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Blocking dynamics of gravity water waves have been investigated in a laboratory envi-
ronment for a range of wave conditions. A non-linear numerical model has been developed
to simulate the observed characteristic features of wave blocking. The model is based on a
WKB perturbation expansion technique, which is used to study the amplitude evolution
of narrow banded spectral waves, but allows for a complex phase to account for wave
blocking. The model is one-dimensional and has been width integrated to account for
narrowing side walls. The model is susceptible to spurious oscillations that propagate
against the waves that are exacerbated in the presence of an opposing current. Numeri-
cal filtering techniques are applied to damp out these oscillations. The numerical model
does a reasonable job in simulating wave blocking in the smallest amplitude monochro-
matic wave test cases and also in tests involving wave packets. The model is limited
because the location of wave blocking is determined by linear theory, while experimental
results indicate that amplitude dispersive effects are very important. The model also
blocks the waves at the blocking point of the carrier frequency which is contrary to the
observed data, where the wave spectrum is blocked selectively at the blocking points of
corresponding wave components. The modeling exercise together with the experimen-
tal results throws light on the blocking characteristics of gravity waves, and suggests
alternative paths for the development of non-linear wave blocking models.

1. Introduction

Waves propagating against an opposing current can be stopped if the magnitude of
the current, in the direction of wave propagation, exceeds the group velocity of the
oncoming waves. This phenomenon is known as wave blocking, and the location where
the waves are blocked is called the blocking point. Around the blocking point the wave
climate transitions rapidly from steepening waves prior to the blocking point (due to the
reducing group velocity) to decaying waves beyond the blocking point. This characteristic
feature of wave blocking has drawn the interests of oceanographers and coastal engineers
alike for their ability to be used as signature patterns of underlying large scale motion
(e.g. internal waves) and for the navigational hazards these regions pose. An overview on
wave—current interaction studies can be obtained from the comprehensive review works
of Peregrine (1976), Jonsson (1990) and Thomas and Klopman (1997).

Dynamic interaction between waves and currents were shown by the works of Longuet-
Higgins and Stewart(1960,1961), using the concept of radiation stress, and by Bretherton
and Garrett (1969), using the concept of conservation of wave action. Since then dynamics
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of wave—current interactions have received a lot of attention. Wave blocking phenom-
ena are particularly difficult, since the blocking point forms a caustic leading to singular
solutions by ray theory. Using multiple scale analysis and asymptotic expansions Smith
(1975), developed uniform solutions for the linear wave field through the blocking re-
gion. He showed that in the linear limit the waves are reflected at the blocking point. A
similar solution was also found by Peregrine (1976) using stream functions and Fourier
transforms. Stiassnie and Dagan (1979) developed a generalized formulation for partial
reflection of water waves. The complete reflection test case of Smith (1975) and Peregrine
(1976) is a specific example of the more generalized solution. Non-linear effects on wave
fields near caustics have been studied by Peregrine and Smith (1979). For the linear solu-
tion, Shyu and Phillips (1990) extended the development to include the effects of curved
surfaces and capillary effects, so as to investigate the blocking of short waves riding on
longer waves. The dynamics of a second reflection point due to the dispersive properties
of capillary waves was investigated by Trulsen and Mei (1993) using a boundary layer
approximation close to the reflection points. All of the theoretical advances in the dy-
namics of wave blocking and reflection cited above have been carried out with emphasis
on short gravity/capillary waves (mainly for interpreting remote sensing data) and have
thus been limited to linear wave approximations (with the exception of Peregrine and
Smith (1979)).

Wave blocking, however, is not limited to short gravity/capillary waves. In many
coastal environments such as entrances to inlets and estuaries, where wave blocking on
ebb tides is observed regularly, the wave climate is considerably energetic. A large number
of the waves tend to break and get blocked with minimal reflection. Even in cases with
small initial wave amplitude the waves tend to steepen considerably before being blocked
due to the combined action of shoaling and shortening. A linear wave approximation
is not valid in such environments. Infact, experimental investigations on wave blocking
(Chawla and Kirby, 1998,2002) have shown that and amplitude effects can play a major
role in the dynamics of wave blocking. Amplitude dispersion effects can considerably alter
the location of wave blocking predicted by linear theory, and non-linear processes such
as the evolution of side band instabilities can adversely affect the dynamics of the wave
field beyond the blocking point. The enhanced nature of side band instabilities in the
presence of opposing currents has been reported in the theoretical works of Turpin et al.
(1983) and Gerber (1987), and have also been confirmed by experimental observations in
Lai et al. (1989). Chawla and Kirby (2002) have shown that sometimes monochromatic
waves can propagate energy beyond the blocking point by down-shifting energy via the
growth of side band instabilities to a lower frequency wave. Hence, it is important to
include non-linear effects in studying wave blocking. In the experimental studies cited
above a varying current was developed by varying the domain, which in itself will also
affect the transformation of the wave field. Recently, Suastika et al. (2000) have carried
out experiments on wave blocking in which the current is varied without varying the
domain.

Wave blocking processes have been modeled by Chen et al. (1998) using a sophisti-
cated non-linear Boussinesq model, that is not limited by ray theory approximations.
Boussinesq models however are limited by their weak dispersive properties in interme-
diate to deep water environments (kh < 1.5), where a lot of the wave blocking occurs.
Since the dispersion relation is crucial to predicting the location of wave blocking, a
non-linear numerical model with strong dispersive properties is desired that can simu-
late wave blocking. A boundary integral model has been used by Moreira and Peregrine
(2001) and Moreira (2001) to study the phenomenon of wave blocking in deep water.
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FIGURE 1. Schematic plan view of the experimental setup

Their model has shown considerable promise with being able to simulate both partial
wave blocking and blocking of individual waves in a wave group.

