 + f ′′
2,0t0)(f1,0y0) + (f1,0t1)(f2,0y0 + f ′

2,0y0
)

+g2,0t1g1,0y0 + g1,0t1g2,0y0 + (g3,0t1 + g ′
3,0t0) + s2

s0
g1,0t1

}
, (3.22e)

P3,0

r
= −s0(f3,0t1 + f′

3,0t1 + s2f1,0t1) − g(g3,0 + g ′
3,0)

+ 1
2

s2
0[2(f1,0t1)(f2,0t1 + f ′

2,0t0 + f ′′
2,0t0) + 2(g2,0t1 × g1,0t1)], (3.22f )

P3,0 = 0, y0 = 0, (3.22g)

g3,0t1 + g ′
3,0t0 = 0, y = y0 = −d, (3.22h)

1
T

∫T

0

∫ 0

−d
s0(g3,0t1 + g ′

3,0t0)dy0 dt = 0 (3.22i)

and

1
T

∫T

0

∫ 0

−d
[s0(f3,0t1 + f ′

3,0t0 + f ′′
3,0t0) + s2f1,0t1]dy0 dt

− U (a)
T

∫T

0

∫ 0

−d
[s0(f c

3,0t1 + f ′c
3,0t0 + f ′′c

3,0t0) + s2f c
1,0t1] dy0 dt = 0, U (a)

{
0, a �= 0,
1, a = 0.

(3.22j)
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Particle trajectories for water waves 1559

The procedure to obtain the solutions at this order is similar to that of O(32a0).
The solutions can be given by

f3,0 =
[
−b3

cosh 3k0,0(y0 + d)

sinh3 k0,0d

+ 1
6
k0,0(5B1,0,1B2,0 − 2B1,0,1C2,0) cosh k0,0(y0 + d)

]
sin 3S

−
[
1
2
k0,0(5B1,0,1B2,0 + 4B1,0,1C2,0) cosh 3k0,0(y0 + d)

+ l3
cosh k0,0(y0 + d)

sinh3 k0,0d
+ k2,0B1,0,1(y0 + d) sinh k0,0(y0 + d)

+ k2,0

k0,0
B1,0,1 cosh k0,0(y0 + d)

]
sin S , f ′

3,0 = 0,

g3,0 =
[

b3
sinh 3k0,0(y0 + d)

sinh3 k0,0d
− 1

2
k0,0B1,0,1B2,0 sinh k0,0(y0 + d)

]
cos 3S

+
[
1
2
k0,0(3B1,0,1B2,0 + 2B1,0,1C2,0) sinh 3k0,0(y0 + d)

+ l3
sinh k0,0(y0 + d)

sinh3 k0,0d
+ k2,0B1,0,1(y0 + d) cosh k0,0(y0 + d)

+ k2,0

k0,0
B1,0,1 sinh k0,0(y0 + d)

]
cos S , g ′

3,0 = 0,

f3,0 = s0b3 cosh 3k0,0(y0 + d)

k0,0 sinh3 k0,0d
sin 3S + 1

2
s0B1,0,1B2,0 cosh 3k0,0(y0 + d) sin S

− 1
2

s0B1,0,1(3B2,0 − 2C2,0) cosh k0,0(y0 + d) sin 3S

+ k2,0

k0,0
s0B1,0,1(y0 + d) sinh k0,0(y0 + d) sin S ,

s2 = −1
2

s0a2k2
0,0

cosh 2k0,0(y0 + d)

sinh2 k0,0d
+ sw2 + s0k0,0(A′′

2,0 + U (a)C ′′
2,0)

and k2,0 = k0,0

D

{
1
8
k ′2
0,0a

2
0(9 coth4 k ′

0,0d0 − 10 coth2 k ′
0,0d0 + 9)

−1
8
k2
0,0a

2(9 coth4 k0,0d − 10 coth2 k0,0d + 9) + A′′
2,0 + U (a)C ′′

2,0

}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.23)
where the coefficients l3, b3, sw2, A2,0, B2,0, C2,0, D2,0 are

l3 = −k ′2
0,0a

2
0a(9 coth4 k ′

0,0d0 − 10 coth2 k ′
0,0d0 + 9) sinh2 k0,0d

16
,
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1560 Y.-Y. Chen et al.

b3 = a3k2
0,0(9 coth4 k0,0d − 22 coth2 k0,0d + 13)

64
,

sw2 = k ′2
0,0a

2
0s0(9 coth4 k ′

0,0d0 − 10 coth2 k ′
0,0d0 + 9)

16
,

A2,0 = −B2,0 = −3
8

B2
1,0,1k0,0

sinh2 k0,0d

and C2,0 = D2,0 = 2A′
2,0 = 1

4
B2

1,0,1k0,0, A′′
2,0 = a2k2

0,0g

2s2
0k0,0d

, C ′′
2,0 = −a2

0k0,0k ′
0,0g

2s2
0k0,0d

.

