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[1] A time domain Boussinesq model for nearshore hydrodynamics is improved to
obtain the conservation of vertical vorticity correct to second order and extended for use
on an open coast using longshore periodic boundary conditions. The model is utilized to
simulate surface waves and longshore currents under laboratory and field conditions.
Satisfactory agreement is found between numerical results and measurements, including
root mean square wave height, mean water level, and longshore current. One striking
result of the simulations is the prediction of the strong longshore current in the trough
shoreward of the bar as observed during the Duck Experiment on Low-frequency and
Incident-band Longshore and Across-shore Hydrodynamics field campaign. The model
results give insight into the spatial and temporal variability of wave-driven longshore
currents and the associated vertical vorticity field under the phase-resolving, random
wave forcing with wave/current interaction. Numerical experiments are carried out to
examine the response of the modeled longshore currents to the randomness of surface
waves and the cross-shore distributions of bed shear stress coefficient. We find that both
regular and irregular waves lead to very similar mean longshore currents, while the input
of monochromatic, unidirectional waves results in much more energetic shear waves
than does the input of random waves. The model results favor Whitford and Thornton’s
[1996] finding that the bed shear stress coefficient for the area offshore the bar is larger
than that in the trough, as better agreement with the field data for both regular and
irregular waves is found if such coefficients are used in the Boussinesq model. INDEX
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1. Introduction

[2] The significant role of wave-induced longshore
currents in coastal processes has long been recognized.
Considerable research effort has therefore been devoted to
the measurement and prediction of longshore currents
generated by obliquely incident waves breaking near a
shoreline. Since the pioneering work on modeling long-
shore currents by Bowen [1969], Thornton [1970], and
Longuet-Higgins [1970a, 1970b], among others, a hier-
archy of mathematical models has been established. Most
of the existing models are based on the nonlinear shallow

water equations driven by the forcing of radiation stresses
resulting from the averaging of the short wave field over
the wave period. The simplest are one-dimensional (1-D)
models based on the momentum flux balance in the
longshore direction on a planar beach with a monochro-
matic incident wave train. The complexity and applica-
bility of the models increase with the improved
formulation of bottom shear stress and radiation stresses,
the consideration of topographic variation in the long-
shore and cross-shore directions, and the introduction of
the momentum dispersion mechanism resulting from ver-
tical nonuniformities of the surf zone current. Obviously,
the accuracy of each type of model depends on the
quality of the wave transformation and breaking model
that provides a mean flow model with the driving force.
Reviews on advances in modeling longshore currents
are given by Basco [1983], Battjes et al. [1991], and
Svendsen and Putrevu [1995].
[3] On the basis of a gravity wave modeling technique

introduced by Abbott et al. [1978], Basco [1983] suggested
that time domain Boussinesq-type models resolving each
individual wave in shallow water could become a superior
alternative to wave-averaged models for the study of surf
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zone currents. One of the advantages of Boussinesq models
is that there is no need to decouple the wave and current
motion [Chen et al., 1998, 1999a], and thus no need to
compute the radiation stresses for a separate run of a wave-
averaged model. Furthermore, the capabilities of modeling
nonlinear wave-wave interactions in shallow water and fully
coupled wave-current interaction make the Boussinesq
approach a promising tool for the study of low-frequency
motions, including shear instabilities of longshore currents,
if wave breaking is incorporated into the model.
[4] Significant advances in Boussinesq modeling of grav-

ity wave transformation have been made over the past 5 �
10 years. Reviews on this subject were given by Kirby
[1997] and Madsen and Schäffer [1999]. Recent progress in
incorporating energy dissipation caused by wave breaking
into time domain Boussinesq-type models by Karambas
and Koutitas [1992], Schäffer et al. [1993], Svendsen et al.
[1996], Veeramony and Svendsen [2000], and Kennedy et
al. [2000], among others, allows for the prediction of
breaking-induced nearshore circulation by averaging the
modeled fluid particle velocity for the combined wave/
current motion over a certain period of time. For example,
Sørensen et al. [1998] and Chen et al. [1999b] have
demonstrated the capabilities of Boussinesq-type models
for the simulation of rip currents generated in the laboratory.
However, few applications of two-dimensional (2-D) Bous-
sinesq models to field conditions have been reported in the
literature.
[5] The U.S. Army Engineering Waterways Experiment

Station’s Coastal and Hydraulic Laboratory Field Research
Facility (FRF) located at Duck, North Carolina has served
as the base of a series of nearshore field experiments
[Birkemeier et al., 1996]. These extensive field measure-
ments not only significantly improve the understanding of
complex phenomena in coastal processes, but also provide
an excellent database for model verifications. On the other
hand, numerical simulations of these data sets can lead to
insight into the spatial and temporal variability of coastal
dynamics, which can augment limited in situ observations.
Also, a validated model will be useful for the planning of
instrument deployment in the field.
[6] In this study, a time domain Boussinesq model for

nearshore hydrodynamics, introduced by Wei et al. [1995]
and Chen et al. [1999b], is improved to obtain vertical
vorticity conservation correct to the second order, consistent
with the order of approximation for the wave motion. This
model is then used to investigate surface waves and long-
shore currents under controlled laboratory and uncontrolled
field conditions. In section 2, we present the governing
equations including additional terms to ensure the property
of vorticity conservation followed by a summary of the
features of the Boussinesq model, including shoreline
runup, periodic lateral boundaries, multidirectional wave
maker, wave breaking, bottom friction, and subgrid turbu-
lent mixing. Section 3 describes the numerical simulation of
wave-induced longshore currents measured by Visser
[1991] in the laboratory with a planar beach. We examine
the balance of momentum flux and the mechanism of
momentum mixing predicted by the model. The numerical
results are compared with the measured wave height, mean
water level, and longshore current. In section 4, a data set
obtained from the Duck Experiment on Low-frequency and

Incident-band Longshore and Across-shore Hydrodynamics
(DELILAH) field experiment is simulated by the Boussi-
nesq model. In addition to the model/data comparison of
wave height and longshore current, we present the spatial
and temporal variation of the computed wave-driven current
field averaged over five peak wave periods, and the vortic-
ity field obtained from the instantaneous velocity of the
combined wave and current motion. Numerical experiments
are carried out to examine the response of the modeled
longshore currents to the spatial distributions of bed shear
stress coefficient under both regular and irregular wave
conditions. Finally, we summarize the findings in section 5.

