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[1] In this paper we study the energy dissipation due to current-limited wave breaking in
monochromatic and random waves with the help of experimental tests. The opposing
currents are strong enough for wave blocking to occur. A modified bore model is used to
simulate the dissipation rate in the monochromatic waves, and an empirical bulk
dissipation formula for wave breaking in random waves is proposed. The effects of wave
blocking on the dynamics of the wave field are also discussed. INDEX TERMS: 4546

Oceanography: Physical: Nearshore processes; 4560 Oceanography: Physical: Surface waves and tides (1255);

4512 Oceanography: Physical: Currents; 4528 Oceanography: Physical: Fronts and jets; KEYWORDS:

wave-current interaction, wave breaking, wave action conservation, nonlinear dispersion, inlets

1. Introduction

[2] Wave blocking is the phenomenon by which propagat-
ing waves are stopped by strong opposing currents. As waves
propagate into opposing currents, their group velocity
reduces, leading to an increase in wave height. If the current
is strong enough, then the group velocity could go to zero,
causing the waves to become blocked. This is a fairly
common phenomenon at the entrances of tidal inlets where
tidal currents can become very strong. One such example of
wave blocking is shown in Figure 1, where the view is
looking seaward from the southern inlet breakwater. The
photograph has been taken 3 hours after high tide, and thus
there is a strong current propagating out of the inlet. This
strong current blocks waves that are trying to propagate into
the inlet. Owing to the sharp increase in wave steepness prior
to blocking, the wave environment tends to become very
rough, as can be seen in Figure 2. This causes considerable
navigational hazard, and boats have been known to capsize
trying to cross inlets under such circumstances.
[3] For a two-dimensional wave moving on a depth

uniform current given by the velocity vector U, the dis-
persion relation for a monochromatic wave is given by

w� k � U ¼ s; ð1Þ

where w is the absolute frequency relative to a stationary
observer, k is the wave number vector, and s is the intrinsic
wave frequency, or frequency relative to an observer
moving at velocity U. Differentiating equation (1) with
respect to k gives

Cga � U ¼ Cg; ð2Þ

where Cga = @w/@k(k/k) is the vector group velocity in a
stationary frame and Cg = @s/@k is the vector group velocity
in the moving frame. Subsequently, we will restrict our
attention to the one-dimensional case U = (U, 0), k = (k, 0)
where all propagation is in the ±x direction. (A recent
discussion of the more general case of two-dimensional
propagation in the present context is given by Shyu and Tung
[1999].) For a wave propagating in the +x direction we then
have

Cga ¼ U þ Cg: ð3Þ

Blocking occurs at points where the absolute group velocity
Cga falls to zero, which also corresponds to a singularity in
the ray approximation for wave action transport where action
density and wave height go to infinity. Setting Cga to zero
gives

Cg ¼ �U : ð4Þ

The results of this study will show that the location of
blocking predicted by the dispersion relation (1) can be
strongly affected by nonlinear amplitude dispersion. The
modification to theory needed to account for this effect is
discussed in section 3.1.
[4] The dynamics of strong wave-current interactions

have been studied for quite some time now. Bretherton
and Garrett [1969] have shown that in the presence of a
current it is the wave action that is conserved and not the
wave energy. However, this conservation principle is based
on ray theory approximations and fails close to the blocking
point, which is a caustic in the ray theory. Smith [1975] and
Peregrine [1976] obtained a uniformly valid linearized
solution for the wave amplitude through the blocking
region. They showed that around the blocking region the
amplitude envelope is given by an Airy function, and away
from the blocking region the wave field consists of an
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incident wave and a much shorter reflected wave. More
recently, Shyu and Phillips [1990] and Trulsen and Mei
[1993] have extended the results to include the effects of
surface tension which, if the reflected waves are short
enough, leads to the waves being re-reflected from a second
blocking point downstream of the primary gravity wave
blocking point.
[5] These theories are based on the linear wave assump-

tion and require that the incident waves be very small. In
inlets these conditions are rarely satisfied (as is evident from

Figure 2) and most waves break at or before the blocking
point without being reflected. Even those waves which do
not get blocked lose a considerable amount of energy due to
waves breaking on the strong currents. In contrast to the
case of depth-limited wave breaking, there is a scarcity of
experimental data to study current-limited wave breaking.
Lai et al. [1989] have studied the kinematics of the strong
interaction between waves and opposing currents but do not
give any results about the dynamics. Their experimental
data have been used by Ris and Holthuijsen [1996] to study

Figure 1. Wave blocking at Indian River inlet, Delaware, USA.

Figure 2. Wave field close to the blocking point.
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wave blocking in random waves, but the lack of data still
leaves many questions unanswered.
[6] In this study a series of experiments have been

conducted in order to develop a better understanding of
the dynamics involved in the interactions between waves
and strong opposing currents. Initial results from these
experiments have been presented by Chawla and Kirby
[1998], and a detailed description of the experiments is
available from Chawla and Kirby [1999]. In this paper, we
concentrate on the study of energy dissipation due to wave
breaking at or before the blocking point. Both monochro-
matic and random wave tests are presented. Empirical
dissipation formulae are proposed based on experimental
results.