Figure 5 shows the third-order particle trajectories of a progressive wave over a
sloping bottom. Figure 5f,g shows that the particle orbit has a downward convex
point in the wave trough near the breaking point. Comparing figures 4g and 5g,
it can be seen that the second-order and third-order orbital shapes are different
near the wave breaking point.

(e) The determination of the propagating velocity of the wave surface profile
or the wave velocity Cw

Up to this point, all the properties for the considered waves could be directly
found in the Lagrangian framework. The only unsolved property needing to
be determined is the wave velocity Cw since it is varying with the wave
surface position and still unknown. The wave velocity Cw of the considered
waves can be obtained as outlined below as shown in figure 6. Consider a
surface particle marked with label (x0, y0 = 0) that is located at a point A
of the free surface with the horizontal coordinate x(x0, y0 = 0, t) = x and the
phase q = ∫x0 k(x ′

0)dx ′
0 − st at time t. Along the propagating direction of the

free surface, when time t + dt, dt → 0, the point A with the wave velocity
Cw moves a horizontal distance Cwdt to a new position where an adjacent
surface particle marked with label (x0 + dx0, y = 0) travels from time t to
t + dt to there just to meet it. So, the horizontal coordinate of the new
position of the point A at the free surface at time t + dt is x(x0 + dx0,
y0 = 0, t + dt) = x + dx . From the statement above, two necessary equations for
determining the wave velocity Cw can be written, where the phase q = constant
and dt → 0, dx0 → 0, as follows:

q =
∫ x0

k(x ′
0)dx ′

0 − st =
∫ x0+dx0

k(x ′
0)dx ′

0 − s(t + dt) = constant, y0 = 0 (3.24)

and

Cwdt = dx = x(x0 + dx0, y0 = 0, t + dt) − x(x0, y0 = 0, t), (3.25)

where

x(x0, y0, t) = x0 +
∞∑

m=1

∞∑
n=0

3man
[
fm,n

(∫ x0

kdx ′
0 − st, y0

)
+ f ′

m,n(x0, y0, s0t)
]
.

(3.26)
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Particle trajectories for water waves 1561
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Figure 5. (a–g) The particle trajectories up to 33a0 order for a progressive wave over a
sloping bottom.

The solutions of equations (3.24) and (3.25) are easily to be obtained by using
equation (3.26), which are

dx0 = s

k
dt and Cw = s

k
+

∞∑
m=1

∞∑
n=0

3man
[

s

k

f ′
m,n

vx0
+ f ′

m,n

vt

]
, y0 = 0,

vj fm,n

vxj
0

= O(aj),

(3.27)
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1562 Y.-Y. Chen et al.

the free surface
profile at time t

Cw dt = dx
dt Æ 0, dx0 Æ 0

the trajectory of the surface particle
marked with label (x0 + dx0, y0 = 0)
from time t to t + dt

the free surface
profile at time t + dt

A(x + dx, t + dt)

x(x0, 0, t)

A(x,t)

= x,y0 = 0

x(x0 + dx0, 0, t) x(x0 + dx0, 0, t + dt)
= x + dx, y0= 0y0 = 0

Figure 6. Schematic of the relation between the wave velocity Cw and the motions of particles at
the free surface profile in the waves propagating on the sloping bottom.

respectively. The wave velocity Cw represented in equation (3.27) is relating to
the water depth, the wave steepness, the bottom slope, the wavenumber k, the
frequency s and the mass transport of particles at the free surface. The result
of the wave velocity Cw in equation (3.27) is consistent with that obtained by
Chen et al. [27] in the case at uniform water depth as the bottom slope a = 0.
Therefore, the validity of the derivation to the wave velocity in this section is to
be conserved and completes the analysis of the considered waves directly in the
Lagrangian framework up to 33 order solution.

4. Experimental process

The purpose of the experiments is to quantitatively investigate the characteristics
of the water particle behaviour with the progressive gravity waves on a sloping
bottom. The experimental processes are stated below.