2. Model Formulation

2.1. Governing Equations

[7] As Boussinesq-type models are extended into the surf
zone, questions arise on the applicability of the equations
for the breaking-generated, horizontal, rotational flow. A
number of Boussinesq-type equations were derived under
the assumption of irrotational flow [e.g., Wei et al., 1995;
Madsen and Schäffer, 1998]. Similar equations can also be
derived from the Euler equations of motion [e.g., Yoon and
Liu, 1989; Nwogu, 1993; Chen et al., 1998], which allows
for the advection of vertical vorticity. To bridge the equa-
tions originating from two different starting points of
derivation, Wei et al. [1995] retained the leading-order
vertical vorticity in their equations formulated in terms of
velocity at a reference elevation and free surface elevation
as the dependent variables, as shown by the vorticity
transport equation by Chen et al. [1999b] and more recently
by Liu [2000]. Starting from Euler equation on the free
surface to avoid the evaluation of the pressure field, Gobbi
et al. [2000] derive Boussinesq-type equations with the
vertical vorticity consistent with the order of approximation
for the wave motion. On the other hand, the study of
horizontal vorticity in Boussinesq-type equations was
reported by Rego and Neves [1997] and Veeramony and
Svendsen [2000] who restricted their investigations to the
vertical plane, and by Shen [2001], who dealt with a general
three-dimensional case.
[8] Because a large number of Boussinesq models in use

are based on the assumption of potential flow [see, e.g.,
Madsen and Schäffer, 1999], we demonstrate an alternative
to Gobbi et al. [2000] to ensure vorticity conservation
correct to the order of approximation of the equations by
consistently introducing the vertical vorticity into the equa-
tions of irrotational flow.
[9] The three dimensional Euler equations on a Cartesian

coordinate system can be written as

@u

@t
þr3

1

2
u � u

� �
þ ���� uþ 1

r
r3pþ gr3z ¼ 0 ð1Þ

in which u = (u, v, w) is the velocity vector at any location
of the fluid domain, p is the pressure, � = r3 � u is the
vorticity vector, t is time, r3 is the three dimensional
gradient operator, z is the vertical coordinate pointing
upward with the origin on the still water surface, r is the
fluid density, and g is the gravitational acceleration.
[10] Using Taylor expansion of the velocity about the still

water surface and assuming zero horizontal vorticity, we
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obtain the vertical distribution of the horizontal velocity
vector, û [see, e.g., Nwogu, 1993],

û ¼ ua þ m2
�

za 	 zð Þr r � huað Þ½ �þ z2a
2
	 z2

2

� �
r r � uað Þ

�

þ O m4
ffiffiffiffiffiffiffi
gh0

p� �
ð2Þ

where ua = (ua, va) is the horizontal velocity vector at a
reference elevation za = 	0.531h in the water column, h is
the still water depth, and r = ( @@x ;

@
@y) is the horizontal

gradient operator. Notice that m is the measure of wave
dispersion and m = h0/L < 1 in shallow water, where
the typical water depth h0 is smaller than the typical
wavelength L. Depth integration of the continuity equation
r3 � u = 0 yields the vertical velocity

w ¼ 	µ[z r �  ua 	r �  hu að Þ ]þO m3
ffiffiffiffiffiffiffi
gh0

p� �
ð3Þ

Thus the vorticity vector � may be expressed as

�������� ¼ r3 � u ¼ 0; 0;wð Þ ð4Þ

where the vertical component of the vorticity vector is

w ¼ @va
@x

	 @ua
@y

þ m2w1 þ O m4
ffiffiffiffiffiffiffi
gh0

p

L

� �
ð5Þ

The second-order vertical vorticity is given by

w1 ¼
@za
@x

@

@y
r � huað Þ½ � þ za

@

@y
r � uað Þ

� �

	 @za
@y

@

@x
r � huað Þ½ � þ za

@

@x
r � uað Þ

� �
ð6Þ

[11] The Euler equation in the vertical direction gives the
pressure field as a function of z

p

r
¼ g h	 zð Þ þ m2 z	 hð Þ

�
r � huatð Þ þ 1

2
zþ hð Þr � uat

þ ua � r r � huað Þ½ � þ 1

2
zþ hð Þua � r r � uað Þ

	 r � huað Þr � ua 	 1

2
zþ hð Þ r � uað Þ2

�
þ O m4ga0

	 

ð7Þ

in which h is the free surface elevation relative to the still
water level, a0 is the typical wave amplitude, and subscript t
indicates partial differentiation with respect to time.
Consequently, substitution of equations (2), (3), (4), and
(7) into equation (1) and evaluation of the equation at z = za
lead to the Boussinesq-type momentum equation for the
partially rotational motion as follows

@ua
@t

þ ua � rð Þua þ grhþ m2 V1 þ V2 þ V3ð Þ ¼ O m4
gh0

L

� �

ð8Þ

where V1 and V2 are the dispersive Boussinesq terms

V1 ¼
z2a
2
r r�uatð Þ þ zar r� huatð Þð Þ 	 r h2

2
r�uat þ hr� huatð Þ

� �

ð9Þ

V2 ¼ r
�
za 	 hð Þ ua�rð Þ r� huað Þð Þþ 1

2
z2a 	 h2
	 


ua�rð Þ r � uað Þ
�

þ 1

2
r � r huað Þ þ hr � uað Þ2

h i
ð10Þ

The additional term V3 = (V3
(x), V3

(y)) accounts for the
second-order effect of the vertical vorticity, and may be
written as

V3
xð Þ ¼ 	vaw1 ð11Þ

V3
yð Þ ¼ uaw1 ð12Þ

In comparison with Wei et al.’s [1995] equations, the only
difference is the introduction of V3 because the leading-
order vertical vorticity was retained in their equations. In
fact, adding V3 to Wei et al.’s momentum equation makes it
identical to the equation derived by Liu [1994] using the
velocity potential function. Taking the curl of equation (8)
leads to the vorticity equation

@w
@t

þ ua � rw ¼ 	wr � ua þ O m4
gh0

L2

� �
ð13Þ

We notice that w depends on ua and za only and is depth
uniform although û is a quadratic with the vertical
coordinate z. Clearly, equation (8) conserves vertical
vorticity with a leading-order error of O(m4), which is
consistent with the level of approximation in the Boussinesq
equations themselves.
[12] The mass conservation equation remains unchanged

from the form by Wei et al. [1995], and is given by

@h
@t

þr �M ¼ O m4
ffiffiffiffiffiffiffi
gh0

p� �
ð14Þ

where

M ¼ hþ hð Þ ua þ m2
z2a
2
	 1

6

���
h2 	 hhþ h2
	 
�

r r � uað Þ

þ za þ 1

2
h	 hð Þ

� �
r r � huað Þð Þ

��
ð15Þ

[13] In summary, fully nonlinear Boussinesq equations
derived from the assumption of potential flow can be
readily converted to equations that allow for the partially
rotational flow with vertical vorticity. This is done by
consistently adding the vertical components of � � u
evaluated at the reference elevation to the momentum
equation as demonstrated above. We shall utilize the
enhanced momentum equation (8) and the mass equation
(14) in the present study. Following Wei et al. [1995],
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quasi fourth-order finite difference schemes are used to
solve the governing equations.

