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In this paper we discuss recent progress in using the Camassa—Holm equations to model turbulent
flows. The Camassa—Holm equations, given their special geometric and physical properties, appear
particularly well suited for studying turbulent flows. We identify the steady solution of the
Camassa—Holm equation with the mean flow of the Reynolds equation and compare the results with
empirical data for turbulent flows in channels and pipes. The data suggest that the censtaiin

of the Camassa—Holm equations, derived under the assumptions that the fluctuation statistics are
isotropic and homogeneous, holds to ordatistance from the boundaries. Near a boundary, these
assumptions are no longer valid and the length sealg seen to depend on the distance to the
nearest wall. Thus, a turbulent flow is divided into two regions: the constaagion away from
boundaries, and the near wall region. In the near wall region, Reynolds number scaling conditions
imply that @ decreases as Reynolds number increases. Away from boundaries, these scaling
conditions imply« is independent of Reynolds number. Given the agreement with empirical and
numerical data, our current work indicates that the Camassa—Holm equations provide a promising
theoretical framework from which to understand some turbulent flows1989 American Institute

of Physics[S1070-663199)00508-5

I. INTRODUCTION In wall bounded flows it is customary to define a char-
acteristic velocityu, and wall-stress Reynolds numbRg
Laminar Poiseuille flow occurs when a fluid in a straightby u, = \[o|/p andRy=du, /v, wherer, is the boundary
channel, or pipe, is driven by a constant upstream pressukshear stress. We take the densityto be unity, v is the
gradient, yielding a symmetric parabolic streamwise velocitymolecular viscosity of the fluid, andlis a characteristic mac-
profile. In turbulent states, the mean streamwise velocity rerolength. For instance, for channel flals the channel half-
mains symmetric, but is flattened in the center because of thgidth, and for pipe flowd is the pipe radius. Based on ex-
increase of the velocity fluctuation. Although a lot of re- perimental observation and numerical simulation, a
search has been carried out for turbulent channel fidw, piecewise expression of the mean velocity across the channel
accurate measurement of the mean velocity and the Reynolds the pipe has been commonly accegtedr which the
stress profiles, in particular for flows at high Reynolds num-nondimensional mean streamwise velocitys=U/u, , is as-
bers, is still an experimental challenge. However, in the caseumed to depend op=u, z/v and have three types of be-
of pipe flow, recent experiments for measuring the mearhavior depending on the distance away from the wall bound-
velocity profile have been successfully performed for mod-ary: z, a viscous sublayer in whiclh~ »; the von Kaman—
erate to high Reynolds numbers by ZagarolBhe funda- Prandtl logarithmic “law of the wall” in which ¢(7)
mental understanding of how these profiles change as func= k! In »+A wherexk=0.41 andA=5.5; and a power law
tions of Reynolds number, however, seems to be stilkegion in which ¢~ 5, 0O<p<1. Alternatively, a single
missing. curve fitting over the whole region may be propossde
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Ref. 9. Yet another possibility is a family of power laws that oL
fits the data away from the viscous sublayer, and has the log 54 =0. (2.9
law as an envelope, as proposed by Barenletas *°
In this paper(a summary of which was given earftéy ~ Since
we propose the viscous Camassa—Holm equati¥/@HE) 160 S 1 SC
in (3.14 as a closure approximation for the Reynolds equa- = —=u, -u-u—gq, —=1-D,
. . . D éu D 2
tions. The analytic form of our profiles based on the steady
VCHE away from the viscous sublayer, but covering at leasthe relationg2.3), (2.4), (2.5) yield the Euler equations
95% of the channel, depends on two free parameters: the flux P
Reynolds numbeR=dU,,/v (whereU_, is the streamwise —+u-V) u=-Vqg, V-u=0.
velocity, averaged across the channeind the wall-stress ot
Reynolds numbeR;. Due to measurement limitations most The Euler—Poincarequation(2.4) is equivalent in the
experimental data are contained in this region. Let us remarkulerian picture to the corresponding Euler—Lagrange equa-
that we can further reduce the parameter dependence to otien for fluid parcel trajectories for Lagrangians such24)
free parameter by using a drag law for the wall frictibn  that are invariant under the right action of the diffeomor-
R3/R2. For the remaining part of the channel, we are un-phism group(see Holmet al 39 and references therein. In
able to solve explicitly for the mean profile without further what follows, we shall introduce random fluctuations into the
assumptions, but we do show compatibility of the steadydescription of the fluid parcel trajectories in the Lagrandian
VCHE with empirical and numerical velocity profiles in this in (2.1), take its statistical average, and use the Euler—
subregion. The VCHE profiles agree well with data obtainedPoincareequation(2.1) to derive Eulerian closure equations
from measurements and simulations of turbulent channel anfdr the corresponding averaged fluid motions.
pipe flow. For another global approach to turbulent flows in
channels and pipes displaying good agreement of theoretical

mean velocity profiles with experimental data, see Marku:iII AVERAGED LAGRANGIANS AND THE

