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In this paper we discuss recent progress in using the Camassa–Holm equations to model turbulent
flows. The Camassa–Holm equations, given their special geometric and physical properties, appear
particularly well suited for studying turbulent flows. We identify the steady solution of the
Camassa–Holm equation with the mean flow of the Reynolds equation and compare the results with
empirical data for turbulent flows in channels and pipes. The data suggest that the constanta version
of the Camassa–Holm equations, derived under the assumptions that the fluctuation statistics are
isotropic and homogeneous, holds to ordera distance from the boundaries. Near a boundary, these
assumptions are no longer valid and the length scalea is seen to depend on the distance to the
nearest wall. Thus, a turbulent flow is divided into two regions: the constanta region away from
boundaries, and the near wall region. In the near wall region, Reynolds number scaling conditions
imply that a decreases as Reynolds number increases. Away from boundaries, these scaling
conditions implya is independent of Reynolds number. Given the agreement with empirical and
numerical data, our current work indicates that the Camassa–Holm equations provide a promising
theoretical framework from which to understand some turbulent flows. ©1999 American Institute
of Physics.@S1070-6631~99!00508-5#
h
su
it
re

f t
e-
,
o
m
as
a
d

un
sti

r-

-

-
a

nnel

-
nd-
I. INTRODUCTION

Laminar Poiseuille flow occurs when a fluid in a straig
channel, or pipe, is driven by a constant upstream pres
gradient, yielding a symmetric parabolic streamwise veloc
profile. In turbulent states, the mean streamwise velocity
mains symmetric, but is flattened in the center because o
increase of the velocity fluctuation. Although a lot of r
search has been carried out for turbulent channel flow1–6

accurate measurement of the mean velocity and the Reyn
stress profiles, in particular for flows at high Reynolds nu
bers, is still an experimental challenge. However, in the c
of pipe flow, recent experiments for measuring the me
velocity profile have been successfully performed for mo
erate to high Reynolds numbers by Zagarola.7 The funda-
mental understanding of how these profiles change as f
tions of Reynolds number, however, seems to be
missing.
2341070-6631/99/11(8)/2343/11/$15.00

Downloaded 11 Jun 2003 to 128.165.156.80. Redistribution subject to A
t
re
y
-

he

lds
-
e
n
-

c-
ll

In wall bounded flows it is customary to define a cha
acteristic velocityu* and wall-stress Reynolds numberR0

by u* 5Aut0u/r andR05du* /n, wheret0 is the boundary
shear stress. We take the densityr to be unity, n is the
molecular viscosity of the fluid, andd is a characteristic mac
rolength. For instance, for channel flowd is the channel half-
width, and for pipe flowd is the pipe radius. Based on ex
perimental observation and numerical simulation,
piecewise expression of the mean velocity across the cha
or the pipe has been commonly accepted,8 for which the
nondimensional mean streamwise velocity,f[U/u* , is as-
sumed to depend onh[u* z/n and have three types of be
havior depending on the distance away from the wall bou
ary: z, a viscous sublayer in whichf;h; the von Kármán–
Prandtl logarithmic ‘‘law of the wall’’ in which f(h)
5k21 ln h1A wherek.0.41 andA.5.5; and a power law
region in which f;hp, 0,p,1. Alternatively, a single
curve fitting over the whole region may be proposed~see
3 © 1999 American Institute of Physics
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2344 Phys. Fluids, Vol. 11, No. 8, August 1999 Chen et al.
Ref. 9!. Yet another possibility is a family of power laws th
fits the data away from the viscous sublayer, and has the
law as an envelope, as proposed by Barenblattet al.10

In this paper~a summary of which was given earlier11!,
we propose the viscous Camassa–Holm equations~VCHE!
in ~3.14! as a closure approximation for the Reynolds eq
tions. The analytic form of our profiles based on the stea
VCHE away from the viscous sublayer, but covering at le
95% of the channel, depends on two free parameters: the
Reynolds numberR5dUav/n ~whereUav is the streamwise
velocity, averaged across the channel!, and the wall-stress
Reynolds numberR0 . Due to measurement limitations mo
experimental data are contained in this region. Let us rem
that we can further reduce the parameter dependence to
free parameter by using a drag law for the wall frictionD
;R0

2/R2. For the remaining part of the channel, we are u
able to solve explicitly for the mean profile without furth
assumptions, but we do show compatibility of the stea
VCHE with empirical and numerical velocity profiles in th
subregion. The VCHE profiles agree well with data obtain
from measurements and simulations of turbulent channel
pipe flow. For another global approach to turbulent flows
channels and pipes displaying good agreement of theore
mean velocity profiles with experimental data, see Mark
and Smith.12

II. THE EULER–POINCARÉ EQUATIONS AND THE
EULER EQUATIONS

Consider the Lagrangian comprised of fluid kinetic e
ergy and the volume preservation constraint

L5E daH 1

2 U d

dt
X~ t,a!U2

1q~X~ t,a!,t !~detXa8~ t,a!21!J
5E dxH D

2
uu~x,t !u21q~x,t !@12D~x,t !#J . ~2.1!

In ~2.1!, X(t,a) is the Lagrangian trajectory of the fluid pa
cel starting at positiona at time t50. The other notation is

Xa85¹aX, u~x,t !5
d

dt
X~ t,a!

and

D~x,t !5@detXa8~ t,a!#21 at x5X~ t,a!. ~2.2!

Moreover, the JacobianD satisfies the equation

]

]t
D1¹•~Du!50. ~2.3!

The extremality conditions foru, where q is viewed as a
Lagrange multiplier, are given by the Euler–Poinca´
equation13

S ]

]t
1~u•¹! D 1

D

dL
du

1
1

D

dL
]uj

¹uj2¹
dL
dD

50, ~2.4!

