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Abstract
This study investigates the theory for predicting Lagrangian properties
including particle orbit, Lagrangian mean level, Lagrangian wave frequency,
mass transport velocity, wave profile, velocity distribution and wave pressure
in progressive gravity water waves at uniform depth. A series of laboratory
experiments are performed to measure the trajectories of particles and the
wave pressure. Asymptotic solutions up to fifth order that describe irrotational
finite amplitude progressive gravity water waves are derived in completely
Lagrangian coordinates. The analytical Lagrangian solution that is uniformly
valid satisfies the irrotational condition, the dynamic boundary condition
and the zero pressure at the free surface. The explicit fifth-order parametric
solution highlights the trajectory of a water particle and the wave kinematics
above the mean water level and within a vertical water column, which
were calculated previously by an approximation method using an Eulerian
approach. Mass transport up to fourth order associated with a particle
displacement can now be obtained directly in Lagrangian form. In particular,
the Lagrangian wave frequency and the Lagrangian mean level of particle
motion can also be obtained, which are different from those in an Eulerian
description. By comparing the present fifth-order asymptotic solution with
data from laboratory experiments, it is found that theoretical results show good
agreement with experimental data.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Fluid flow motion may be described either by observing the fluid velocity at fixed positions
or by tracing particle trajectories along the flow. These alternative descriptions are called,
respectively, the Eulerian and Lagrangian methods. For an incompressible fluid, the Eulerian
approach is clearly preferable because the corresponding continuity equation is linear. It is
known that the Eulerian description at the free surface is always expressed by a Taylor series
at a fixed water level, which implicitly assumes that the surface profile is a differentiable
single-valued function. This Taylor series expansion with respect to the free surface suggests
the use of a perturbation method, and the first successful application was Stokes’ wave
theory (Stokes 1847, Johnson 1997). It provides a basis for regular asymptotic techniques
with higher-order permanent wave solutions at uniform water depth or other practical
applications (Skjelbreia and Hendrickson 1960, Cokelet 1977, Fenton 1985). Recent studies
on Stokes waves with small or large amplitudes without performing approximations provide
the qualitative features of the particle trajectories (Constantin 2001a, 2006, Constantin and
Escher 2007).

In the Eulerian form, the wave surface is given as an implicit function, unlike the
Lagrangian form, which is described with a parametric representation of the particle motion.
The Lagrangian description is more appropriate for limiting free surface motion, but these
features cannot be described by classical Eulerian solutions (Biesel 1952, Naciri and Mei
1993, Chen et al 2006, Chen and Hsu 2009a, 2009b, Constantin and Escher 2007). The
first water wave theory in Lagrangian coordinates in which the flow possesses finite vorticity
was presented by Gerstner (1802), and was re-discovered by Rankine (1863). Miche (1944)
proposed perturbation Lagrangian solutions to the second order for a gravity wave. Pierson
(1962) applied the Navier–Stokes equation to deep water waves in the Lagrangian formulae
and obtained the first-order Lagrangian solution. Sanderson (1985) obtained second-order
solutions for small-amplitude internal waves in a Lagrangian coordinate system. Constantin
(2001b) considered first-order Lagrangian solutions for edge waves on a sloping beach.
Buldakov et al (2006) developed a Lagrangian asymptotic formulation up to the fifth order
for nonlinear water waves in deep water.

Chang et al (2007) followed Chen’s third-order Lagrangian solutions (Chen 1994a,
1994b) to obtain the fifth-order Lagrangian solutions for a regular progressive wave in water
with finite depth. However, Chang’s solution is circuitous and not completely within the
Lagrangian system because an additional condition with the surface elevation derived from
the Eulerian solution is used. Clamond (2007) obtained a third-order Lagrangian solution
for gravity waves in finite-depth water and a seventh-order solution for deep water waves;
moreover, Henry (2009) studied the steady periodic flow induced by the Korteweg and
de Vries equation. Longuet-Higgins (1986, 1987) and Chang et al (2009) found that the
Lagrangian period of particle motion is different from the Eulerian wave period, with a higher
Lagrangian mean level than the Eulerian mean level at the free surface in deep water.

From the above-mentioned discussions, it is clear that fewer experimental data are
available to quantitatively demonstrate the characteristics of fluid particle behavior. One
purpose of this study is to conduct an integrated experiment to investigate the Lagrangian
properties, including particle orbit, Lagrangian mean level, Lagrangian wave frequency, mass
transport velocity, wave profile, velocity distribution and wave pressure in progressive gravity
water waves at uniform depth. Another goal is to establish a theory in which waves are
irrotational and are perfectly constructed in the Lagrangian framework. A set of governing
equations in Lagrangian coordinates is derived for two-dimensional progressive gravity waves
in water at uniform depth. Expanding the unknown function in a small parameter expansion
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Figure 1. The experimental framework for this study.

related to the wave steepness, the Lagrangian wave frequency may be a function of the
marked labels (a, b) of each individual particle, and the systematic asymptotic equations in
Lagrangian variables may be deduced using the Lindstedt–Poincaré perturbation method. The
fifth-order Lagrangian trajectory solution can thus be solved sequentially for each order of
approximation. The Lagrangian wave period, the Lagrangian mean level and mass transport
velocity up to fourth order are derived for all particles over the whole range of levels and are
more general than the expression that is applicable only to the particles at the free surface
(Longuet-Higgins 1986, 1987). Finally, to validate the accuracy of the analytical results,
a series of laboratory experiments are performed. The Lagrangian properties of trajectories,
the mass transport velocity, the Lagrangian mean wave level and wave pressure are shown to
agree with experimental data very well.

2. Experimental process and definition of Lagrangian label

The aim of this experiment is to quantitatively investigate the characteristics of water particles
for periodic progressive gravity waves at uniform water depth. The experimental processes are
described below.

2.1. The experimental setup

To acquire the particle trajectory and wave pressure, a series of experimental measurements
were carried out in a glass-walled wave tank, 35 m × 1.0 m × 1.2 m, in the Department of
Marine Environment and Engineering, National Sun Yat-Sen University. A camera was set
up in front of the glass wall at about 9.0 m to capture the particle motion. Eight pressure
sensors were installed vertically equidistant from the still water surface to near-bottom on an
erect column placed at 15 m from the end of the tank. Four wave gauges were located at 7.0,
15, 16 and 16.6 m from the wave generator to measure the incident waves. At the end of the
tank, a 1:10 sloping rubberized-fiber wave-absorbing beach was built to prevent waves from
reflecting. The beach was constructed so that, at the highest level examined, the longest-period
waves would have to travel over three times their own wavelength over the beach material.
Shorter-period waves were expected to be more readily absorbed by the beach than these
long-period waves (Davies and Heathershaw 1984). The whole experimental framework is
schematically shown in figure 1.

2.2. Measurement apparatus and procedure

1. Monochromatic waves were generated using a program-controlled electro-hydraulic
piston-type wave generator. Wave period settings could be adjusted in increments of
0.01 s from the shortest generated wave period, 0.08 s, and independent checks of the
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Figure 2. The transparent acrylic-plastic sheet was plotted with network grids in 2 cm × 2 cm
intervals.

accuracy of these settings were carried out in the error range 0.2–0.5 s. by timing 50
oscillations of the wave generator bulkhead. The results of this investigation showed
agreement to within ± 0.005 s of the nominal wave-period setting.

2. The incident progressive wave elevations and water pressures were measured by using
Kenek CH-4-40-type wave gauges and Kyowa PGM-0.5GK-type pressure sensors, both
of which have linear output.

3. Water particles were simulated with fluorescent spherical polystyrene (PS) beads with
a diameter of about 0.1 cm. The density of primitive PS is about 1.05 g cm−3, slightly
heavier than water, but the PS density is approximately equal to a water density of
1.000 g cm−3 after boiling with water and will remain almost neutrally stable at a fixed
position in water.

4. Images were captured by a high-speed camera (A301fc-type, Basler Company), which
can take 80 frames per second. The camera was controlled by BCamGraber program and
linked to a 1394 CARD to collect and analyze the data.

5. Four powerful lamps (110 V, 500 W) were set up to reinforce the brightness of the images
of PS motion in the water waves for easier identification.

6. A transparent acrylic-plastic sheet (1 m × 45 cm × 2 mm) plotted with 2 cm × 2 cm
square grids as shown in figure 2 was placed in the still water centered along the width
of the tank. It was first photographed before being removed from the tank. The network
grids in the photograph were programmed into the computer and used to analyze the
continuous images of particle trajectories captured by the high-speed camera.

7. A copper pole (150 cm long with a diameter of 0.5 cm), calibrated at 0.1 cm intervals and
perforated below 70 cm with 20 holes having a diameter of 0.3 cm, was erected vertically
in front of the viewing glass in the still water tank. The PS was pushed out horizontally
from the holes of the copper pole at different water levels into the still water. Then, the
copper pole was slowly removed from the tank before the waves were generated to avoid
interfering with the incident waves and PS motion.