L2
and Smith’ CAMASSA—HOLM EQUATIONS
In the presence of random fluctuations the Lagrangian
Il. THE EULER—POINCARE EQUATIONS AND THE trajectory given byX(t,a) has to be augmented with fluctua-
EULER EQUATIONS tions as
Consider the Lagrangian comprised of fluid kinetic en- X“(ta)=X(t,a)+ o[ X(t,a),t]. @D
ergy and the volume preservation constraint Here o= o (x,t) = o(X,t;w) is a random vector field. Thus
the Lagrangiar. =L (w) becomes a random variable
1|d 2
=f da > aX(t,a) +q(X(t,a),t)(detX (t,a)— 1) 2
L(w)= fda{ X" (t,a)| +q7[X’(t,a),t]

D
=f dx:§|u(x,t)|2+ q(x,t)[l—D(x,t)]]. (2.2
X[de(X”)A(t,a)—l]]. (3.2
In (2.1), X(t,a) is the Lagrangian trajectory of the fluid par- . _ o
cel starting at positiom at timet=0. The other notation is In (3.2), we introduce the Eulerian velocity field

d ag — d ag — o
=VaX, u(xt)= g X(t,) uly,)= gy X°(t.a) for y=X°(t,a), 3.3
and with X?(t,a) given in Eq.(3.1). This is similar to the clas-
sical Reynolds decomposition of fluid velocity into its mean
D(x,t)=[detX;(t,a)]"" at x=X(t,a). (2.2 and fluctuating parts. However, this decomposition is applied

on Lagrangian fluid parcels, rather than at fixed Eulerian
spatial positions.

Introducing the decompositio8.3) into the Lagrangian
L in (3.2 and changing the variablesto x= X(t,a) yields

Moreover, the JacobiaD satisfies the equation
d
ED+V-(Du):0. (2.3

The extremality conditions fou, whereq is viewed as a
Lagrange multiplier, are given by the Euler—Poincare

L(w)= f dx[%|u"[x+ a(x,1),t]|2+qIx+ o(x,1),t]
equatior®

16 16C oL X{de((X”);°X‘1]—D}],
(U V) D 5U+5(9_Ujvuj_v%_0’ (24)

whereD as before is given by2.2) and satisfie$2.3). Not-
(above and throughout we use Einstein’s notation for suming that the composition of mapX? and X gives (X“
mationg and oX 1 (x,t)=x+ o (x,t) we conclude with
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D
L(w)= f dx[§|u"[x+ a(x,1),t]]2+ q[x+ o(X,1),t]

><[de(|+a;)—D]]. (3.9

At this stage we make the crucial assumption as suf-

ficiently small that the following Taylor expansions may be

truncated at linear order:
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on the statistics of the fluctuations. Under this condition, the
Euler—Poincarequation(2.4) and Eq.(2.3) (for (L) instead
of L) can be written as

0
S0 (U V)t VU +VQ=0, with V-u=0,
(3.1

where we define

u[x+o(x,t),t]~u(x,t) +[ o(x,t) - V]u(x,t), (1 S(L) v 5 5
@Dt oto0 - a0o0 Lot Vg, &9 UTID ), TV alae)an
(3.12
where
o These equations are slight generalizations of the
u(x,t) =(uIx+o(x,1).t]), n-dimensional Camassa—Holm equations. The latter corre-
q(x,1) =(q°Tx+ o (x,1),t]), (38 spond to the case where the isotropy conditions
and(-) denotes averaging with respect to the random event (o)=0, (oioj)=a?s;, (3.13
w. Thus at this level of approximatiof8.4) becomes
L hcz)ld. If moreover the statistics @f are homogeneous, then
_ 2 a“ is constant. Under this form E@3.11) and (3.12 were
L(w)_f dX[D Elu(x,t) [+uxt)-Lo(x.t) originally derived**'® That derivation generalizes a one-
dimensional integrable dispersive shallow water model stud-
Vu(x,t)]+ £|[0'(X,t) Vulx, 0|2 +[a(x,b) ied in Camassa and Holffhto n-dimensions and provides the
2 interpretation ofa as the typical mean amplitude of the fluc-

+[o(x,t)-V]q(x,t)][dell + oy) — D(x,t)]].

3.7

Therefore the averaged Lagrangidrn is found to be
D
<L>:f erE[|U|2+2U'(<O’>'V)U+<O'i0'j>ail.|'(9ju]

+q[(detl +0y))~D]-D({0)-V)q

+((0’de(l+cr)'()>-V)q}, (3.9
where we use the notatiosy=d/dx;, i=1,2,3. Then the
variational derivatives ofL) are given by

1 &(L) 1 1

S(L) 1

W=(1+<U>‘V)Q+§[|U| +2u-({(o)-V)u
+(ojo;)(du)-(du)]=—Q, (3.9

S(L) , ,

5_q:<de(|+Ux)>_D+V'(<‘T>D_<Ude“+0'x)>)-

By stationarity of(L) under variations irg, the last equation
in the set(3.9) becomes

D=(defl +0,))+V-((o)D)—V-(cde(1l+ay,)).

tuations as in3.13.