~above and throughout we use Einstein’s notation for su
mations! and
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dq

50. ~2.5!

Since

1

D

dL
du

5u,
dL
dD

5
1

2
u•u2q,

dL
dq

512D,

the relations~2.3!, ~2.4!, ~2.5! yield the Euler equations

S ]

]t
1u•¹ Du52¹q, ¹•u50.

The Euler–Poincare´ equation~2.4! is equivalent in the
Eulerian picture to the corresponding Euler–Lagrange eq
tion for fluid parcel trajectories for Lagrangians such as~2.1!
that are invariant under the right action of the diffeomo
phism group~see Holmet al.13–15! and references therein. I
what follows, we shall introduce random fluctuations into t
description of the fluid parcel trajectories in the LagrangianL
in ~2.1!, take its statistical average, and use the Eule
Poincare´ equation~2.1! to derive Eulerian closure equation
for the corresponding averaged fluid motions.

III. AVERAGED LAGRANGIANS AND THE
CAMASSA–HOLM EQUATIONS

In the presence of random fluctuations the Lagrang
trajectory given byX(t,a) has to be augmented with fluctua
tions as

Xs~ t,a!5X~ t,a!1s@X~ t,a!,t#. ~3.1!

Here s5s(x,t)5s(x,t;v) is a random vector field. Thus
the LagrangianL5L(v) becomes a random variable

L~v!5E daH 1

2 U d

dt
Xs~ t,a!U2

1qs@Xs~ t,a!,t#

3@det~Xs!a8~ t,a!21#J . ~3.2!

In ~3.2!, we introduce the Eulerian velocity field

us~y,t !5
d

dt
Xs~ t,a! for y5Xs~ t,a!, ~3.3!

with Xs(t,a) given in Eq.~3.1!. This is similar to the clas-
sical Reynolds decomposition of fluid velocity into its me
and fluctuating parts. However, this decomposition is app
on Lagrangian fluid parcels, rather than at fixed Euler
spatial positions.

Introducing the decomposition~3.3! into the Lagrangian
L in ~3.2! and changing the variablesa to x5X(t,a) yields

L~v!5E dxH D

2
uus@x1s~x,t !,t#u21qs@x1s~x,t !,t#

3$det@~Xs!a8+X21#2D%J ,

whereD as before is given by~2.2! and satisfies~2.3!. Not-
ing that the composition of mapsXs and X gives (Xs

+X21)(x,t)5x1s(x,t) we conclude with
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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L~v!5E dxH D

2
uus@x1s~x,t !,t#u21qs@x1s~x,t !,t#

3@det~ I 1sx8!2D#J . ~3.4!

At this stage we make the crucial assumption thats is suf-
ficiently small that the following Taylor expansions may
truncated at linear order:

us@x1s~x,t !,t#;u~x,t !1@s~x,t !•¹#u~x,t !,
~3.5!

qs@x1s~x,t !,t#;q~x,t !1@s~x,t !•¹#q~x,t !,

where

u~x,t !5^us@x1s~x,t !,t#&,
~3.6!

q~x,t !5^qs@x1s~x,t !,t#&,

and ^•& denotes averaging with respect to the random ev
v. Thus at this level of approximation~3.4! becomes

L~v!5E dxH DF1

2
uu~x,t !2u1u~x,t !•@s~x,t !

•¹u~x,t !#1
1

2
u@s~x,t !•¹#u~x,t !u2G1@q~x,t !

1@s~x,t !•¹#q~x,t !#@det~ I 1sx8!2D~x,t !#J .

~3.7!

Therefore the averaged Lagrangian^L& is found to be

^L&5E dxH D

2
@ uuu212u•~^s&•¹!u1^s is j&] iu•] ju#

1q@^det~ I 1sx8!&2D#2D~^s&•¹!q

1~^s det~ I 1sx8!&•¹!qJ , ~3.8!

where we use the notation] i5]/]xi , i 51,2,3. Then the
variational derivatives of̂L& are given by

1

D

d^L&
du

5S 12
1

D
¹•~D^s&! Du2

1

D
] i~D^s is j&] ju!,

d^L&
dD

5~11^s&•¹!q1
1

2
@ uuu212u•~^s&•¹!u

1^s is j&~] ju!•~] iu!#52Q, ~3.9!

d^L&
dq

5^det~ I 1sx8!&2D1¹•~^s&D2^s det~ I 1sx8!&!.

By stationarity of^L& under variations inq, the last equation
in the set~3.9! becomes

D5^det~ I 1sx8!&1¹•~^s&D !2¹•^s det~11sx8!&.

In order for the mean flowu to be incompressible, one take
D51. This imposes the condition

15^det~ I 1sx8!&1¹•^s&2¹•^s det~ I 1sx8!& ~3.10!
Downloaded 11 Jun 2003 to 128.165.156.80. Redistribution subject to A
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on the statistics of the fluctuations. Under this condition,
Euler–Poincare´ equation~2.4! and Eq.~2.3! ~for ^L& instead
of L! can be written as

]

]t
v1~u•¹!v1v j¹uj1¹Q50, with ¹•u50,

~3.11!

where we define

v[S 1

D

d^L&
du D

D51

5~12¹•^s&!u2] i~^s is j&] ju!.

~3.12!

These equations are slight generalizations of
n-dimensional Camassa–Holm equations. The latter co
spond to the case where the isotropy conditions

^s&50, ^s is j&5a2d i j , ~3.13!

hold. If moreover the statistics ofs are homogeneous, the
a2 is constant. Under this form Eq.~3.11! and ~3.12! were
originally derived.14,15 That derivation generalizes a one
dimensional integrable dispersive shallow water model st
ied in Camassa and Holm16 to n-dimensions and provides th
interpretation ofa as the typical mean amplitude of the flu
tuations as in~3.13!.