2. Experimental Setup

[7] The experiments were conducted in a 30 m long re-
circulating flume, shown schematically in Figure 3. Cur-
rents are generated using a 30 HP Weinmann pump that
pumps water at a rate of 9463.5 � 10�5 m3/s under a head
of 60 feet. The pump draws water from behind the wave
paddle and discharges into the flume at the other end. A
flow straightener has been placed in the flume to remove
large-scale eddies. A perforated ‘‘piston-type’’ wave paddle
is used to generate waves in the tank. This allows us to draw
out the water from behind the wave maker, and the vertical
profile of the current in front of the wave paddle remains
unchanged. The width of the flume is 0.6 m. All the
experiments are conducted in a water depth of 0.5 m.
[8] An inlet was constructed by narrowing the width over

a section of the flume with the help of a false wall. The
width of the narrow channel is 0.36 m. The channel expands
slowly (angle of �5�) to the width of the flume to prevent
flow separation in the expansion. Thus the additional
complexity of wave focusing on a laterally spreading jet
is avoided. The experiments have been designed such that
wave blocking occurs close to the narrow part of the inlet.

In tests both with and without currents, no significant three
dimensionality of wave crests was observed except near
periods of time T = 1 s, for monochromatic tests in the
presence of currents, which corresponds to the natural
period of the first cross tank sloshing mode. This range of
periods was subsequently excluded from the tests.
[9] The origin is placed at the beginning of the narrow

part of the inlet with the x coordinate axis pointing down the
length of the flume and positive in the direction of the
waves. Thus the inlet begins at x = �2.8 m, and the narrow
part of the inlet extends from x = 0 to 4.9 m. Owing to
symmetry, the side wall of the flume becomes the center line
of the inlet. The y coordinate axis points positive toward the
false wall with y = 0 at the centerline (right wall of the tank).
The z coordinate axis points positive upward with z = 0 at
the still water level.
[10] All current measurements have been made with the

help of a SonTek acoustic Doppler velocimeter (ADV),
while all of the wave measurements are made with the help
of capacitance wave gauges. A detailed measurement of the
vertical current profile both across and along the channel
was carried out. Figure 4 shows the mean current (averaged
over 300 s) profile at five different locations along the
channel. The mean current has a slight shear due to the
bottom boundary layer. There is also some slight variation
across the width of the channel, consistent with the presence
of sidewall boundary layers (see Chawla and Kirby [1999]
for details). For the purposes of this study the variations
over depth and width are ignored. The current is assumed to
be uniform and given by

U 	 � Q

bh
; ð5Þ

where b is the width of the channel, h is the water depth,
and Q is the volume flux. Q was measured with the help
of a digital flow meter attached to the supply pipe.
Boundary layer effects have been ignored in equation (5),

Figure 3. Schematic plan view of the experimental setup.
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leading to lower predicted mean currents. To account for
this, the value of Q was artificially increased from 0.089 to
0.095 m3 s�1 (see Figure 5).
[11] The wave periods for the different test cases range

from 1.2 to 1.6 s. The corresponding kh values outside the
narrow channel range from 1.35 to 2.4, where the Dop-

pler-shifted linear dispersion relation has been used to
estimate the wavenumber. Within the narrow channel
where the currents are stronger the waves are shorter,
leading to higher values for kh. Thus the waves generated
in the experiments can be classified as being intermediate-
depth water waves. The narrowing channel causes the

Figure 4. Vertical mean current profiles at five different locations in the channel.

Figure 5. Average current as a function of x. Solid line shows Q/bh, and circles show data.
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waves to shoal even in the absence of an opposing current. To
show the effects of an opposing current on the shoaling
process, random wave experiments were conducted both in
the presence and absence of currents. The initial conditions
were measured at the first gauge (located outside the channel
at x = �5.3 m) and are given in Table 1. Figure 6 shows the
significant wave height Hs (normalized by the initial wave
height), and the wave steepness kHs /2, as a function of
distance for the two different test conditions. The wave
steepness is determined by using the linear Doppler-shifted
dispersion relation and the peak wave period to estimate
the wave number k. In the presence of an opposing current
this parameter could only be computed up to x = �1.3 m,
as the opposing current exceeded the linear blocking limit
beyond this point. Also plotted in the figure is the trans-
formation based on bulk conservation of wave action in
the absence of a current. The figure shows that in the
absence of a current, much of the wave shoaling is
explained by the narrowing channel width. Some energy
dissipation due to breaking of the largest waves is also
observed in the narrow channel (x > 0). Though both the
wave height and wave steepness increase more rapidly in

the presence of an opposing current, the increase in the
wave steepness is enhanced because of the subsequent
decrease in wavelength due to the increasing opposing
current. This sharp increase in wave steepness leads to
steepness limited wave breaking occurring earlier. In the
narrow channel (x > 0), wave energy decreases much
faster for the opposing current cases due to the combined
action of wave blocking and wave breaking.