The ideal Camassa—Holm equations, or Euler alpha
model, in(3.1]) is formally the equation for geodesic motion
on the diffeomorphism group with respect to the metric
given by the mean kinetic energy Lagrangidp in Eq.
(3.8), which is right invariant under the action of the diffeo-
morphism group. See Holret al!® for detailed discussions,
applications and references to Euler—Poincageations of
this type for ideal fluids and plasmas. After the original deri-
vation of Eq.(3.11) in Euclidean spac¥!® Holm et all’
and Shkollet® generalized it to Riemannian manifolds, dis-
cussed its existence and uniqueness on a finite time interval,
and amplified the relation found earftéof this equation to
the theory of second grade fluids. Additional properties of
the Euler equations, such as smoothness of the geodesic
spray (the Ebin—Marsden theorenare also known for the
Euler« equations and the limit of zero viscosity for the cor-
responding viscous Navier—Stokesequations is known to
be a regular limit, even in the presence of boundaries for
homogeneousgDirichlet) boundary condition’*® Some of
the most interesting solutions of the Euler alpha model could
actually leave the diffeomorphism group due to a loss of
regularity. (This is seen in the one-dimensional Camassa—
Holm equationt®) Such solutions may be interpreted in the
sense of generalized flows, as done by Bréfiend
Shnirelmarf® A functional-analytic study of the Euler alpha
model is made in Marsdeet al !

We note that in (3.12 represents a momentum. There-
fore we propose that the viscous varian{®f11) should take
the following form, in which the viscosity acts to diffuse this

In order for the mean flow to be incompressible, one takes momentum:

D=1. This imposes the condition

1={defl +oy))+V-(o)—V-(cde(l +oy,)) (3.10

J
Ev-l—(u-V)v-ijVuj:vAv—VQ, V-u=0. (3.19
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Again, v is given by(3.12. Throughout we will refer to Eq. V. CLOSURE ANSATZ
(3.14) with definition (3.12 as the VCHE, or Navier—Stokes
alpha model(NS-a). The standard Navier-Stokes equations

are recovered whew is set to zero. The VCHE3.14) in L X )
. : . . by applying it to turbulent channel and pipe flows. For this
three dimensions possesses global existence and uniquene
. urpose we also assume that as long as the boundary effects
as well as a global attractor whose bounds on fractal dimen- . » :
. . . X L .. can be neglected, the isotropy conditiof®13 hold. It is
sion show cubic scaling with domain size, as expected in the : .
. . also appropriate to recall that the Reynolds equations are the
Landau theory of three-dimensional turbulence. The prOOf%\vera ed Navier—Stokes equatids
of these properties of the VCHE, or N&model, are given 9 q
in Foiaset al®

(9_ o - o e
Since in (3.14, o appears at power up to 2 and we ;YT (U-V)U=vAU=Vp—(u—u)-V(u—-u),

Since VCHE describe mean quantities, we propose to
use(3.14 as a turbulence closure model and test this ansatz

assumgo] to be small(at least in averagethe constraint o (5.1)
(3.10 can be given a simpler form by using the approxima- V-u=0,
tion where the upper bar denotes the ensemble avetagethe
(de(l + o))y =1~V () +( 9101 Dp0p— D071 - 107) mean flow,p the mean pressure, and[(u—u)-V](u—u)
is the divergence of the Reynolds stresses. Our ansatz asserts
+(0202° 9303— 3073 2073) that:
+(d303- d101— 0103 d301). (a) uis approximately the solution of the VCHE with the
Then(3.10 becomegby neglecting the terms of degree3 same symmetry and b_oundary condmonsuas ,
in o) (b) The Reynolds stress divergences are given by appropri-
ate terms in the VCHE found by matching E¢43.14)
V-A{(V-0)0) =V (0)~(0101-9,0,— 019, 07) and(5.1).

+(0202" d303— d305- d073)

VI. THE REYNOLDS EQUATIONS FOR CHANNEL

+<(930'3'(910'1_(910'3'(930'1>. FLOWS

3.1
N _ _ ( _ 9 For turbulent channel flowsee, e.g., Townsefd, the
See Gjaja and Holf3 for the corresponding derivation of mean velocity in(5.1) is of the formu_z[U(z) 0.01" with
equations in the forng3.11) in generalized Lagrangian mean = B d the R d fiof&.1 ' d ' )
(GLM) theory with(a)=0 and no viscosity. We note that p=P(x.y,2) and the Reynolds equatiof.1) reduce to
GLM theory provides no closure. — U+ d(wu)= — 3,P,
_ — 6.1
I{w2y=—a,P, L w?=—-9,P, €3
IV. CONNECTION WITH CONTINUUM MECHANICS where U,v,w)"=u—uis the fluctuation of the velocity in
o ) ) the infinite channel{(x,y,z) e R,—d=<z=d}. The (1,3
A mechanical interpretation of these equations may becomponent of the averaged stress ten$er —Ppl —u®u
obtained by rewriting the VCHE3.14) (in the case where + [ (VI+ (VD)) is given by(Tlg)sz’(z)—(wu). At

— ZE . . ¢ . .
{0)=0, a®=constantin the equivalent constitutive’) form the boundary, the velocity components all vanish and one
has the stress condition

F70=(T19)| =2 a= VU (2)| j= 24, (6.2
q tational] n derivat ) VD dD/dt upon using{wu)=0 atz=*d. Hence, the Reynolds equa-
and corotationalJaumani derivative given byD= . . _ S_p _ 5 .
+DQ—-QD, with d/dt=4g/dt+u-V. In this form, one rec- }ﬁg;;‘gggg;giﬁ 0 andP=Py=rox/d—(w*)(2), with
ognizes the constitutive relation for VCHE as a variant of the o
rate-dependent incompressible homogeneous fluid of second
grade?®?* whose viscous dissipation, however, is modifiedVIl. THE VCHE FOR CHANNEL FLOWS