The ideal Camassa–Holm equations, or Euler alp
model, in~3.11! is formally the equation for geodesic motio
on the diffeomorphism group with respect to the met
given by the mean kinetic energy Lagrangian^L& in Eq.
~3.8!, which is right invariant under the action of the diffeo
morphism group. See Holmet al.15 for detailed discussions
applications and references to Euler–Poincare´ equations of
this type for ideal fluids and plasmas. After the original de
vation of Eq. ~3.11! in Euclidean space,14,15 Holm et al.17

and Shkoller18 generalized it to Riemannian manifolds, di
cussed its existence and uniqueness on a finite time inte
and amplified the relation found earlier14 of this equation to
the theory of second grade fluids. Additional properties
the Euler equations, such as smoothness of the geod
spray ~the Ebin–Marsden theorem! are also known for the
Euler-a equations and the limit of zero viscosity for the co
responding viscous Navier–Stokes-a equations is known to
be a regular limit, even in the presence of boundaries
homogeneous~Dirichlet! boundary conditions.17,18 Some of
the most interesting solutions of the Euler alpha model co
actually leave the diffeomorphism group due to a loss
regularity. ~This is seen in the one-dimensional Camass
Holm equation.16! Such solutions may be interpreted in th
sense of generalized flows, as done by Brenier19 and
Shnirelman.20 A functional-analytic study of the Euler alph
model is made in Marsdenet al.21

We note thatv in ~3.12! represents a momentum. Ther
fore we propose that the viscous variant of~3.11! should take
the following form, in which the viscosity acts to diffuse th
momentum:

]

]t
v1~u•¹!v1v j¹uj5nDv2¹Q, ¹•u50. ~3.14!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Again, v is given by~3.12!. Throughout we will refer to Eq.
~3.14! with definition ~3.12! as the VCHE, or Navier–Stoke
alpha model~NS-a!. The standard Navier-Stokes equatio
are recovered whena is set to zero. The VCHE~3.14! in
three dimensions possesses global existence and unique
as well as a global attractor whose bounds on fractal dim
sion show cubic scaling with domain size, as expected in
Landau theory of three-dimensional turbulence. The pro
of these properties of the VCHE, or NS-a model, are given
in Foiaset al.16

Since in ~3.14!, s appears at power up to 2 and w
assumeusu to be small~at least in average!, the constraint
~3.10! can be given a simpler form by using the approxim
tion

^det~ I 1sx8!&21;¹•^s&1^]1s1•]2s22]2s1•]1s2&

1^]2s2•]3s32]3s2•]2s3&

1^]3s3•]1s12]1s3•]3s1&.

Then~3.10! becomes~by neglecting the terms of degree>3
in s!

¹•^~¹•s!s&2¹•^s&;^]1s1•]2s22]2s1•]'s2&

1^]2s2•]3s32]3s2•]2s3&

1^]3s3•]1s12]1s3•]3s1&.

~3.15!

See Gjaja and Holm22 for the corresponding derivation o
equations in the form~3.11! in generalized Lagrangian mea
~GLM! theory with ^s&50 and no viscosity. We note tha
GLM theory provides no closure.

IV. CONNECTION WITH CONTINUUM MECHANICS

A mechanical interpretation of these equations may
obtained by rewriting the VCHE~3.14! ~in the case where
^s&50, a2[constant! in the equivalent~‘constitutive’! form

du

dt
5div T,T52pI12n~12a2D!D12a2Ḋ, ~4.1!

with ¹•u50, D5(1/2)(¹u1¹uT), V5(1/2)(¹u2¹uT),
and corotational~Jaumann! derivative given byḊ5dD/dt
1DV2VD, with d/dt5]/]t1u•¹. In this form, one rec-
ognizes the constitutive relation for VCHE as a variant of
rate-dependent incompressible homogeneous fluid of se
grade,23,24 whose viscous dissipation, however, is modifi
by the Helmholtz operator (12a2D). Thus, the VCHE or
NS-a closure model is not only Galilean invariant; it als
satisfies the continuum mechanics principles of objectiv
and material frame indifference. There is a tradition at le
since Rivlin25 of using these continuum mechanics princip
in modeling turbulence~see also Chorin26!. For example, this
sort of approach is taken in deriving Reynolds stress a
braic equation models.27 Rate-dependent closure models
mean turbulence have also been obtained by the two-s
Direct-Interaction-Approximation~DIA ! approach28 and by
the renormalization group methods.29
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V. CLOSURE ANSATZ

Since VCHE describe mean quantities, we propose
use~3.14! as a turbulence closure model and test this ans
by applying it to turbulent channel and pipe flows. For th
purpose we also assume that as long as the boundary ef
can be neglected, the isotropy conditions~3.13! hold. It is
also appropriate to recall that the Reynolds equations are
averaged Navier–Stokes equations8,28

]

]t
ū1~ ū•¹!ū5nDū2¹ p̄2~u2ū!•¹~u2ū!,

~5.1!
¹•ū50,

where the upper bar denotes the ensemble average,ū is the
mean flow,p̄ the mean pressure, and2@(u2ū)•¹#(u2ū)
is the divergence of the Reynolds stresses. Our ansatz as
that:

~a! ū is approximately the solutionu of the VCHE with the
same symmetry and boundary conditions asū.

~b! The Reynolds stress divergences are given by appro
ate terms in the VCHE found by matching Eqs.~3.14!
and ~5.1!.