2.2. Boundary Conditions

[14] To simulate breaking-generated longshore currents on
an unbounded natural beach, the cross-shore lateral bound-
aries in the numerical model should remain transparent or
open to the fluid motion, including surface waves and mean
flows. Similar to the difficulties associated with the treatment
of open boundaries in numerical models of storm surge and
coastal ocean circulation, no technique is available for a
Boussinesq model to achieve the real transparency of an open
boundary under field conditions. In the present study, we
choose alongshore periodicity to represent lateral cross-shore
boundaries, assuming the wave-induced flow is dominated
by the local forcing and the effect of the periodicity assump-
tion is insignificant if the lateral boundaries are located far
away from the area of interest. The numerical implementation
of the periodic lateral boundary condition in the Boussinesq
model includes solving a cyclic tridiagonal system of linear
equations.
[15] A closed offshore boundary in combination with a

sponge layer is implemented in the Boussinesq model to
serve as the offshore nonreflective boundary. Input waves
are then generated internally by the source function tech-
nique developed by Wei et al. [1999]. An extension of the
technique is needed under the assumption of alongshore
periodicity of cross-shore boundaries. In the case of simu-
lating irregular waves, the distribution of wave directions in
each frequency bin has to be adjusted to meet the require-
ment of alongshore periodic boundaries. Given a directional
wave spectrum, we first divide the energy frequency spec-
trum into about 100 equal energy frequency bins. Then the
energy direction spectrum for each frequency is split into
10�30 directional bins. The wave direction for each bin is
determined on the basis of a longshore wave number
decomposition for each frequency based on the longshore
domain length, frequency and water depth.
[16] The swash zone on a beach is the interface of the

seawater and the land. Following Chen et al. [2000], we
treat the entire computational domain as an active fluid
domain by employing an improved version of the slot
technique for the simulation of wave runup given by
Kennedy et al. [2000]. The equations for conservation of
mass (equations (14) and (15)) becomes

b
@h
@t

þr �M ¼ 0 ð16Þ

where

M ¼ � h0 þ hð Þ ua þ z2a
2
	 1

6

��
h2 	 hhþ h2
	 
�

r r � uað Þ

þ zað þ 1

2
h	 hð ÞÞr r � huað Þð Þ

�
ð17Þ

in which b and � are two dimensionless multipliers
introduced for the treatment of shoreline run up [Kennedy
et al., 2000].

2.3. Energy Dissipation

[17] Wave breaking, subgrid turbulent mixing, and the
bottom shear stress serve as the agents of energy dissipation
in the Boussinesq model. Parameterization is required to

model those dissipation mechanisms. The resultant equation
for conservation of momentum (8) may be written as

@ua
@t

þ ua � rð Þua þ grhþ V1 þ V2 þ V3 	 Rb 	 Rs þ Rf ¼ 0

ð18Þ

where the additional terms, Rb, Rs, and Rf, represent the
effects of wave breaking, subgrid lateral turbulent mixing,
and bottom friction, respectively.
[18] For the reason of simplicity, we adopt the momentum

mixing scheme introduced by Kennedy et al. [2000] and
Chen et al. [2000] for the modeling of energy dissipation
caused by wave breaking in shallow water. The effective-
ness of the model has been demonstrated by Chen et al.
[1999b] in the simulation of a rip current system. The basic
idea behind this breaking model is the addition of a
momentum diffusion term to the Boussinesq-type equations
with the diffusivity strongly localized on the front face of a
broken wave. The empirical coefficient, ht

(I), that controls
the onset of wave breaking in the Kennedy et al. model,
varies between 0.35

ffiffiffiffiffi
gh

p
and 0.65

ffiffiffiffiffi
gh

p
. The lower limit of

the empirical coefficient is found to be more suitable to bar/
trough beaches while the upper limit gives optimal agree-
ment for waves breaking on monotone sloping beaches.
[19] In comparison with the breaking schemes on the

basis of the roller or horizontal vorticity concept [Schäffer et
al., 1993; Veeramony and Svendsen, 2000], the momentum
diffusion model leads to a similar energy dissipation to that
shown by Svendsen et al. [1996]. This similarity suggests
that our breaking scheme be interpreted as a momentum
mixing term resulting from the vertical nonuniformities of
the horizontal velocity in a broken wave (the roller effect),
rather than a simple turbulence closure.
[20] Following Chen et al. [1999b], a Smagorinsky

[1963]-like subgrid turbulent mixing term is introduced in
the momentum equations. This term is similar to the break-
ing term in form, but it has a totally different definition of
eddy viscosity ns. In contrast to the breaking term that only
acts locally on the front face of a broken wave, the eddy
viscosity of the subgrid mixing term is determined by the
breaking-induced current field, which may extend outside
the surf zone.

ns¼cm�x�y Uxð Þ2þ Vy

	 
2þ 1

2
Uy þ Vx

	 
2� �1
2

ð19Þ

in which U and V are the velocity components of the time-
averaged underlying current field, �x and �y are the grid
spacing in the x and y directions, respectively, and cm is the
mixing coefficient with a default value of 0.25. In the course
of simulation, we obtain the underlying flow field by
averaging the instantaneous fluid particle velocity over
about 2 � 5 peak wave periods and update the eddy
viscosity owing to subgrid turbulence accordingly.
[21] The bottom shear stress is modeled by the quadratic

law in terms of the velocity for the combined wave and
current motion.

Rf ¼
f

hþ h
uajuaj ð20Þ

where f is the bed shear stress coefficient. Unlike the
momentum mixing terms for wave breaking and subgrid
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turbulence, the bottom friction term does not conserve
momentum. Instead, it serves as a sink of both energy and
momentum. Care has been taken when choosing the bed
shear stress coefficients for modeling alongshore currents.
The value of the friction coefficient varies in a wide range
as found in the literature. Under field conditions, owing to
the variability of hydrodynamic and morphologic char-
acteristics, spatially variable friction coefficients on the
order of f � 1.0 � 10	3 � 5.0 � 10	3 are likely to occur,
as shown by Whitford and Thornton [1996] and Feddersen
et al. [1998], who inferred the bed shear stress coefficients
for longshore currents over a barred profile on the basis of
momentum balance in the longshore direction. In the
present study, we utilize both constant and spatially
varying friction coefficients for field applications.