2
by the Helmholtz operator (1a”A). Thus, the VCHE or Passing to the VCHE in the channel, we denote the ve-

NS-a closure model is not only Galilean invariant; it also , . ; . . .
L X : - ..~ locity uin (3.14 by U and seek its steady state solutions in
satisfies the continuum mechanics principles of objectivity, he formU=[U(2),0,0]" subject to the boundary condition

and material frame indifference. There is a tradition at leas - " =

. . op . ! ) L (xd)=0 and the symmetry conditiob(z)=U(—2). In
since Rivlirf® of using these continuum mechanics prmmplesthis articular case. the steady VCHE reduces to
in modeling turbulencésee also Chorff). For example, this P ' y
sort of approach is taken in deriving Reynolds stress alge- —v[(1—8")U]" +v(a?U’)"=—d,7,
braic equation modefs. Rate-dependent closure models of O=—0.5 O=—o5 (71
mean turbulence have also been obtained by the two-scale =y == (7.0
Direct-Interaction-ApproximationiDIA) approac”® and by ~where a?=(03), B=(o3), and F=w+[[U-B'U
the renormalization group methotfs. —(a?U")'JUdz

du :
G- dvT.T=—pl +2v(1— a?A)D+2a°D, (4.1

with V-u=0, D=(1/2)(Vu+Vu"), Q=(1/2)(Vu—Vu"),
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In accord with the statistical assumptions in the Rey-The meaning ofr forces

nolds equation, we also take the statisticerab be invariant

under horizontal translations. As already mentioned above,

we will suppose that away from the wall, i.e., fia<d,
with 0=<dy<d we have

B(2)=0, (7.2

with constantsl, andag to be determined later. The follow-

a(2)=ag,

ing heuristic argument may provide some help in under

standing this length-scale,. Clearly « and 8 must depend

on d,ry,v,z, the only physical quantities present. Dimen-

sional analysis then impliegvith two suitable functiond
andg) that

O L I P 7.3

a_ O!T ’ a_g OIT ’ ( . )
whered—|z| is the distance to the wall, while

Ro=ra%d/v, 1,=dIRy, (7.4)

i.e., Rp, is the wall-stress Reynolds number andis the
wall-length unit. By eliminatingR, in (7.3) we can write

a (B d-|Z
e

with some functionh of two variables. Assuming that
h(0,») exists and noticing that

d—|z] d—|z|
d

we obtain(as long agz|<d,) that, forR, large enough, the
ratio

(7.9

=h

o

0, Ro

|

is independent oRy. This heuristic prediction will be con-
firmed later in a more rigorous way.

(8.2
In this case one can prove that the following conditions hold:
—d—-z=pB(z)<d-z,

—d—z=so3(x,y,zt;w)<sd—z for |z|]<d.

a(2)?=<d?*- 22— 2z8(2) 83

Indeed, if P=P,, denotes the probability distribution of

for |z|<d.

o3(z,t; w) and

,3+:f o3P(doy), ,37:f |os|P(day),
{o3=0} {o3<0}

then
B=(o3)=p =B, B <(d+2)P({o3<0}),
B <(d-2)P({o3=0}).

Thus,
(d+2)7 1B~ +(d—z) " 1B*=1,

so that

2dB_<d?*- 72— (d+2)B.
On the other hand,

a2=<0'§>=j (J'%P(dcr'3)$(d-|-z)B7-|-(d—Z)B+

<2dB +(d—z)B=d?— 72— 2z8.

This establishes the second inequality&3). The first one
is obvious.

The Cauchy—Schwarz inequality produces the supple-
mentary constraint

|B(2)|<a(2) (8.4

It is easy to check that the conditio(&2) and(8.4) are also
sufficient for the existence of a random variable

for |z|<d.

Finally, let us note that due to the symmetry of the g4(x,y,z;w) satisfying(7.6) and (8.3 and statistically de-

physical setting, we can also assume that
o3(X,y,—Z,t,w)=—o03(X,y,Z,t;0)

and therefore
B(—zt)=-B(z,1),

a(—z,t)=a(z,1). (7.6

VIIl. REALIZABILITY CONDITIONS

Recall that the statistics af are subjected to the condi-
tion (3.15. In the present case this takes the form

d3((V-0)o3)—d3f
=((010301+ 020307) 03) +((I101+ 9,07) - d303)
+3050° = 93B~(0105- 05— 0501 310)
+((0101F 9207) - d303) — ({30, 3,073)
+(d103-9301)),
where
2)//_

(8.9

Ha B' ~(0101- 9,0,— 9201 9107).

pending only ore. For any suchrz, choose some homoge-
neous random vector[o‘f(x,y),oz(x,y)] such that y
=(0107- 9205— 9205 9102)#0.  Set o1=(2y) [(a?)"
—23’]0‘1’. Theno=(04,05,03) has all the required statis-
tical properties. We conclude that the inequaliti8s3) and
(8.4) are the realizability conditions for the lengthsand 8

in the VCHE (7.1).