(a) Experimental set-up

To acquire the behaviour of water particle trajectories, a series of experimental
measurements were carried out in a glass-walled wave tank, 20 × 0.5 × 0.7 m, in
Tainan Hydraulics Laboratory of National Cheng Kung University, Taiwan. A
camera was set up in front of the glass wall about 10–11 m from the wave generator
to successively capture the particle motion with the water waves in the tank. Four
wave gauges were set up at 2, 3.05, 4.05 and 7 m from the wave generator. The
whole experimental frame is schematically shown in figure 7.

Phil. Trans. R. Soc. A (2012)
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Particle trajectories for water waves 1563

20 m

10 m

d

7.55 m

0.7 m

2 m 1.05 m 1 m 2.95 m 2 m

wave generator shoot zone

camera

Figure 7. Experimental frame and instrument set-up.

(b) Experimental procedure

— Monochromatic free surface progressive gravity water waves were
generated using a piston-type wave generator.

— Measurements of incident progressive wave elevations were made using a
Nijin capacity wave height meter.

— Water particles were simulated with spherical polystyrene beads (PS) of
fluorescent red colour with a diameter of about 0.1 cm. The density of
primitive PS in a normal state is about 1.05 g cm−3 heavier than the water.
When it is boiled its volume will swell until the density of PS approximately
equals water density, 1.000 g cm−3.

— Images were captured by a Sony HDR-SR12 digital HD video camera,
which has a 1920 × 1080 pixel resolution and 29.97 frames per second
maximum framing rate.

— A transparent acrylic-plastic sheet (1 m × 45 cm × 2 mm), which was
placed in the plane of the PS motion position, was calibrated at 1 mm
intervals in 5 × 5 mm grids. Its function is a virtual grid in the picture.
The trajectory of the PS motion in the water waves could be inferred from
the PS motion image data and virtual grid.

(c) Experimental results

The particle motion experiments were conducted at a constant water depth
d (0.367 m) and various wave periods T (0.80–2.35 s). The wave height H was
varied over a range 0.0385–0.0672 m. All of the experimental wave conditions
are shown in table 1. k ′

0,0x0 is the dimensionless initial position of a PS particle.
The measured orbital results are shown in figure 8. In figure 8, the two bright
horizontal lines are the SWL at both sides of the tank. As in the case of shallow
water depth, there is a clearly downward convex shape in the particle orbit,
shown in figure 8a,b. In figure 8c, the PS particle orbit is similar to an ellipse; in
figure 8d,e, the orbits are non-closed circles.

5. Results and discussion

(a) Verification of the theoretical solution

Verifications of the theoretical solution up to the third order are given below.
(i) In order to verify the theoretical solutions presented above both

mathematically and physically, we first prove the asymptotic behaviour for the
deep-water limit, as d = d0 → ∞. In this zone, k = k0,0 = k ′

0,0, a = a0, D = D0 = 1,

Phil. Trans. R. Soc. A (2012)
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1564 Y.-Y. Chen et al.

(a) (b) (c)

(d) (e)

Figure 8. (a–e) The experimental particle trajectories at five wave conditions.

Table 1. Experimental conditions of particle orbit.

no. T (s) H (m) d (m) a k ′
0,0x0

a 2.35 0.0385 0.376 1/10 2.3
b 1.74 0.0397 0.376 1/10 3.2
c 2.00 0.0672 0.376 1/10 4
d 1.01 0.0628 0.376 1/10 7
e 0.80 0.0440 0.376 1/10 9

S = k ′
0,0x0 − st. Theoretical solutions in deep water can be easily shown to be

x = f1,0 + f ′
2,0 + f3,0 = a0ek ′

0,0y0 sin S + a2
0k

′
0,0e

2k ′
0,0y0s0t

−
[
2a3

0k
2
0,0e

3k ′
0,0y0 − 1

2
a3

0k
′2
0,0e

k ′′
0,0y0

]
sin S ,

y = g1,0 + g3,0 = a0ek ′
0,0y0 cos S + 1

2
a2

0k
′
0,0e2k ′

0,0y0

+
[
a3

0k
2
0,0e

3k ′
0,0y0 − 1

2
a3

0k
′2
0,0e

k ′
0,0y0

]
cos S ,

f = f1,0 = −s0,0

k0
a0ek ′

0,0y0 sin S ,

s2
0,0 = gk ′

0,0,

s2,0 = s0a2
0k

′2
0,0

(
−e2k ′

0,0y0 + 1
2

)
and s = s0,0 + s2,0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

which are the same as those given by Chen et al. [27] in deep water and hence
the theory is verified. Apparently, the water particle trajectory in deep water is
symmetric and the present deep water solution does not encompass the bottom
effect. Constantin and co-workers [41–43] show the symmetry property holds even
for waves of large amplitude in the presence of underlying vorticity.
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Particle trajectories for water waves 1565