3. Simulation of Visser’s [1991] Experiment

3.1. Model Setup

[22] The measurements from a series of laboratory experi-
ments on breaking-generated longshore currents on plane
beaches were reported by Visser [1991]. This data set has
served as a standard test of longshore current models [e.g.,
Smith et al., 1993; Svendsen and Putrevu, 1994; and
Kobayashi et al., 1997]. We chose case 4 in Visser’s
[1991] experiments to demonstrate the capability of the
wave-resolving Boussinesq-type model for the simulation
of the stationary longshore current. In the physical model,
the slope of the smooth concrete beach is 1:20, which starts
from an offshore water depth of 35 cm. The obliquely
incident, regular wave train has an amplitude of 0.39 cm, a
period of 1.02 s, and an angle of incidence of 15.4 degrees
in the offshore depth.
[23] The computational domain is chosen to be 12 m

onshore and 5.6 m alongshore. We determine the width of
the domain on the basis of the periodic lateral boundary
condition. A 2.6 m flat bottom is placed in front of the
slope. Waves are generated internally near the toe of the
beach. A sponge layer is used in front of the offshore
boundary to absorb the outgoing wave energy. The grid
increments in the cross shore and longshore directions are
chosen to be 0.03 m and 0.06 m, respectively, and the time
step is 0.0102 s. We choose the bottom shear stress
coefficient as f = 0.007 by tuning the model to match the
measurement.

3.2. Model//Data Comparison

[24] The Boussinesq model is run for a duration of 150
waves and a stationary current is obtained. Figure 1
illustrates the computed wave field and the phase-aver-
aged current field at the end of the simulation. It is seen
from Figure 1a that the modeled wave crest becomes
narrow and asymmetric near the shoreline owing to
nonlinear shoaling effects. Depth-limited breaking reduces
the wave height near the shoreline. We obtained the
breaking-generated current by time averaging the com-
puted fluid particle velocity over two wave periods of the
regular wave train. The computed mean flow field is
longshore uniform and no shear instabilities occur even as
we increase the alongshore length of the computational
domain and the simulation time. A stability analysis
of the measured longshore current using Putrevu and

Svendsen’s [1992] method confirms that the current is
linearly stable. A similar laboratory experiment with a
nonbarred beach (test SC219) by Reniers and Battjes
[1997] also indicated that shear instabilities are absent
under this particular laboratory condition. The Boussinesq
model predicts a weak cross-shore velocity, which is the
return flow caused by Stokes’ drift. Notice that the
undertow is absent in the present model, as would be
expected since the mass balance does not explicitly
identify a roller contribution.
[25] Figure 2a depicts the cross-shore profiles of the

computed longshore current at t = 20, 50, 100, 120 s,
respectively. We notice that the longshore current deve-
lops and reaches the steady state fairly rapidly. For
instance, the longshore current reaches 85% of its maxi-
mum from a cold start after 50 waves break. A steady
solution of the longshore current is achieved at the end of
simulation as the profiles at t = 100 s and 120 s are not
distinguishable.

Figure 1. A snapshot of (a) the computed wave field with
bathymetry and (b) the phase-averaged current field of case
4 in Visser’s experiment.
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[26] The cross-shore distribution of the associated vertical
vorticity is shown in Figure 2b. The solid line represents the
vertical vorticity computed from the longshore current while
the dotted line is obtained from the instantaneous fluid
particle velocity. Apparently, they are identical. This again
confirms that the gravity wave motion is basically irrota-
tional while wave breaking provides the mean flow with the
source of vorticity, as suggested by Chen et al. [1999b].
Owing to the longshore uniformity of the underlying current
field, the effect of the vorticity correction introduced in
section 2 vanishes in this case.
[27] Comparisons of the model results with the measure-

ments are presented in Figure 3 where cross-shore varia-
tions of wave height, mean water level, and longshore
current are shown. The circles are the data measured by
Visser [1991] and the solid lines are the computed results.
First, the Boussinesq model predicts a breaking location at
x = 7 m which is close to the measured initiation of wave
breaking in the laboratory. The model, however, under-
predicts the energy dissipation rate, overpredicting the
wave height in the surf zone. Second, the agreement
between the modeled and measured wave setup is fairly
good. A delay of the elevated mean water level away from
the breaking point is correctly simulated by the model.
The slight underestimate of the wave setup may be partly
attributed to underprediction of the energy dissipation rate
by the model.
[28] As shown in Figure 3c, the modeled longshore

current agrees with the measurement, including the magni-
tude and the location of the maximum velocity as well as
the variation. The correct prediction of the cross-shore

distribution of the current indicates that the breaking
scheme designed for energy dissipation due to wave break-
ing not only dissipates the wave energy fairly well, but also
diffuses the longshore momentum flux correctly, similar to
the roller effect. The mechanism of momentum mixing shall
be discussed further in the next subsection.

3.3. Momentum Balance and Mixing

[29] In order to gain insight into the flow system pre-
dicted by the Boussinesq model, we examine the momen-
tum balance and the diffusivity of the momentum mixing
terms for wave breaking and subgrid turbulence. It is well
known that a steady longshore current on a planar beach
results from the balance between the cross-shore gradient of
longshore momentum flux (Syx) owing to the short wave
motion and the longshore component of the bottom shear
stress (ty), i.e.,

@Syx
@x

¼ 	ty ð21Þ

Figure 2. Cross-shore profiles of (a) the computed
longshore currents at t = 20 s (dashed line), 50 s (dash-
dotted line), 100 s (dotted line), and 120 s (solid line) and
(b) the vorticity obtained from the mean current (solid line)
and the instantaneous fluid particle velocity (dotted line).

Figure 3. Comparison of computational results (solid
lines) and measurements (circles): (a) wave height, (b) mean
water level, and (c) longshore current.
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[30] By definition [see Longuet-Higgins and Stewart,
1961], the radiation shear stress is given by

Syx ¼
Z h

	h

rvu dz ð22Þ

where the horizontal velocity (u, v) is given by equation (2).
We compute the radiation stresses using the instantaneous
fluid particle velocity with the subtraction of the mean
current averaged over two wave periods for regular waves
or over five peak periods for irregular waves. The bottom
shear stress is obtained by ty = r(h + �h)Rfy , where the
overbars denote a time average.
[31] Figure 4 shows the balance of wave-averaged mo-

mentum flux in the longshore direction described by equa-
tion (21). The dotted line represents the radiation stress
evaluated using equation (22) and the modeled velocity that
includes the effect of momentum diffusion owing to wave
breaking. In contrast, a traditional estimate of radiation
stresses using linear wave theory does not balance the bed
shear stress predicted by the Boussinesq model, as shown
by the dashed line in Figure 4 where the REF/DIF model
[Kirby, 1986] is employed. Obviously, use of the conven-
tional calculation of radiation stresses on the basis of the
kinematics of linear waves would require a momentum
mixing, or diffusion term in equation (21) in order to
correctly predict the cross-shore distribution of a longshore
current.
[32] The magnitude of momentum diffusion owing to

wave breaking may be estimated by extracting the wave-
averaged diffusivity of the momentum mixing terms from
the model results. Figure 5a presents the eddy viscosity
corresponding to wave breaking and the subgrid turbu-
lence computed by the model [see Chen et al., 1999b].
Apparently, the diffusivity varies across the surf zone and
wave breaking significantly dominates the momentum
mixing inside the surf zone. The eddy viscosity resulting
from the subgrid turbulence extends to the area seaward of
the breaking line, i.e., x = 5 � 7 m, where the diffusivity

owing to wave breaking is zero, but it is very weak in
comparison to the diffusivity inside the surf zone.
[33] Svendsen [1987] estimated the typical value of the

breaking-generated turbulent eddy viscosity as 0.01h
ffiffiffiffiffi
gh

p
on

the basis of laboratory experiments. Field measurement by
George et al. [1994] suggested a reduction of Svendsen’s
estimate by 1/2 to 1/4 under field conditions. To compare
with the previously estimated turbulent eddy viscosity, we
divide the computed eddy viscosity by h

ffiffiffiffiffi
gh

p
, as shown

in Figure 5b. >Apparently, the normalized eddy viscosity
inferred from the Boussinesq model has a maximum of 0.04
in the inner surf zone, which is larger than the typical value
of 0.01 estimated by Svendsen [1987]. This can be attributed
to the additional diffusion similar to the roller effect.