2.3. Experimental results

The particle orbit experiments were conducted at four constant water depths d (50, 70, 80
and 90 cm) and various wave periods Tw (0.8–1.6 s). The wave height H after the generated
progressive waves became stable (about seven waves) was varied over a range of about
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Figure 3. The typical records of the water surface elevation and the PS motion with larger
experimental waves at the free surface: (a) is the water surface elevation, (b) is the positions of
the PS motion at the same wave profile between two consecutive wave troughs and the symbols ×

and • denote, respectively, the wave crest and the PS position taken at the time interval TL/10; TL
is the PS motion period.

3.7–17.0 cm. The particle motions were measured at different positions from the still water
level to about a depth of 12 cm.

Typical water surface elevation and the particle motions at the free surface are shown in
figures 3(a) and (b), respectively. Table 1 and figure 4 show all the measured results, and good
quantitative consistency is found regarding the orbit, the particle motion period, the mass
transport velocity and the Lagrangian mean level between the fifth-order theoretical results
and experimental data. The wavelength used at relative water depth is calculated theoretically.

2.4. Definition of Lagrangian labels (a, b)

The fluid motion in the Lagrangian representation is described by tracing the individual fluid
particles. For two-dimensional flow, fluid particles are distinguished by the horizontal and
vertical parameters a, b, known as the Lagrangian labels. These labels have a one-to-one
correlation with the initial particle positions (x0, y0), which has been demonstrated in, for
example, section 16 by Lamb (1932) or by Yakubovich and Zenkovich (2001). The fluid
motion is described by the set of particle trajectories x(a, b, t) and y(a, b, t), where x and y
are, respectively, the horizontal and vertical Cartesian coordinates. The dependent variables x
and y express the particle positions at time t and are functions of the independent variables a,
b and t . It is still difficult to clearly define the Lagrangian labels (a, b).

The measurements of particle trajectories are shown in figure 4. The horizontal label a
is generally marked along the horizontal x-axis, while the vertical label b is chosen to be in
the original still water. In other words, it is equal to the wavelength-averaged ȳ of the vertical
displacement y of water particles along the direction of the wave propagation. Hence, from
the conservation of mass and because the wave is periodic in time t and space x (or a)

1
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Table 1. Orbital experimental conditions and comparison of measured and theoretical results for
the motion period TL, mass transport velocity UM and Lagrangian mean level η̄L of the particle in
the waves.

TL (s) UM(0) (cm) η̄L (cm)

No. Tw(s) d (cm) H (cm) b (cm) H/L d/L Measured Theory Measured Theory Measured Theory

1 1.000 50 3.77 0 0.025 0.329 1.007 1.006 0.96 0.95 0.11 0.08
2 1.000 50 4.78 0 0.031 0.327 1.011 1.010 1.57 1.53 0.13 0.12
3 0.790 50 4.94 0 0.050 0.503 0.820 0.810 3.09 3.07 0.21 0.20
4 1.090 50 5.02 0 0.028 0.283 1.102 1.099 1.40 1.37 0.13 0.12
5 1.060 50 5.30 0 0.031 0.296 1.073 1.071 1.67 1.63 0.14 0.14
6 0.820 50 9.10 0 0.082 0.449 0.880 0.877 8.86 8.81 0.62 0.61
7 1.090 50 9.80 0 0.054 0.277 1.127 1.125 5.18 5.13 0.48 0.46
8 1.010 50 10.58 0 0.066 0.312 1.059 1.057 7.11 7.04 0.60 0.59
9 1.390 50 11.56 0 0.044 0.192 1.426 1.424 4.51 4.45 0.51 0.49

10 1.020 50 13.95 0 0.083 0.299 1.101 1.098 11.59 11.52 1.01 0.99
11 1.330 50 14.56 0 0.059 0.202 1.389 1.387 7.62 7.51 0.82 0.81
12 0.800 70 4.80 0 0.047 0.686 0.820 0.818 2.81 2.78 0.22 0.18
13 1.000 70 5.00 0 0.032 0.447 1.011 1.010 1.63 1.59 0.14 0.13
14 1.210 70 5.60 0 0.025 0.316 1.218 1.218 1.23 1.20 0.13 0.12
15 1.410 70 5.69 0 0.020 0.246 1.417 1.416 0.89 0.88 0.10 0.10
16 1.000 70 7.26 0 0.046 0.442 1.024 1.021 3.34 3.31 0.28 0.27
17 1.000 70 8.90 0 0.056 0.438 1.034 1.032 4.95 4.91 0.41 0.40
18 1.500 70 9.79 0 0.031 0.222 1.518 1.517 2.31 2.29 0.29 0.27
19 0.790 80 4.81 0 0.048 0.802 0.811 0.809 2.92 2.89 0.20 0.19
20 0.790 80 4.84 0 0.049 0.802 0.812 0.809 2.95 2.93 0.20 0.19
21 0.790 80 4.85 0 0.049 0.802 0.811 0.809 3.03 2.94 0.20 0.19
22 1.010 80 5.25 0 0.033 0.499 1.022 1.021 1.72 1.69 0.14 0.14
23 1.000 80 5.30 0 0.034 0.508 1.012 1.011 1.81 1.77 0.13 0.14
24 1.200 80 5.70 0 0.026 0.361 1.212 1.208 1.27 1.23 0.13 0.12
25 1.250 80 5.80 0 0.024 0.336 1.259 1.258 1.19 1.15 0.13 0.12
26 1.490 80 5.80 0 0.018 0.251 1.495 1.495 0.81 0.76 0.10 0.09
27 1.060 80 10.40 0 0.058 0.444 1.098 1.096 5.67 5.60 0.50 0.49
28 1.280 80 10.90 0 0.043 0.318 1.307 1.305 3.81 3.78 0.41 0.39
29 1.000 80 11.20 0 0.069 0.491 1.051 1.049 7.61 7.54 0.64 0.63
30 1.210 80 12.40 0 0.054 0.348 1.251 1.247 5.62 5.58 0.54 0.55
31 1.560 80 12.50 0 0.036 0.231 1.585 1.583 3.24 3.22 0.41 0.40
32 1.280 80 16.95 0 0.066 0.311 1.343 1.340 8.92 8.89 0.95 0.94
33 1.020 90 11.30 0 0.067 0.531 1.069 1.067 7.30 7.24 0.60 0.61
34 1.220 90 12.35 0 0.053 0.383 1.258 1.255 5.36 5.32 0.52 0.53
35 1.220 90 16.30 0 0.068 0.376 1.282 1.279 9.11 9.05 0.91 0.92
36 1.170 50 6.98 −1.0 0.035 0.251 1.188 1.186 2.06 2.02 0.21 0.21
37 1.150 70 10.00 −2.0 0.049 0.340 1.179 1.178 3.84 3.77 0.39 0.40
38 1.000 50 5.10 −2.45 0.033 0.327 1.013 1.011 1.48 1.41 0.13 0.14
39 1.140 50 6.13 −4.0 0.032 0.262 1.156 1.153 1.45 1.41 0.14 0.17
40 1.350 70 15.70 −4.2 0.057 0.256 1.402 1.400 5.84 5.80 0.8 0.79
41 1.180 70 10.08 −5.5 0.047 0.325 1.209 1.207 2.96 2.92 0.40 0.39
42 0.970 70 8.40 −5.8 0.056 0.465 1.003 1.001 2.89 2.87 0.39 0.38
43 1.100 70 7.68 −6.0 0.041 0.371 1.121 1.119 1.91 1.89 0.29 0.25
44 1.300 70 9.70 −7.0 0.038 0.277 1.322 1.321 2.13 2.11 0.28 0.32
45 1.000 70 10.70 −11.1 0.066 0.433 1.045 1.045 2.84 2.81 0.60 0.58

6



Fluid Dyn. Res. 42 (2010) 045511 Y-Y Chen et al

(1) T w =1.0sec, H=3.77cm, b=0cm, d=50cm  (2) T w =1.0sec, H=4.78cm, b=0cm, d=50cm 

1 

1 1 

2 1 

31 

41 

51 
1 1 

1 61 
2 1 

31 

41 

51 

61 

(3) T w =0.79sec, H=4.94cm, b=0cm, d=50cm (4) T w =1.09sec, H=5.02cm, b=0cm, d=50cm  

1 

1 1 

2 1 

31 

41 

1 

1 1 

2 1 

31 

41 

51 

61 

starting position 

(5) T w =1.06sec, H=5.3cm, b=0cm,d=50cm (6) T w =0.82sec, H=9.1cm, b=0cm, d=50cm 
1 

1 1 

2 1 

31 

41 

51 

1 

1 1 

2 1 

31 

41 

61 

starting position 

Figure 4. Comparison between the orbits of water particles obtained by the present theory and
those obtained from experimental measurements of the PS motions at different water levels b for
the various experimental wave cases. The symbol ∗ denotes the PS starting position in the still
water; the first black point (•) marked with no. 1 is the PS position taken at the time when the
wave crest just arrives; the time interval between two consecutive black point (•) PS positions is
Tw/20, where Tw is the wave period.
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Figure 4. (Continued).
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Figure 4. (Continued).
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and the wavelength-averaged level ȳ is

ȳ =
1

L

∫ x(a+L ,b,t)

x(a,b,t)
y(a, b, t) dx(a, b, t) =

1

L

∫ x+L

x

∫ y

−d
dy dx − d

=
1

L

∫ a+L

a

∫ b

−d

∂(x, y)

∂(a, b)
db da − d = b, −d 6 b 6 0, (1b)

where η = η(x(a, 0, t)) is the free surface profile and the wavelength-averaged η of the free
surface profile is (1/L)

∫ L
0 η dx = 0.

