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We derive and analyse, in the framework of the mild-slope approximation, a new double-
layer Boussinesq-type model that is linearly and nonlinearly accurate up to deep water.
Assuming the flow to be irrotational, we formulate the problem in terms of the velocity
potential, thereby lowering the number of unknowns. The model derivation combines two
approaches, namely the method proposed by Agnon et al. (Agnon et al. 1999 J. Fluid
Mech. 399, 319-333) and enhanced by Madsen et al. (Madsen et al. 2003 Proc. R. Soc.
Lond. A 459, 1075-1104), which consists of constructing infinite-series Taylor solutions to
the Laplace equation, to truncate them at a finite order and to use Padé approximants,
and the double-layer approach of Lynett & Liu (Lynett & Liu 2004a Proc. R. Soc. Lond. A
460, 2637-2669), which allows lowering the order of derivatives. We formulate the model
in terms of a static Dirichlet—-Neumann operator translated from the free surface to
the still-water level, and we derive an approximate inverse of this operator that can
be built once and for all. The final model consists of only four equations both in one
and two horizontal dimensions, and includes only second-order derivatives, which is a
major improvement in comparison with so-called high-order Boussinesq models. A linear
analysis of the model is performed, and its properties are optimized using a free parameter
determining the position of the interface between the two layers. Excellent dispersion and
shoaling properties are obtained, allowing the model to be applied up to the deep-water
value kh =10. Finally, numerical simulations are performed to quantify the nonlinear
behaviour of the model, and the results exhibit a nonlinear range of validity reaching at
least kh =3m.

Keywords: water waves; Boussinesq-type models; multi-layer models; nonlinear
dispersive waves

1. Introduction

During the past two decades, the original Boussinesq (1872) model for a flat
sea-bottom and its uneven sea-bottom version derived by Peregrine (1967) have
been widely studied and extended to tackle more and more realistic physical
problems. Consequently, Boussinesqg-type models have emerged as an attractive
and commonly used tool for coastal applications and engineering purposes. The
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derivation of such models is based on a polynomial approximation of the vertical
profile of the velocity field, which allows the problem size to be reduced from three
to two space dimensions. These models are usually formulated as conservation
equations for mass and momentum, including spatial and temporal derivatives of
the free surface elevation and the velocity. In practice, their range of applicability
is measured in terms of kh, where k is the wavenumber and A the water depth.

The conventional Boussinesq model for uneven bottoms (Peregrine 1967),
which employs a quadratic polynomial approximation for the vertical flow
distribution, is a depth-averaged model based on two fundamental assumptions,
namely weak nonlinearity and weak dispersion. Its range of applicability is limited
to kh < 0.75, as stated in Madsen et al. (2002, 2003), so that this model has poor
dispersion properties in intermediate depths. Moreover, the weakly nonlinear
assumption limits the largest wave height that can be modelled accurately.
As a result, substantial efforts have been devoted to extending the linear and
nonlinear range of applicability of Boussinesq-type models. The first historical
improvement, proposed by Nwogu (1993), consists of using a reference velocity
at a specified depth, allowing the resulting model to be linearly applicable at
intermediate depths. Similar models for short-amplitude and long waves have
been more recently proposed and rigorously justified (Bona et al. 2002, 2005;
Chazel 2007). An effort similar to the one of Nwogu (1993) was pursued by
Madsen & Sgrensen (1992), which was followed by the works of Liu (1994)
and Wei et al. (1995), in which the authors efficiently removed the weak
nonlinearity assumption, allowing the model to simulate wave propagation with
strong nonlinear interactions. According to the reviews proposed by Madsen
& Schéffer (1998, 1999), these new Boussinesq-type models allow extending
the linear range of applicability to kh =6, but it turned out that a similar
improvement on the nonlinear characteristics was very difficult to reach. Then,
so-called high-order Boussinesq-type models were derived to further enhance the
deep-water linear and nonlinear accuracy using a higher order (at least fourth-
order) polynomial approximation for the vertical flow distribution. One such
example is the formulation of Gobbi et al. (2000), which uses a fourth-order
polynomial approximation: this model exhibits excellent linear properties up to
kh = 6 for the dispersion relation and up to kh = 4 for the vertical profiles of orbital
velocities, whereas nonlinear behaviour is fairly well captured up to kh = 3. The
price to pay for such an improvement is a significant increase in computational
cost since this model includes up to fifth-order derivatives and therefore requires
a complex numerical scheme.

Over the past decade, two parallel approaches have emerged, one aiming
at extending the range of applicability of the model of Gobbi et al. (2000)
into very deep water without increasing the numerical complexity too much,
and another aiming at lowering the numerical cost of the latter while at least
preserving the linear and nonlinear properties. The first approach has been
extensively investigated by Madsen and co-workers with a first breakthrough in
1999 (Agnon et al. 1999). In this work, the authors present a new procedure by
which it is possible to achieve the same accuracy on both linear and nonlinear
properties. The main idea is to obtain approximate solutions to the Laplace
equation (combined with the exact nonlinear free surface and bottom conditions)
through truncated series expansions. While the formulation of Agnon et al. (1999)
involves velocity variables evaluated at the still-water level and is limited to
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kh = 6, the extended method proposed by Madsen et al. (2002, 2003) completely
removes the conventional shallow-water limitation, allowing for modelling fully
nonlinear and highly dispersive waves up to kh~40, i.e. in very deep water.
This extended approach is based on velocity variables taken at optimized levels
and optimal expansions through the use of Padé approximants. An extension to
rapidly varying bathymetry has been proposed recently (Madsen et al. 2006).
Although a few numerical approaches based on this model have been proposed
(Fuhrman & Bingham 2004; Engsig-Karup et al. 2006, 2008), the counterpart
for this wide range of applicability is the numerical complexity of the underlying
model, which includes derivatives up to the fifth order, and consists of more
equations (and more unknowns) than the alternative model of Gobbi et al. (2000).
An interesting alternative approach has been chosen by Jamois et al. (2006),
where the authors propose using a velocity potential formulation and truncation
of the infinite series expansions of the solutions to the Laplace equation at a
lower order: the resulting model is linearly and nonlinearly accurate only up to
kh =10, but entails a much lighter numerical complexity with less equations and
with derivatives up to the fourth-order only.

The second approach that has been studied is the double-layer approach, as
proposed, among others, by Lynett & Liu (2004a,b) and Audusse (2005). This
approach is based on the idea of trading fewer unknowns and higher spatial
derivatives for more unknowns and lower spatial derivatives. The multi-layering
concept developed in the above references can be seen as an efficient mathematical
tool to reduce the order of derivatives in any model, while increasing its linear
and nonlinear range of applicability. The double-layer modelling proposed by
Lynett & Liu (2004 a,b) is purely conceptual since the two layers have the same
density. However, the resulting model, which is based on classical depth-integrated
Boussinesqg-type equations, allows wave propagations up to kh =6 to be modelled
accurately, both linearly and nonlinearly. This offers a very interesting alternative
to high-order models since this double-layer model is less complex (including
derivatives up to third-order only) and more accurate in deep water.

The present work is mainly inspired by these two approaches, namely the one
of Madsen et al. (2002, 2003) and the one of Lynett & Liu (2004a,b). The primary
goal of this paper is to offer an efficient alternative to the models of Madsen et al.
(2002, 2003) by mixing their procedure, the simplifications of Jamois et al. (2006)
and the double-layer concept of Lynett & Liu (2004a,b). We aim at deriving a
model that is (i) applicable to complex domains, such as coastal areas, islands
or estuaries, and (ii) linearly and nonlinearly accurate up to deep water, but
with lower complexity than the previous models (i.e. lower order of derivatives
and lower number of equations). The model proposed herein satisfies all these
conditions, as it exhibits excellent linear and nonlinear dispersive properties up
to kh =10, consists of four equations in both one and two horizontal dimensions
(denoted by 1DH and 2DH, respectively) and includes up to second-order spatial
derivatives only.