4. Modeling DELILAH Longshore Currents

4.1. Topography and Model Setup

[34] A comprehensive field data collection campaign was
conducted at U.S. Army Engineering Waterways Experi-
ment Station, Coastal and Hydraulic Laboratory, Field
Research Facility in October 1990. An overview of this
project known as DELILAH was given by Birkemeier et al.
[1997]. Among many interesting findings, DELILAH mea-
surements indicate that the maximum longshore current
could appear in the trough of a barred beach, which contra-
dicts the conventional notion of longshore currents on
alongshore uniform barred beaches, where a current maxi-

Figure 4. Alongshore momentum balance: solid line, the
bottom friction; dotted line, the cross-shore gradient of the
radiation shear stress (

@Syx
@x ) given by the Boussinesq model;

and dashed line,
@Syx
@x given by REFDIF.

Figure 5. (a) Computed eddy viscosity and (b) the
inferred viscosity coefficient. Solid line, the contribution
from wave breaking; and dashed line, the contribution from
subgrid turbulence.
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mum is expected at the bar crest. A great deal of effort [e.g.,
Smith et al., 1993; Church and Thornton, 1993; Svendsen et
al., 1997; Reniers, 1999] in the literature has been made to
interpret and model the longshore currents observed during
the DELILAH field experiment. The unsuccessful predic-
tions of the occurrence of the maximum velocity in the
trough by one-dimensional models suggest that it is impor-
tant for the longshore current model to take into account the
alongshore nonuniformities in the bathymetry [e.g., Putrevu
et al., 1995; Reniers, 1999; Slinn et al., 2000]. In contrast to
the modeling of longshore currents, the significant role of
bathymetric variations in rip current generation has long
been recognized since Bowen [1970] and Dalrymple [1978],
among others.
[35] In the present study, we construct the 2-D bathym-

etry for the Boussinesq model on the basis of the survey
data in the so-called minigrid area collected daily by the
FRF staff during the DELILAH experiment. The daily
surveyed area covers about 550 m in the longshore direc-
tion and 400 m offshore from the shoreline. To extend the
bathymetry to the location near the 9-gage array in the 8-m
water depth where the multidirectional waves were mea-
sured, we create a hybrid of the minigrid survey data and
the offshore portion of the monthly survey data that covered
the 8-m array. This is justified because Birkemeier et al.
[1997] found that most of the bathymetric changes occurred
in the minigrid area where the offshore movement of the
inner bar was substantial.
[36] Figure 6 illustrates the topography of the model

based on the daily survey data on 10 October 1990. The
model covers an area of about 1 km2 and the coordinates
follow the FRF system. To construct the periodic cross-
shore boundaries for the simulation of waves and currents
on an open coast, we modify the south cross-shore bound-
ary by extending the domain from y = 700 m to y = 150 m
with a linear transition to the beach profile at the north
cross-shore boundary. Notice that the model does not
include the cross-shore bathymetric depression beneath the
FRF pier because no daily survey data is available in that
area. The alongshore length of the model is chosen to be
1,168 m. There are two reasons for making this choice.
First, a larger model length will allow for a better represen-
tation of the discrete directional spreading function satisfy-
ing the periodic lateral boundary condition. Second, a large
distance from the upstream boundary to the area of interest
will significantly reduce the effect of errors introduced at
the upstream boundary [Chen and Svendsen, 2003].
[37] A close examination of the bathymetry shows that

there were two oblique ridges in the trough of the barred
beach. This is clearly seen by following the 1 m contour in
Figure 6b. Notice that the dashed line represents the primary
cross-shore array transect of electromagnetic current meters
and pressure sensors, which were deployed between the two
oblique ridges.
[38] The model covers 900 m in the cross-shore direction,

including the dry beach. In the offshore area with an
artificial flat bottom, a source for the generation of direc-
tional, random waves is placed along the break of the slope.
We use a 100 m wide sponge layer in front of the offshore
boundary to absorb the outgoing waves. The grid increment
is 1.5 m in the cross-shore direction and 4 m in the
longshore direction. The time step is 0.107 s.

[39] We select the low tide (	0.26 m) at 03:51 AM on
10 October 1990 because waves are more likely to break
seaward of the bar crest in comparison with the high tide
condition, thus providing a more critical test with respect to
the observed strong longshore current in the trough. Simu-
lating this data set is a challenge because neither the 1-D
model [Church and Thornton, 1993] nor the 2-D model
[Svendsen et al., 1997] predicted the correct location of
the measured maximum longshore current. The measured
incoming waves at the 8-m array had a root mean square
wave height Hrms = 0.8 m and a peak wave period Tp =
10.7 s. The peak angle of the directional spectrum (qp) is
	35 degrees, which means the waves came from the
southeast. In the literature, most of the 2-D longshore
current models [e.g., Wu et al., 1985; Svendsen et al.,
1997] use Hrms, Tp, and qp as the representative of the short
wave field. The source function technique [Wei et al., 1999]
allows us to approximately reproduce the measured direc-
tional wave spectrum in the Boussinesq model. For the

Figure 6. The barred beach of the model: (a) topography
and (b) contours of still water depth. Dashed line:
instrument transect.
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reason of simplicity and flexibility, however, we utilize both
a regular wave input and a TMA shallow water wave
spectrum [Bouws et al., 1985] with a wrapped normal
directional spreading function [Borgman, 1984] as a param-
eterized directional spectrum in the present study.
[40] The dimensionless parameters, d and l, controlling

the width of the slot and the smoothness of the transition to
the slot for the treatment of the moving shoreline [Kennedy
et al., 2000], are chosen to be 0.01 and 20, respectively.
Considering the relative coarse resolution for high-fre-
quency waves in the surf zone with the barred bathymetry,
we select the lower limit of the breaking criterion (i.e., ht