Based on the above physical definition of the Lagranigan labels (a, b) marked with
the water particles in wave motion, a simple framework of the Lagrangian description is
constructed. All the particles at the free surface with b = 0 and those at the bottom with
b = −d are defined in the Lagrangian labels (a, b) as is shown in equations (1a) and (1b).

3. Formulation of the problem and asymptotic solutions

Consider a two-dimensional monochromatic water wave that is propagating over a uniform
horizontal impermeable bed. The positive horizontal x-axis is directed along the wave
direction, while the y-axis is positive vertically upward from the still water level. d is the still
water depth, k = 2π/L is the wave number and σw = 2π/Tw is the wave angular frequency,
where L is the wavelength and Tw is the wave period.

The system of Lagrangian governing equations and boundary conditions for the two-
dimensional irrotational free-surface flow is summarized below.

xa yb − xb ya =
∂(x, y)

∂(a, b)
= 1, (2)

xat yb − xbt ya + xa ybt − xb yat =
∂(xt , y)

∂(a, b)
+

∂(x, yt )

∂(a, b)
= 0, (3)

xat xb − xbt xa + yat yb − ybt ya =
∂(xt , x)

∂(a, b)
+

∂(yt , y)

∂(a, b)
= 0, (4)

∂φ

∂a
= xt xa + yt ya,

∂φ

∂b
= xt xb + yt yb, (5)

p

ρ
= −

∂φ

∂t
− gy +

1

2
(x2

t + y2
t ), (6)

p = 0, b = 0, (7)

v = yt = 0, y = b = −d. (8)

In equations (2)–(8), the subscripts a, b and t denote partial differentiation with respect
to the specified variable, p(a, b, t) is the water pressure, φ(a, b, t) is the velocity potential
function in the Lagrangian system and g is the gravitational acceleration. Except for
equations (5) and (6), the fundamental physical relationships that define the above equations
have been derived by many authors (Miche 1944, Lamb 1932, Yakubovich and Zenkovich
2001, Mei 1983). Equation (2) is the continuity equation and equation (3) is the differentiation
of equation (2) with respect to time t . Equations (4) and (5) denote the irrotational flow
condition and the corresponding Lagrangian velocity potential, respectively. Equation (6)
is the Weber transform for the irrotational flow in the Lagrangian description, which is

13
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demonstrated in appendix A along with equations (4) and (5). Equation (7) represents the
dynamic boundary condition of zero pressure at the free surface. Equation (8) is the bottom
boundary condition of zero vertical velocity.

To solve the nonlinear equations (2)–(8), we introduce the Lagrangian angular frequency
σ of particle motion and use the perturbation method. In the Lagrangian approach, the particle
positions x and y, the potential function φ and pressure p are considered to be functions of
independent variables a and b and time t . These solutions are sought in perturbation series
by introducing an ordering symbol ε, which is inserted to identify the order of the associated
term (Pierson 1962, Chen 1994a, 1994b, Piedra-Cueva 1995)

x = x(a, b, t) = a +
∞∑

n=1

εn[ fn(a, b, σ t) + f ′

n(a, b, σ0t)], (9)

y = y(a, b, t) = b +
∞∑

n=1

εn[gn(a, b, σ t) + g′

n(a, b, σ0t)], (10)

φ = φ(a, b, t) =

∞∑
n=1

εn[φn(a, b, σ t) + φ′

n(a, b, σ0t)], (11)

p = p(a, b, t) = −ρgb +
∞∑

n=1

εn pn(a, b, σ t), (12)

σ = σ(a, b) = σ0 +
∞∑

n=1

εnσn(a, b) = 2π/TL(a, b), (13)

where the Lagrangian variables (a, b) are defined in section 2.4 as the two characteristic
parameters. In these expressions, fn , gn , φn and pn are expected to be associated with nth-
order harmonic solutions. f ′

n , g′
n and φ′

n are non-periodic functions, σ = 2π/TL is the particle
motion angular frequency, or the Lagrangian angular frequency for a particle reappearing at
its highest or lowest elevation. TL is the corresponding particle motion period. Substituting
equations (9)–(13) into (2)–(8), and collecting terms of equal ε order, we obtain a sequence of
non-homogeneous governing equations that can be solved, as shown in the following sections.

3.1. First-order approximation

Collecting terms of order ε, the governing equations and the boundary conditions are

f1a + f ′

1a + g1b + g′

1b = 0, (14a)

σ0( f1aσ t + f ′

1aσ0t + g1bσ t + g′

1bσ0t ) = 0, (14b)

σ0( f1bσ t + f ′

1bσ0t − g1aσ t − g′

1aσ0t ) = 0, (14c)

φ1a + φ′

1a = σ0( f1σ t + f ′

1σ0t ), (14d)

φ1b + φ′

1b = σ0(g1σ t + g′

1σ0t ), (14e)

p1

ρ
= −σ0(φ1σ t + φ′

1σ0t ) − g(g1 + g′

1), (14 f )

p1 = 0, b = 0, (14g)

g1σ t = g′

1σ0t = 0, b = −d. (14h)

14
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The flow is assumed to be periodic with a crest at a = 0 and t = 0, such that the first-order
solution is easily written as

f ′

1 = g′

1 = φ′

1 = 0, σ 2
0 = gk tanh kd = gkT, T = tanh kd, (15)

f1 = −α
cosh k(b + d)

cosh kd
sin(ka − σ t), (16)

g1 = α
sinh k(b + d)

cosh kd
cos(ka − σ t), (17)

φ1 =
ασ0

k

cosh k(b + d)

cosh kd
sin(ka − σ t), (18)

p1

ρ
= −αg

sinh kb

cosh2 kd
cos(ka − σ t), (19)

where the parameter α represents the amplitude function of the particle displacement; the
wave amplitude is usually taken as a0 = α tanh kd. φ1(a, b, t) is the first-order Lagrangian
velocity potential, and p1(a, b, t) is the first-order wave dynamic pressure in the Lagrangian
form with pressure p1 = 0 at the free surface b = 0. Equations (15)–(19) satisfy all the first-
order hydrodynamic equations (14a)–(14h) formulated in Lagrangian terms including the
irrotational condition, which differ from Gerstner’s wave at infinite water depth that possesses
finite vorticity and even becomes infinite at the free surface in the limiting Gerstner’s wave
(Constantin 2001a, Constantin et al 2007, Henry 2008). The linear dispersion relation shows
that the first-order Lagrangian angular frequency σ0 of particle motion is the same as the first-
order Stokes wave angular frequency in the Eulerian approach. The first-order free surface in
Lagrangian coordinates is given by setting b = 0 in equations (16) and (17) and is similar to
the expression for the profile found from the first-order Eulerian equations.

3.2. Second-order approximation

After substituting the first-order solution, the second-order governing equations in terms of
ε2, including the continuity equation and the irrotational condition, are given by

f2a + f ′

2a + g2b + g′

2b = f1bg1a − f1ag1b − (σ1a f1σ t + σ1bg1σ t )t

=
1

2
α2k2

[
cosh 2k(b + d)

cosh2 kd
+

cos 2(ka − σ t)

cosh2 kd

]
− α

[
σ1a

cosh k(b + d)

cosh kd
cos(ka − σ t) + σ1b

sinh k(b + d)

cosh kd
sin(ka − σ t)

]
t,

(20)

σ0( f2aσ t + f ′

2aσ0t + g2bσ t + g′

2bσ0t )

= σ0( f1bg1a − f1ag1b)σ t − σ1( f1a + g1b)σ t − σ1a f1σ t − σ1bg1σ t

− σ0[σ1a f1(σ t)2 + σ1bg1(σ t)2 ]t

= α2k2σ0
sin 2(ka − σ t)

cosh2 kd
− ασ1a

cosh k(b + d)

cosh kd
[cos(ka − σ t)

+ σ0t sin(ka − σ t)] − ασ1b
sinh k(b + d)

cosh kd
[sin(ka − σ t) − σ0t cos(ka − σ t)],

(21)
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σ0( f2bσ t + f ′

2bσ0t − g2aσ t − g′

2aσ0t )

= σ0( f1aσ t f1b − f1a f1bσ t + g1aσ t g1b − g1ag1bσ t ) + σ1(g1a − f1b)σ t

+ σ1ag1σ t − σ1b f1σ t + σ0[σ1ag1(σ t)2 − σ1b f1(σ t)2 ]t

= α2k2σ0
sinh 2k(b + d)

cosh2 kd
+ ασ1a

sinh k(b + d)

cosh kd
[sin(ka−σ t) − σ0t cos(ka−σ t)]

− ασ1b
cosh k(b + d)

cosh kd
[cos(ka − σ t) + σ0t sin(ka − σ t)], (22)

For gravity waves of permanent form, the terms t cos(ka − σ t) and t sin(ka − σ t) that
increase linearly with time have to be zero to avoid resonance. We have σ1a = σ1b = 0 and
σ1 = w1 = constant. Then the general solution that satisfies the bottom boundary condition
can be written as

f2 = −β2
cosh 2k(b + d)

cosh2 kd
sin 2(ka−σ t) +

1

4
α2k

sin 2(ka−σ t)

cosh2 kd
− λ2

cosh k(b + d)

cosh kd
sin(ka−σ t),

f ′

2 =
1

2
α2k

cosh 2k(b + d)

cosh2 kd
σ0t,

g2 = β2
sinh 2k(b + d)

cosh2 kd
cos 2(ka − σ t) + λ2

sinh k(b + d)

cosh kd
cos(ka − σ t),

g′

2 =
1

4
α2k

sinh 2k(b + d)

cosh2 kd
.