(ii) Constant horizontal depth, viz. d = dc and a = 0. This case describes finite
amplitude waves over a constant depth. Since in this case

k0,0 = k0,0c; a = ac; S = k0,0cx0 − st,
for the case of a = 0 the theoretical solution becomes

x = f1,0 + f2,0 + f ′
2,0 + f3,0 = −ac

cosh k0,0c(y0 + dc)
sinh k0,0cdc

sin S

− 3
8
a2

c k0,0c
cosh 2k0,0c(y0 + dc)

sinh4 k0,0cdc
sin 2S + 1

4
a2

c k0,0c
sin 2S

sinh2 k0,0cdc

+ 1
2
a2

c k0,0c
cosh 2k0,0c(y0 + dc)

sinh2 k0,0cdc
s0,0t +

[
−b3c

cosh 3k0,0c(y0 + dc)

sinh3 k0,0cdc

+ 1
6
k0,0c(5B1,0,1cB2,0c − 2B1,0,1cC2,0c) cosh k0,0c(y0 + dc)

]
sin 3S

−
[
1
2
k0,0c(5B1,0,1cB2,0c + 4B1,0,1cC2,0c) cosh 3k0,0c(y0 + dc)

+ l3c cosh k0,0c(y0 + dc)

sinh3 k0,0cdc

]
sin S ,

y = g1,0 + g2,0 + g3,0 = ac
sinh k0,0c(y0 + dc)

sinh k0,0cdc
cos S

+ 3
8
a2

c k0,0c
sinh 2k0,0c(y0 + dc)

sinh4 k0,0cd
cos 2S + 1

4
a2

0k0,0c
sinh 2k0,0c(y0 + dc)

sinh2 k0,0cdc

+
[

b3c
sinh 3k0,0c(y0 + dc)

sinh3 k0,0cdc
− 1

2
k0,0cB1,0,1cB2,0c sinh k0,0c(y0 + dc)

]
cos 3S

+
[
1
2
k0,0(3B1,0,1cB2,0c + 2B1,0,1cC2,0c) sinh 3k0,0c(y0 + d)

+ l3c
sinh k0,0c(y0 + dc)

sinh3 k0,0cdc
+ k2,0cB1,0,1c(y0 + dc) cosh k0,0c(y0 + dc)

]
cos S ,

f = f1,0 + f2,0 + f′
2,0 + f3,0 = acs0,0

k0,0c

cosh k0,0c(y0 + dc)
sinh k0,0cdc

sin S

+ 3
8
a2

c s0,0
cosh 2k0,0c(y0 + dc)

sinh4 k0,0cdc
sin 2S − 1

2
a2

c s0,0
1

sinh2 k0,0cdc
sin 2S

− 1
4
a2

c s2
0,0

1

sinh2 k0,0cdc
t + s0

k0,0c
b3c

cosh 3k0,0c(y0 + dc)

sinh3 k0,0cdc
sin 3S

+ 1
2

s0B1,0,1cB2,0c cosh 3k0,0c(y0 + dc) sin S − 1
2

s0B1,0,1c(3B2,0c − 2C2,0c)

× cosh k0,0c(y0 + dc) sin 3S , s2
0,0 = gk0,0c tanh k0,0cdc,

sw2c = 1
16

k2
0,0ca

2
c s0(9 coth4 k0,0cdc − 10 coth2 k0,0cdc + 9)

and s2 = −1
2

s0Bc
1,0,1k

2
0,0c cosh 2k0,0c(y0 + dc) + sw2c,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.2)
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Figure 9. (a, b) Successive wave profiles prior to breaking plotted by linear (up to the order of 31a1)
and nonlinear solutions (up to the order of 32a0 and up to the order of 33a0) under varying wave
conditions and bottom slopes. (Solid line, third-order solution; dotted line, second-order solution;
dashed line, linear solution.)

where the coefficients b3c, l3c, B2,0c, C2,0c and Bc
1,0,1 are

b3c = 1
64

a3
c k

2
0,0c(9 coth4 k0,0cdc − 22 coth2 k0,0cdc + 13),

l3c = − 1
16

k3
0,0ca

2
c (9 coth4 k0,0cdc − 10 coth2 k0,0cdc + 9) sinh2 k0,0cdc,

B2,0c = 3
8
B2

1,0,1ck0,0c
1

sinh2 k0,0cdc
,

C2,0c = 1
4
B2

1,0,1ck0,0c

and Bc
1,0,1 = ac

sinh k0,0cdc
.