The present model hinges on a static Dirichlet-~Neumann operator and its
approximation using a double-layer technique and Padé approximants. The
advantage of using the static operator (i.e. defined on a fixed domain), as opposed
to the usual Dirichlet-Neumann operator defined at the free surface, is that
the static operator (or its approximation) can be computed once and for all.
The Dirichlet—Neumann operator has been extensively investigated over the past
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two decades. Exact expressions of the static operator, thereby leading to exact
dispersion relations, can be found in the work of Dommermuth & Yue (1987),
Craig & Sulem (1993), Smith (1998), and in the work of Matsuno (1993) and its
extension to very general bathymetries by Artiles & Nachbin (2004 a,b). However,
the application of the above approaches to complex 2DH domains has not been
reported yet. Thus, with an eye towards coastal engineering applications, we
prefer to base our approach on approximating the static Dirichlet—Neumann
operator. Furthermore, we mention the new promising approach of Ablowitz
et al. (2006) based on an exact integral representation of the usual Dirichlet—
Neumann operator where no approximation is needed. Finally, we observe that
the double-layer technique used to derive the approximate static Dirichlet—
Neumann operator helps to reduce the order of the derivatives, while improving
the accuracy of the model.

The paper is organized as follows. In §2, our model is formulated in terms of
a static Dirichlet—-Neumann operator, and we derive in §3 an approximation to
this operator. A linear analysis of the model is presented in §4, including linear
dispersion, vertical profiles of velocities and linear shoaling. These properties are
optimized based on Stokes linear wave theory, and it is shown that the model is
accurate even for deep-water conditions. Finally, in §5, numerical simulations are
developed in 1DH to assess the nonlinear properties of the model for flat-bottom
conditions.

2. Derivation of the double-layer formulation

(a) Governing equations and boundary conditions

We aim at formulating a double-layer Boussinesqg-type model for the three-
dimensional irrotational flow of an inviscid and incompressible fluid with a free
surface. We focus here on so-called gravity waves or water waves, i.e. the evolution
of a fluid under the only influence of gravity. The capillary effects owing to
the presence of surface tension are neglected. Moreover, we assume constant
atmospheric pressure at the free surface of the fluid. We adopt a Cartesian
coordinate system, where we denote the horizontal coordinates by X = (z, y) and
the vertical one by 2z, with the z-axis pointing upwards. The time-dependent
fluid domain is bounded from below by the static sea bottom and from above
by the time-dependent free surface. We restrict this study to the case where the
bathymetry and the free surface elevation are single-valued continuous functions,
i.e. they can be described by the graph of two functions X +— z(X) = —h(X) and
(t, X) — n(t, X), respectively. The level z =0 corresponds to the still-water level.
As shown in figure 1, the fluid is divided into two layers by an interface z = 2(X) =
—o h(X), where o is an arbitrary parameter in ]0, 1[. Thus, the thickness of the
two layers are constant fractions of the still-water depth and do not depend on the
free surface elevation. Unless the bottom is flat, the interface level 2 is therefore
spatially (but not temporally) variable. The upper layer of the fluid is denoted
by £2, and the lower layer by £25, namely £2(¢) = {(X, 2); 2(X) <z <n(t, X)} and
2o ={(X,2);2(X) <z<2(X)}. We point out that this fluid division into two
layers is purely conceptual since both layers have the same density.

As far as the bathymetry is concerned, we assume in this work that the
still-water depth h verifies |[Vh| < 1, which corresponds to the classical mild-slope
approximation. This approximation consists of neglecting all the quadratic (and
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Figure 1. Representation of the fluid domain.

higher order) terms in Vh, along with the derivatives of h of order greater than 1.
Physically, this approximation means that we assume the wavelength of the free
surface waves to be shorter than the distance over which the bathymetry (and
thus the still-water depth) varies appreciably. We point out that, in the mild-
slope framework, the overall amplitude of bottom topography levels can still be
large. The mild-slope approximation plays an important role in the derivation
and linear optimization of the present model, and it seems quite arduous to
incorporate higher order bathymetric terms without significantly increasing the
complexity of the model. For very general bathymetries in 1DH, we refer to
Artiles & Nachbin (2004a,b). For clarity, all the equations derived using this

mild-slope approximation are indicated in this work by the symbol ~ instead of
the equality symbol.

Since the flow is assumed irrotational, there exists a velocity potential ¢ such
that u= V¢, w=0,¢, where u denotes the horizontal velocity of the fluid, w the
vertical velocity and V is the horizontal gradient operator (d,,d,)*. We define
the velocity potentials ¢; and the vertical velocities w; in each layer by ¢; = ¢y, ,
w; = 0,¢;, where the subscript 7 € {1,2} denotes the layer index.

The fluid motion in each layer is governed by the following equations written
in terms of the velocity potential ¢; and the vertical velocity wj,

Ag;+ 39, =0, (X,2)e 2, (2.1a)
1 2 1 2
at¢i+§|v¢i| +§wi+9z+Pi:Ra (X, 2) € 824, (2.1b)

where P; is the reduced pressure field in each layer ¢ is the gravitational
acceleration and R is the Bernoulli constant. Equation (2.1a) corresponds
to the Laplace (or continuity) equation and (2.1b) corresponds to the Bernoulli
(or momentum) equation. The Bernoulli constant R only depends on time.
Therefore, up to a time-dependent shift of the velocity potential, we can take
this constant to be equal to Py, where Py, is the constant atmospheric pressure
at the free surface.

At the free surface z = n(¢, X), the following boundary conditions are enforced:

on+Vn -V —un =0, atz=n, (2.2a)
P1=Patma atz:’% (22b)
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where (2.2a) is the usual kinematic free surface condition expressing that the
free surface is a bounding surface, i.e. no fluid particle can cross it. At the
interface z = z(X) between the layers, the following natural continuity conditions
are enforced:

¢1 =¢2, wp = Wa and P1=P2, atz:%. (23)

Observe that ¢1 = ¢ and w; = we at z=Zz imply V¢, = V¢ and thus v = us at
z =z, hence recovering the continuity conditions on the horizontal and vertical
velocities enforced by Lynett & Liu (2004a).

Finally, the system of equations is closed by the usual kinematic condition at
the sea bottom z = z(X),

Vh-V¢s+wy=0, atz=2, (2.4)
which expresses that the sea bottom is a bounding surface. We now introduce

é:l(t,X)=¢1(t7X>Z=7l(t;X)) and U7lzw1(t7XaZ=n(t7X))7

¢7(t7X)=¢l(t7X7z=2(X)) and @=wl(taX7z=%(X))7
ba(t, X) = pa(t, X, 2 =2(X)) and  wy=ws(t, X, 2= 2(X)).
Following Zakharov (1968), we can reformulate the equations as
~ Lo~n 1oy 2
01 + 5 IVel" — S " (L +1Vl*) + gn =0, (2.5a)
9 + V-V — @ (1+ |V} =0, (2.5b)

where (2.5a) is the Euler equation expressed at the free surface and (2.50) is the
kinematic condition at the free surface,

Ay +0,w =0, 2Z<z<n, (2.5¢)
Ago+ 0, wy =0, z<z<7%

where (2.5¢) and (2.5d) are the Laplace equations in each layer, and

{ﬁ\l :(’b\Q, (256)
o = T, (2.5f)
Wy + Vh - Vs ~0, (2.59)

where (2.5€) and (2.5f) correspond to the continuity conditions at the interface
and (2.5¢) to the kinematic condition at the bottom, where we used the mild-
slope hypothesis to neglect the |Vh|?> term. We point out that we work with a
velocity potential formulation, unlike Madsen et al. (2002, 2003) who formulated
the governing equations in terms of the velocity variables u and w. This choice
stems from our will to minimize the total number of equations in the model,;
in 2DH and in the present double-layer framework under the irrotational flow
assumption, our velocity potential formulation allows us to consider two less
equations than with a velocity formulation.

In the following, equations (2.5a) and (2.5b) are left unchanged as they define
the fully nonlinear time-stepping problem. We focus on the Laplace equations
and the remaining boundary conditions to close the time-stepping problem by
expressing the vertical velocity at the free surface w; in terms of the velocity
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potential ¢, at that surface, the free surface n and the bathymetry h. This relation
corresponds to the well-known Dirichlet—Neumann operator. The next subsections
and §3 are devoted to the crucial construction of an accurate, yet computationally
cheap, approximation to this operator.