(23)

Inserting equation (23) into (5) in ε2 order, we deduce

φ2a = σ0( f2σ t + f ′

2σ0t ) + σ0( f1a f1σ t + g1ag1σ t ) + σ1 f1σ t − σ1a tφ1σ t − φ′

2a

= σ0

[
2β2

cosh 2k(b + d)

cosh2 kd
cos 2(ka − σ t) − α2k

cos 2(ka − σ t)

cosh2 kd

]
+ (αw1 + σ0λ2)

cosh k(b + d)

cosh kd
cos(ka − σ t) − φ′

2a,

φ2b = σ0(g2σ t + g′

2σ0t ) + σ0( f1b f1σ t + g1bg1σ t ) + σ1g1σ t − σ1btφ1σ t − φ′

2b

= 2σ0β2
sinh 2k(b + d)

cosh2 kd
sin 2(ka − σ t)

+ (αw1 + σ0λ2)
sinh k(b + d)

cosh kd
sin(ka − σ t) − φ′

2b, (24)

Note that the secular terms in equation (24) have to be omitted, which yields αw1 + σ0λ2 = 0.
The second-order Lagrangian velocity potential is obtained by integrating over the Lagrangian
variables a or b:

φ2 =
σ0

k
β2

cosh 2k(b + d)

cosh2 kd
sin 2(ka − σ t) −

1

2
α2σ0

sin 2(ka − σ t)

cosh2 kd
,

φ′

2 = D′

2(σ0t).

(25)
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Substituting the solutions up to the second order into equation (5) in ε2 order and applying
the zero pressure condition at the free surface, the unknown coefficients are obtained as

p2

ρ
= −σ0(φ2σ t + φ′

2σ0t ) − g(g2 + g′

2) +
1

2
σ 2

0 ( f 2
1σ t + g2

1σ t ) − σ1φ1σ t

= g

{
β2

[
2

cosh 2k(b + d)

cosh2 kd
T −

sinh 2k(b + d)

cosh2 kd

]
−

3

4
α2kT (1 − T 2)

}
× cos 2(ka − σ t) +

[
α

σ0

k
w1

cosh k(b + d)

cosh kd
− gλ2

sinh k(b + d)

cosh kd

]
cos(ka − σ t)

+
1

4
α2σ 2

0

[
cosh 2k(b + d)

cosh2 kd
−

sinh 2k(b + d)

T cosh2 kd

]
− σ0 D′

2σ0t , (26)

w1 = λ2 = 0, β2 =
3
8α2k(tanh−2 kd − 1),

φ′

2 = D′

2(σ0t) =
1
4α2σ 2

0 (tanh2 kd − 1)t.

The second-order Lagrangian solutions are assembled as

f2 = α2k

[
−

3

8
(T −2

− T 2)
cosh 2k(b + d)

cosh 2kd
+

1

4
(1 − T 2)

]
sin 2(ka − σ t), (27)

f ′

2 =
1

2
α2k(1 + T 2)

cosh 2k(b + d)

cosh 2kd
σ0t, (28)

g2 =
3

8
α2k(T −2

− T 2)
sinh 2k(b + d)

cosh 2kd
cos 2(ka − σ t), (29)

g′

2 =
1

4
α2k(1 + T 2)

sinh 2k(b + d)

cosh 2kd
, (30)

φ2 = α2σ0

[
3

8
(T −2

− T 2)
cosh 2k(b + d)

cosh 2kd
−

1

2
(1 − T 2)

]
sin 2(ka − σ t),

φ′

2 = −
1
4α2σ 2

0 (1 − T 2)t, σ1 = 0,

(31)

p2

ρ
= gα2k

{
3

8
(T −2

− 1)

[
2(T + T 3)

cosh 2k(b + d)

cosh 2kd

−(1 + T 2)
sinh 2k(b + d)

cosh 2kd

]
−

3

4
(T − T 3)

}
cos 2(ka − σ t)

+
1

4
gα2k

{[
(T +T 3)

cosh 2k(b+d)

cosh 2kd
− (1+T 2)

sinh 2k(b+d)

cosh 2kd

]
−(T 3

−T )

}
. (32)

The horizontal particle trajectory x in the second-order approximation includes a periodic
component f2 and a non-periodic function f ′

2, which represents the second-order classical
Stokes mass transport increasing linearly with time but decreasing exponentially with the
depth b of the particle. This implies that a fluid particle moves forward and does not form a
closed orbit, as in the first-order approximation. The vertical trajectory y in this order includes
a second harmonic component g2 and a term g′

2 that is a function of b only and is independent
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of time. This second-order vertical mean particle level g′

2 exponentially decays with the depth
b of the particle. Equation (30) also confirms that the Lagrangian mean level is higher than
the Eulerian mean level (Longuet-Higgins 1986). Unlike Longuet-Higgins (1986, 1987) and
Chang et al (2009) who used the Euler–Lagrange transformation to derive this result, the
theory presented here is perfectly constructed in the Lagrangian framework for all particles
from the free surface to the bottom.

3.3. Third- to fifth-order approximations

The third-order governing equations and boundary conditions can be obtained by substituting
the first- and second-order approximations into equations (2)–(8) and then taking the terms of
O(ε3):

f3a + f ′

3a + g3b + g′

3b = f1bg2a + ( f2b + f ′

2b)g1a − f1a(g2b + g′

2b) − f2ag1b

− (σ2a f1σ t + σ2bg1σ t )t,

= αk2

(
2β2 +

1

4
α2k

)
cosh 3k(b + d)

cosh3 kd
cos(ka − σ t)

+ αk2

(
2β2 −

1

4
α2k

)
cosh k(b + d)

cosh3 kd
cos 3(ka − σ t)

− α

{
σ2a

cosh k(b + d)

cosh kd
cos(ka − σ t)

+

[
α2k3σ0

sinh 2k(b + d)

cosh2 kd
+ σ2b

]
sinh k(b + d)

cosh kd
sin(ka − σ t)

}
t (33)

σ0( f3aσ t + f ′

3aσ0t + g3bσ t + g′

3bσ0t ) = −σ2( f1a + g1b)σ t − σ2a f1σ t − σ2bg1σ t

− σ0[σ2a f1(σ t)2 + σ2bg1(σ t)2 ]t + σ0[( f1bg2a − f2ag1b)σ t + ( f2bσ t + f ′

2bσ0t )g1a

+ ( f2b + f ′

2b)g1aσ t − f1aσ t (g2b + g′

2b) − f1ag2bσ t ]t.

= αk2σ0

[(
2β2 +

1

4
α2k

)
cosh 3k(b + d)

cosh3 kd
sin(ka − σ t)

+

(
6β2 −

3

4
α2k

)
cosh k(b + d)

cosh3 kd
sin 3(ka − σ t)

]

− α

{
σ2a

cosh k(b + d)

cosh kd
cos(ka − σ t) +

[
α2k3σ0

sinh 2k(b + d)

cosh2 kd
+ σ2b

]

×
sinh k(b + d)

cosh kd
sin(ka − σ t)

}

− ασ0

{
σ2a

cosh k(b + d)

cosh kd
sin(ka − σ t) −

[
α2k3σ0

sinh 2k(b + d)

cosh2 kd
+ σ2b

]

×
sinh k(b + d)

cosh kd
cos(ka − σ t)

}
t, (34)
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σ0( f3bσ t + f ′

3bσ0t − g3aσ t − g′

3aσ0t )

= σ0[ f2aσ t f1b − f2a f1bσ t + f1aσ t ( f2b + f ′

2b) − f1a( f2bσ t + f ′

2bσ0t )

+ g2aσ t g1b − g2ag1bσ t + g1aσ t (g2b + g′

2b) − g1ag2bσ t ] − σ2( f1b − g1a)σ t

+ σ2ag1σ t − σ2b f1σ t + σ0[σ2ag1(σ t)2 − σ2b f1(σ t)2 ]t

= αk2σ0

[
(6β2 +

3

4
α2k)

sinh 3k(b + d)

cosh3 kd
cos(ka − σ t) +

(
2β2 +

1

4
α2k

)

×
sinh k(b + d)

cosh3 kd
cos 3(ka − σ t)

]