VI. THE REYNOLDS EQUATIONS FOR CHANNEL
FLOWS

For turbulent channel flow~see, e.g., Townsend30!, the
mean velocity in~5.1! is of the form ū5@Ū(z),0,0# tr, with
p̄5 P̄(x,y,z) and the Reynolds equations~5.1! reduce to

2nŪ91]z^wu&52]xP̄,
~6.1!

]z^wz&52]yP̄, ]z^w
2&52]zP̄,

where (u,v,w) tr5u2ū is the fluctuation of the velocity in
the infinite channel$(x,y,z)PR,2d<z<d%. The ~1,3!
component of the averaged stress tensorT52 p̄I 2u^ u

1n@(¹ū1(¹ū) tr)# is given by ^T13&5nŪ8(z)2^wu&. At
the boundary, the velocity components all vanish and o
has the stress condition

7t05^T13&uz56d5nŪ8~z!uz56d , ~6.2!

upon usinĝ wu&50 at z56d. Hence, the Reynolds equa
tions imply ^wv&(z)[0 andP̄5P02t0x/d2^w2&(z), with
integration constantP0 .

VII. THE VCHE FOR CHANNEL FLOWS

Passing to the VCHE in the channel, we denote the
locity u in ~3.14! by U and seek its steady state solutions
the formU5@U(z),0,0# tr subject to the boundary conditio
U(6d)50 and the symmetry conditionU(z)5U(2z). In
this particular case, the steady VCHE reduces to

2n@~12b8!U#81n~a2U8!-52]xp̃,

052]yp̃, 052]zp̃, ~7.1!

where a25^s3
2&, b5^s3&, and p̃5p1*@U2b8U

2(a2U8)8#U dz.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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In accord with the statistical assumptions in the Re
nolds equation, we also take the statistics ofs to be invariant
under horizontal translations. As already mentioned abo
we will suppose that away from the wall, i.e., foruzu<d0

with 0<d0,d we have

a~z![a0 , b~z![0, ~7.2!

with constantsd0 anda0 to be determined later. The follow
ing heuristic argument may provide some help in und
standing this length-scalea0 . Clearlya andb must depend
on d,t0 ,n,z, the only physical quantities present. Dime
sional analysis then implies~with two suitable functionsf
andg! that

a

d
5 f S R0 ,

d2uzu
l *

D ,
b

d
5gS R0 ,

d2uzu
l *

D , ~7.3!

whered2uzu is the distance to the wall, while

R05t0
1/2d/n, l * 5d/R0 , ~7.4!

i.e., R0 , is the wall-stress Reynolds number andl * is the
wall-length unit. By eliminatingR0 in ~7.3! we can write

a

d
5hS b

d
,
d2uzu

l *
D ~7.5!

with some functionh of two variables. Assuming tha
h(0,̀ ) exists and noticing that

hS 0,
d2uzu

l *
D5hS 0,

d2uzu
d

R0D ,

we obtain~as long asuzu<d0! that, forR0 large enough, the
ratio

a

d
[

a0

d
;h~0,̀ !

is independent ofR0 . This heuristic prediction will be con
firmed later in a more rigorous way.

Finally, let us note that due to the symmetry of t
physical setting, we can also assume that

s3~x,y,2z,t;v![2s3~x,y,z,t;v!

and therefore

b~2z,t ![2b~z,t !, a~2z,t ![a~z,t !. ~7.6!

VIII. REALIZABILITY CONDITIONS

Recall that the statistics ofs are subjected to the cond
tion ~3.15!. In the present case this takes the form

]3^~¹•s!s3&2]3b

5^~]1]3s11]2]3s2!s3&1^~]1s11]2s2!•]3s3&

1 1
2]3

2a22]3b;^]1s2•]2s22]2s1•]1s2&

1^~]1s11]2s2!•]3s3&2~^]3s2•]2s3&

1^]1s3•]3s1&),

where
1
2~a2!92b8;^]1s1•]2s22]2s1•]1s2&. ~8.1!
Downloaded 11 Jun 2003 to 128.165.156.80. Redistribution subject to A
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The meaning ofs forces

2d2z<s3~x,y,z,t;v!<d2z for uzu<d. ~8.2!

In this case one can prove that the following conditions ho

2d2z<b~z!<d2z,
~8.3!

a~z!2<d22z222zb~z! for uzu<d.

Indeed, if P5Pz,t denotes the probability distribution o
s3(z,t;v) and

b15E
$s3>0%

s3P~ds3!, b25E
$s3,0%

us3uP~ds3!,

then

b5^s3&5b12b2, b2<~d1z!P~$s3,0%!,

b1<~d2z!P~$s3>0%!.

Thus,

~d1z!21b21~d2z!21b1<1,

so that

2db2<d22z22~d1z!b.

On the other hand,

a25^s3
2&5E s3

2P~ds3!<~d1z!b21~d2z!b1

<2db21~d2z!b<d22z222zb.

This establishes the second inequality in~8.3!. The first one
is obvious.

The Cauchy–Schwarz inequality produces the supp
mentary constraint

ub~z!u<a~z! for uzu<d. ~8.4!

It is easy to check that the conditions~8.2! and~8.4! are also
sufficient for the existence of a random variab
s3(x,y,z;v) satisfying ~7.6! and ~8.3! and statistically de-
pending only onz. For any suchs3 , choose some homoge
neous random vector@s1

0(x,y),s2(x,y)# such that g
5^]1s1

0
•]2s22]2s1

0
•]1s2&Þ0. Set s15(2g)21@(a2)9

22b8#s1
0. Thens5(s1 ,s2 ,s3) has all the required statis

tical properties. We conclude that the inequalities~8.3! and
~8.4! are the realizability conditions for the lengthsa andb
in the VCHE ~7.1!.