IX. COMPARING VCHE WITH THE REYNOLDS
EQUATION

Comparing(6.1) and(7.1), we identify counterparts as

U=U, dfwu)=p[(a?U’)"—(B"U)"]+po,
. g 9.
d wu)=0, V(P+(w?))=V(7—pex),
for a constanp,. This identification gives
(wo)(z)=0,
= 2111\ ’ ’ (92)
—(wu)(2)=—poz—[(a”U")"(2)=(B'U)'(2)],
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and leavegw?) undetermined up to an arbitrary function of

z. A closure relation for—(wuy) involving the third deriva-
tive U”(z) also appears in YoshizavfAcf. Eq. (8) of Wei
and Willmarth?

From (7.2) it follows that d,77= 7, is constant. There-

fore integrating twice irg, the first equation ir{7.1) gives
—1[1-8'(29]U(2)+v[a*(2)U'(2)]
= 7To+ 7712_ %’77222

9.3

with constantsr;(i =0,1,2). But the left hand side ¢9.3) is
symmetric under the change>—z, sow;=0 and we ob-
tain the following relation among the profiles 8{z), «(2)
andU(2):
—1[1-B'(2)]U(2)+[a(2)?U' (2)]
for |z|]<d. (9.9

For |z|<d,, B(2)=0, a(2)=ay>0 and(9.4) becomes

=mo— %77222

2 for |z]<d,.

(9.9

" 7722

1
—U(2)+alU"(2)= — o 5

SinceU is symmetric inz, we obtain

Uln—al 1 cosh(z/ ay) bl 1o z°
(2)=al 1= oshdeTag) @) e
for |z|<d,, (9.6

where the constants, b, andc satisfy the conditions

c=U(*dy), mor=—a—b(1+2a3/d3)—c,

mov=—2b/d3. 0.7

It is worth mentioning here that with an antisymmetry con-

Chen et al.

(9.10

:7T0d_ %’7T2d3.

X. EMPIRICAL QUALITATIVE PROPERTIES

It is universally accepted that the maximum Wfis at
z=0 (i.e., the center of the channeind thatJ’(z) - z<0 for
0<|z|<d. Also all experimental data show that’(z) <0
over most of the channel. Thus

d 1 (d d
R=—Uav 2, f_ U(z)dzgRCE;U(O), (10.1)
and (using the concavity property &f)
1 (0 z+d
R= —f u(0)dz= (10.2
g d
Then(10.1), (10.2 can be given the form
1U(0 R U 0
= ( ) ( ). (10.3
2 u, RO U,
All the empirical evidence shows that
R <1 for Rp>1 10
RZ< <R0 or Ry>1. (10.9

Throughout, the propertigd0.3 and(10.4 will be taken as
granted.

XI. THE WALL UNITS REPRESENTATION

In the lower half of the channel, the mean veloditcan

dition for U(z) and with(9.6) changed accordingly, one may be expressed in wall units using the notatiaf(7)

address turbulent shear flow€ouette flows by the same

analysis as developed in this paper.
Integrating(9.4) on[ —d,0] gives

- Vfod[U(Z)JF,B(Z)U'(Z)]dZ— a(—d)?r
9.9

where we used6.2) as well asU’(0)=0, 8(0)=0, and
U(—d)=0. Denoting

1 (d

Uav:E fde(
1 (0

=3 J;dU(Z)dZ

-l

allows (9.8) to be written also as

:7Tod_ %Wzds,

z)dz

U(z)dz+|a

1- D) 2 b+ do
d—oana CF

9.9

do
Uar v [ B2V @z a—a)?r,

=U(2)/u, ,p=(z+d)/l,, with | ,=v»/u,=d/Ry. In this
representation(9.6) becomes
_a coshé(1— n/Ry)
D=0, |1 Coshé(1= 0/Ro)
A 1_7’/R°)2+ 11
o T\ TSR, é(n0), (111

for ne<n=<Ry, where é=d/a and ny=(d—dy)/l,
"’Ofoll*:Rolg.
The definition of ¢ implies R=f§°¢(77)d77- Hence

(11.1 gives

_a(Ro~ o) (1_ tanhé(l—q(»)
U* g(l_qO)

2b(Ro— 70)
3u,

70
+ () (Ro— no>+fo S(m)dn.

To conclude this computation it is sufficient to approximate

¢ on (0,,) by the piecewise linear function equal tpfor
0<n=<mn, and ¢o+(n—m0)¢y for n,<n<mny, where

do=d(10), Po=¢"(10), and 7, (do— 7000)/ (1~ bg).
We obtain

Downloaded 11 Jun 2003 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 11, No. 8, August 1999

Ega(l—qc))( _tanhé(l—qo)) 2b(1—do)
Ro U, g(l_QO) 3u,
2Rods+ B3R
+(1—QO)¢0+(1_¢6)_1(¢0%_w ,
(11.2
where
do=(alu,)(&/Ro)tant &(1—qo)]

Using this and solving forpg gives an explicit functionp,
= ¢o(qo;R,Rg;alu, ,b/u, ;&), namely

¢o(do;R,Ro;aluy ,bluy ;&)