+ a

{
σ2a

sinh k(b + d)

cosh kd
sin(ka − σ t) −

[
1

2
α2k3σ0

sinh k(b + d)

cosh3 kd

+ σ2b
cosh k(b + d)

cosh kd

]
cos(ka − σ t)

}

− ασ0

{
σ2a

sinh k(b + d)

cosh kd
cos(ka − σ t) +

[
α2k3σ0

sinh 2k(b + d)

cosh2 kd
+ σ2b

]

×
cosh k(b + d)

cosh kd
sin(ka − σ t)

}
t, (35)

φ3a + φ′

3a = σ0[ f3σ t + f ′

3σ0t + ( f2σ t + f ′

2σ0t ) f1a + f1σ t f2a + g2σ t g1a + g1σ t g2a]

+σ2 f1σ t − σ2a tφ1σ t , (36a)

φ3b + φ′

3b = σ0[g3σ t + g′

3σ0t + ( f2σ t + f ′

2σ0t ) f1b + ( f2b + f ′

2b) f1σ t + g2σ t g1b

+(g2b + g′

2b)g1σ t ] + σ2g1σ t − σ2btφ1σ t , (36b)

p3

ρ
= −[σ0(φ3σ t + φ′

3σ0t ) + g(g3 + g′

3)] + σ 2
0 [( f2σ t + f ′

2σ0t ) f1σ t + g2σ t g1σ t ] − σ2φ1σ t . (37)

p3 = 0, b = 0, (38)

g3σ t = g′

3σ0t = 0, b = −d. (39)

The procedure to obtain the solutions at this order is similar to that of O(ε2). It is
noted that from equations (33)–(36b) it is possible to obtain σ2a = 0, σ2bt = −α2k3σ0t
× sinh 2k(b + d)/ cosh2 kd = −k f ′

2b. After a lengthy but straightforward manipulation,
the third-order Lagrangian solutions are given by

σ2 =
1

16
α2k2σ0(9T −2

− 10 + 9T 2) −
1

2
α2k2σ0(1 + T 2)

cosh 2k(b + d)

cosh 2kd
= σw2 − k

∂ f ′

2

∂t
, (40)
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f3 = α3k2[β333 sin 3(ka − σ t) + β331 sin(ka − σ t)]
cosh 3k(b + d)

cosh 3kd

+α3k2[β313 sin 3(ka − σ t) + β311 sin(ka − σ t)]
cosh k(b + d)

cosh kd
, f ′

3 = 0,

(41)

g3 = α3k2[λ333 cos 3(ka − σ t) + λ331 cos(ka − σ t)]
sinh 3k(b + d)

cosh 3kd

+α3k2[λ313 cos 3(ka − σ t) + λ311 cos(ka − σ t)]
sinh k(b + d)

cosh kd
, g′

3 = 0,

(42)

φ3 = α3kσ0

{[
λ333

cosh 3k(b + d)

cosh 3kd
−

1

16
(9T −2

− 22 + 13T 2)
cosh k(b + d)

cosh kd

]
sin 3(ka − σ t)

+
1

16
(3T −2 + 6 − 9T 2)

cosh 3k(b + d)

cosh 3kd
sin(ka − σ t)

}
, φ′

3 = 0, (43)

p3

ρ
= gα3k2

{
1

64
(9T − 4

− 22T −2 + 13)

×

[
(3T + 9T 3)

cosh 3k(b + d)

cosh 3kd
− (1 + 3T 2)

sinh 3k(b + d)

cosh 3kd

]
−

1

16
(21T −1

− 50T + 29T 3)
cosh k(b + d)

cosh kd

+
1

16
(3T −2

− 6 + 3T 2)
sinh k(b + d)

cosh kd

}
cos 3(ka − σ t)

+gα3k2

{
1

16
(9T −1 + 18T − 27T 3)

cosh 3k(b + d)

cosh 3kd

−
1

16
(9T −2

− 5)(1 + 3T 2)
sinh 3k(b + d)

cosh 3kd

+
1

16
(9T −1

− 14T + 13T 3)
cosh k(b + d)

cosh kd
+ β311

sinh k(b + d)

cosh kd

}
cos(ka − σ t).

(44)

where the coefficients β333, β331, β313, β311, λ333, λ331, λ313 and λ311 are listed as the
following:

β333 = −
1

64
(9T −4 + 5T −2

− 53 + 39T 2) = −λ333, β331 = −
1

16
(15T −2 + 38 − 21T 2),

β313 =
1

48
(15T −2

− 34 + 19T 2), β311 =
1

16
(9T −2

− 10 + 9T 2) = −λ311,

λ331 =
1

16
(9T −2 + 22 − 15T 2), λ313 = −

1

16
(3T −2

− 6 + 3T 2).
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Figure 5. A sketch of the relationship between the wave velocity and particle motion (Chen
1994a).

Equation (40) is the second-order Lagrangian angular frequency σ2 of a particle,
which consists of the second-order Stokes wave angular frequency σw2 = α2k2σ0(9T −2

− 10
+ 9T 2)/16 and the second-order mass-transport rate −k∂ f ′

2/∂t . The third-order solutions of
equations (41)–(44) are periodic functions and a combination of both first and third harmonic
components.

The fourth- and fifth-order solutions, including σ3a = σ3b = σ4a = 0 and σ4 =

σw4 − k∂ f ′

4/∂t , can be obtained by solving the non-homogeneous boundary value problems
based on the solutions of previous orders. The analytical procedures are similar and the final
results are listed in appendix B to be compared with those obtained by the experimental
measurements. It should be pointed out that analogous to the second-order solution, the
fourth-order approximation contains a time-dependent term f ′

4 that indicates a fourth-order
correction of mass transport in the horizontal coordinate and a fourth-order vertical mean
level term g′

4. Both of them exponentially decay with the depth b and are independent of the
horizontal particle label a. In the fifth-order solutions, this paper provides a new fourth-order
Lagrangian angular frequency term σ4, which contains the fourth-order Stokes wave angular
frequency σw4 and the fourth-order mass transport rate −k∂ f ′

4/∂t of the particle.

3.4. The determination of wave angular frequency σw = ck

The Lagrangian particle angular frequency σ(b) = 2π/TL(b) up to fifth order can be obtained
as

σ =
2π

TL(b)
= σ(b) = σ0 + σ2(b) + σ4(b) = σw − k

∂

∂t
[ f ′

2(b, σ0t) + f ′

4(b, σ0t)], −d 6 b 6 0

(45)

Up to this point, all the properties could be found in the Lagrangian framework. The
only unsolved property needing to be determined is the wave velocity c = L/Tw since the
wavelength L is still unknown. As shown in figure 5, for a particle marked with label (a, b),
the motion period is TL(b) = 2π/σ(b). From the present solution, it will travel a horizontal
distance after a period TL of

x(a, b, t + TL(b)) − x(a, b, t) =

{
∂

∂t
[ f ′

2(b, σ0t) + f ′

4(b, σ0t)]

}
TL(b) (46a)

and a vertical distance

y(a, b, t + TL(b)) − y(a, b, t) = 0. (46b)
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During the same time interval, the next wave crest (or trough) advances a horizontal distance

cTL(b) = L + x(a, b, t + TL(b)) − x(a, b, t) = cTw +

{
∂

∂t
[ f ′

2(b, σ0t) + f ′

4(b, σ0t)]

}
TL(b).

(47)

From this equation, the wave velocity c can be found immediately.

c = L/Tw =

{
∂

∂t
[ f ′

2(b, σ0t) + f ′

2(b, σ0t)]

}/
[1 − σ(b)/(2π/Tw)]. (48)

Thus, the wave angular frequency 2π/Tw is

2π/Tw = σ(b) + k
∂

∂t
[ f ′

2(b, σ0t) + f ′

4(b, σ0t)]. (49)

This is the same as the constant term σw in the Lagrangian angular frequency σ(b) =

2π/Tw(b), which is

σw =
2π

Tw
= σ0 +

1

16
α2k2σ0(9T −2

− 10 + 9T 2)

+
1

1024
α4k4σ0(81T −6

− 603T −4 + 3906T −2
− 4270 + 2477T 2

− 951T 4)

= σ0 +
1

64
k2 H 2σ0(9T −4

− 10T −2 + 9)

+
1

16384
k4 H 4σ0(−405T −10

−117T −8 + 2454T −6
− 2194T −4 + 351T −2 + 39),

(50)

where σw in equation (55) is equal to the wave angular frequency obtained in the Eulerian
approach (Fenton 1985).

Similarly, a general relation between the wave angular frequency σw, the Lagrangian
angular frequency σ(b) and the mass transport velocity UM(b) of the particle motion for
nonlinear water waves at a uniform depth can be also determined as

UM(b) =

∞∑
n=1

∂

∂t
f ′

n (b, σ0t) = [σw − σ(b)] /k. (51)

4. Results and discussions

4.1. The particle orbits

The most important characteristic of fluid motion described by the Lagrangian solution is the
particle trajectory, from which the parameter α can be determined by the wave height H, wave
number k and water depth d as

H

2
= [g1 + g3 + g5]b=0,ka−σ t=2nπ , n ∈ I. (52)

The horizontal and vertical particle trajectories are

x = a +
5∑

n=1

( fn + f ′

n), y = b +
5∑

n=1

(gn + g′

n). (53)
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Figure 6. A comparison of the third-order and fifth-order solutions for the particle trajectories at
different levels b: (a) for the wave condition d/L = ∞ and H/L = 0.141 18; and (b) for the wave
condition d/L = 0.191 and H/L = 0.1145.