(I) =
0.35

ffiffiffiffiffi
gh

p
) for the breaking scheme [see Kennedy et al.,

2000; Chen et al., 2000]. The default coefficient cm = 0.25
is used for the subgrid turbulent mixing scheme.
[41] Whitford and Thornton [1996] suggested that bed

shear stress coefficients decrease in magnitude shoreward,
varying from f = 0.004 ± 0.0013 for offshore the bar to f =
0.001 ± 0.0003 in the trough. In contrast, Feddersen et al.
[1998] suggested that bed shear stress coefficients inside the
surf zone could be three times larger than those outside the
surf zone. In the literature, spatially constant coefficients are
often used in the modeling of longshore currents owing to
the uncertainty in the actual cross-shore distribution, albeit
inhomogeneous hydrodynamic and morphologic conditions
in the field. To understand the response of the Boussinesq
model to the cross-shore distribution of bed shear stress
coefficient, we use three different types of distribution.
[42] 1. For type 1, f = 0.001 for the water depth less than

1.5 m and f = 0.003 for the water depth greater than 2.0 m
with a linear variation between them. The distribution of
bottom friction coefficient in this case mimics the conclu-
sions of Whitford and Thornton [1996], based on the
Superduck field experiment.
[43] 2. In contrast to type 1, type 2 has a spatially

constant friction coefficient of f = 0.001 for the water depth
deeper than 2.0m and an increasing coefficient as the water
depth decreases. The variation of the friction coefficient
inside the surf zone follows the Manning-Strickler equation
[e.g., Ruessink et al., 2001]. This distribution leads to a
larger bottom friction coefficient inside the surf zone,
similar to the result of Feddersen et al. [1998] based on
the Duck 94 field experiment.
[44] 3. For type 3: f = 0.0015 over the entire computa-

tional domain.
[45] The time domain Boussinesq model resolves the

phases of surface wave motion and needs a much finer grid
size than that required by a phase-averaged model for the
wave-driven flow. On the other hand, a longshore current
needs a few hundred waves to build up to its full strength
from a cold start in the field. We run the Boussinesq model
for 214 min of simulation time that covers about 1,200 peak
wave periods. The average of the last 120 min (673 peak
wave periods) of the modeled results are used for model/
data comparisons. We shall present the computed longshore
current driven by a regular wave train followed by the
model results of irregular waves.

4.2. Model Results: Regular Waves

[46] A monochromatic, unidirectional wave train with the
measured Hrms, Tp and peak angle of incidence is generated
using the source function technique. Figure 7 illustrates a

snapshot of the modeled free surface elevation at time t =
5350 s. The wave crests are shown by the gray areas. We
notice that, when the long-crested waves approach the
shoreline, they become rather peaky because of the nonlin-
ear shoaling effects. Refraction of the wave field by the
sloping beach is also visible, as the wave angle decreases
when the waves approach the shoreline.
[47] By time averaging the computed fluid particle veloc-

ity over the last 673 peak wave periods (120 min) of the
simulation, we obtain the breaking-generated mean long-
shore current. The velocity is located at the reference level
za = 	0.531h in the water column. Figure 8 shows the
velocity vector field of the modeled mean current. Clearly,
the longshore current is not alongshore uniform. Instead, it
meanders between y = 900 m � 1300 m, which corresponds
to the two oblique ridges in the trough and the longshore
variation of the barred bathymetry. Notice that the 120-min
averaging process smooths out the shear wave features to be
discussed later.
[48] The comparison of the modeled root mean square

wave height and the mean longshore current with the field
measurements is shown in Figure 9 where the beach profile
is also presented as a reference. The solid lines are the
model results while the circles are the measurements aver-
aged over 120 min from 03:51 on 10 October 1990. As seen
in Figure 6b, the cross-shore transect of the primary array in
the DELILAH experiment is located at y = 986 m. In
general, good agreement between the model results and
the measured data is found when type 1 bottom friction
coefficient is used.

Figure 7. A snapshot of the computed free surface
elevation at FRF: light areas represent the crests of the
monochromatic wave field.
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[49] First, nonlinear wave shoaling and refraction are
predicted well by the Boussinesq model as shown by the
good agreement of the wave height outside the surf zone.
The breaking location that is seaward of the bar crest is
also captured by the model. Inside the surf zone, the
energy dissipation rate is slightly underpredicted by the
model and the cessation of wave breaking in the trough is
not as apparent as the measurement indicates. The model
predicts that strong wave breaking occurs again near the
shoreline, which is in agreement with the observation.
Second, it is seen in Figure 9b that the computed cross-
shore distribution of the longshore current agrees with the
measurement. For comparison, the dashed line in Figure 9b
illustrates the result given by Church and Thornton’s
[1993] 1-D model. Obviously, the 1-D model fails to
predict both the location and magnitude of the maximum
longshore current. The Boussinesq model, however, over-
predicts the magnitude of the longshore current on the bar
crest.
[50] The model results with the bottom friction coeffi-

cients of types 2 and 3 are shown in Figure 10. It is seen that
the spatial distributions of friction coefficient virtually do
not affect the agreement of the modeled wave height and the
measurement inside the surf zone. The modeled wave

height outside the surf zone and longshore currents, how-
ever, are sensitive to the spatial distributions of friction
coefficient. The Boussinesq model with both types 2 and 3
distributions tends to underpredict the magnitude of the
longshore current in the trough, and significantly overesti-
mate the current strength outside the surf zone. Owing to
wave/current interaction, the overpredicted longshore cur-
rent outside the surf zone significantly affects the shoaling
waves, as shown in Figure 10b. Apparently, the Boussinesq
model favors a larger friction coefficient outside the surf
zone under this particular field condition, similar to the
result of Whitford and Thornton [1996] based on the

Figure 8. Time-averaged longshore current at FRF. The
solid lines represent the contours of the still water depth.

Figure 9. Comparisons of the computational results and
the field measurements in the case of regular waves and
type 1 bottom friction: (a) root mean square wave height,
(b) cross-shore distribution of longshore current, where the
dashed line depicts the solution of the 1-D model given by
Church and Thornton [1993], and (c) beach profile.
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Superduck field experiment. However, this may not hold for
other field conditions because hydrodynamic and morpho-
logical conditions could be different.
[51] The nonlinear dynamics of finite amplitude shear

instabilities of longshore currents have been studied by
Allen et al. [1996], Slinn et al. [1998], Özkan-Haller and
Kirby [1999], and Slinn et al. [2000], among others using
the nonlinear shallow water equations with stationary wave
forcing. Similarly, the results of the time domain Boussi-
nesq model provide information on the spatial and temporal
variabilities of the wave-driven currents. Figure 11 presents
a time sequence of the modeled longshore current and the
associated vorticity field at t = 202, 206, 210, and 214 min,
approximately, with type 1 friction coefficient. The long-
shore current is obtained by averaging the computed fluid
particle velocity over 5 peak wave periods to filter out
the short wave motion. On the other hand, we calculate the
vertical vorticity using the instantaneous velocity for the
combined wave and current motion to avoid smoothing out
the vorticity field, as shown in the lower panels. Obviously,
both approaches give very similar vorticity fields. It is seen
that the longshore current meanders and the flow pattern
changes with time. There are strong vortices associated with
the current field. Formation of the vortices is triggered by
nonlinear shear instabilities, and possibly bathymetric var-
iations. In comparison with the vorticity field in the upper
panels, the instantaneous vorticity field reveals more
detailed features of the flow, such as the signature of wave