IX. COMPARING VCHE WITH THE REYNOLDS
EQUATION

Comparing~6.1! and ~7.1!, we identify counterparts as

Ū5U, ]z^wu&5n@~a2U8!-2~b8U !9#1p0 ,
~9.1!

]z^wv&50, ¹̇~ P̄1^w2&!5¹~p̃2p0x!,

for a constantp0 . This identification gives

^wv&~z!50,
~9.2!

2^wu&~z!52p0z2n@~a2U8!9~z!2~b8U !8~z!#,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and leaveŝw2& undetermined up to an arbitrary function
z. A closure relation for2^wu& involving the third deriva-
tive U-(z) also appears in Yoshizawa,28 cf. Eq. ~8! of Wei
and Willmarth.4

From ~7.1! it follows that ]xp̃5p2 is constant. There-
fore integrating twice inz, the first equation in~7.1! gives

2n@12b8~z!#U~z!1n@a2~z!U8~z!#8

5p01p1z2 1
2p2z2 ~9.3!

with constantsp i( i 50,1,2). But the left hand side of~9.3! is
symmetric under the changez°2z, so p150 and we ob-
tain the following relation among the profiles ofb(z), a(z)
andU(z):

2n@12b8~z!#U~z!1n@a~z!2U8~z!#8

5p02 1
2p2z2 for uzu<d. ~9.4!

For uzu<d0 , b(z)[0, a(z)[a0.0 and~9.4! becomes

2U~z!1a0
2U9~z!5

1

n
p02

1

2n
p2z2 for uzu<d0 .

~9.5!

SinceU is symmetric inz, we obtain

U~z!5aS 12
cosh~z/a0!

cosh~d0 /a0! D1bS 12
z2

d0
2D 1c

for uzu<d0 , ~9.6!

where the constants,a, b, andc satisfy the conditions

c5U~6d0!, p0n52a2b~112a0
2/d0

2!2c,
~9.7!

p2n522b/d0
2.

It is worth mentioning here that with an antisymmetry co
dition for U(z) and with~9.6! changed accordingly, one ma
address turbulent shear flows~Couette flows! by the same
analysis as developed in this paper.

Integrating~9.4! on @2d,0# gives

2nE
2d

0

@U~z!1b~z!U8~z!#dz2a~2d!2t0

5p0 d2 1
6 p2 d3, ~9.8!

where we used~6.2! as well asU8(0)50, b(0)50, and
U(2d)50. Denoting

Uav5
1

2d E2d

d

U~z!dz

5
1

d E2d

0

U~z!dz

5
1

d E2d

2d0
U~z!dz1FaS 12

a0

d0
tanh

d0

a0
D1

2

3
b1cG d0

d

~9.9!

allows ~9.8! to be written also as

2n dUav2nE
2d

d0
b~z!U8~z!dz2a~2d!2t0
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5p0 d2 1
6 p2 d3. ~9.10!

X. EMPIRICAL QUALITATIVE PROPERTIES

It is universally accepted that the maximum ofU is at
z50 ~i.e., the center of the channel! and thatU8(z)•z,0 for
0,uzu,d. Also all experimental data show thatU9(z),0
over most of the channel. Thus

Rª
d

n
Uav5

1

2n E2d

d

U~z!dz<Rc[
d

n
U~0!, ~10.1!

and ~using the concavity property ofU!

R>
1

n E2d

0 z1d

d
U~0!dz5

1

2
Rc . ~10.2!

Then ~10.1!, ~10.2! can be given the form

1

2

U~0!

u*
<

R

R0
<

U~0!

u*
. ~10.3!

All the empirical evidence shows that

R

R0
2 !1!

R

R0
for R0@1. ~10.4!

Throughout, the properties~10.3! and~10.4! will be taken as
granted.

XI. THE WALL UNITS REPRESENTATION

In the lower half of the channel, the mean velocityU can
be expressed in wall units using the notationf(h)
5U(z)/u* ,h5(z1d)/ l * , with l * 5n/u* 5d/R0 . In this
representation,~9.6! becomes

f~h!5
a

u*
S 12

coshj~12h/R0!

coshj~12h0 /R0! D
1

b

u*
F12S 12h/R0

12h0 /R0
D 2G1f~h0!, ~11.1!

for h0<h<R0 , where j5d/a and h05(d2d0)/ l *
;a0 / l * 5R0 /j.

The definition of f implies R5*0
R0f(h)dh. Hence

~11.1! gives

R5
a~R02h0!

u*
S 12

tanhj~12q0!

j~12q0! D1
2b~R02h0!

3u*

1f~h0!~R02h0!1E
0

h0
f~h!dh.

To conclude this computation it is sufficient to approxima
f on (0,h0) by the piecewise linear function equal toh for
0,h<h* and f01(h2h0)f08 for h* <h<h0 , where
f05f(h0), f085f8(h0), and h* (f02h0f08)/(12f08).
We obtain
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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R

R0
'

a~12q0!

u*
S 12

tanhj~12q0!

j~12q0! D1
2b~12q0!

3u*

1~12q0!f01~12f08!21S f0q02
q0

2R0f081f0
2/R0

2 D ,

~11.2!

where

f085~a/u* !~j/R0!tanh@j~12q0!#

12~b/u* !/R0~12q0!. ~11.3!

Using this and solving forf0 gives an explicit functionf0

5f0(q0 ;R,R0 ;a/u* ,b/u* ;j), namely

f0~q0 ;R,R0 ;a/u* ,b/u* ;j!

5R0H B2AB22
1

R0
@2~R/R02C!1q0

2R0f08#J ,

~11.4!

wheref08 is given by~11.3!