(b) A translated Dirichlet—-Neumann operator

The Dirichlet—Neumann operator associated with the problems (2.5¢)—(2.59)
is denoted by G[n, h] and is defined by G[n, h]Y = 0,¢1|,=, for any smooth enough
function v, where (¢1,¢2) solves the boundary value problem composed of
equations (2.5¢)—(2.5g) along with the Dirichlet condition ¢; =y at z=17. One
can thus simply write the closure between the unknowns w;, ¢; and n as

@, = Gln, hly. (2.6)

This Dirichlet—-Neumann operator is at the heart of the derivation of Boussinesq-
type models since the structure and accuracy of these models essentially depend
on the method used to construct an approximation to this operator. Once this
approximation is derived, there are two options. The first one is to eliminate
the vertical velocity variable w; from the equations by plugging (2.6) into (2.5q)
and (2.50). This method has been classically used in Boussinesq-type models
and has the advantage of lowering the number of equations to solve at each
time step, but significantly increases their complexity. The other option has been
used, for instance, by Madsen et al. (2002, 2003) and consists of keeping w; in
the equations, which entails solving (2.5a) and (2.5b) and then computing @
through the use of the Dirichlet—-Neumann operator G[n, h] at each time step.
This is the method we have chosen to use to keep the equation’s complexity
to a minimum.

The main difficulty in finding an approximation to the Dirichlet—Neumann
operator is that it involves solving the Laplace equations (2.5¢) and (2.5d), along
with the boundary conditions (2.5¢)—(2.5g) and ¢ =¢; at z=mn, on a time-
dependent domain bounded from above by the free surface z=rn. Keeping w;
in the equations involves constructing an approximation to G[n, h] at each time
step, which can be a serious computational problem as it increases the numerical
cost. An interesting solution to this issue consists of constructing an alternative
Dirichlet—-Neumann operator expressed at the still-water level, and then finding a
closure between the unknown functions at the free surface 2 =n and the ones at
the still-water level z =0. Therefore, we introduce ¢o(t, X) = ¢1(t, X, z=0) and
wo(t, X) =wi(t, X,z=0) and denote by Gy[h] the Dirichlet-Neumann operator
corresponding to n =0, i.e.

Golh] =GI0, h]. (2.7)

The translated operator Gy[h] is such that Go[h]Y = 0,¢1].,—0 = wy, where (¢, p2)
solves the boundary value problem

Ay + 321 =0, 5<2<0,
Agy + 32y =0, 7<z<3,
=1, at z=0, (2.8)

0
G1 =2, 0.¢1 =002, atz:%a
.y +Vh-Véy=0, atz=3
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The main advantage of this translated Dirichlet—Neumann operator is that the
boundary value problem (2.8) is posed on a static domain bounded from above
by the still-water level z =0 and from below by the sea bottom z = z.

Remark 2.1. We point out that ¢ is not defined everywhere since the bounding
free surface n can take negative values. This issue can be solved by extending
the solutions to the Laplace equation above z=mn when 1 <0, using the fact
that both ¢; and its normal derivative w; are continuous at the free surface.
This mathematical trick allows us to artificially define ¢y and wy when n < 0.
This tool has been implicitly used by many authors, such as Nwogu (1993), Wei
et al. (1995), Gobbi et al. (2000) and Madsen et al. (2002, 2003), who derived
models based on a horizontal velocity (or potential) variable taken at free surface-
independent levels, thus allowing these levels to exceed the bounding value z =1n
for n negative enough.

(¢) Closure relation and model formulation

Our goal is twofold. First, to construct an approximation to the translated
Dirichlet-Neumann operator Go[h] and second, to look for closure relations
between the unknowns ¢y, W, ¢y and wy. The second objective can be readily
achieved via a Taylor expansion of ¢, and w; at the still-water level z = 0. Indeed,
combining the MacLaurin expansions of ¢y and w; at the fourth and third order,

respectively, (see remark 2.2) and the Laplace equation A¢y =—0d,w; at z2=0
yields the desired closure relations, namely
$1=01 -GN + (B —Pid)wy, @ =—BiAg + (1 —@A)w,  (29)

where & = (1/2), fi =n and 71 = (n°/6).
We can now state our double-layer model as follows:

1
t¢1+—|V¢1I — S @1+ |Vn*) + gn =0,

am+Vn- V¢1 — @ (1+|Vnl*) =

2 3 N ~ 2.10
(1 — %A + (- n—A)gopp[h]) ¢o = @1, ( )

W = ( nA+<1——A> Go "l ]) ¢o,

where Gi"’[h] is an approximation to the static Dirichlet—-Neumann operator
Golhl, Wthh is detailed in the following section.

The main advantages of this model are that (i) it consists of only four
equations both in 1DH and 2DH, (ii) it can be used in complex domains,
and (iii) the approximate Dirichlet~-Neumann operator G;"’[h] can be computed
once and for all at t=0 since this operator is static. Furthermore, we will
see in §3 that it includes at most only second-order horizontal derivatives.
This is a major improvement in comparison with high-order Boussinesq-type
models, such as those of Jamois et al. (2006) and Madsen et al. (2002, 2003),
which contain fourth- and fifth-order derivatives, respectively, and consist of
respectively five equations in 1DH and 2DH, and five equations in 1DH and seven
in 2DH.
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Remark 2.2. The truncation orders used in (2.9) can be motivated by a
dimensional analysis. We scale the vertical coordinate z and the free surface n
with the typical amplitude a of the surface waves, the horizontal coordinate X
by the typical wavelength A and introduce the mean depth hy. The truncation
errors in the two equations of (2.9) are, respectively, of orders O(e'u?,e’u?)
and O(s*u?,e3u?), where ¢ = a/hy and u = hg/)»2 correspond, respectively, to the
nonlinearity and dispersion parameters. Thus, the truncated terms are almost
third and fourth powers of the steepness parameter s defined by s=e¢,/i, whose
maximum value is admittedly sp.x ~0.142 for a stable wave (Williams 1981).
Combining this value and the fact that we consider fully nonlinear waves, for
which ¢ is of order O(1), motivates the truncation order in (2.9).

3. An approximate static Dirichlet—-Neumann operator

(a) Theoretical solutions to the Laplace equations

The first step in the derivation of the approximate static Dirichlet—Neumann
operator Gg"P[1] is to look for solutions to the Laplace equations

Api+32¢;=0, (X,2) €, (3.1)

where we have redefined the upper-layer domain as £, = {(X, 2); 2(X) < 2 <0}.
To this end, we follow the generalized Boussinesq procedure introduced by
Madsen et al. (2002, 2003), which consists of looking for a solution under the
form of an infinite Taylor series in the vertical coordinate. The main difference
between this method and the classical Boussinesq procedure is that, in the
latter, one looks for a finite series solution in the vertical coordinate, i.e. a
low-order polynomial in the variable z. The generalized method of Madsen
et al. (2002, 2003) allows finding exact infinite series solutions instead of
approximate solutions.

We first introduce two arbitrary expansion levels z; and 2 in each layer, namely
21 (X) =—01h(X) with 0 <07 <o and ZQ(X) —ooh(X) with 0 <09 < 1, and the
associated unknowns ¢Z and w;, such that ¢Z ¢;(X, 2= 2(X)) and w; = wZ(X z=
zi(X)) for i€ {1,2}. We now look for solutions to the Laplace equations in the
form of infinite Taylor series in the vertical variable (z — z;),

$i(X,2) =) (z—2)"p{" (X), (3:2)
n>0

where the choice of the vertical variable (z — z;) instead of z actually allows us
to save one step compared with the procedure of Madsen et al. (2002, 2003).
Substituting (3.2) into the Laplace equations (3.1) and using the mild-slope
assumption leads to the recurrence relation

Ap™ —2(n+ 1D)Vz - V"™ 4 (n+ 2)(n + D" % 0. (3.3)
Observing that A(Vz; - V(;Sgk)) 2 Vz - AquEk) for all k£ yields the expression of
(b?n) and ¢§2"+1) in terms of ¢; and ;. Plugging these expressions into the ansatz

(3.2) provides the desired expressions for the velocity potentials ¢; and vertical
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velocity w; in terms of (57 and w; for all (X, 2) belonging to £2;,

¢z‘(X7Z)=C(Z—Zz‘)qgrl‘:g(Z—Zz‘)ﬁJH-VZi'F¢“ ] (3.4)
wi(X, 2) = =8z — 2)A¢; + C(2 — 2z)W; + V2 - [y,
where C and S are infinite-series pseudo-differential operators defined by
52n 2n41
Ch) = ;(—1)"@A" and S(L) = ;(—1)”mm, (3.5)
where the slope terms Iy, and I',, are given by
Ty, = (z = 2)[C(z — 2)V; + Sz = 2)Vil = SG: - Vi, } 36)
Ly, =z —2)[-8(z = z)VAP; + C(z — ) V] + S(z — z) V.