=RO{B \/82— R [2(R/Ro~ >+qSRo¢5]],

(11.9
where ¢, is given by(11.3
B=(1—0o)(1— ¢¢)+do,
- a<1—q0>( _tanh§<1—qo>) 2b(1-go 9
Uy £(1—qo) 3 U,

and the choice of the roag, in (11.2, (11.3 will be justi-
fied at the end of Sec. XII.
Thus(11.1) becomes

coshé(1— n/Ro)>
~ cosh&(1—do)

1— 5/R,\ 2
()
1-qo

RR a b
Jo; oazf

a

¢(7})=u—

b
+ —
U,

+ o

for quog 7]$ Ro. (11@

In (11.6 the constanta/u, , b/u, , ¢ andgy may depend on
Ry. As we will show below, Nature seems to choose them as
constantgat least for largeR,). Recall that in Sec. VII we
already gave a heuristic argument that d/a should be

independent oR, if Ry (or R) is large enough.

Xll. THE OFF WALL REGION

The empirical data up to now suggest that for a fixed
channel there is a range(,z,) (with z,z,>0) inside the

channel such that farin that range, the von Kean log law
is a good approximation td(z), at least forR (or Ry) large
enough. Since for thosewe have

In2_jnZ

ng—Ing

(wherex~0.4 is the von Keman constant U(z,) —U(2) is
a function of z/d only (i.e., independent oR;). We will
posit now the following weaker condition.

1 2z, 1
U(zz)—U(z)=;In;=

A connection between the Camassa-Holm equations . . . 2349

For R (or Ry) large enough, there exists a fixed range
(z¢/d,z,/d) such that forz/d in that rangelJ(z,) —U(2) is
a function ofz/d, independent oR;.

Note that we make no assumption on the length of the
range. The classical “defect law” of Izakson, Millikan, and
von Mises! (pp. 186—188is the particular case of our con-
dition when one ofz;s is 0, and the range is assumed to be
wide.

Passing to the wall units representation we can formulate
our assumption as: There exists:§,<g,<1, such that for
d1Ro<7<02Ro, &(72)—&(7) is a function ofq=7/R,
only. Since we exped in (11.6 to be quite small, we will
takeqo=<d;..

We will prove now that under the above conditions,
there exist absolute constardtg, b, and&, such that

a~a,u, coshé, (1—qg),

12.
b~b,u,(1-dg), and =d/(apé, ), (12
wherea, b, £ andqg are as in(11.6).
Indeed letf be the function defined by
f(9)=¢(q2Rp) — #(qRy)  for q;=<g=dq;. (12.2
Then sincegy<q; we have from(11.9
f(q)=ag[cosh&(1—-q)—coshé(1-qy)]
+bol(1—a)*—(1—-q2)?], (12.3
where
ap=(alu,)/coshé(1—qg), bo=(b/u,)/(1—qg)*
(12.9
Writing (12.3 for g=q;, we obtain
bz f(q1) —ag[coshé(1—q;) —coshé(1— qz)]
o (1-0q1)°—(1-0p)°
Then(12.3 becomes
aog(£,9)=h(q) for q;=<g=a,, (12.5
where, withcy an absolute constant,
g(&,q)=coshg(1—q)—coshé(1—a;)
—¢y[(1-9)*—(1-qp)?],
(12.9

h(&)=f(a)—col(1-a)*—(1—a2)?],

and ag,c,& are parameters, constant gnbut which may
depend continuously oR,. Note that

g(é,9)=h(q)=0 (i=1,2,

9(§,9)<0 for q;<q<q,,£>0. (2.9
Thus[with g=(q;+q5)/2]

ap=h(q)/9(a), (12.8
and

g(§,h(a)=h(a)g(¢,q) for qi<g<d;. (12.9

If £&=¢&(Ry) were not constant, thef12.9 would hold for ¢
in an intervall &1 ,&,] with 0<£,<¢,. Differentiating(12.9
with respect tof gives
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9:(&£)9(£,9)=9:(£,9)9(§,a), ”e , ,
C I
for §1<é<é¢,, q1=<Qq=qQy. Introducing=¢ (1—q), it fol-
lows that
20 | 8
sinhg=hg(£) +hy(§)¢%+hy(€)coshy
for <6<, &(1-02)<{<&(1-qu), s 15} 1
wherehg, h;, h, are explicit functions of only. Clearly
this is impossible. 10 _
We conclude from this contradiction that there are abso- % Ry=714 —83
lute constantslg, a, , b, , and¢, such that 989 ---A---
5t . 1608 7 -
7
¢(n)=2a, cosh§*<1—qo>—cosh§*(1—R—OH e R 1000

FIG. 1. The mean velocity profile in the channel for the constaatscous
Camassa—Holm equation compared with the experimental data of Wei and
Willmarth (Ref. 4.