B5~12q0!~12f08!1q0 ,
~11.5!

C5
a~12q0!

u*
S 12

tanhj~12q0!

j~12q0! D1
2

3

b~12q0!

u*
,

and the choice of the rootf0 in ~11.2!, ~11.3! will be justi-
fied at the end of Sec. XII.

Thus ~11.1! becomes

f~h!5
a

u*
S 12

coshj~12h/R0!

coshj~12q0! D
1

b

u*
F12S 12h/R0

12q0
D 2G

1f0S q0 ;R,R0 ;
a

u*
,

b

u*
;j D

for q0R0<h<R0 . ~11.6!

In ~11.6! the constantsa/u* , b/u* , j andq0 may depend on
R0 . As we will show below, Nature seems to choose them
constants~at least for largeR0!. Recall that in Sec. VII we
already gave a heuristic argument thatj5d/a should be
independent ofR0 if R0 ~or R! is large enough.

XII. THE OFF WALL REGION

The empirical data up to now suggest that for a fix
channel there is a range (z1 ,z2) ~with z1z2.0! inside the
channel such that forz in that range, the von Ka´rmán log law
is a good approximation toU(z), at least forR ~or R0! large
enough. Since for thosez we have

U~z2!2U~z!5
1

k
ln

z2

z
5

1

k S ln
z2

d
2 ln

z

dD
~wherek;0.4 is the von Ka´rmán constant!, U(z2)2U(z) is
a function of z/d only ~i.e., independent ofR0!. We will
posit now the following weaker condition.
Downloaded 11 Jun 2003 to 128.165.156.80. Redistribution subject to A
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For R ~or R0! large enough, there exists a fixed ran
(z1 /d,z2 /d) such that forz/d in that range,U(z2)2U(z) is
a function ofz/d, independent ofR0 .

Note that we make no assumption on the length of
range. The classical ‘‘defect law’’ of Izakson, Millikan, an
von Mises31 ~pp. 186–188! is the particular case of our con
dition when one ofzis is 0, and the range is assumed to
wide.

Passing to the wall units representation we can formu
our assumption as: There exists 0,q1,q2,1, such that for
q1R0<h<q2R0 , f(h2)2f(h) is a function ofq5h/R0

only. Since we expectq0 in ~11.6! to be quite small, we will
takeq0<q1 .

We will prove now that under the above condition
there exist absolute constantsa* , b* andj* such that

a;a* u* coshj* ~12q0!,
~12.1!

b;b* u* ~12q0!, and j5d/~a0j* !,

wherea, b, j andq0 are as in~11.6!.
Indeed letf be the function defined by

f ~q!5f~q2R0!2f~qR0! for q1<q<q2 . ~12.2!

Then sinceq0<q1 we have from~11.6!

f ~q!5a0@coshj~12q!2coshj~12q2!#

1b0@~12q!22~12q2!2#, ~12.3!

where

a05~a/u* !/coshj~12q0!, b05~b/u* !/~12q0!2.
~12.4!

Writing ~12.3! for q5q1 , we obtain

b05
f ~q1!2a0@coshj~12q1!2coshj~12q2!#

~12q1!22~12q2!2 .

Then ~12.3! becomes

a0g~j,q!5h~q! for q1<q<q2 , ~12.5!

where, withc0 an absolute constant,

g~j,q!5coshj~12q!2coshj~12q2!

2c1@~12q!22~12q2!2#,
~12.6!

h~j!5 f ~q!2c0@~12q!22~12q2!2#,

and a0 ,c1j are parameters, constant inq but which may
depend continuously onR0 . Note that

g~j,qi !5h~qi !50 ~ i 51,2!,
~12.7!

g~j,q!,0 for q1,q,q2 ,j.0.

Thus @with q̄5(q11q2)/2#

a05h~ q̄!/g~ q̄!, ~12.8!

and

g~j,q!h~ q̄!5h~q!g~j,q̄! for q1<q<q2 . ~12.9!

If j5j(R0) were not constant, then~12.9! would hold forj
in an interval@j1 ,j2# with 0,j1,j2 . Differentiating~12.9!
with respect toj gives
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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gj8~j,q!g~j,q̄!5gj8~j,q̄!g~j,q!,

for j1<j<j2 , q1<q<q2 . Introducingz5j (12q), it fol-
lows that

sinhz5h0~j!1h1~j!z21h2~j!coshz

for j1<j,j2 , j~12q2!,z,j~12q1!,

whereh0 , h1 , h2 are explicit functions ofj only. Clearly
this is impossible.

We conclude from this contradiction that there are ab
lute constantsq0 , a* , b* , andj* such that

f~h!5a* Fcoshj* ~12q0!2coshj* S 12
h

R0
D G

1b* F ~12q0!22S 12
h

R0
D 2G

1f0@q0 ;R,R0 ;a* coshj* ~12q0!,

b* ~12q0!2;j* ], ~12.10!

for q0R0<h<R0 , where the functionf0 @see~11.4!# actu-
ally depends only onq0 , R0 andR.

Formula~12.10! can be also written as

f~qR0!5f1~q0 ;q!1f0~q0 ;R,R0! for q0<q<1,
~12.11!

where

f1~q0 ;q!5a* coshj* ~12q0!S 12
coshj~12q!

coshj~12q0! D
1b* ~12q0!2F12S 12q

12q0
D 2G for q0<q<1,

~12.12!
f0~q0 ;R,R0!5f0@q0 ;R,R0 ;a* coshj* ~12q0!,

b* ~12q0!2;j* ].

For R0→` from ~11.4! and ~11.5! we have

f~q0R0!5f0~q0 ;R,R0!;
R

R0
2C1

1

2
q0

2 C0 , ~12.13!

whereC is defined in~11.5! and C05R0f08 is constant ac-
cording to~11.3!.