breaking in the surf zone and more rapid spatial variation of
the vorticity field.
[52] As indicated by the transport equation of the vertical

vorticity [Chen et al., 1999b], the instantaneous vorticity is
advected by the fluid particle velocity at the reference
elevation za, including the wave orbital velocity and the
underlying current that is dominant. Following the presenta-
tion style used by Özkan-Haller and Kirby [1999], Figure 12
shows the computed vorticity in the trough (x = 170 m) and
seaward of the bar crest (x = 225m) as a function of longshore
distance and time. The streaks of the bright areas illustrate the
peaks of the vorticity waves while the blue colors denote the
troughs of the vorticity waves. As an example, the bottom
panels show the time series of the vorticity at y = 1000 m in
the trough and seaward of the crest, respectively. The
sampling frequency of the instantaneous vertical vorticity is
1/5 the peakwave frequency. Notice that the slope (dy

dt
) of each

streak represents the alongshore propagation speed of the
corresponding shear wave. The shear waves in the trough
contain muchmore energy in the high-frequency band than in
the shear waves seaward of the bar crest. It is seen that larger
amplitude shear waves (i.e., stronger vorticity) propagate
more slowly than smaller amplitude shear waves. This
is consistent with Özkan-Haller and Kirby’s [1999] finding
about the dependency of the shear wave speed on the shear
wave amplitude. The time-averaged celerity of the shear
waves at the location of (x, y) = (170 m, 1000 m) is about
1.0 ms	1, which is very close to the speed of the local mean
current. The maximum speed of the computed mean
longshore current at that cross-shore profile is about
1.1 ms	1, while the local shallow water wave celerity
is about 3.3 ms	1.

4.3. Model Results: Irregular Waves

[53] Figure 13 depicts the representative directional spec-
trum, which is narrow banded in both frequency and
directional spreading. The parameter controlling the broad-
ness of the TMA spectrum [Bouws et al., 1985] is g = 5.0,
and the angular standard deviation of the directional spread-
ing function [Borgman, 1984] is sq = p/18. In comparison
with the measured directional spectrum provided by the
FRF staff, the chosen TMA spectrum is rather narrow
banded. There are two reasons for making such a choice.
First, the grid size and time step are selected to best resolve
the wave component at the peak of the energy spectrum
within the computational limit. Thus wave components in
the high-frequency band of a broad frequency spectrum will
not be sufficiently resolved in the model. Second, the width
of the computational domain is chosen on the basis of the
alongshore periodicity of the cross-shore boundaries with
respect to the peak angle of the directional spectrum.
Consequently, the angles of wave incidence in a broad
directional spectrum may not be well represented in the
model. A sensitivity test of the incident wave condition is
carried out. The model results indicate that a broader
directional spectrum with g = 3.3, and sq = p/9 leads to
similar agreement with the measurements of wave height
and mean longshore current as does the input of the chosen
narrow banded spectrum.
[54] We divide the representative directional spectrum

into 1800 components with random phases and transform
them into a time series using the source function technique

Figure 10. Comparisons of the computational results and
the field measurements in the case of regular waves: (a) root
mean square wave height and (b) cross-shore distribution of
longshore current. Solid lines, type 2 of f; dashed lines, type
3 of f; and circles, measurements.
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Figure 11. Time sequence of the vorticity field. (top) Velocity vectors and vorticity field averaged over
5 peak wave periods and (bottom) instantaneous vorticity field. The faint diagonal streaks are the
individual wave crests.
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extended to a longshore periodic domain. Unlike wave
models in the frequency domain, simulating hundreds of
wave components in the time domain Boussinesq model
does not lead to notable increase in the computational time
in comparison with the case of a single wave component.
Figure 14 illustrates a snapshot of the modeled water
surface elevation at time t = 5350 s. The wave crests are
shown by the lighter gray areas. In contrast to Figure 7, the
input of the TMA directional spectrum leads to a random,
short-crested wave field.
[55] Figure 15 shows a comparison of the modeled root

mean square wave height and the mean longshore current
with the field measurements, where the beach profile is also
presented as a reference. The solid lines are the model
results with type 1 bottom friction coefficient, while the
circles are the measurements averaged over 120 min. It is
seen in 15a that though the energy dissipation rate inside the
surf zone is underpredicted, the breaking model captures the
breaking location correctly. Compared with the case of
regular waves, poorer agreement with the data in the case
of random waves suggests that finer spatial resolution
is needed in order to resolve high-frequency waves in
the trough. In spite of the discrepancy in wave height,
Figure 15b shows that the computed longshore current still
agrees with the measurements fairly well. The Boussinesq
model predicts a very strong current shoreward of the bar
crest, which is absent in the 1-D model shown by the dashed
line. Similar to the case of regular waves, the velocity
seaward of the bar crest is overpredicted. This is probably
attributed to the smaller bottom drag coefficient ( f = 0.001)

on the bar crest used in the model than that in Whitford and
Thornton [1996] ( f = 0.003).
[56] The response of the computed longshore current to

the bed shear stress coefficients of types 2 and 3 is shown in
Figure 16. Similar to the results of regular waves, both types
of coefficient lead to overpredictions of the longshore
current velocity offshore the bar and underpredictions of
the velocity in the trough compared with the measurements.
The predicted wave height, however, is barely affected by

Figure 12. (a) Contour plot of vorticity as a function of time and longshore distance in the trough and
(b) seaward of the bar crest and (c) time series of vorticity at the measurement array in the trough and (d)
seaward of the crest.