The expression (3.4) of ¢, provides a theoretical formulation of an exact solution
to the Laplace equations (3.1). Strictly speaking, we can verify that they are in
fact solutions to (3.1) with residuals of order O(|Vh|?, Ah), which are negligible
within our mild-slope approximation framework.

(b) Truncation of the Taylor series

The previous solutions to the Laplace equations (3.1) are purely theoretical
since they involve infinite-series pseudo-differential operators. To deal with this
problem, we obviously need to truncate the series at a finite order, and this raises
the question of choosing the order of truncation. Through this choice, we have
to reach a compromise between the accuracy of the truncated expression and the
numerical complexity of the final model. In fact, the truncation order is a key
factor for the domain of validity of the model; the higher the truncation order
is, the better dispersive effects are reproduced, so that the model is applicable in
deeper water. We recover here the common paradigm encountered in works based
on asymptotic expansions of the solutions to (3.1), where retaining higher order
terms increases the domain of validity in intermediate or deep water.

Within our double-layer framework, the increase of the number of unknowns
allows us to lower the truncation order in comparison with the works of Madsen
et al. (2002, 2003), and even of Jamois et al. (2006). We take advantage of this
possibility and truncate the operators C and S by retaining only the first two
terms of the series, which leads to the following approximations

A2 , A3 :
Coy=1-"FA+ O'A?) and S(A) =i — TA+ O(\SA?). (3.7)

We first plug these approximations into (3.4), which leads to the following
truncated expressions of ¢; and w;

$i(X,2) = (1 = a; A); + (Bi — viD) i + Vz - [Bi((V — a; VA
+(BiV — iV A — (B — v VA,

wi(X,2) = (—BiA + YA + (1 — a; A + Vz; - [Bi((—BiVA
+yiVADS: + (V — a; VAYE) + (B — yiVA) ],

(3.8)
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where

Ry Y
a¢(2)=%, Bi(z)=z— 2 and Vi(z):¥- (3.9)

We now reformulate these expressions by applying the operators P;, defined for
all smooth enough scalar-valued function u by P; u =« — 8;Vz; - Vu, which yields
the following expressions for all (X, z) in £2;,

P~ (1 — ;A + (Bi — v — Vi - [(BiY — yiV Al
(3.10)

Piw; (=B + yib) i+ (1 — M)y + Vi - [(B,Y — vV A) .
The advantage of this new formulation will become clear in the following.

Remark 3.1. The chosen order of truncation can be motivated as in remark 2.2
by a dimensional analysis in the case of a flat bottom. Scaling z and the
expansion levels z; with hy =ohy in the upper layer and hy = (1 — o)hy in the
lower layer, the dimensionless form of (3.4)—(3.5) is obtained by replacing A2 by u;
in (3.5), where u; = hf /A% corresponds to the dispersion parameter in each layer.
Supposing that all the derivatives are of order O(1), we can analyse the order of
the third terms of each series in deep water, for instance khy =10, where u; is
considerably higher than in shallow water. If we restrict o to the range [0.25,0.75],
this leads to the following estimates for n =2 in deep water: u;'/((2n)!) ~ 0.08;

wi/((2n+ 1))~ 0.01; and ,u?“/((2n + 1)!) ~ 0.02. Thus, the third term of each
infinite series in (3.4)—(3.5) is very small in deep water; these terms and all the
subsequent ones can be neglected. The same kind of analysis performed for an
uneven bottom leads to the same result. This motivates the truncation order

chosen in (3.8).

(¢) Padé approximants

Using the truncated expression (3.10), it is possible to construct an
approximation to the static Dirichlet—Neumann operator, but involving up to
fourth-order differential operators at first order in A and fifth-order differential
operators in the slope terms. Consequently, we now present a method to lower
the maximum order of the derivatives in (3.10) based on Padé approximants.
We follow the strategy introduced by Madsen et al. (2002, 2003) and expand
the variables ¢; and @; in terms of auxiliary variables ¢! and w; through the
relations

bi= Mi(zV)¢*, b= M(zV)ws, M(zV)=1+piz’A + ¢z Vz -V, (3.11)
where p; and ¢; are arbitrary coefficients to be determined.
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We now plug this ansatz into (3.10) and conduct the same dimensional analysis
as previously, which yields the following expressions:

Pipi = (1 — (@ — pizd) V! + (Bi — (vi — Bipizd) Aw?
+V2zi - [((qizi — BV + (vi — Bipiz? — ai(qi + 4p) 2)VA) P

+(BiqiziV — yi(q + 4p) 2V A)w!],
(3.12)

Pow; = (=BiA + (v; — Bipiz) A7 + (1 — (a; — piz?) A w!
+Vzi - [(=Bi(qi + 4p) %V AT + ((Bi + ¢iz)V

—(yi — Bipizi + ai(qi + 4p))z)V A)w?],

where we have again kept the first two terms in each modified truncated series,
except the fifth derivative of ¢! appearing in the slope terms of P;w;. This choice
is motivated by the mild-slope approximation, but it clearly unbalances the global
structure of the slope terms and does have a negative impact on the linear
shoaling. However, we present in §4 a remedy to this problem.

We now aim at lowering the maximum order of the derivatives in (3.12) while
preserving the overall accuracy of the truncated expressions (3.10). This goal
can be achieved by choosing the coefficients p; and ¢; in order to introduce
Padé approximants in the equations. In Madsen et al. (2002, 2003), the authors
use Padé approximants as a way to improve truncation accuracy without
increasing the order of the derivatives. In the present work, we rather view the
Padé approximants as a means to cancel high-order derivatives in (3.12) while
preserving the accuracy of the truncated expressions (3.10).

Practically, lowering the maximum derivative order in (3.12) means requiring
that the factors y; — B;p;z? and ¢; + 4p; (in front of the fourth-order and third-
order derivatives, respectively) vanish in each layer, via an appropriate choice of
the constants p;, ¢; and o; (that define the expansion levels z;). Since the quantity
i — Bipiz? depends on the vertical variable 2 through y; and B;, it is impossible
that this factor vanishes over the whole still-water column. Nevertheless, the
truncated expressions (3.10) of P;¢; and P;w; need to be evaluated only at some
levels, namely z = 0 for the upper boundary of §2;, z = Z for the interface and z =z
for the sea bottom. Consequently, requiring that the quantity y; — B1p; 27 vanishes
at the still-water level and at the interface, and that the quantity y, — ,32]92222
vanishes at the interface and at the sea bottom eliminates all the fourth-order
derivatives from the model. Using (3.9), this yields

1 L{1-0)\’ R o+1
= — = — o1 = — an Oy = .
b 6’ b2 6\1+0 )’ 1=3 2 5

Then, taking ¢ = —4p; yields ¢ =-2/3 and ¢ =—(2/3)(1 —0/1+0)>. We
observe that the expansion levels z and 2z, defined by z; = —o1h and 2 = —oyh,
respectively, are thus taken at the middle of the upper layer at rest and at the
middle of the lower one, respectively.