3. Monochromatic Wave Tests

[12] A total of 18 monochromatic wave tests were con-
ducted, and the tests varied from very small wave heights in
which the waves are reflected without breaking to cases
with large wave amplitudes, where dissipation due to wave
breaking is the dominant process. In this study we shall
show results from 12 tests where wave breaking was
observed. Each test consisted of 29 wave gauge measure-
ments, with the starting gauge placed at x = �5.2 m. The
test parameters are given in Table 2. Data were collected for
600 wave periods. Wave blocking conditions were satisfied
for the 1.2-s waves and for some of the 1.3-s waves, while
the 1.4-s waves were never blocked. Repeatability tests
showed that the experiments were repeatable to within 6%
error in wave height (see Chawla and Kirby [1999] for
additional details). All statistical information about wave
properties are extracted from the time series of the water
surface with the help of a zero-upcrossing method. The
zero-upcrossing method is a standard method used to divide
a time series record into individual wave components. This

Table 1. Initial Conditions for Baseline Experiments Determined

at x = �5.3 m

Test Condition Period Ts, s Wave Height Hs, m

Waves only 1.06 0.038
Waves and currents 1.08 0.048

Figure 6. Normalized Hs and wave steepness (kHs/2) as a function of x. Solid circles show waves
without any currents; solid triangles show waves in the presence of an opposing current; and dashed line
shows transformation due to conservation of wave action.
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is performed by first subtracting the time-averaged signal
from the record and then by denoting the individual waves
by the points where the signal crosses the zero axis from
below, hence the name zero-upcrossing method. Wave
properties such as wave period and wave height are then
determined for each wave component, from which statis-
tical estimates such as the significant wave height are
obtained.

3.1. Numerical Model for Monochromatic Waves

[13] A simple numerical model has been developed to
study wave breaking. The model uses the wave action
conservation principle first derived by Bretherton and
Garrett [1969], given by

@

@t

E

s

� �
þr � E

s
Cga

k

j k j

� �
¼ 0; ð6Þ

where E is the wave energy density per unit surface area,
Cga is the group velocity, s is the intrinsic wave frequency,
k is the wave number vector, and r is the horizontal
differential operator.
[14] Assuming steady wave conditions eliminates the first

term in equation (6). Also, since we are trying to model
wave flow in a narrow channel, flow variation across the
channel is assumed to be small, and equation (6) is
integrated over the width of the channel. Adding a dissipa-
tion term for wave breaking, the final model equation can be
written as

1

b

@

@x

bECga

s

� �� �
¼ D

s
; ð7Þ

where b is the channel width and D determines the energy
loss due to wave breaking. D is formulated below based on
a bore dissipation analogy.
[15] LeMéhauté [1962] first hypothesized that the energy

dissipation in a breaking wave can be modeled by the
energy dissipation in a moving bore. This idea has been
used with reasonable success in simulating depth-limited
wave breaking [Battjes and Janssen, 1978]. Though the
bore model has been derived for shallow water wave
breaking, the same idea will be used here to determine an
energy dissipation term for current-limited wave breaking.
[16] Consider a bore connecting two regions of uniform

flow, illustrated in Figure 7. Using the control volume

approach, the energy dissipation per unit width across the
bore is given by

D0 ¼ � 1

4
rg h2 � h1ð Þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g h2 þ h1ð Þ

2h2h1

s
: ð8Þ

[17] The length scales h2 and h1 can then be associated
with the wave parameters

h2 � h1 � H ð9aÞ

h2 þ h1ð Þ
2h2h1

� 1

z
; ð9bÞ

where H is the wave height and z is a vertical length scale
which needs to be prescribed. For depth-limited breaking
models, z is given by the water depth h. However, for
current-limited breaking models this would not be a useful
scale, as wave breaking can occur in deep water as well.
Instead, we use

z ¼ tanh kh

k
: ð10Þ

The advantage of using equation (10) is that the same
vertical length scale is valid for shallow water (z ! h) and
deep water (z ! k�1). Substituting in the bore dissipation
formulation gives

D0 ¼ � b
4
rgH3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk

tanh kh

r
; ð11Þ

where b is a nondimensional parameter which relates D0 to
energy dissipation in breaking waves. Now D0 is the energy
dissipation rate over the entire wave, and thus the
dissipation rate per unit area is given by

D ¼ D0

L
¼ � b

8p
rgkH3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk

tanh kh

r !
: ð12Þ

In shallow water, equation (12) reduces to the standard bore
model used in depth-limited wave breaking [Battjes and
Janssen, 1978].
[18] Apart from an expression for energy dissipation we

also need a criterion for the onset of wave breaking. Since
wave breaking on opposing currents occurs due to the
waves becoming very steep, a steepness limited criterion
based on Miche’s criterion is used:

kHb

g tanh kh
¼ 1; ð13Þ

where g is a nondimensional parameter.

Figure 7. Sketch of a single steady bore.

Table 2. Parameters for Monochromatic Wave Tests Determined

at x = �5.2 m

Test T, s H, m kH/2 kh

3 1.2 0.033 0.077 2.35
4 1.2 0.066 0.164 2.35
5 1.2 0.095 0.223 2.35
6 1.2 0.126 0.296 2.35
9 1.3 0.057 0.112 1.96
10 1.3 0.084 0.164 1.96
11 1.3 0.104 0.203 1.96
12 1.3 0.130 0.254 1.96
15 1.4 0.071 0.12 1.69
16 1.4 0.096 0.162 1.69
17 1.4 0.117 0.197 1.69
18 1.4 0.141 0.238 1.69
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[19] Equation (7) together with equations (12) and (13)
provide a simple model for monochromatic waves shoaling
and breaking on opposing currents. The model uses the
wave action conservation principle and accounts for focus-
ing due to a narrowing channel. Beyond the blocking point
the roots of the dispersion relation become complex, as a
result of which numerical simulations were stopped at the
blocking point. Since the location of the blocking point is
determined by the dispersion relation, the model is run
using both a linear dispersion relation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kh

p
ð14Þ

and a third-order Stokes dispersion relation

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kh 1þ kað Þ2 8þ cosh 4kh� 2 tanh2kh

8 sinh4kh

� �� �s
ð15Þ

to quantify the importance of amplitude dispersion in
determining the model response.