Figure 13. A narrow-banded directional spectrum. The
unit of the spectral density is m2

deg Hz
.
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the different cross-shore distributions of friction coefficient
in the case of random waves except in the offshore area
where the strength of the longshore current is considerably
overpredicted. Consistent with the results of regular waves,
the Boussinesq model favors type 1 friction coefficient
under the DELILAH field conditions with random waves.
[57] To test the sensitivity of longshore currents to the

randomness and directional spreading of input waves, we
choose a broader TMA spectrum that mimics the measured
directional spectrum obtained from the measurements at the
FRF 8-m array at 4:00 AM on 10 October 1990 [Birkemeier
et al., 1997]. The parameter controlling the broadness of the
TMA spectrum g = 3.3, and the angular standard deviation
of the directional spreading function sq = p/9. A snapshot of
the computed water surface is shown in Figure 17. It is seen
that the wave field is more short crested and realistic in this
case compared to Figure 14. Again, perfect alongshore
periodicity is achieved in this random wave field with broad
frequency and directional spreading. The bed shear stress
coefficient of type 1 is used.
[58] Figure 18 shows snapshots of the computed instan-

taneous vorticity fields in the case of random waves,
corresponding to both the narrow-banded (top) and
broad-banded (bottom) spectra. Each snapshot of vertical
vorticity field is taken 3.6 min apart, starting from t =
202 s, in both cases. First, the signature of wave crests is
visible in the instantaneous vorticity field. Outside the surf
zone, the faint diagonal streaks are the weak vertical
vorticity generated by the bed shear stress under individual
wave crests. Inside the surf zone, the energy dissipation

term localized on the wave front provides the source of
vorticity. The injection of vorticity by the individual
random breakers is likely to produce shear waves that
are different from those driven by the conventional, phase-
averaged forcing on the basis of the nonlinear shallow
water equation and a separate wave model. Second, we
notice that the shear waves in both the random wave cases
are less energetic than those generated by the monochro-
matic waves as shown in Figure 11. The random waves,
on the other hand, tend to result in more shear wave
energy in the high-frequency band than does a monochro-
matic, unidirectional wave train. Because the focus of the

Figure 14. A snapshot of the computed free surface
elevation at FRF: light areas represent the wave crests of the
narrow-banded wave field.

Figure 15. Comparisons of the computational results and
the field measurements in the case of a narrow-banded
spectrum: (a) root mean square wave height, (b) cross-shore
distribution of longshore current, where the dashed line
depicts the solution of the 1-D model given by Church and
Thornton [1993], and (c) beach profile.
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present study is mean longshore currents, we leave the
detailed statistical and spectral analyses of the shear waves
or vorticity for future investigation in conjunction with the
simulation of the Sandyduck data set. Preliminary results
have been presented by Kirby et al. [2002].
[59] The effect of the wave randomness and directional

spreading on the modeled longshore currents is illustrated in
Figure 19 where the solid, dot-dashed, and dashed lines
respectively denote the results of monochromatic, narrow-
banded, and broad-banded surface waves. It is seen in
Figure 19a that both random wave cases result in very
similar agreement with the measured wave height, while the
monochromatic, unidirectional wave train leads to some-
what better agreement with the data. The comparison of the
mean longshore currents generated by different surface
wave fields is shown in Figure 19b. The broad-banded
spectrum leads to a slightly weaker maximum longshore
current than those in the other two cases. Despite the
significant difference in the driving force provided by the
three different surface wave fields, the resultant longshore
currents are very similar in comparison with the measured
longshore current. This contradicts the predictions of 1-D
models based on the balance of momentum flux in the
alongshore direction. As a random wave field with broader
frequency and directional spreading has smaller radiation
stresses integrated over the whole spectrum [e.g., Ruessink
et al., 2001], such 1-D models would predict a weaker
longshore current than that generated by the corresponding

monochromatic, unidirectional waves if the lateral mixing
and bed shear stress coefficient are kept unchanged.
[60] Though we use an identical bed shear stress coeffi-

cient for these three simulations, the degree of lateral
mixing varies because of the differences in the resultant
shear waves. Figure 19c compares the standard deviations
of the instantaneous vertical vorticity, or the amplitudes of
the shear waves at the nine gage locations under these three
surface wave conditions. It turns out that the monochromatic,
unidirectional waves lead to a much more energetic shear
wave field than those generated by random waves. Thus
stronger lateral mixing is expected in the regular wave case.

5. Summary and Conclusions

[61] In this study, the fully nonlinear Boussinesq equa-
tions derived by Wei et al. [1995] are improved to include
the vertical vorticity consistent with the order of approxi-
mation for the wave motion. A brief description of the
treatments of boundary conditions and energy dissipation in
the time domain Boussinesq model is given with an
emphasis on the extension of the model to an open coast.
We validate this extended Boussinesq model against the
Visser’s [1991] laboratory experiment on longshore currents
over a planar beach. Reasonable agreement is found
between the numerical and physical model results, including
wave height, mean water level, and longshore current. An
analysis of the momentum flux balance predicted by the
Boussinesq model suggests that the momentum mixing due
to the breaking scheme incorporated in the present model is

Figure 16. Comparisons of the computational results and
the field measurements in the case of a narrow-banded
spectrum: (a) root mean square wave height and (b) cross-
shore distribution of longshore current. Solid lines, type 2 of
f; dashed lines, type 3 of f; and circles, measurements.

Figure 17. A snapshot of the computed free surface
elevation at FRF: light areas represent the wave crests of the
random wave field with a broader directional spectrum.
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Figure 18. Time sequence of the instantaneous vorticity fields. (top) A narrow-banded spectrum and
(bottom) a broadbanded spectrum. The faint diagonal streaks are the individual wave crests.
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similar to the mixing effect of the breaking schemes based
on the roller concept.
[62] We then apply the model to field conditions. The

extended Boussinesq model predicts fairly well the root
mean square wave height and mean longshore currents
measured at Duck, North Carolina, during the DELILAH
field experiment. Insight into the spatial and temporal
variabilities of the wave-driven longshore currents and
the associated vertical vorticity field under the phase-
resolving wave forcing is given by the model results. It

is found that the propagation speed of the shear waves in
the surf zone under field conditions is close to the velocity
of the local, underlying current that advects the vertical
vorticity. One interesting result of the simulations is the
prediction of the strong longshore current shoreward of the
bar crest as found in the field data. The fairly good model/
data comparison is achieved when the cross-shore distri-
bution of the bed shear stress coefficient is in keeping with
the results of Whitford and Thornton [1996], based on the
Superduck field experiment.
[63] Extensive numerical experiments are carried out to

examine the response of the modeled longshore currents to
the randomness of surface waves and the cross-shore dis-
tributions of bed shear stress coefficient. We find that both
regular and irregular waves lead to very similar mean
longshore currents, while the input of monochromatic,
unidirectional waves results in much more energetic shear
waves than does the input of random waves. Three types of
cross-shore distribution of bottom friction coefficient are
tested. The model results favor Whitford and Thornton’s
[1996] finding that the bed shear stress coefficient for the
area offshore the bar is larger than that in the trough, as
better agreement with the field data for both regular and
irregular waves is found if such coefficients are used in the
Boussinesq model.
[64] In conclusion, the Boussinesq approach with the

embedded wave-current interaction and wave randomness
provides us with an alternative to phase-averaged models
for wave-induced nearshore circulation. Though the
improvement of computational speed and the inclusion of
undertow into the model are needed, the promising results
given by the 2-D, time domain Boussinesq model allow for
the use of the model as a new tool to investigate the
interaction of shear waves with surface gravity waves, and
to understand the effects of wave randomness and direc-
tional spreading on longshore currents. The model is cur-
rently being utilized to simulate the Sandyduck data set with
an emphasis on shear instabilities [Kirby et al., 2002].
Results will be reported on in the near future.
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