We can now plug the previous values for p;, ¢; and z; into the expressions
(3.12) of P;¢p, and P;w;, and evaluate them at the three boundary levels

Proc. R. Soc. A (2009)


https://domicile.ifremer.fr/,DanaInfo=rspa.royalsocietypublishing.org+

Downloaded from rspa.royalsocietypublishing.org on June 24, 2010

A double-layer Boussinesq-type model 2331

2=0, z=2 and z = z. We first obtain the following expressions at the still-water
level:

o
(1+5AiVA-V) o= (1= aA) ¢ + Bluf + Vh [y} — 8 Vuil,

(3.13)
(1 + %ﬂfw -v) wy = —BIAGE + (1 — e A)w! — eIV -Vt
where
o o? o3 502
*——h2 *=_h, y'=-—h, 8'=-—h and &=—"nh. 3.14
a=phh Pi=gh vi=gph Gi=ppht and e =g (3.14)
At the interface z =z, we use the mild-slope approximation to obtain
o -~ m
(1 - SBiVh -v) G R (L — atA) ¢ — Brwt + Vh [V + 8TV uil,
(1 - %ﬂth .v) TR BIAGT + (I — af A) w) + Vh [y} Vull,
(3.15)
(1 + —ﬂﬂh V) by ~ (1 — a3 A) 5 + Bywh + Vh[y Vs — 83V wil,
+ m * * * *
(1 +——B5Vh- v) Wy~ —B3AP + (L — oy A) wh — VR -[e5Vwh],
where
1—0)? 1- 50 + 1
a;=ﬂh2, pr=—Th, y= G+ (1—o)h,
12 2
, , - (3.16)
5r=8= g and er= G+ (1 —o)h.
12
Finally, the expressions at the sea bottom z=Zz are
( *Vh'V>¢T%( — ajA) @5 — Bywh + Vh-[85Vwh — e5V 3],
(3.17)

(

*Vh-v) 2R BEAGE + (1 — ajA) wh+ Vh -[y; V.

(d) Formulation of the approximate static Dirichlet—Neumann operator

The final step in deriving our approximate static Dirichlet—Neumann operator
Gy""[h] is to reformulate the boundary conditions at z=2% and z=Z in terms of
Q ¢; and P;w; instead of ¢; and w;. At the interface, the two operators acting on
¢ and w; on one side, and ¢y and Wy on the other side, differ from each other.

Proc. R. Soc. A (2009)


https://domicile.ifremer.fr/,DanaInfo=rspa.royalsocietypublishing.org+

Downloaded from rspa.royalsocietypublishing.org on June 24, 2010
2332 F. Chazel et al.

A simple reformulation of the continuity condition ¢/>\1 = <2>\2 is

o+
2

o . ~m h 1 . -~
(1—5ﬂ1Vh-V)¢>1% 1—JVh-V) (14 BIVH-V ) 6.
Consequently, the continuity conditions (2.5¢) and (2.5f) take the form

_ h 1 _
(1—%ﬁth-V)¢1=<1—ZVh-V) (1+U;r ﬁ;Vh-v>¢2,

, o (3.18)
(1 _ %ﬁth-V) & = (1 — th.v) (1+ "Tﬁ;vnv> Y

Finally, applying the operator 1 — ((¢ +1)/2)B;Vh-V to (2.5g) leads to the
following reformulation of the kinematic condition at the bottom:

o+1 . o—+1 —m
(1_Tﬂ;Vh-v) w2+Vh-V<1—Tﬂ§Vh'V) H%0. (319

Gathering all the previous results, we are able to construct the system of
five equations on the six unknowns ¢y, wy, ¢7, w, ¢; and wi that defines
the approximate operator G,"’[A] linking wy to ¢. The first corresponds to the
reformulated Dirichlet condition (Pi¢1)|,—0 = (P1].=0)¢o, i.e. the first equation of
(3.13). The second and third equations correspond to the continuity conditions
at the interface z =z and are obtained by plugging (3.15) into (3.18). The fourth
is the condition at the sea bottom derived by plugging (3.17) into (3.19), and the
last corresponds to the Neumann condition (Piw;)|,—o = (P1],=0)wy as expressed
by the second equation of (3.13). These five equations can be recast as

My M 0 0 oM Py

./\/l21 M%Q M:Q?) M:24 wi“ — 0
Mz My, My My | | 65 0 |’ (3.20)
0 0 My M) \w; 0

Powy=—BrAGT + (1 — af A — £5Vh - V)u?,
with the differential operators

PO=1+%,8;*Vh-V,

M11=1 —O[TA +)/1*Vh V, Mu:ﬂf —STV}L V,
Mglzl—ai‘A—sTVh-V, M/QZI—,BT-F(STV}LV,

h h

=i+ (514 581) Vv, M= gia, 3.21)
My =1 —a'A+yiVh-V, M, =BA— %ﬂ;V}L VA,

u=—1—a3A)+Vh- ((83‘ + Z) V- Za%‘VA) ,

s=BsA+Vh-(V—asVA), My=1-a;A+ (y; —B5)Vh-V.
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Incidentally, we observe that it is possible to eliminate all the third-order
derivatives from the operators M,, Mi,, M;, and M/, in these equations.
Indeed, applying the operator Vh -V to the fourth, first and second equation

of (3.20), using the mild-slope approximation and combining the results
yields

WiVh - VAW, = Vh-Vws + BiVh- VAP,
@V VAYE = V-Vt + BIVh-Vui — Vh- Ve, (3.22)

WiV VAYE X 2B:Vh -Vl + Vh- Vi + BiVh -Vl — Vh - V.

Plugging these results into (3.20), we formulate our approximate static
Dirichlet—-Neumann operator ggpp[h] as

My Mz 0 0 oy Pydo
Mo My Moz Moa | | Q1o
Mz Mza Mzz Maa | | g3 N Qo | (3.23)

0 My Myz My wh Qs

Pywy=—BfA¢; + (1 —afA — e[ Vh- V) wf,

where the differential operators Py, Mi;1, Mia, My and Ms; are given by (3.21)
and the new operators are defined by

Moy =—B7 + (Bf —3

h
—ﬂf) Vh-V, My=—1—aiA) —yVh-V,

3o
M24:—ﬂ;+8;Vh-V, M32:1—QTA+(V1*—:}L) Vh-V,

L (3.24)

Mss =B34 —

* k 3
1_0Vh.V, M34:—(1—a2A)—|—(82—§h)Vh.V,

M42: —2,3TV]LV, M43:,B;A, M44:1—(X;A+()/2*—2,3;)th,

h 3
o —

We denote by M = (M;)1<i <4 the matrix differential operator linking ¢7, w},
¢; and wh to ¢y in (3.23). We can write each of the operators M,; as a sum of a
first-order (in h) operator P;; and a mild-slope operator Vh - Q;;, yielding

M=P+Vh-Q, (3.25)
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where
l—aiA B 0 0
p_|1-eia B clraa g
BiA 1 —ofA BiA —14+asA |’
0 0 BiA 1 —aiA
Z8% -8V 0 0
—&iV 8 — gﬁf \Y -V Y
© 0 (yl*— i h)V _ 3y (e;—§h)v
l1—0 l1—o0 2
0 —2B1V 0 (rs — 2BV

We denote by U the vector (¢}, wf,¢s, wi)™ and by F the right-hand side
(P, Quipo, Qadpo, @3po)™. The differential system in (3.23) then takes the form

(P+Vh-QU=F. (3.26)

A Fourier analysis of the differential operator P shows that it can be inverted
in the case of a flat bottom. Considering an uneven bottom, we can write P =
Po + Py, where Py =P(hy), hy is the mean depth and Py is of order O(Vh). This
ensures that the differential operator P is invertible when Vi is small enough.
Finally, the differential operator R is defined by

R=P'dd—Vh-QP™), (3.27)

where Id is the identity operator, and is thus an approximate inverse of the
operator P+ Vh - Q up to O(|Vh|?) terms. Hence,

U~RF, (3.28)

which yields the explicit expressions of ¢;, w;, ¢; and w} in terms of ¢;.
The very last step consists of introducing the operators
Ni=-BfA, No=1—0afA—¢[Vh-V,
o , 3.29
Qozl—gﬂ{‘Vh-VgPO_l, (3.29)

and plugging the expressions of ¢] and w] into the last equation of (3.23), so as
to obtain the explicit relation between wy and ¢y, and thus the explicit expression
of our approximate static Dirichlet-Neumann operator G,"’[h]
Py
G
Q>
@3

This expression completes the formulation (2.10) of our double-layer Boussinesg-
type model and will be further improved in §4f to tighten the model shoaling
properties. Once again, we stress that the major advantage of the operator G;*"[h]
is that it is static. Hence, we can construct it at ¢t =0 once and for all.