3.2. Data to Model Comparison

[20] The parameters b and g were fixed at 0.1 and 0.6,
respectively, so that the energy dissipation in the model
compares reasonably with data. In comparison, depth-
limited breaking models usually set b � 1 and g � 0.7–
0.8. The wave height comparisons are shown in Figure 8.
The model works much better when using a Stokes dis-
persion relation. This is because close to the blocking point
the waves steepen quite considerably, and terms of O(ka)2

are no longer small enough to be neglected. The shoaling
properties are quite accurately predicted by the wave action
conservation principle if nonlinear dispersion is taken into
account. We also find that a bore dissipation model does a
reasonable job in predicting energy dissipation due to wave

Figure 8. Normalized H for monochromatic wave tests. Solid line shows Stokes dispersion relation;
dashed line shows linear dispersion relation; and circles show data. Initial wave steepness ka for the
different tests are given in brackets. Initial wave periods, Tpi, are as follows: tests 3–6, Tpi = 1.2 s; tests
9–12, Tpi = 1.3 s; tests 15–18, Tpi = 1.4 s.
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breaking. In the case of test 6 the model results show a
greater deviation between linear and nonlinear dispersion
cases. This is because the waves are fairly steep, and since
the linear dispersion relation predicts a larger wave steep-
ness than the nonlinear dispersion relation, wave breaking
occurs almost immediately in the simulation.
[21] Wave breaking in deep water is often described using

a dissipation formula given by Hasselmann [1974]:

D ¼ �bcsE; ð16Þ

where bc is set to a value of 0.02 to provide a best fit to
the present data. The comparison between the bore model
and the whitecapping model is shown in Figure 9. The two
models give similar results over the short distances used to
calibrate model coefficients, and thus the tests are unable
to distinguish between the qualitative behavior of the
models.
[22] Another point that comes to attention is that

although the blocking point is well predicted by the Stokes

dispersion relation, in cases like tests 3 and 4 the model
fails in this respect in tests 5 and 6. To get an idea of why
this happens, we take a look at the wave period distribu-
tion for all the tests (see Figure 10). The scatter in the
wave period data in regions where the wave height goes to
zero (tests 3, 4, and 9) is due to the noise in the signal and
to the tendency of the zero-upcrossing method to perceive
this noise as a propagating wave. This is a limitation of the
zero-upcrossing method and is fortunately not a very
strong limitation as the noise gets buried in the presence
of a propagating wave.
[23] From Figure 10 we see that in tests 5 and 6 the

waves shift continuously from a 1.2-s period to a 1.4-s
period, for which the blocking conditions are not satisfied.
This tendency is most pronounced in tests 5 and 6 but can
also be seen to a smaller extent in tests 9 to 12. It is absent
in the 1.4-s wave tests. The shift to longer wave periods
occurs due to the development of sideband instabilities.
Benjamin and Feir [1967] showed that water waves are
unstable to sideband growth and that the growth of these
instabilities depends upon the frequency and wave

Figure 9. Normalized H for monochromatic wave tests. Solid line shows Bore model; dashed line
shows whitecapping model; and circles show data. Initial wave steepness ka for the different tests are
given in brackets. Initial wave periods, Tpi, are as follows: tests 3–6, Tpi = 1.2 s; tests 9–12, Tpi = 1.3 s;
test 15–18, Tpi = 1.4 s.
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amplitude. Due to the increase in wave steepness they
become highly pronounced when the waves are riding on
opposing currents and have been observed in the labora-
tory [Lai et al., 1989]. Their effects become even greater
as the waves approach the blocking point because the
group velocity Cga tends to zero, and the wave energy
travels very slowly. Thus a significant amount of energy
could be transferred from the primary wave to the side-
bands even through small spatial distances, as the time
available for the interaction to take place is large. Trulsen
and Dysthe [1990] have shown that frequency downshift-
ing can occur due to the selective damping of the upper
sideband due to wave breaking. Here in the presence of a
strong opposing current both the upper sideband and
primary wave are blocked (according to linear wave
theory) for the cases in question. The lower sideband
requires a stronger blocking current than the primary wave
or the upper sideband and continues to propagate forward.
The mechanism thus appears to be distinct from that of
Trulsen and Dysthe [1990]. This effect can be clearly
observed in the frequency spectra for test 6 (see Figure
11). As the current increases, the energy is transferred to the
lower sideband, while the upper sideband and primary wave
component become blocked. In particular, note that between

x = �0.5 m and x = �0.03 m the energy in the lower
sideband increases by almost 10 times. The occurrence of
this effect depends both upon the growth of the sideband
instabilities and the position of the primary wave compo-
nent in the frequency spectrum. Our simple model cannot
simulate this phenomenon. An attempt has been made to
develop a third-order wave amplitude model to try and
simulate this phenomenon and shall be reported separately.

4. Random Wave Tests

[24] The random wave experiments consisted of 20
spectral tests, the details of which are available from
Chawla and Kirby [1999]. For each spectral test, gauge
measurements were made at 36 different locations in the
flume. At each location the time series of the water surface
was recorded at 50 Hz for 1000 s. The tests varied from
most of the spectrum being blocked in the case of test 1 to
mild wave breaking without any blocking in test 20. Wave
breaking occurred in all of the spectral tests. Since there are
qualitative similarities between the different test cases,
results from six representative tests shall be shown in this
section.