It is obvious that the particle orbit is not a closed curve but a spiraling-progressive curve
because of the existence of a drift displacement that persists with it along the wave direction;
this phenomenon is shown in figure 6. In figure 6, the particle trajectories near the highest
waves in deep and finite water depths are plotted for various values of level b, including
b = 0, which corresponds to the particles at the free surface. While the absence of a closed
particle path was established for all Stokes waves (Constantin 2001a), the present approach
provides an approximation for producing a quantitative estimation. It can be seen that a
particle advances horizontally after each period through a distance known as the drift or
mass transport in the direction of wave propagation. Near the bottom, b = −d , the trajectory
becomes more like an ellipse because the vertical movement of the particle is less than its
horizontal movement, in contrast with the trajectories near the mean still water level b = 0.
The surface particles of the wave travel farther, and one may reasonably think that they have
fewer looped structures in their particle trajectories. In fact, subsurface particles do not travel
as far and have more loops because the Lagrangian particle motion period at the surface in the
waves is larger than that below the surface. This also indicates that a subsurface particle takes
less time to complete one period than a surface particle.

The experimental particle orbits from rest to a stable motion under the wave action are
shown in figure 4. It is clearly verified that the marked particle’s label (a, b) is equal to the
position when the particle is initially at rest as described in equation (1). Figure 4 shows good
agreement between the measured trajectories and the theoretical trajectories predicted by the
proposed fifth-order Lagrangian wave theory, and demonstrates that the particles move in non-
closed orbital motion and drift in the wave direction. The rightward drift is in each case greater
in theory than in experiments. This may be due to the viscous effect on the particle, such that
the mass transport calculated by the present theory is slightly larger than the experiment.

4.2. Velocity and pressure distribution

The velocity of any water particle marked with label (a, b) can be obtained using the present

fifth-order Lagrangian solution as
⇀

V (x(a, b, t), y(a, b, t), t) =
⇀

i xt +
⇀

j yt . The velocity distri-
butions along the free surface wave profiles in two different cases are shown in figure 7. For
any of the 21 points (x, y) in the water, the label (a, b) is determined by the condition that the
particle passes this point exactly at time t. The complete solution and the theoretical velocity
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Figure 7. Comparisons between the velocity distributions obtained by the presented theory and
those from the experimental PS motion measurements along the free surface wave profiles in
two large experimental waves cases, where the time interval between two consecutive points
(•) is Tw/20 and Tw is the wave period. The table under the figure denotes the corresponding
experimental (Exp.) and theoretical (The.) values at the points (no. 1–21) in the figure.

⇀

V =
⇀

i xt +
⇀

j yt are obtained after the label (a, b) is substituted into the solution. The velocity
distribution is in good agreement with the experiments along the free surface, as is shown
in figure 7. Figure 8 illustrates the theoretical and experimental results of the dimensionless
extremes (positive and negative maximum) for horizontal and vertical velocity components
kug/σ0, kus/σ0, kvg/σ0 and kvs/σ0 of particles with various relative water depths (d/L) and
wave steepnesses (H/L). The dimensionless horizontal and vertical velocities increase as the
wave steepness increases but decrease as the relative water depth increases. The water pressure
distribution can also be depicted as shown in figure 9. Good correspondence is seen between
the present fifth-order solution and experimental data under the wave crest and trough. These
results are in accord with the linearized analysis of Escher and Schlurmann (2008) and the
recent investigation on the pressure beneath waves of large amplitude by Constantin and
Strauss (2010).

24



Fluid Dyn. Res. 42 (2010) 045511 Y-Y Chen et al

0.88

0.86

0.84

0.82

0.8

0.78

0.76

0.74

0.72

1 2 3 4 5 6 7 8 9 10
0.7 (×10-2)

-0.68

1 2 3 4 5 6 7 8 9 10

-0.7

-0.72

-0.74

-0.8

-0.76

-0.82

-0.78

(×10-2)

(a)                                     (b)

0.8

0.78

0.74

0.72

0.7
1 2 3 4 5 6 7 8 9 10

0.76

0.82

0.84

(×10-2)

-0.68

1 2 3 4 5 6 7 8 9 10

-0.7

-0.72

-0.74

-0.82

-0.76

-0.84

-0.78

-0.8

(×10-2)

(c)                                      (d)

/H L

/H L/H L

/H L

/d L = 0.2

/d L =

/d L = 0.19

/d L = 0.3
/d L = 0.4

/d L = 0.2

/d L =

/d L = 0.19

/d L = 0.3

/d L = 0.4

/d L = 0.2

/d L =

/d L = 0.19

/d L = 0.3

/d L = 0.4

/d L = 0.2

/d L =
/d L = 0.19

/d L = 0.3

/d L = 0.4

experiments.

− presented theory.

− presented theory.

, ,× + ∗ experiments.

, − presented theory.

experiments.

− presented theory.

experiments.

Figure 8. Comparisons between the results obtained by the presented theory and those obtained
from the experimental PS motion measurements in the considered waves for the relations of
the dimensionless extreme (positive and negative maximum) horizontal and vertical components
(a) kug/σ0, (b) kus/σ0, (c) kvg/σ0 and (d) kvs/σ0 in the experimental wave cases with the relative
water depth d/L and wave steepness H/L , where ug = (xt )g is the positive maximum horizontal
velocity component, us = (xt )s is the negative maximum horizontal velocity component, vg =

(yt )g is the positive maximum vertical velocity component, and vs = (yt )s is the negative
maximum vertical velocity component. While the symbols × and O are the experimental and
theoretical values between the relative water depth d/L = 0.2 and 0.3, + and� are those between
d/L = 0.3 and 0.4, ∗ and ◦ are those between d/L = 0.4 and ∞, and • is that around d/L = 0.19.
These symbols have the same meaning as in figures 8–11.

4.3. Mass transport velocity and mean wave momentum

Up to the fifth order, using equation (51) the forward mass transport velocity UM(b) of the
particle along the wave direction yields

UM(b) =
∂

∂t
[ f ′

2(b, σ0t) + f ′

4(b, σ0t)] = [σw − σ(b)]/k =

[
1 −

Tw

TL(b)

]
c. (54)

The first term of equation (54) on the right-hand side, a second-order quantity ∂ f ′

2/∂t ,
is the same as that obtained by Longuet-Higgins (1987). From equation (54), the mass
transport velocity increases only with wave steepness as a function of the water depth d
and level b. Differentiating equation (54) with respect to b shows that the mass transport
velocity is always positive but experiences exponential decay from the surface to the bottom.
The experimental and theoretical results for the mass transport velocity kUM/σ0 and the
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Figure 9. The dimensionless total pressure distributions under the wave crest and wave trough.
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Figure 10. Comparison of the dimensionless mass transport particle velocity kUM(0)/σ0 at the
free surface with the relative water depth d/L and the wave steepness H/L .

difference (TL − Tw)/Tw for particles at the free surfaces b = 0 in the considered waves are
shown in figures 10 and 11, respectively; both increase as the wave steepness H/L increases
but decrease as the relative water depth d/L increases. The mean wave momentum M at
a wavelength L can obviously be calculated from the motion of particles described in the
Lagrangian approach as presented, which is easier than that in the Eulerian approach:

M =
ρ

L

∫ L

0

∫ η

−d
u(x, y, t) dy dx =

ρ

L

∫ L

0

∫ 0

−d
u(a, b, t)

∂(x, y)

∂(a, b)
db da

=
ρ

L

∫ L

0

∫ 0

−d
xt (a, b, t) db da = ρ

∫ 0

−d
Um(b) db. (55)
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Figure 11. Comparison of the nondimensional difference [TL(0) − Tw]/Tw of particles at the free
surface with the relative water depth d/L and the wave steepness H/L; TL(0) is the particle
motion period at the free surface and Tw is the wave period. The result of Chang et al (2009) used
the Eulerian approach numerical model by Reinecker and Fenton (1981) by taking the N = 32
term for the deep water waves.

4.4. Lagrangian mean level of particle motion

In addition to the mass transport velocity, a new term
∑

g′
n , called the Lagrangian mean level,

encompassing the time average of the particle motion period TL or the wavelength average
with label a, is also included in the present solution. However, the physical or mathematical
meaning of this term has not been found yet. To give a clear explanation of the Lagrangian
mean level, the derivation is given below. By applying equations (1a) and (1b) and taking
b = const at time t = const as well as using equation (53), we have

b =
1

L

∫ x+L

x
y(a, b, t) dx(a, b, t) =

1

L

∫ a+L

a

[
b +

∞∑
n=1

(gn + g′

n)

][
1 +

∞∑
n=1

∂ fn

∂a

]
da

= b +
∞∑

n=1

g′

n +
1

L

∫ a+L

a

(
∞∑

n=1

gn

)(
∞∑

n=1

∂ fn

∂a

)
da, (56)

where both b and t are constants.
Thus, the Lagrangian mean level up to a fifth-order solution can be obtained as

g′

1 = g′

3 = g′

5 = 0, g′

2 = −
1

L

∫ a+L

a
g1

∂ f1

∂a
da and

(57)

g′

4 = −
1

L

∫ a+L

a

(
g1

∂ f3

∂a
+ g2

∂ f2

∂a
+ g3

∂ f1

∂a

)
da.