We can now explain the choice off0 in ~11.4!. The
other possible choice was

R0H B1AB22
1

R0
@2~r /r 02C!1q0

2c0#J ,

which would have given forR0 large enough

f~q0R0!;2R0 ,

and consequentlyf(R0)>R0 which is contrary to the estab
lished facts~10.3!, ~10.4!.

XIII. THE MEAN VELOCITY PROFILE IN THE
CHANNEL

Comparing the profile given by formula~12.10! with an
experimental mean velocity profile, enables us to obtain
Downloaded 11 Jun 2003 to 128.165.156.80. Redistribution subject to A
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e

valuesa* , b* and j* as well as the smallest acceptab
value q* for q0 . In Fig. 1, we compare our formula with
experimental data4 for the Reynolds numbersR0 equal to
714, 989, and 1608. As these Reynolds numbers are sm
a* and b* have not reached their asymptotic values. It a
pears, however, thatj* has reached its asymptotic value. W
therefore allowa* and b* to vary slightly with R0 , while
holding j* constant to fit the data. It turns out thatj* 535
andq* 51/j* . Note that this choice ofq* corresponds ex-
actly to the condition thatud2d0u5a.

XIV. THE REYNOLDS SHEAR STRESS

The shear Reynolds stress is2^uw& ~see Sec. VI!. Since
^uw&uz56d50, one must have

2^uw&~z!52t0

z

d
2nŪ8~z! for uzu<d. ~14.1!

On the other handŪ[U and2^uw& is also given by~9.2!
with an appropriate constantp0 . For uzu<d0 , since a(z)
[a051/j* , b(z)[0, ~9.2! reduces to

2^uw&~z!5p0z2na0
2U-~z!, ~14.2!

and

na0
2U-~z!5nU8~z!2p2z.

Introducing this in~14.2! we see that~14.1! and ~14.2! are
compatible ifp0 is given by

p052p02t0 /d. ~14.3!

FIG. 1. The mean velocity profile in the channel for the constant-a viscous
Camassa–Holm equation compared with the experimental data of Wei
Willmarth ~Ref. 4!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Taking the wall units representation in~14.1! we obtain our
theoretical Reynolds shear stress

2^uw&
t0

512
h

R0
2f8~h!

512
h

R0
1

a*
R0

j* sinhj* S 12
h

R0
D

1
2b*
R0

S 12
h

R0
D for q* R0<h<R0 .

~14.4!

Figure 2 compares the corresponding experimental
theoretical Reynolds shear stresses. We use the same v
for a* , b* , and j* as before. The agreement in she
stresses does not extend as close to the wall as the m
velocity profiles did. The empirical matching of the me
velocity profiles as well as the Reynolds shear stresses
both given withq* 5)/j* . We note that the consistency o
this closure and the experiments found in the trends follow
by the Reynolds-stress profiles in Fig. 2 is an exacting tes
the fidelity of the mean velocity profiles as well as a test
the Reynolds stress relation predicted by Eq.~14.4!.

XV. THE NEAR WALL REGION

As already mentioned above, in the near wall regio
~i.e., where 0<h<h05q* R0 and 2R02q* R0<h<2R0!, b
may be nonzero anda may depend~as doesb! on h andR0 .
The VCHE ~9.4! in the wall units representation takes th
form

@12R0b̃8~h!#f~h!2R0
2@ã~h!2f8~h!#8

5 f 013 f 1S 12
h

R0
D 2

for 0<h<R0 , ~15.1!

i.e., in the whole lower half of the channel. In~15.1! we used
the notations

ã~h!5a~z!/d, b̃~h!5b~z!/d, ~15.2!

whered1z5h l * , l * 5d/R0 , and

FIG. 2. Reynolds shear stress in the channel compared with the experi
tal data of Wei and Willmarth~Ref. 4!.
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s

f 052p0 /nu* 5a* coshj* ~12q* !

1b* F ~12q* !21
2

j
*
2 G1f~q* R0!

~15.3!
f 15p2d2/nu* 52b* /3.

Of course we have

ã~h!51/j* , b̃~h!50 for q* R0<h<R0 , ~15.4!

but the VCHE~15.1! does not defineã(h),b̃(h) near the
wall ~i.e., for 0<h<q* R0!. However, ~15.1! gives some
qualitative information on the behavior ofã and b̃ in the
near wall region. Indeed integrating~15.1! we obtain

1

R0
E

h

R0
f~h8!dh81E

h

R0
b̃~h8!f8~h8!dh81b̃~h!f~h!

1R0ã~h!2f8~h!5 f 0S 12
h

R0
D1 f 1S 12

h

R0
D 3

~15.5!

for all 0<h<R0 . Thus@using ub̃u<2, see~8.3!# we find

ã~h!2f8~h!<
1

R0
@ f 01 f 114f~h!#5OS R

R0
2D ,

which in turn goes to zero whenR0→`, by virtue of~10.4!.
Thus, forh fixed,

ã~h!2f8~h!→0 for R0→`. ~15.6!

In particular,@usingf8(0)51 and~10.3!# we obtain

ã~0!→0, b̃~0!→0 for R0→`, ~15.7!

and due to~15.4!,

f8~q* R0!→0 for R0→`. ~15.8!

Moreover, writing~15.5! for h50,

R

R0
1E

0

R0
b̃~h8!f8~h8!dh81R0ã~0!25 f 01 f 1 ~15.9!

and subtracting~15.5! from ~15.9! we obtain

1

R0
E

0

h
f~h8!dh81E

0

h
b̃~h8!f8~h8!dh82b̃~h!f~h!