Figure 10. Measured wave period Tp for monochromatic wave tests. (Note the shift in wave energy to
longer wave periods for the steeper waves in tests 5 and 6.)
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[25] The experiments were designed such that for each
test case the spectral shape of the signal sent to the wave-
maker correspond to that of an equilibrium trimethyl alu-
minum (TMA) spectrum, which is a self-similar spectral
shape used to describe wind waves in waters of finite depth
[Bouws et al., 1985]. However, due to wave blocking of
high-frequency components, the measured spectra at the
first gauge (x = �4.6 m) are narrow and do not correspond
in shape to an equilibrium TMA spectrum at the higher
frequencies (see Figure 12 for a typical spectrum). The
initial conditions are therefore determined from the meas-
urements of the first gauge. The spectra have been quanti-
fied in terms of the root-mean-square wave height Hrms and
the average frequency �w.

�w 	 2p

R1
0

fS fð ÞdfR1
0

S fð Þdf
ð17Þ

The parameters for the full set of tests are given in Table 3.
Larger values of Hrms were not used because they led to
considerable wave breaking at the wavemaker paddle itself.

4.1. Bulk Dissipation Formula

[26] Before developing a numerical model for random
waves we need to determine a bulk dissipation formula for

random waves breaking on opposing currents. Similar to the
monochromatic wave problem, we shall use a previous
method for determining bulk dissipation in depth-limited
random wave breaking [Thornton and Guza, 1983] (here-
inafter referred to as TG83) as a guideline to solve for a bulk
dissipation formula for current-limited wave breaking.
[27] The basic assumption of TG83 is that the energy

dissipation in any individual breaking wave is given by the
bore model (see equation (12)). The bulk energy dissipation
due to all the breaking waves is then given by

hDi ¼
Z 1

0

D Hð ÞPb Hð ÞdH ; ð18Þ

where Pb(H ) is the probability distribution of wave height
of the broken waves and D is the energy dissipation in the
breaking wave. Using the bore model together with an
empirical function for Pb(H ), TG83 determined the bulk
dissipation to be

hDitg ¼
3
ffiffiffi
p

p

16
rg br �f

H5
rms

g2r h
3

1� 1

1þ Hrms=grhð Þ2
 �5=2

2
64

3
75; ð19Þ

where br and gr are empirical parameters and h is the water
depth. Equation (19) cannot be used to model deep water

Figure 11. Frequency spectra for test 6 (initial ka = 0.296) at different locations (‘‘L’’ shows the lower
sideband, ‘‘P’’ shows the primary wave component, and ‘‘U’’ shows upper sideband). The value of x is
the distance from the beginning of the narrow part of the channel.
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current-limited wave breaking in its present form due to its
exclusive dependence on the water depth.
[28] To develop a modified form of the bulk dissipation

formula, an empirical expression for Pb(H ) of broken waves
in an opposing current needs to be obtained from exper-
imental data. In order to do so, we must first be able to
separate the breaking waves from the nonbreaking waves in
any given time series.
4.1.1. Geometric Criterion for Breaking Waves
[29] A geometric criterion is used to separate out the

breaking and nonbreaking waves in a time series. This
criterion was first proposed by Longuet-Higgins and Smith
[1983] and was later modified by Xu et al. [1986].
[30] The method consists of dividing the time series into

individual wave components using the zero-upcrossing
method. For each wave component we then determine

R ¼ @h
@t

����
���� � �h

�t

����
����: ð20Þ

Using the nondispersive wave equation

@h
@t

þ c
@h
@x

¼ 0; ð21Þ

we get

R � c
�h
�x

����
����; ð22Þ

where c is the phase speed of the wave component
determined using linear theory. Now

�h
�x

� tana;

where tan a is the wave slope. Longuet-Higgins and Fox
[1977] showed that tan a = 0.586 is the limiting slope for
waves. Thus a wave is breaking if

Rmax � 0:586c; ð23Þ

Figure 12. Energy spectra at the first gauge for test 1. Dashed line corresponds to a trimethyl aluminum
(TMA) spectrum. The spectral shapes for remaining tests are similar; they differ in energy and peak
frequency.
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where Rmax is the maximum value of R (determined from
equation (20) within each wave component. Equation (23)
together with equation (20) provides a geometric criterion to
determine breaking waves from a time series. The criterion
is so called because it is based on the maximum slope of the
waves. The biggest disadvantage with using this method is
that some of the waves start breaking earlier and continue to
break as they pass over the gauge, but by then their slope
has reduced considerably. In addition, the method cannot
distinguish between these breaking waves and unbroken
waves with small slopes.
[31] To test the method, an experiment was conducted in

which the time series of breaking random waves was
recorded at eight different locations in the tank. Observers
were placed in front of each gauge with a counter to record
the broken waves passing over the gauges. The comparison
between the probability of breaking (fraction of breaking
waves) determined with the help of visual observations and
the geometric method is shown in Figure 13.
[32] Though the qualitative distribution pattern of Qb(x)