+b,

2
7
(1—QO)2—(1—R—0)

+ ¢ol do;R,Rg;a, coshé, (1—qp),

b, (1—00)? &1, (12.10
for goRo=7=Ry, where the functionp, [see(11.4] actu- yayesa, , b, and &, as well as the smallest acceptable
ally depends only omjo, Ry andR. value g, for go. In Fig. 1, we compare our formula with
Formula(12.10 can be also written as experimental dafafor the Reynolds numberR, equal to
S(qRy) = d1(0o:;q) + do(do;R.Ry)  for go=<qg=<1, 714, 989, and 1608. As these Reynolds numbers are small,

(12.11) a, andb, have not reached their asymptotic values. It ap-
pears, however, thadt, has reached its asymptotic value. We
therefore allowa, andb, to vary slightly with Ry, while

coshé(1—q) holding &, constant to fit the data. It turns out thgt =35
$1(0o;0) = ay coshg*(l—qo)( 1- m> andg, =1/, . Note that this choice of, corresponds ex-
actly to the condition thaltd—dg| = «.

where

for qp=<q=<1,

(12.12

1-q)?

—ag.)dl1— —=

o) [1 (1—%)
¢0(9o;R,Ro) = ¢o[ do:R,Ro; 2, coshé, (1—qo),
b, (1-00)% 1. XIV. THE REYNOLDS SHEAR STRESS

For Ro—c from (11.4 and(11.5 we have The shear Reynolds stressiguw) (see Sec. VIl Since

R 1, (uw)|,— 4q=0, one must have
#(doRo) = ¢o(do;R,Rg) ~ Ry~ C+ PRE Co, (12.13

whereC is defined in(11.5 and Cy= R} is constant ac- —(uw)(2)=— TO_Z_ vU'(z) for |z|<d. (14.2
cording to(11.3. d
We can now explain the choice af, in (11.4. The
other possible choice was On the other hantV=U and —(uw) is also given by(9.2)
1 with an appropriate constamt,. For |z|<d,, since a(z)
RO: B+ \/BZ— R—O[z(r/ro—c:)+qgc0] , =ay=1/¢, , B(2)=0, (9.2 reduces to
which would have given foR, large enough —(uw)(2)=poz— ralU"(2), (14.2

é(qoRo) ~ 2Ry,

and consequently(Ry) =Ry which is contrary to the estab-
lished facts(10.3, (10.4).

and
VQ%UW(Z) =pU'(2)— m,z.

XIll. THE MEAN VELOCITY PROFILE IN THE Introducing this in(14.2 we see that14.1) and (14.2 are
CHANNEL compatible ifp, is given by

Comparing the profile given by formuld2.10 with an
experimental mean velocity profile, enables us to obtain the py=—7y— 7o/d. (14.3
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fo=—my/vu, =a, coshé, (1—-q,)
] , 2
+b~k (1_q*) +§_2 +¢(q*RO)
*
£ 1 f,= 0%, = —b, /3. (15.3
z
v ) Of course we have
@(m)=1/E,, P(7)=0 for q,Ro=7=Ry, (15.4
but the VCHE (15.1) does not defin&(7),B(7) near the
wall (i.e., for 0<5=<q, Ry). However, (15.1) gives some
qualitative information on the behavior & and 3 in the
n near wall region. Indeed integratiri@5.1) we obtain
FIG. 2. Reynolds shear stress in the channel compared with the experimenl Ro Ro
tal data of Wei and WillmarttiRef. 4. = d(n')dn' + J B (7)dy' +B(5)d(7)
0J7n n
7 7\°
Taking the wall units representation (24.1) we obtain our +Roa(n)?¢ ()= fo( 1- —) +f, 1 —) (155
theoretical Reynolds shear stress Ro Ro
—(uw) 7 for all 0<7=<R,. Thus[using|B|<2, see(8.3)] we find
=l-g ' ()
7o 0 - 2 1 R
&(7)°¢' (m)= g [fo+ f1+4(n)]=0| o],
78 . 7 0 0
=1——+—§*smh§*<1——) L ,
Ry Ro Ro which in turn goes to zero whelRy— o, by virtue of (10.4).
2b, . Thus, for 7 fixed,
+ RO 1- R_O for o} ROS AS RO' a( 7])2¢I(77)_>0 for R0—>OO. (156)
(14.4 In particular,[using ¢’ (0)=1 and(10.3] we obtain
Figure 2 compares the corresponding experimental and  3(0)—0, B(0)—0 for Ry—, (15.9

theoretical Reynolds shear stresses. We use the same values

for a,, b, , and ¢, as before. The agreement in shear@nd due td15.4,

stresses does not extend as close to the wall as the mean 4/(q, Rj)—0 for Ry— . (15.8
velocity profiles did. The empirical matching of the mean .

velocity profiles as well as the Reynolds shear stresses afdoreover, writing(15.9 for =0,

both given withg, =v3/£, . We note that the consistency of R Ro

this closure and the experiments found in the trends followed &+ f B(n')¢'(n')dn' +Rea(0)’=fo+f; (15.9
by the Reynolds-stress profiles in Fig. 2 is an exacting test of o Jo

the fidelity of the mean velocity profiles as well as a test ofand subtracting15.5 from (15.9 we obtain

the Reynolds stress relation predicted by Elt.4).