These results are the same as those obtained in the present fifth-order Lagrangian
solution.

Taking the average particle’s elevation up to the fifth order over the period TL(b) of a
particle motion or wavelength L in label a, the present theory gives the Lagrangian mean level
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Figure 12. Comparison of the dimensionless Lagrangian mean particle level η̄L(0)/L at the free
surface with the relative water depth d/L and the wave steepness H/L .

η̄L(b), which is higher than the Eulerian mean level η̄w = 0 at the free surface.

η̄L(b) =
1

TL

∫ TL

0
(y − b) dt = g′

2 + g′

4 6=
1

Tw

∫ Tw

0
(y − b) dt . (58)

Longuet-Higgins (1986, 1987) also showed that the Lagrangian mean level is higher than
the Eulerian mean level. However, this expression is only applicable to the particles at the
free surface and is the same as that given by the first term of equation (58) at b = 0. The
experimental and theoretical results for η̄L/L of particles at the free surface b = 0 are shown
in figure 12, which indicates that the Lagrangian mean level increases as the wave steepness
H/L increases but decreases as the relative water depth d/L increases.

5. Concluding remarks

With a set of careful quantitative measurements of the trajectories of particles in irrotational
finite-amplitude progressive gravity water waves at a uniform depth, a simple definition of
the Lagrangian labels marked with the particle is given. Then, the fifth-order Lagrangian
solutions satisfying all the governing equations and the boundary conditions in a Lagrangian
framework are derived. The Lagrangian fifth-order solution not only determines all the wave
properties revealed in the Eulerian solution, but also extends further to obtain the particle
trajectory, the Lagrangian wave period, the mass transport and the Lagrangian mean level,
which are excluded from the Eulerian system. The Lagrangian solution is able to obtain the
wave velocity or the nonlinear dispersion relation from the particle motion independently and
is equal to that of the Eulerian solution. Consequently, it gives a general relation that is a
function of only the mean level ȳ = b between the wave angular frequency, the Lagrangian
angular frequency and the mass transport velocity of a particle in the waves. The Lagrangian
mean particle level of motion–orbit that is only a function of b due to particle deformations
marked with the Lagrangian labels (a, b) under the conservation of mass has been expressed
formulaically.

The angular frequency of the particle motion differs from the Eulerian wave frequency.
It is only a function of the marked label b of each individual particle and can be obtained
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immediately at each odd-order solution. The fifth-order particle motion period gives accurate
results near the limiting wave when compared to those at the free surface given by Longuet-
Higgins (1986) and Chang et al (2009), which are derived from the Eulerian–Lagrangian
approach that only applies to particles at the free surface.

As can be seen from the second- and fourth-order solutions, the Lagrangian mean level
of gravity waves is higher than the Eulerian mean level at the free surface as was noted
by Longuet-Higgins (1986). Time-dependent terms related to the mass transport velocity
expressed as a function of only its vertical label b are obtained to the fifth order. This drift
velocity is always positive but monotonically decays from the surface to the bottom. This
implies that the particles move forward a longer horizontal displacement at the surface in each
complete orbit and the wave’s subsurface particles travel less far and slower. The mean wave
momentum with the same result as that of the Eulerian solution is exhibited by integrating all
the particle mass transport velocities.

Finally, a set of experiments measuring the Lagrangian properties of nonlinear
progressive water waves is conducted in a wave tank. From these experimental results, the
marked particle labels (a, b) are verified to be equal to the particle position in still water
and show good agreement between the measured trajectories and the theoretical trajectories
predicted by the proposed fifth-order Lagrangian solution. The close correspondence also
extends to the wave profile, the velocities, the wave pressure, the periods, the mass transport
velocities and the Lagrangian mean levels of the particles obtained in this solution and
demonstrates that the non-dimensional motion period, mass transport velocity, Lagrangian
mean level, and extreme horizontal and vertical velocity components of water particles in the
waves all increase as the wave steepness increases but decrease as the relative water depth
increases.
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Appendix A. The energy equation, the potential function and the irrotational condition
in Lagrangian form

The dynamic equations in a Lagrangian description can be deduced from Newton’s second
law of motion for incompressible and inviscid flow (Lamb 1932, Miche 1944, Chen 1994):

xt t xa + yt t ya = −gya −
1

ρ
Pa, (A.1a)

xt t xb + yt t yb = −gyb −
1

ρ
Pb, (A.1b)

Equations (A.1a) and (A.1b) can be integrated over time between the limits 0 and t to give

xt xa + yt ya − (xt xa + yt ya)t=0 = −
∂K

∂a
, (A.2a)

xt xb + yt yb − (xt xb + yt yb)t=0 = −
∂K

∂b
, (A.2b)
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dP

ρ
+ gy − Kt −

1

2
(x2

t + y2
t ) = 0, (A.2c)

where

K (a, b, t) =

∫ t

0

[∫
dP

ρ
+ gy −

1

2
(x2

t + y2
t )

]
dt.

Equation (A.2) is usually called Weber’s transformation (Lamb 1932), and (A.2c) is the energy
equation for an ideal fluid in the Lagrangian system. When taking (a, b) as the initial particle
position at the initial time t = 0, equations (A.2a)–(A.2c) are consistent with equations (2)
and (3) in Art. 14 of Lamb (1932).

Let the instant of time at which the velocity potential φ0 exists be taken as the origin of
time t = 0; then

(uδx + vδy)t=0 = [(xt xa + yt ya)δa + (xt xb + yt yb)δb]t=0 = δφ0. (A.3)

By multiplying (A.2a) and (A.2b) by the Lagrangian variables δa and δb and adding, we
obtain

(xt xa + yt ya)δa + (xt xb + yt yb)δb = (δφ0 − δK ) = δφ =
∂φ

∂a
δa +

∂φ

∂b
δb, (A.4)

where φ is the velocity potential at time t under the same portion of the fluid in which φ0

exists at initial time t = 0. When taking (a, b) as the initial particle position at the initial time
t = 0, equation (A.4) is consistent with the third equation in Art. 17 of Lamb (1932). Thus,
φ = φ(a, b, t) with

∂φ

∂a
= (xt xa + yt ya),

∂φ

∂b
= (xt xb + yt yb). (A.5)

The relations (A.5) explicitly define the velocity potential in Lagrangian representation. By
cross-differentiation of (A.5) following the order δb, δa, we obtain the irrotational flow
condition in Lagrangian coordinates

xat xb − xbt xa + yat yb − ybt ya =
∂(xt , x)

∂(a, b)
+

∂(yt , y)

∂(a, b)
= 0. (A.6)

Equation (A.6) is the same as the vorticity conservation for irrotational motion obtained by
Miche (1944) and Yakubovich and Zenkovich (2001).

Appendix B. Lagrangian fourth- and fifth-order solutions

Following the same derivation procedures as the third-order solution, the fourth- and fifth-
order solutions of particle trajectories, velocity potential and pressure in Lagrangian form are

fn = αnkn−1
n∑

i=0

n∑
j=1

βni j
cosh ik(b + d)

cosh ikd
sin j (ka − σ t),

f ′

n = αnkn−1
n∑

i=1

mni
cosh ik(b + d)

cosh ikd
σ0t, f ′

5 = 0, n = 4, 5

β444 = −(5 + T 2)−1(405T −6 + 756T −4
− 7623T −2 + 9872 − 1481T 2

−1732T 4
− 197T 6)/1536, T = tanh kd,
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β442 = (−135T −4
− 552T −2 + 1298 − 432T 2