is reasonably reproduced, there are considerable discrep-
ancies in the actual values. These discrepancies occur due to
the errors in visual observations and the inability of the
method to distinguish between broken and unbroken waves
of small slope. However, since the dissipation formula is
scaled by a nondimensional parameter, lack of quantitative
agreement is not a big limitation. It is important to be able to
determine the distribution of Qb(x), as this dictates how
energy dissipation varies spatially. Thus the method shall be
used to identify breaking waves.
4.1.2. Probabilistic Distribution Function for Breaking
Waves
[33] An empirical formulation of the probabilistic wave

height distribution of the broken waves is determined with
the help of the experimental data. Figure 14 shows the
distribution of broken and unbroken waves at x = 0 (where
there is maximum wave breaking) for six representative
tests. The solid line is the Rayleigh distribution. From the
figure we see that the distribution of the broken waves is
skewed toward the larger wave heights. This is qualitatively

similar to the results of TG83. Following their approach, the
empirical probability density function (pdf ) of broken
waves shall be represented as a weighting function of the
Rayleigh distribution

Pb Hð Þ ¼ W Hð ÞPr Hð Þ; ð24Þ

where Pb(H ) is the pdf of the broken waves, W(H ) is a
weighting function to be determined, and Pr (H ) is the
Rayleigh wave height distribution given by

Pr Hð Þ ¼ 2H

Hrms
2

exp � H

Hrms

� �2
 !

: ð25Þ

Hrms is the root-mean-square wave height.
[34] The weighting function W(H) must be skewed

toward larger values of wave height. Also, the proportion
of waves breaking must increase with stronger opposing
currents. Since waves tend to steepen on the stronger
currents, a wave slope criterion is proposed for the weight-
ing function

W Hð Þ ¼
�kHrms

gr tanh
�kh

� �2
1� exp �

�kH

gr tanh
�kh

� �2
" #( )

ð26Þ

where gr is a parameter to be determined and �k is the wave
number corresponding to �w. The terms in the curly bracket
skew the wave height distribution to larger wave heights.
[35] Substituting equations (26) and (25) in equation (24),

we get an expression for Pb(H) as

Pb Hð Þ ¼ 2H
�k

gr tanh
�kh

� �2

exp � H

Hrms

� �2
" #

� 1� exp � H

Hrms

� �2
kHrms

gr tanh kh

� �2
#)

:

"(
ð27Þ

[36] Figure 15 gives the comparison between the pdf of
broken waves and the empirical function given in equation
(27). There is no curve for test 1 because x = 0 is beyond the
blocking point of the waves, and hence �k in equation (27) is
not defined for test 1 at this point (see Figure 17). The
probability of breaking Qb can then be obtained from the
pdf by

Qb ¼
Z 1

0

Pb Hð ÞdH : ð28Þ

The value of gr is fixed by comparing the probability of
breaking obtained from equations (28) and (27) and the
probability of wave breaking obtained from counting the
breaking waves in the experimental data. Figure 16 shows
comparisons for several representative cases as a function of
x for gr = 0.6.
[37] Substituting equation (27) together with the bore

energy dissipation formula in equation (18) gives

hDi ¼ �3brr
32

ffiffiffi
p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�k
� �3
tanh �kh

s

� k

gr tanh kh

� �2

H5
rms

"
1�

(
1þ kHrms

gr tanh
�kh

� �2
)#�5=2

ð29Þ

Table 3. Parameters for Random Wave Tests Determined at x =

�4.6 m

Test �w, s�1 Hrms , m �k Hrms/2 �k h

1 5.81 0.026 0.081 3.098
2 5.68 0.033 0.096 2.897
3 5.40 0.042 0.106 2.53
4 5.33 0.045 0.110 2.45
5 5.35 0.026 0.064 2.474
6 5.24 0.034 0.08 2.35
7 5.07 0.047 0.102 2.174
8 5.03 0.057 0.122 2.135
9 5.07 0.033 0.072 2.174
10 4.96 0.046 0.095 2.068
11 4.85 0.059 0.116 1.97
12 4.80 0.068 0.131 1.928
13 4.90 0.033 0.067 2.015
14 4.76 0.044 0.083 1.894
15 4.70 0.058 0.107 1.846
16 4.63 0.070 0.125 1.791
17 4.60 0.027 0.048 1.768
18 4.45 0.040 0.066 1.658
19 4.39 0.052 0.084 1.617
20 4.28 0.062 0.096 1.544
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Equation (29) is an expression for bulk dissipation in
random breaking waves, based on a wave steepness
formulation, and can be used for simulating deep water
steepness limited breaking. Furthermore, in shallow water,
where tanh �kh ! �kh, equation (29) reduces to the
expression obtained by TG83. It should be mentioned that
we could have chosen a different form for Pb(H ) to give a
better comparison with the distribution of broken waves, but
the subsequent expression for bulk energy dissipation would
have been very complex. We would also lose the added
advantage of equation (29), reducing to the depth-limited
form of TG83 in shallow water.

4.2. Numerical Model

[38] Using the wave action conservation principle
together with an expression for the bulk energy dissipation,
two simple numerical models are used. Since we have
already seen from the monochromatic tests that amplitude
dispersion effects are important, a nonlinear dispersion
relation is used in both the models. Hrms is used to quantify
the amplitude dispersion effects.