1R0@ã~0!22ã~h!2f8~h!#

5 f 0

h

R0
1 f 1F12S 12

h

R0
D 3G . ~15.10!

Fixing h and lettingR0→`, from ~15.10! we infer that

E
0

h
b̃~h8!f8~h8!dh82b̃~h!f~h!

1R0@ã~0!22ã~h!2f8~h!#→0. ~15.11!

But for h fixed such thatf8(h) remains away from 0 when
R0→`, we haveb(h)→0 because of~8.4!. By virtue of
Lebesgue’s dominated convergence theorem we conc
that

R0@ã~0!22ã~h!2f8~h!#→0 when R0→`, ~15.12!

en-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



nt

e
he

st

ear

1.
i-
of

ith

nel
he
t of
is

y-

we
la.
-

on

arola

2352 Phys. Fluids, Vol. 11, No. 8, August 1999 Chen et al.
provided thatf8(h) stays away from 0.
It is instructive to connect~15.12! with the functionsg

andh considered in Sec. VII. First we recall that

g~R0 ,h!5b̃~h!, f ~ b̃~h!,h!5ã~h!. ~15.13!

Assuming thatb̃ and b̃8 are continuous acrossh05q* R0

allows us to conclude that

g~R0 ,R0q!52E
q

q
* ~q82q* !S ]

]q8D
2

g~R0 ,R0q8!dq8

for 0<q<q* .

Sinceq* is small, assuming that

F S ]

]q8D
2

g~R0 ,R0q8!GU
q85q

*
20

5g~R0!

exists and is not zero, we obtain that

g~R0 ,h!; 1
2g~R0!~q* 2h/R0!2. ~15.14!

But b̃(0)>0, sog(R0).0. If g(R0)50, we can proceed in
a similar way by involving a higher derivative ofg at h0

from the left. In all cases we have ended with a represe
tion

g~R0 ,h!;g0~R0!g1~h/R0! for 0<h<q* R0 ,
~15.15!

whereg0>0, g1>0, andg1(q) is a decreasing function ofq
with g1(q* )5g18(q* )50. From~15.15!, ~15.13! and~15.12!
we now obtain

h2@g0~R0!g1~0!,0#2h2@g0~R0!g1~h/R0!,h#f8~h!;0
~15.16!

for R0 large enough. In~15.16!, g1(h/R0)→g1(0) for R0

→` andh fixed. These arguments suggest that

h~b,h!;h~b,0!/Af8~h! ~15.17!

providedb is small and 1/f8(h) is bounded whenR0→`. It
is not clear if assuming equality in~15.17! is a judicious
approximation of the functionh.

A major difficulty in fine tuning our approach near th
wall resides in the unavailability of experimental data in t

FIG. 3. The statistical compatibility of the VCHE with the theory of Pant
~Ref. 9! in the near wall region.
Downloaded 11 Jun 2003 to 128.165.156.80. Redistribution subject to A
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near wall region for large Reynolds numbers. To te
whether the VCHE~15.5! is still valid in this region we
extrapolated the experimental profiles in Fig. 1 into the n
wall region according to Panton9 to obtaina from ~14.5!. For
simplicity of the graph, we will display thea profile only for
R051608, which is the highest Reynolds number in Fig.
As illustrated in Fig. 3, we find that the realizability cond
tions ~in Sec. VIII! are satisfied for appropriate choice
g(R0) in ~15.14! and ~15.13!. Clearly a lies between the
upper constraint~8.3! and the lower constraint~8.4! in the
near wall region. Thus, our basic ansatz is consistent w
Panton’s theory.

XVI. PIPE FLOWS AND PREDICTION

All the preceding considerations on turbulent chan
flows can be suitably applied to turbulent pipe flows. T
substantial difference between the mathematical treatmen
the two types of flows, is that for pipes, the cosh function
replaced by the first modified Bessel function32

I 0~r !5 (
n51

`
1

~n! !2 S r 2

4 D n

. ~16.1!

For instance the basic formula~11.1! becomes

f~h!5
a

u*
S 12

I 0@j~12h/R0!#

I 0@j~12h0 /R0!# D
1

b

u*
F12S 2h/R0

12h0 /R0
D 2G1f~h0!

for h0<h<R0 . ~16.2!

For pipe flows, experimental data for quite large Re
nolds numbers are available~see Zagarola7!. For these Rey-
nolds numbers it is reasonable to assume thata* , b* , and
j* have each reached their asymptotic values. In Fig. 4
compare our profiles with experimental data of Zagaro7

We obtain thea* , b* , j* , andq* by using the experimen

FIG. 4. The mean velocity profile in the pipe for the constant-a viscous
Camassa–Holm equation compared with the experimental data of Zag
~Ref. 7!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tal data forR598 812 and use the von Ka´rmán drag law,
R/R0; logR0, to obtain profiles for R53 089 100 and
35 259 000. See also Chenet al.33 for additional discussion
and numerical details for these comparisons.

We note that our predictions are consistent with the v
Kármán log law,34 the Barenblatt–Chorin power law,10 as
well as with the presence of the ‘‘chevron’’ near the cen
of the flow. Our approach shows a logarithmic profile f
0.02R0<h<0.2R0 and a chevron near the center of t
channel. The Barenblatt–Chorin power law10 may represent
the transition in the profile from the log law to the chevro
Although our approach is in good agreement with t
experiments,7 we note that it has been argued that the exp
mental mean velocity profiles are too low for high Reyno
numbers.10 Finally, we observe that the chevron may refle
the fact that, on the attractor of the dynamical system in
phase space of the turbulent flow, the Poiseuille–Hagen fl
is recurrent.
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