SPA=Q (M Ny 0 0O)R (3.30)
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Once we have computed ¢y, we can compute the values for ¢}, ¢ and w? using
(3.28). Therefore, we can recover the vertical profiles of the velocity potentials ¢,
and ¢ and the vertical velocities wy and ws over the whole water column using a
generalization of (2.9) for any z € (0,7), and plugging the computed values of p;
and ¢; into (3.12). We point out that we have neglected the third- and fourth-order
derivatives in the following expressions, to obtain only second-order derivatives.
Of course, there is a price to pay for this choice, as discussed in the linear analysis
of the vertical profiles in §4e. We use the expressions

22 23
d1(t, X, 2) = (1 — 5A> ¢o + (Z — €A> w,

, (3.31)
w (t, X, 2) = —zA¢y + (1 — %A) Wy
in the vertical region z € (0,n) and the expressions
bt X, )~ 1+ Bz V[ (1-al@a) ¢ + (B1) - v @a) uf
~ Bl)Vz - Vol ],
. L (3.32)
wi(t, X, 2) % (1+ V2 V) [-Bl2)A¢] + (1 - al2)4) w}
+ IV - Vur
for z € [z,min(0,n)] if i=1 and for z € [z, 2] if =2, where
2 1 1— 2
al(z) = %(z +oh) + %hz, ab(z) = S +MGE+oh) + %h%
+1
Bl =2+ Zh Bl =2+ "—h, (3.33)
3 _ E O_’ 1 _l o+ 1
ACRE (= + 2h) (+oh), yi)=2G+h (z+ Z—h) Gz +ah).

Using (3.31) in the region between the still-water level and the free surface and
(3.32) elsewhere, instead of applying (3.32) everywhere seems to provide a more
accurate description of the nonlinear profiles, as specified by Madsen et al. (2002,
2003). This property has also been observed during the nonlinear simulations
performed on the present model in §5.

4. Linear analysis of the double-layer model

The goal of this section is to analyse the linear properties of the model (namely the
phase and group velocities, the vertical profiles of velocity potential and vertical
velocity and the linear shoaling) and to optimize their accuracy in relation to the
results of Stokes linear theory.
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(a) Linearization of the governing equations

In order to investigate these linear properties, we restrict the analysis to the
one-dimensional case. We linearize the governing equations (2.10) around steady

state, which yields 51 = ¢ and w; = wp, and leads to the linearized model

dipo + gn =0, (4.1a)
8t7’) — Wy = 0, (41[))
= Gy " [hlo, (4.1c)
or equivalently, up to O(h?) terms,

Ao + gn =0, (4.2a)
9m — wy =0, (4.2b)

Mll Mlz 0 0 ¢T P0¢0
Mot Moy Moz Moy | | wi | _ | Qo (4.2¢)

Mz Mz Msz Msg | | @5 |~ | Gego ]’
0 My Myz My wh X390

Pywy = —B32¢; + (1 — o2 — &5 h,d,) wf, (4.2d)

where h, is the bottom slope and the differential operators M ; are left unchanged,
except that they are one-dimensional operators here. We point out that, in this
linearized model, the slope terms are kept in order to investigate the linear
shoaling properties. For convenience, we apply the operator P, to equations (4.2q)
and (4.2b) to obtain

at¢0 4 gN=O7 (43@)
9N — W0=0, (43b)
My M 0 0\ (¢ ¢’
Mo Moy Moy Moy | [wf | _ | @19’ (4.3¢)
Mz My Msz Msy ®5 e’ |’ .
0 My Myz My wl Q3¢0
Wo=—B10297 + (1 — afd? — £1hd,) 0], (4.3d)

where ¢ = P0¢0,N Pyn and Wy= Pywy, and where we have plugged the

relation P0 A1 — (0/2)B1 h,0, into ¢y = Py 16 to obtain Qi¢y = Q:iPy ¢0 Qip"
for i € {1, 3}, since (); are differential operators of order O(hy).

Plugging the expressions of ¢° and W' in terms of ¢; and w; (given by
the first line of the differential system (4.3¢) and by (4.3d), respectively) into
equations (4.3a) and (4.3b) leads to the final reformulation of the linearized model

M118t¢ik + Muatwf + gN=0,
N+ [B;0%1¢7 — [1 — afd? — e h,0,]w! =0,
(Mo — QMg + [Mar — QiMipp]w] + Masy + Masws =0, (4.4)
[Msz1 — Qe Muile] + [Msz — QeMuplw] + Mszds + Msywi =0,
— QMud] + [Myg — Qs Miglwy + Muysds + Mygws =0.
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We now look for solutions of the classical form

77(;1;7t):Aei97 0 =wt — ]{XE,
¢ =—i(Bi+ il Bye”,  wi=i(Ci + i, Ch)e”, (4.5)
¢3 = —i(Dy + ih,Da)e”,  wh=i(E + ih, Bye”,

where A, By, By, Cy, Co, D1, Dy, By and Fy are slowly spatially varying functions
(i.e. of the general form F(vz) with v« 1) k is the wavenumber and w the
wave frequency. The complex conjugate parts of these expressions have been left
out for brevity. As stated in Madsen et al. (2002, 2003), the By, Cy, Dy and Es
contributions are necessary because of the bottom slope and since the velocity
potential variables are not in phase with the free surface at the lowest order in
h,, but are so at the next order.

(b) Linear dispersion relation

To determine the linear properties of the two-layer model, we substitute the
desired form of solutions (4.5) into the linear formulation (4.4) and collect terms
at the lowest order in h,. Thus, we obtain a linear system of five homogeneous
equations in A, By, C,D; and FE;. This system has non-trivial solutions if its
determinant vanishes, which yields the following dispersion relation:

c? B w? B 1+ as(kh)? + aq(kh)* + ag(kh)®
gh  ghk? 1+ by(kh)? + by(kh)* + bs(kh)S + bs(kh)8’

(4.6)
where ¢ is the wave celerity and where the (a;) and (b;) coefficients are given by

1 1
ap +12, ay < +12), ag 5

5 2 1 5
bh=25+ . b=38+ -5+~ b=5(25+ L), by=s"
b =25+ 5 L=38 4SS+ b S<S+12), o= S5,

where S =0 (1 — ¢)/12. This dispersion relation is compared, in §4e, to the exact
linear dispersion relation given by the Stokes linear theory, namely

¢; o’ tanhkh

gh  ghk®> kh

(4.7)

and to its Padé [6, 8] approximation, which has the same rational form as (4.6).

(¢) Linear vertical profiles

Coming back to the previous linear system in A, By, Ci, D; and Ej, we can
now express each of the unknowns By, (1, D; and E; in terms of A, which leads
to tedious expressions that are not given here for brevity. For a flat bottom,
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the expressions of ¢; and w; on the whole water column are given by (3.32) and
(3.33) since

#i(1, X, 9= (1= a{(208) 87 + (B/2) ~ vl @4 ) ur, -
w(t, X, )= /()0 + (1 - ol ur. (48)

Plugging the ansatz (4.5) for a flat bottom (i.e. without the mild-slope
contributions) into the previous expressions and using the computed values of
By, Ci1, Dy and E; in terms of A leads to the expressions of ¢(z) and w;(z) in the
upper layer and ¢2(z) and w2(z) in the lower layer, in terms of &k, h, w, A and o.
Finally, we recover the linear vertical profiles over the whole water column using

¢1(z), for 2<2<0,
¢2(2), forz<z<2,

wi(z), for z2<2z<0,

4.
wa(2), forz<z<2. (4.9)

¢(2) = { and w(z)= {

The resulting vertical profiles will be compared in §4e to the theoretical linear
profiles ¢(z) and ws(z) coming from Stokes linear theory, namely

Ag cosh k(z + h)

¢s(2) = ” osh i sin(wt — kz), 010)
Agk sinh k(z + h) . ’
w,(2) = sin(wt — kx).
w cosh kh

(d) Linear shoaling

We now aim at determining the linear shoaling gradient y, of the double-layer

model defined by
A, hy
=N (4.11)

In order to determine this shoaling gradient, we use the method proposed
by Madsen et al. (2002, 2003). Coming back to the linear formulation (4.4)
together with the ansatz (4.5), we then collect terms at the next order, i.e. terms
proportional to the first derivatives of all the variables. Doing this leads to a
new inhomogeneous system of linear equations on the unknowns A, By, Cy, Do
and F, involving the first derivatives of k and h (namely k, and h,) and the
first derivatives of By, Ci, D; and FE;. Differentiating the previously computed
expressions of By, C1, D; and E; in terms of A, the derivatives of By, C1, D; and
Ey can be expressed only in terms of A,, k, and h,. Then, differentiating the
linear dispersion relation (4.6) allows expressing k, in terms of k, h, h, and o.
Plugging all these relations into the inhomogeneous system on A,, By, Cs, Dy and
L5, we are able to eliminate all the unknowns but A, and express it in terms of A,
hy, kh and o, thereby yielding the linear shoaling gradient yy of our double-layer
model. The detailed analytic expression for y, is not reported here for brevity.