4.2.1. Bulk Wave Action Conservation Model
[39] In this model the individual spectrum is described by

its bulk quantities and is then modeled as a monochromatic
wave using the bulk dissipation formula for wave breaking.
The governing equation is given by

1

b

�
@

@x

bErms
�Cga

�s

� ��
¼ hDi

�s
; ð30Þ

where Erms =
1
8rgHrms

2 is the wave energy corresponding to
Hrms. �Cga and �s are the group velocity and intrinsic wave
frequency associated with the average frequency �w.
[40] A significant problem with this model is that we

specify an �w in the initial conditions, which characterizes
the spectrum. In the model this �w remains fixed as the
random waves progress into stronger currents. However, in
reality, as the waves move into stronger currents, more of
the higher frequency components become blocked, and
subsequently �w shifts down. We thus do not expect the

Figure 13. Probability of breaking Qb as a function of x. Circles show geometric method; and crosses
show measured probability by counter.
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model to perform very well, particularly in regions where
a large part of the spectrum is blocked.
4.2.2. Spectral Model
[41] A second model is used to account for the limitations

of the first model. In this approach the entire spectrum is
modeled and not just its bulk quantities. The model involves
dividing the frequency spectrum into N equally spaced bins
and representing the energy in each bin by a monochromatic
wave. The governing equation for the ith wave component
is then given by

1

b

@

@x

bEiðCgaÞi
si

� �� �
¼ di

si
; ð31Þ

where di represents the energy dissipation in each frequency
component due to wave breaking.
[42] The advantage of having spectral information is that

we can empirically adjust di so that the higher frequency
components have greater energy dissipation. The expression
used for di is given by

di ¼ aEi

si
�s

 �4
; ð32Þ

where a is a coefficient. Since the total energy dissipation
from all the wave components is given by hDi, we get

a ¼ hDiPN
i¼1 Ei

si
�s

� �4 : ð33Þ

[43] Equation (31) together with equations (32), (33), and
(29) make up the spectral model. The advantage of this model
as compared with the bulk conservation model is that indi-
vidual frequency components can be tracked separately, and
we can simulate spectral quantities like �w more accurately.
The disadvantage is that it is computationally more intensive.

4.3. Comparisons With Data

[44] The parameters br and gr in the two models were
fixed at 0.4 and 0.6, respectively. In the spectral model,
100 energy bins were used. For the spectral comparisons
the energy spectra from the gauge measurements was
Bartlett averaged with 24� of freedom (�f = 0.012). The
Hrms comparisons are shown in Figures 17 and 18. The
disadvantages of representing an entire spectrum by just
one component is seen in test 8, where only a part of the
spectrum is blocked. Both models fare poorly in the case
of test 4. This is because the waves in test 4 are short and
steep and are subject to sideband instability effects, similar
to the ones seen in test 6 for the monochromatic wave
tests. Overall, the bulk dissipation formula for random
waves breaking on a current works reasonably well. There
are a few discrepancies between data and spectral model
predictions of �w because the spectral model can only
predict the downshift due to the shoaling of the longer
waves and subsequent dissipation of the steeper waves and
ignores all nonlinear effects.
[45] The evolution of the spectrum and the comparison

with the spectral model for one of the tests (test 16) is shown
in Figure 19. The spectral model simulates the spectrum
reasonably well, except in the narrow channel where the
high-frequency components are underpredicted. Figure 20

Figure 14. Probability distribution of broken (solid bars) and unbroken waves (open bars) for different
tests at x = 0. The solid line shows the Rayleigh distribution.
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shows the spectral comparisons between model results and
data at the last gauge (x = 4.6 m) for representative tests. The
spectrum of the first gauge has also been plotted to show the
downshift more clearly.

[46] We thus find that a probability of breaking criterion
based on the wave slope together with a bore dissipation
model works reasonably well in simulating energy dissipa-
tion in random waves. Another criterion which was based

Figure 16. Qb(x) for representative tests. Circles show geometric method; and solid line shows
empirical probability density function.

Figure 15. Probability distribution of broken waves (open bars) for different tests at x = 0. The solid
line shows Pb(H ) given by equation (27).

CHAWLA AND KIRBY: WAVE BREAKING AT BLOCKING POINTS 4 - 15



on wave slope was given by [Battjes and Janssen 1978].
Though their model was derived for depth-limited wave
breaking, we should be able to use their model with a few

modifications to simulate current-limited wave breaking.
They state that all of the waves breaking at any given point
have a wave height Hmax, which is the maximum wave

Figure 17. Normalized Hrms for representative tests. Solid line shows the spectral model; dashed line
shows the bulk model; and circles show data. Initial wave steepness ka is given within brackets.

Figure 18. Normalized �w for representative tests. Solid line shows the spectral model; dashed line
shows the bulk model; and circles show data. Initial wave steepness ka is given within brackets.
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height. For the current-limited breaking cases we shall
denote this by

Hmax ¼
gr
�k
tanh �kh; ð34Þ

which is very similar to the breaking criterion used for
monochromatic waves (see equation (13)). They then
determined an expression for the probability of breaking
(Qb) in terms of a transcendental equation using a Rayleigh
distribution.

1� Qb

lnQb

¼ � Hrms

Hmax

� �2

ð35Þ

Using the bore dissipation model, the energy dissipation is
then given by

Dbj ¼ �brQb

r
8p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�k
� �3
tanh �kh

s0
@

1
AH3

max: ð36Þ

[47] Using the same parametric values and the spectral
model formulation, the comparison between the present
bulk dissipation formula given by equation (29) and the
Battjes and Janssen dissipation formula given by equation
(36) are shown in Figure 21. Both formulae give very
similar results.