1 (» N -
R—f ¢(77’)dn’+f B(n") o' (n")dn'—B(n) d(n)
0JO 0
XV. THE NEAR WALL REGION

+R[@(0)2—a(7n)?¢’
As already mentioned above, in the near wall regions ol &(0) (m)"¢"(m)]

(i.e., where B < 7y=0, Rg and Ry—q, Ry<7<2Ry), B _¢ 7 e l1-[1 7\° 151
may be nonzero and may dependas doeg3) on » andR,. TR, R Ry | (15.10
The VCHE (9.4) in the wall units representation takes the _ . . .
form Fixing » and lettingRy—, from (15.10 we infer that
. ~ ’ ' T~ ~
[1-RoB'(m]1d(n)—Ri[@(7)?¢’ ()] f B(n")¢' (7" )dn' = B(n) (n)
0
2
n
=fo+3fy 1—R—) for 0< =Ry, (15.9 +Ro[@(0)2=a( )29’ (7)]—0. (15.1)
0
i.e., in the whole lower half of the channel. (b5.1) we used But for # fixed such thaip’(#) remains away fm”.‘ i
the notations Ro—, we haveB(n)—0 because of8.4). By virtue of
5 Lebesgue’s dominated convergence theorem we conclude
W) =a(z)ld, B(n)=p(2)d, (152  that
whered+z=1l, , |, =d/R,, and Ro[@(0)°—a(75)?¢'(5)]—0 when Ry—», (15.12
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0.3 T T T —
ovd for Ry=1608 ——
0.25 | upper constraint - i
lower constraint -- .
e2r . ]
- 015 .- 4
3
0.1 F _
0.05 + .
0 £
0 0.01 0.02 0.03 0.04 0.05

n/Rg

FIG. 3. The statistical compatibility of the VCHE with the theory of Panton

(Ref. 9 in the near wall region.

provided that¢' () stays away from 0.
It is instructive to connec(15.12 with the functionsg
andh considered in Sec. VII. First we recall that

9(Ro,m=B(n), F(B(n),n=a(n).

Assuming that3 and 3’ are continuous acrosg,=d, R,
allows us to conclude that

(15.13

0y J \?
@J(Ro,Roq)=—fq (q’—q*)(a—q,) 9(Ro,Roq")dq’

for 0=<qg=q, .

Sinceq, is small, assuming that

=7(Ro)
q'=q, -0

9 \2
(a_q’) g(ROvROq,)}

exists and is not zero, we obtain that

9(Ro, 7)~ 3¥(Ro) (G, — 7/Rp)?. (15.19

But B(0)=0, s0y(Rg)>0. If y(Ry)=0, we can proceed in

a similar way by involving a higher derivative af at 7,

from the left. In all cases we have ended with a represent

tion
for 0<7<q, Ry,
(15.19

wheregy,=0, g;=0, andg,(q) is a decreasing function of
with g,(9,)=9;:(g,)=0. From(15.15, (15.13 and(15.129
we now obtain

hz[gO(Ro)gl(O) 0]— hz[go(Ro)gl( 7/Ry),n]¢'(17)~0
(15.19

for Ry large enough. IN15.16, g1(7/Rg)—g4(0) for Ry
—o and 7 fixed. These arguments suggest that
h(B,7)~h(B.0)/N¢ () (15.19

providedg is small and 14’ () is bounded wheRRy— . It
is not clear if assuming equality ifl5.17 is a judicious
approximation of the functioh.

9(Ro,7)~do(Ro)g1(7/Ryp)

Chen et al.

40 T
predict
35r R=35,259,000
| predict
8 R=3,098,100
325 -
hd match
R=98,812
201 ___experimental data
_ _ theoretical (1)
151
L . _von Karman log law
AL, Barenblatt-Chorin power law
10 . . . .
10' 10° 10° 10* 10° 10°
n

FIG. 4. The mean velocity profile in the pipe for the constantiscous
Camassa—Holm equation compared with the experimental data of Zagarola
(Ref. 7).

near wall region for large Reynolds numbers. To test
whether the VCHE(15.5 is still valid in this region we
extrapolated the experimental profiles in Fig. 1 into the near
wall region according to Pantdto obtaina from (14.5). For
simplicity of the graph, we will display the profile only for
Ro=1608, which is the highest Reynolds number in Fig. 1.
As illustrated in Fig. 3, we find that the realizability condi-
tions (in Sec. VIII) are satisfied for appropriate choice of
v(Rp) in (15.14 and (15.13. Clearly « lies between the
upper constraint8.3) and the lower constraini8.4) in the
near wall region. Thus, our basic ansatz is consistent with
Panton’s theory.

XVI. PIPE FLOWS AND PREDICTION

All the preceding considerations on turbulent channel
flows can be suitably applied to turbulent pipe flows. The
substantial difference between the mathematical treatment of

aF_he two types of flows, is that for pipes, the cosh function is

replaced by the first modified Bessel function

B % 1 ( rz) n
IO(r)_n::L (n!)Z Z . (161)
For instance the basic formu(d1.1) becomes
_a lo[£(1—7/Ry)]
Y=g\ e ﬂo/Ro)])
b - 7]/R0 2
u _(1_770/R0) }W(”O)
for no<n<R,. (16.2

For pipe flows, experimental data for quite large Rey-
nolds numbers are availablsee ZagaroFa. For these Rey-
nolds numbers it is reasonable to assume #jatb, , and
¢, have each reached their asymptotic values. In Fig. 4 we

A major difficulty in fine tuning our approach near the compare our profiles with experimental data of Zagafola.
wall resides in the unavailability of experimental data in theWe obtain thea, , b, , &, , andq, by using the experimen-
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