The computed shoaling gradient will be compared in §4f to the exact shoaling
gradient y,, which was derived by Madsen & Sgrensen (1992) using energy flux
conservation combined with Stokes linear theory, namely

_ 2khsinh 2kh + 2k*h%(1 — cosh 2kh)
Vs= (2kh + sinh 2kh)?

(4.12)
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(e) Optimization of linear properties

The goal is now to optimize the linear properties of our double-layer model by
minimizing the errors between these properties and the exact linear properties
coming from Stokes linear theory. Therefore, we tune the free parameter o that
defines the interface level z= —oh.

The different errors between the model linear properties and the theoretical
ones are computed as follows. We, respectively, measure the errors on the phase
celerity, the vertical profiles of the velocity potential and the vertical velocity,
and the linear shoaling gradient as

K
£u(K . 0) =\/ | By e, (4.13)
0

where a € {c,¢, w,y}, K is a reference relative water depth, and

2 0 ?
9 _ C — Cg 2 _l M
Ec<a,kh>—( - ) E¢(07’fh>—th( 9.(0) )dz’

o=t (YO mON e m 2
w(aa )_ th< ws(O) > Z, y(O', )_(VO )’a) )
where ¢, ¢, (¢, w), (¢s, ws), yo and y, come, respectively, from equations (4.6),
(4.7), (4.9), (4.10), (4.11) and (4.12).

We point out that, in all these errors, the weighting by 1/kh helps to keep the
errors to a minimum for low wave numbers, as in Madsen et al. (2002, 2003).
Doing this, we sacrifice some accuracy at very high wavenumbers (i.e. in deep
water), but we reinforce the model accuracy in shallow water. This weighting by
1/kh is especially well suited for the shoaling gradient errors, which are far more
critical in shallow water than in deep water.

At this point, we could have minimized each of these errors individually, but
doing this leads to quite different optimal values for o, ranging from 0.2 to 0.5.
Furthermore, the minimization of the shoaling gradient error is quite problematic:
we will see later that whatever value we choose for o, the range of validity
in kh is limited. We thus choose to minimize &.,&, and &, simultaneously to
infer the optimal value for o, and then optimize the shoaling gradient error &,
differently. We start with the minimization of the errors £, &y and &, through the
average error &y (K,0) = %(SC(K,O’) + Ey(K,0) + Ey(K,0)), and we compute
the optimal value of o for several typical values of K: the shallow-water value
K =m/2; the intermediate depth value K = m; and the deep-water values K = 2x
and K = 10. In this work, we do not optimize o for larger values, as the vertical
profiles have systematically shown an error peak of at least 2 per cent within the
range kh € [0,10] for larger K, for instance K =15 or K = 20. Table 1 summarizes
the optimal values o,y for each value of K.

Figure 2 plots c/cs; to assess the dispersion error on the phase celerity. The
upper panel compares the errors obtained for each value of o,,. The price to
pay for extending the linear range of validity towards deep-water values is the
growth of a small error peak around kh = 3. Indeed, we can see that a 2 per cent
error is reached at the very-deep-water value kh = 24 for oo, = 0.473 with a very
small 0.01 per cent error peak at kh =~ 3, whereas the same error is reached at
kh = 28 for o,p = 0.314, but with a 0.04 per cent error peak at kh ~ 3. However,
such an error is not significant, and the overall accuracy of the double-layer

(4.14)
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Table 1. Optimal values for o.

K /2 b4 2m 10

Oopt 0.473 0.428 0.365 0.314

model for o,y =0.314 appears to be excellent up to very deep water. In the
same way, the lower panel of figure 2 compares the error on the phase celerity of
our double-layer model with oy, =0.314 with the errors obtained for the Padé
[6, 8] approximation, the model of Jamois et al. (2006) and the one of Madsen
et al. (2002, 2003). We remark that our double-layer model accuracy is far better
in deep water than what is achieved with the Padé [6, 8] approximation and the
model of Jamois et al. (2006); a 2 per cent error is reached at the very-deep-
water value kh =~ 28 for the double-layer model, whereas the same error is already
reached at kh ~ 18 for the Padé [6, 8] approximation and kh ~ 12 for the model
of Jamois et al. (2006). In comparison with these results, Lynett & Liu (2004a,b)
showed that their double-layer model reaches the same 2 per cent error (not
plotted here) at kh =8. As for the model derived by Madsen et al. (2002, 2003),
a 2 per cent error is reached at kh =30, i.e. at a slightly greater value than the
one reached by our model with o =0.314.

Figure 3 plots the depth-averaged errors E; (a) and E, (b) on the vertical
profiles of the velocity potential and the vertical velocity. We remark that the
difference between the errors obtained with each value of o, remains very small
in shallow water. On the contrary, the benefit for taking o = 0.314 clearly appears
for both the velocity potential and the vertical velocity in deep water: for the
vertical velocity profile, a 1 per cent error is reached at kh~4 and a 2 per cent
error at kh ~ 8. As far as the velocity potential is concerned, a 1 per cent error is
reached at k£~ 6.5 and a 2 per cent error is reached at kh ~ 10. By comparison, the
model derived by Madsen et al. (2002, 2003) yields a 2 per cent error at kh = 12 for
both horizontal and vertical velocity profiles. The difference between the errors
on the velocity potential and the vertical velocity component can be attributed to
the fact that we have neglected the fourth-order derivative term in the expression
(4.8) of w;(2). As mentioned earlier, this choice entails sacrificing some accuracy
on the profile of the vertical velocity. Nevertheless, the global accuracy for both
vertical profiles is still very good, up to the deep-water value kh = 10.

This analysis of the phase celerity and velocity profile errors does not exhibit
any major advantage for the choice o =0.473 instead of o =0.314 in shallow
water. The additional errors made with o =0.314 are at most of the order 0.2
per cent in shallow and intermediate waters. On the other hand, the advantage
of this value clearly appears in deep water, as it appreciably extends the linear
range of validity of the model, especially for the vertical profiles. Therefore, we
decide to adopt the value o =0.314 in the sequel.

(f) Improved model with tightened shoaling properties

We now consider the linear optimization of the shoaling gradient properties.
As shown in figure 4, the model linear shoaling gradient y, (dashed line) only
matches the exact linear shoaling gradient y, (solid line) up to kh = 3 and swiftly
departs from it beyond that value. We have attempted to optimize this shoaling
gradient individually, but no value of ¢ makes the two curves fit beyond kh = 3.
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Figure 2. Comparison of linear phase celerity with the exact Stokes result. (a,b) compare the errors
obtained for our model with o =0.314 (solid line); o = 0.365 (dashed line); o = 0.428 (dash-dotted
line); and o = 0.473 (dotted line). (a) Zoom on the region kh € [0,12]. (¢) Comparison of the errors
for different models: the solid line represents our double-layer model with o =0.314; the dotted

line the Padé [6,8] approximation; the dashed line the model of Jamois et al. (2006); and the
dash-dotted line the model of Madsen et al. (2002, 2003).

@ 6,03 ®) 003
0.02 0.02
E, E,
0.01 0.01
0 T O
0

Figure 3. Depth-averaged errors on the vertical profile of: (a) the velocity potential and (b) the
vertical velocity for 0 =0.314 (solid line); 0 =0.365 (dashed line); o0 =0.428 (dash-dotted line);
and o =0.473 (dotted line).