5. Monochromatic Wave Breaking
Versus Random Wave Breaking

[48] Energy dissipation due to current-limited wave
breaking has been formulated using a modified bore dis-

sipation formula. Similar to the depth-limited breaking
models [Thornton and Guza, 1983; Battjes and Janssen,
1978], the only difference between the monochromatic
dissipation formulation and the random wave bulk dissipa-
tion formulation is the probability of breaking used in the
random wave formulation, which is based on a prescribed
wave height distribution of the breaking waves. However,
unlike the depth-limited breaking models, the coefficient b
that is used in the current-limited breaking models to
quantify energy dissipation has different values for mono-
chromatic and random waves (0.1 and 0.4, respectively).
[49] There are two possible causes for this disparity. The

first is that in our tests the current does not increase
monotonically and reaches a maximum in the narrow part
of the channel. Thus the breaking process reduces as the
waves propagate into the channel. This effect is accounted
for in the random wave model because the probability of
breaking reduces considerably (due to a reduction in wave
steepness) in the narrow part of the channel, leading to a
reduction in the energy dissipation. The monochromatic
model, however, has been designed to continue dissipating
energy once the breaking criterion is satisfied and does not
account for waves not continuing to break. As a result, the
breaking parameter b is calibrated to a lower value. The
shallow water breaking models of Thornton and Guza
[1983] and Battjes and Janssen [1978] have been calibrated
on monotonic beaches. The second, and more likely, cause
for the disparity is the sensitivity of the dissipation for-
mulation to wave steepness. This is true more so for the
random wave bulk dissipation formulation because wave
steepness plays an important role in both the bore dissipa-
tion formulation and the probability of breaking (see equa-
tion (29)). In the random wave tests the wave steepness for

Figure 19. Energy spectra for test 16. Circles show the spectral model; and solid line shows data.
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the bulk energy dissipation is quantified by the average
wavenumber �k. However, as the waves propagate against
the increasing current, the average frequency �w (which is
used to compute �k) downshifts due to both nonlinear effects

and a combination of shoaling at the lower frequency
components and blocking/breaking at the higher frequency
components of the spectrum (see Figure 18). This downshift
decreases �k and subsequently so does the energy dissipation

Figure 20. Energy spectra comparisons for representative tests. Dashed line shows data at x = �4.6 m;
solid line shows data at x = 4.6 m; and circles show spectral model at x = 4.6 m.

Figure 21. Normalized Hrms for representative tests. Solid line shows present dissipation model; dashed
line shows the Battjes and Janssen [1978] dissipation model; and circles show data. Initial wave
steepness ka is given within brackets.
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given by equation (29). Hence the breaking parameter b
must be calibrated to a larger value. The effect of the
downshift in �w can be seen in the comparisons of the
spectral model and the bulk conservation model in Figure
17. Both models use the same dissipation formulation given
by equation (29). However, while the spectral model shows
some capability in simulating the downshift in �w, the bulk
conservation model is unable to do so (see Figure 18). As a
result, in the test cases where the bulk conservation model
can propagate energy through the channel (tests 16, 18, and
20), the energy dissipation is much greater in the bulk
conservation model than in the spectral model.

6. Conclusions

[50] A series of experiments for both monochromatic and
random waves have been conducted to study energy dis-
sipation due to wave breaking under conditions of strong
opposing currents. Comparison with data has shown that a
modified bore dissipation model works very well. The
modified model uses a wave slope criterion instead of the
standard wave height to water depth ratio that is used for
shallow water breaking. The Battjes and Janssen [1978]
model, which also uses a wave slope criterion to determine
breaking, compares very well with the data also. Due to the
significant steepening of the waves, nonlinear terms in the
dispersion relation become important and must be
accounted for in numerical models. Under certain condi-
tions the development of sideband instabilities can play a
crucial role in the dynamics of the wave field close to the
blocking region. As random waves propagate into stronger
opposing currents, the frequency spectrum downshifts con-
siderably due to the blocking of higher frequency compo-
nents. This downshift can be modeled with a spectral
model. The spectral model does not account for frequency
downshifting due to wave modulation, which is a nonlinear
process.
[51] Unlike the depth-limited breaking tests the parame-

ters quantifying energy dissipation in current-limited break-
ing have different values for monochromatic and random
wave tests. This is partly due to the nonmonotonic nature of
the opposing current in our experiments and partly due to
the dependence of the dissipation formula on the wave
steepness. In the random wave tests the spectrum wave
steepness is quantified by a bulk spectral quantity �w, which
downshifts due to both nonlinear effects and blocking of the
higher frequency parts of the spectrum. This results in
smaller estimates of energy dissipation from the bulk dis-
sipation formula and leads to higher values for the calibrat-
ing parameter. In the monochromatic tests, downshift in
wave steepness is achieved only due to nonlinear effects.
[52] The advantage of using equations (12) and (29) to

simulate current-limited wave breaking is that in shallow
water they reduce to their corresponding forms used in
depth-limited breaking. It should be kept in mind though
that depth-limited breaking is very different from current-
limited breaking, as is shown by the different values of the
parameters b and g in the two cases. It will be useful to have
the parameters as a function of current and water depth, so

that a breaking model can be used in a range of different
conditions.
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