The present theory is reduced to a nonlinear wave over water of constant depth,
as was previously obtained by Chen et al. [27]. Thus, the present theory is verified.
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Figure 10. (a, b) The particle trajectories near the wave-breaking point for a spilling wave. (Solid
line, up to 33a0 order; dashed line, up to 32a0 order.)
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Figure 11. (a, b) The particle trajectories near the wave-breaking point for a plunging wave. (Solid
line, up to 33a0 order; dashed line, up to 32a0 order.)

(b) Wave transformations

As the height of a wave reaches its upper limit, the crest is fully developed
as a summit that can be calculated as the spatial surface profile by a system
of Lagrangian coordinates. In this approach, the new displacement components
of water particles x and y to the third-order approximation have been obtained
as follows:

x(x0, y0, t) = x0 + 31a0f1,0 + 31a1f1,1 + 32a0(f2,0 + f ′
2,0) + 33a0f3,0 (5.3)

and
y(x0, y0, t) = y0 + 31a0g1,0 + 31a1g1,1 + 32a0g2,0 + 33a0g3,0. (5.4)

The surface wave profiles near the wave breaking point can be evaluated and the
results are illustrated in figure 9. The linear (up to the order 31a1) and nonlinear
solutions (up to the orders 32a0 and 33a0) are implemented for comparison. This
figure shows the surface wave profiles prior to breaking on different wave steepness
and wave phase for bottom slopes of a = 1/5 and 1/10, respectively, based on the
wave breaking criterion of u/Cw = 1. It is found that the third-order theory is
consistent with the classification of wave breakers proposed by Galvin [44]. This
confirms that the breaker type depends on the bottom slopes. In general, the
third-order wave profiles are higher than the second-order and linear solutions
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Figure 12. (a–e) Comparisons between the orbits of water particles obtained by the third-order
solution, second-order solution and those from the experimental measurements of the PS motions on
sloping bottom (circle, experiment; solid line, the third-order solution; dashed line, the second-order
solution). (The wave conditions are listed in table 1.)
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for any wave steepness and bottom slope. Moreover, the breaking point predicted
by the third-order solution occurs earlier than that by the second-order and
linear solutions.

(c) Particle orbits

The new Lagrangian solution for water particle displacement developed in this
study can be employed to demonstrate the validity for water particle motion.
The parametric functions for the water particle at any position in Lagrangian
coordinates (x , y) are given in equations (5.3) and (5.4). Figures 10 and 11 show
the variation of particle trajectories under a spilling and plunging breaker. Owing
to the second-order mass transport velocity which decreases exponentially with
the water depth, the particles do not move in a closed orbital motion and each
particle advances a larger horizontal movement at the free surface. Near the
bottom, the trajectory becomes more like an ellipse since the vertical excursion of
the particle is less than its horizontal excursion, in contrast with the trajectories
near the mean water level. In the same deep water steepness, the second-order
orbital motion is smaller than the third-order orbital motion. Figure 12 shows
good agreement between the experimental data and the third-order asymptotic
solution of the particle trajectories at the free surface.

6. Conclusions

This paper provides a new third-order Lagrangian asymptotic solution for surface
waves propagating over a uniform sloping beach. The solution, developed in
explicit form, includes parametric functions for water particle motion and the
wave velocity in Lagrangian description. These explicit expressions enable the
description of wave shoaling in the direction of wave propagation from deep to
shallow water. The solution also provides information for the process of successive
deformation of a wave profile and water particle trajectory. The solution to the
nonlinear boundary-value problem is presented after including a mean return
current which is needed to maintain zero mass flux in a bounded domain. Also,
the Lagrangian mean level differing from the Eulerian mean level is explicitly
obtained via a new third-order solution. Furthermore, to check the validity of the
nonlinear analytical solution, it is shown analytically that, in the limit of deep
water or constant depth, the nonlinear solution reduces to the known Lagrangian
third-order solution of progressive waves. A series of experiments measuring
the Lagrangian properties of nonlinear water waves propagating over a sloping
bottom were conducted in a wave tank. Good agreement has been obtained on
comparing the measured trajectories with the theoretical trajectories predicted
by the proposed third-order Lagrangian solution.
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Research Grant Council of the National Science Center, Taiwan, through project no. NSC99-2923-
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