Therefore, a more subtle optimization is needed. This can be achieved using
the following method. Going back to the full formulation of the approximate
static Dirichlet-Neumann operator G;*"[h] (3.23), we introduce a new constant

parameter r and apply the differential operator 1 + rAVh - V to the last equation
of (3.23), which yields
Prug = [—BIA — rhBIVh - VAl

+[1—afA—(ef —Th)Vh -V — rhaiVh - VA]uwy, (4.15)
where Py =1+ (0/2B] +rh)Vh - V.
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Figure 4. Shoaling gradient: model with (7= 0.0076; dotted line) and without (r = 0; dashed line)
optimization with o =0.314 and exact shoaling gradient (solid line).

This new formulation does not allow further optimization yet since the
additional terms cancel out in the shoaling analysis. However, an interesting
option is to neglect the third-order derivative on wj in the slope terms. By doing
this, we greatly improve the shoaling gradient properties, as we will see in the
following. For the moment, we rewrite (4.15) as

Piwy=[—B7A = rhB{Vh VAT +[1 —afA — (¢ —rh)Vh-V]w].  (4.16)
We then take advantage of (3.22) to eliminate the third-order derivative from the
previous equation, and obtain

6
Pg‘w0:|: ,BIA——th V]¢1 [1—afA = (f +2rh)Vh- V] w}

+ |:th- V:| oo (4.17)
This implies redefining the approximate operator Gy*"[h] as follows:
Py
Gollhl= Q5 (M Ny 0 0)R gz + N5, (4.18)
@5

where

6
N——ﬁlA—th V, No=1-aiA— (e +2)Vh-V,

6 (4.19)
N3=;wl.v, Qg=1—(§5;+rh) Vh-V& @)
Our modified model is thus identical to (2.10), but with G;*’[h] as redefined

above. Starting from it, the new linearized model remains essentially the same,
except that the second equation of (4.4) now is

6 6
9N* + [ﬁ{ai + ;rha] OF — [1— 92 — (6% + 2rh) hyd, | w? — [;rha] »" 20,
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with N* = Pjn. This new formulation does not modify the phase celerity and the
vertical profiles, but allows to further minimize the shoaling gradient error. We
can now compute the new shoaling gradient ;. Optimizing the parameter r so
that the error &, (K, o) is minimized for K =10 and o = 0.314 yields 7 = 0.0076.

Remark 4.1. A dimensional analysis shows that this small value of r is coherent
with our earlier choice to neglect the third-order derivatives of wf in (4.16).

Figure 4 displays the optimized shoaling gradient for the previous value for r.
The improvement is quite impressive since the new shoaling gradient exhibits a
very good agreement up to kh =~ 12. This accuracy is the same as that reached by
the model of Madsen et al. (2002, 2003).

To summarise, our final double-layer Boussinesq-type model consists of (2.10)
and (4.18)—(4.19) with o =0.314 and r=0.0076. This model exhibits excellent
linear properties: the phase celerity is accurate up to kh = 28; the vertical velocity
profiles are accurate up to kh =10 for the velocity potential and up to kh =38
for the vertical velocity component; and the shoaling gradient is accurate up to
kh = 12. We emphasize that these properties are not affected by a slight variation
of o, which makes the model robust towards the parameter o. These results
are quite similar to those obtained by Madsen et al. (2002, 2003), but the main
advantage of the present model is that it contains lower order derivatives and
fewer equations, especially in 2DH. The present double-layer approach is hence a
very good alternative to the most advanced high-order Boussinesq models, as it
offers almost the same linear properties with a lower complexity.

5. Numerical simulations: nonlinear behaviour

On the basis of the model (2.10) derived in §2 (we do not use here the version
derived in §4f since we consider a flat bottom), a classical finite-difference scheme
is developed to study numerically some nonlinear properties of the model in 1DH.

We consider the propagation of two-dimensional periodic and regular nonlinear
waves, without change of form, over a flat bottom and without any ambient flow
field. For this situation, numerical reference solutions can be obtained by the
so-called stream function method, or more precisely the Fourier approximation
of the stream function (Dean 1965; Rienecker & Fenton 1981). Unlike analytical
wave theories (such as Stokes or cnoidal wave theories), this numerical approach is
applicable whatever the relative water depth and steepness are, and very accurate
solutions can be obtained by increasing the number of terms in the Fourier series
(e.g. 10, 20 or 50 if necessary for very steep waves). This method was previously
implemented in software called STREAM _HT by one of the authors (Benoit et al.
2002). For the selected application, the domain of interest covers one wavelength
(L=64m; k=27/L=0.098tad m~!) and periodic conditions are imposed at the
two lateral boundaries. We consider a still water depth of A =96 m, so that the
relative water depth is h/L =3/2, yielding kh = 3w ~9.425, which corresponds
to deep-water conditions. The wave height is chosen as H =6.4m, so that the
steepness is H/L=0.1 or kH/2=m/10~ 0.314, i.e. approximately 70 per cent of
the theoretical maximum value of the steepness for a stable wave (Williams 1981).
These conditions correspond to highly dispersive and very nonlinear waves. For
this case, the period computed with the stream function approach (at order 20)
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(a) free surface elevationat r =10 T (b) free surface elevation at r =25 T
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Figure 5. (a, b) Snapshots of the free surface elevation and (¢, d) the free surface velocity potential
at t =10 T (left) and ¢ =25 T (right). The solid line is our model for o =0.314 and the dotted line
is the reference solution computed using the stream function approach.

is T =6.094s, yielding a wave celerity of C' = L/T ~10.502ms~!. The solution
obtained with the stream function approach for the free surface elevation and the
free surface potential is imposed as the initial condition in our simulations.

The time integration scheme is a classical fourth-order four-stage explicit
Runge-Kutta scheme, which is known to possess a wide stability region. However,
owing to the nonlinear nature of the considered test case, this scheme can develop
some high-frequency instabilities. To avoid such instabilities, an eighth-order
Savitsky—Golay smoothing filter is applied twice after each time step to n, ¢; and
w;. The price to pay for this filter is a negligible loss of accuracy of the model.
As far as spatial discretization is concerned, all derivative operators in (2.10)
are replaced by centered fourth-order finite difference approximations combined
with periodic boundary conditions. The covered domain (of one wavelength) is
discretized with 32 cells of constant size (equal to 2m), and a time-step of 0.122s
(corresponding to T'/50) is used during the simulations. We have verified that
using a refined mesh of 128 cells and 200 time steps per period does not yield any
significant improvement.

Numerical integration of the double-layer model (2.10) is performed over
a duration of 25 T. Computations have been performed with the deep-water
(kh =10) optimal value o =0.314. Some simulations (that are not reported here
for brevity) have shown that any value in [0.28,0.36] leads to very similar results,
while it quickly deteriorates outside this range. Results obtained after durations
of 10 and 25 T are plotted in figure 5 for the free surface elevation and the free
surface velocity potential. The results are compared with the reference solution
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obtained with the stream function approach (which propagates at constant speed
and without change of form). The results appear to be very good since the
two curves fit very well until ¢t~ 20 T', after which small discrepancies become
observable. Since grid convergence has been verified; this difference can be
attributed to the approximation in (2.9), where we have neglected fourth-order
(and higher) nonlinear terms. However, we remark that the global aspect of
the model curve still corresponds to that of the reference solution at t=25T.
Furthermore, the free surface elevation computed with our model only shows a
phase shift error with the reference solution: the forms are the same and the
amplitude of the waves are equal. An interesting remark is that we can use these
results to compute the nonlinear phase celerity error approximatively. Indeed,
taking, for instance, the free surface elevation results and measuring the distance
between the crests of the two curves yields an approximate value of the difference
of celerity between these curves. This value provides us with a measure of the
nonlinear celerity error of the model. We found that our model with o, = 0.314
exhibits a nonlinear phase celerity error of approximately 0.08 per cent, which
is an impressive result. To conclude, the model shows an excellent nonlinear
behaviour, and we can expect its nonlinear range of validity to reach up to kh = 10,
at least for flat-bottom conditions.
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