− 115T 4)/384,

β424 = (135T −4
− 390T −2 + 128 + 390T 2

− 263T 4)/768,

β422 = (81T −6 + 297T −4
− 654T −2

− 358 + 381T 2
− 131T 4)/768,

β404 = (27T −4
− 156T −2 + 314 − 268T 2 + 83T 4)/384,

β402 = (−21T −4 + 41 − 43T 2 + 23T 4)/96,

β555 = −(25 + 20T 2 + 3T 4)−1(2025T −8 + 8370T −6
− 88578T −4 + 135290T −2

+28240 − 121450T 2
− 2142T 4 + 32830T 6 + 5415T 8)/4096,

β553 = (5 + T 2)−1(−2295T −6
− 14274T −4 + 66439T −2

− 43332

−26017T 2 + 16070T 4 + 3665T 6)/3072,

β551 = (−351T −6
− 3993T −4

− 5942T −2 + 3782 + 885T 2
− 1165T 4)/1024,

β535 = (5 + T 2)−1(6885T −6
− 18783T −4

− 41718T −2 + 171938 − 164407T 2

+32093T 4 + 13992T 6)/15360,

β533 = (5 + T 2)−1(1215T −8 + 5913T −6
− 13005T −4

− 41323T −2

+53949 − 2901T 2
− 5551T 4

− 345T 6)/4096,

β531 = (405T −6 + 3933T −4
− 222T −2

− 18266 + 19169T 2
− 4251T 4)/1536,

β515 = (1053T −6
− 8982T −4 + 27798T −2

− 40208 + 27685T 2
− 7346T 4)/15360,

β513 = (−270T −6 + 9T −4 + 2920T −2
− 4946 + 3470T 2

− 1183T 4)/3072,

β511 = (243T −6
− 2781T −4 + 13494T −2

− 14930 + 8695T 2

−3569T 4)/3072, elsewhere zero,

m44 = (9T −4 + 60T −2 + 38 − 36T 2
− 7T 4)/32,

m42 = (−15T −2 + 11 + 7T 2
− 19T 4)/32, elsewhere zero,

gn = αnkn−1
n∑

i=1

n∑
j=1

λni j
sinh ik(b + d)

cosh ikd
cos j (ka − σ t),

g′

n = αnkn−1
n∑

i=1

lni
sinh ik(b + d)

cosh ikd
, g′

5 = 0, n = 4, 5

λ444 = −β444, λ555 = −β555,

λ442 = (27T −4 + 105T −2
− 289 + 99T 2 + 26T 4)/96,

λ553 = (5 + T 2)−1(675T −6 + 4050T −4
− 20827T −2 + 13924 + 8197T 2

−5110T 4
− 1165T 6)/1024,

λ551 = (135T −6 + 1677T −4 + 3478T −2
− 2862 − 605T 2 + 865T 4)/1024,

λ535 = (5 + T 2)−1(−405T −6 + 1029T −4 + 2500T −2
− 9590 + 8851T 2

−1674T 4
− 738T 6)/1024,

λ533 = (5 + T 2)−1(−1215T −8
− 5913T −6 + 16245T −4 + 40051T −2

−77293 + 30629T 2 + 1335T 4
− 1791T 6)/4096,
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λ531 = (−81T −6
− 777T −4 + 110T −2 + 3706 − 3957T 2 + 999T 4)/512,

λ515 = (−27T −6 + 216T −4
− 642T −2 + 900 − 603T 2 + 156T 4)/1024,

λ513 = (54T −6 + 297T −4
− 1616T −2 + 2334 − 1406T 2 + 337T 4)/1024,

λ511 = (−243T −6 + 2205T −4
− 11286T −2 + 11890 − 6935T 2

+3217T 4)/3072, elsewhere zero,

l44 = (9T −4 + 84T −2 + 174 − 60T 2
− 15T 4)/128,

l42 = (−15T −2 + 5 + 7T 2
− 13T 4)/32, elsewhere zero,

φn = αnkn−2σ0

n∑
i=0

n∑
j=1

γni j
cosh ik(b + d)

cosh ikd
sin j (ka − σ t), n = 4, 5,

γ444 = −β444, γ442 = (27T −4 + 78T −2
− 436 + 162T 2 + 41T 4)/192,

γ424 = (−27T −4 + 87T −2
− 37 − 87T 2 + 64T 4)/96,

γ422 = (−81T −6
− 135T −4 + 474T −2 + 454 − 201T 2

− 127T 4)/768,

γ404 = (−27T −4 + 168T −2
− 358 + 320T 2

− 103T 4)/192,

γ402 = (3T −2
− 5 + 7T 2

− 5T 4)/24, elsewhere zero,

φ′

4 = α4k2σ 2
0 (−9T −4 + 36T −2

− 62 + 52T 2
− 17T 4)t/64, φ′

5 = 0,

γ555 = −β555, γ553 = (5 + T 2)−1(405T −6 + 1926T −4
− 16869T −2

+12364 + 6771T 2
− 4370T 4

− 995T 6)/1024,

γ551 = (27T −6 + 357T −4 + 782T −2
− 1710 − 265T 2 + 425T 4)/1024,

γ535 = (5 + T 2)−1(−2025T −6 + 6435T −4 + 11718T −2
− 56858 + 58195T 2

−12329T 4
− 5136T 6)/3072,

γ533 = (5 + T 2)−1(−1215T −8
− 4293T −6 + 12429T −4 + 39903T −2

−25437 − 41967T 2 + 17807T 4 + 4821T 6)/4096,

γ531 = (−81T −6
− 639T −4 + 54T −2 + 2854 − 2317T 2 + 897T 4)/1536,

γ515 = (−405T −6 + 3762T −4
− 12438T −2 + 18968 − 13645T 2 + 3758T 4)/3072,

γ513 = (162T −6
− 207T −4

− 1128T −2 + 1966 − 1170T 2 + 377T 4)/1024, elsewhere zero,

Pn

ρ
= gαnkn−1

n∑
i=0

n∑
j=0

[
Cni j

cosh ik(b + d)

cosh ikd
+ Sni j

sinh ik(b + d)

cosh ikd

]
cos j (ka − σ t), n = 4, 5,

C444 = −4Tβ444, S444 = β444,

C424 = (−351T −3 + 1086T −1
− 424T − 1086T 3 + 775T 5)/384,

S424 = (9T −4
− 24T −2 + 6 + 24T 2

− 15T 4)/64,

C404 = (−81T −3 + 492T −1
− 1030T + 908T 3

− 289T 5)/192,

C442 = (189T −3 + 636T −1
− 2530T + 1116T 3 + 269T 5)/384,

S442 = (−27T −4
− 105T −2 + 289 − 99T 2

− 26T 4)/96,

C422 = (−81T −5 + 27T −3 + 294T −1 + 550T − 21T 3
− 385T 5)/384,
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S422 = (27T −6 + 99T −4
− 346T −2

− 66 + 255T 2
− 97T 4)/256,

C402 = (−39T −1 + 107T − 97T 3 + 29T 5)/96,

C440 = (9T −3 + 60T −1 + 38T − 36T 3
− 7T 5)/64,

S440 = (−9T −4
− 84T −2

− 174 + 60T 2 + 15T 4)/128,

C420 = (−3T −1 + 5T + 3T 3
− 5T 5)/32,

S420 = (15T −2
− 5 − 7T 2 + 13T 4)/32,

C400 = (9T −3
− 36T −1 + 62T − 52T 3 + 17T 5)/64, elsewhere zero,

C555 = −5Tβ555; S555 = β555,

C535 = (5 + T 2)−1(−2835T −5 + 8493T −3 + 16718T −1
− 76038T + 75897T 3

−15623T 5
− 6612T 7)/1024,

S535 = (5 + T 2)−1(405T −6
− 1029T −4

− 2500T −2 + 9590

−8851T 2 + 1647T 4 + 738T 6)/1024,

C515 = (−513T −5 + 4632T −3
− 14998T −1 + 22508T − 15985T 3 + 4356T 5)/1024,

S515 = (27T −6
− 216T −4 + 642T −2

− 900 + 603T 2
− 156T 4)/1024,

C553 = (5 + T 2)−1(1755T −5 + 9486T −3
− 62711T −1 + 49116T

+23909T 3
− 18730T 5

− 4105T 7)/1024,

S553 = (5 + T 2)−1(−675T −6
− 4050T −4 + 20827T −2

− 13924 − 8197T 2

+5110T 4 + 1165T 6)/1024,

C533 = (5 + T 2)−1(−3645T −7
− 8019T −5 + 35559T −3 + 87609T −1

− 38263T − 157849T 3

+71117T 5 + 19635T 7)/4096,

S533 = (5 + T 2)−1(1215T −8 + 5913T −6
− 16245T −4

− 40051T −2 + 77293 − 30629T 2

−1335T 4 + 1791T 6)/4096,

C513 = (378T −5
− 1449T −3 + 1216T −1

− 1598T + 2302T 3
− 849T 5)/1024,

S513 = (−54T −6
− 297T −4 + 1616T −2

− 2334 + 1406T 2
− 337T 4)/1024,

C551 = (189T −5 + 2031T −3 + 1682T −1
− 5674T + 145T 3 + 1755T 5)/1024,

S551 = (−135T −6
− 1677T −4

− 3478T −2 + 2862 + 605T 2
− 865T 4)/1024,

C531 = (−81T −5
− 537T −3 + 382T −1 + 2866T − 2549T 3 + 687T 5)/512,

S531 = (81T −6 + 777T −4
− 110T −2

− 3706 + 3957T 2
− 999T 4)/512,

C511 = (243T −5
− 1809T −3 + 12198T −1

− 14186T + 9127T 3
− 3653T 5)/3072,

S511 = (243T −6
−2205T −4+11286T −2

−11890 + 6935T 2
−3217T 4)/3072, elsewhere zero,

σ4 = α4k4

[
− m44

cosh 4k(b + d)

cosh 4kd
− m42

cosh 2k(b + d)

cosh 2kd

+
1

1024
(81T −6

− 603T −4 + 3906T −2
− 4270 + 2477T 2

− 951T 4)

]
σ0
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