Considerable success has been achieved in studying the non-linear evolution of monochro-
matic waves in deep water by developing a cubic Schrédinger equation for the slowly
varying amplitude envelope (Zakharov 1968, Davey 1972, Hasimoto and Ono 1972, Yuen
and Lake 1975). Similar types of evolution equations have also been developed for waves
in the presence of a slowly varying current (Turpin et al. 1983, Gerber 1987). Encour-
aged by these results, and with the aim to better understand the non-linear aspects of
wave blocking, in this paper we seek to develop a similar non-linear model for the slowly
varying amplitude envelope that includes the effects of wave blocking. The experimen-
tal tests which have served as the basis for choosing the type of model desired have
been described in section 2, while the model itself is described in sections 3 and 4. The
comparisons between the model and data is given in section 5.

2. Experimental tests

A series of experimental studies on wave blocking by strong opposing currents were
conducted in the Center for Applied Coastal Research at the University of Delaware and
have been reported in great detail in Chawla and Kirby (1999). The experiments were
carried out in a 30 m long flume. A schematic plan view of the experimental setup is shown
in Figure 1. Opposing currents were generated with the help of a recirculating pump, and
the current was increased in the middle by narrowing the width of the flume with the help
of a false wall. The width of the narrow channel is 0.36 m, while the width of the flume
is 0.6 m. The experiments were conducted in 0.5 m water depth. Velocity measurements
were made with a SONTEK acoustic doppler velocimeter (ADV). Water surface elevation
measurements were made with capacitance wave gages. The experiments were designed
such that wave blocking occurred around the entrance of the narrow channel.

The origin is placed at the entrance of the narrow channel with the z coordinate axis
pointing down the length of the flume and positive in the direction of the waves. Thus,
the opposing current starts increasing at £ = —2.8 m, and reaches its maximum value
at £ = 0 m. The narrow channel extends from z = 0 m to x = 4.9 m. No measurements
were made beyond this point. Due to symmetry the side wall of the flume becomes the
center line of the inlet. The y coordinate axis points positive toward the false wall with
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FIGURE 2. Mean current velocity profiles at different locations in the channel. Horizontal axis
is the mean current in m/s, while the vertical axis is the normalized vertical position with 0
being the undisturbed free surface and -1 the bottom. (a) — Velocity profiles at z = —4.2m
and y = 0.156m (’x’), y = 0.30m (’0’), y = 0.45m (’¢’); (b) — Velocity profiles at x = —2.7m
and y = 0.15m (’x’), y = 0.30m (’0’), y = 0.45m (’¢’); (¢) — Velocity profiles at = —1.2m
and y = 0.13m (’x’), y = 0.23m (’0’), y = 0.33m (’¢’); (d) — Velocity profiles at x = —0.2m
and y = 0.13m (’Xx’), y = 0.26m (¢’); (e) — Velocity profiles at = 0.8m and y = 0.13m
('x”), y = 0.25m (’¢’); (f) — (j) — same as (a) — (e) but in the presence of a breaking
monochromatic wave

y = 0 at the centerline (right wall of the tank). The 2z coordinate axis points positive
upward with z = 0 at the still water level.

One of the primary assumptions of this study is that the underlying current is uniform
across the cross section of the channel. To test the validity of this assumption the mean
velocity profile was computed at different positions in the channel using a SONTEK
ADYV. Due to structural limitations of the experimental setup, velocity profiles close to
the surface could not be computed. The velocity profiles at different cross sections, both
in the presence and absence of an opposing monochromatic breaking wave are shown in
Figure 2. There is considerable variation in the mean velocity, both in the vertical and
across the channel at £ = —4.2m and x = —2.7m. However, wave blocking occurs close
to the mouth of the narrow channel (x = 0 m), where the cross channel variation is very
insignificant and variation in the vertical is limited to the bottom of the channel. Hence,
a uniform current across the channel cross section is a fairly valid assumption.

The experimental tests were divided into three major groups - monochromatic wave
tests, random wave tests, and narrow banded spectral tests (wave groups and wave pack-
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ets). In this paper, we shall concentrate on the monochromatic and narrow banded spec-
tral tests. The breaking characteristics of monochromatic and random wayve fields as they
propagate through regions of strong opposing currents have been discussed in Chawla
and Kirby (2002).

2.1. Monochromatic wave tests

A set of 18 different monochromatic wave tests were conducted. In the tests three different
wave periods of 1.2s, 1.3s and 1.4s were used. The wave heights were varied to cover a
range of conditions, from wave reflection with minimal dissipation to current limited
wave breaking being the dominant process. These tests were first described in Chawla
and Kirby (1998) and later covered in great detail in Chawla and Kirby (2002). For the
purposes of this manuscript, some of the conclusions from Chawla and Kirby (2002) shall
be repeated here. The reader is referred to that manuscript for greater detail.

Wave blocking is observed in the shorter amplitude test cases. The shoaling effect
decreases with increasing wave height due to current-limited wave breaking (see Figure
8 in Chawla and Kirby (2002)). Amplitude dispersion effects play an important role in
determining the onset of wave blocking, with larger amplitude waves being blocked later.
For the very large amplitude tests, no wave blocking occurs because of the transfer of
energy to lower frequency components which do not meet the blocking condition (see
Figure 11 in Chawla and Kirby (2002)). The mechanism for this transfer of energy is
through the growth of side band instabilities, which is a non-linear process and is observed
only in steep deep water waves.

For the smallest amplitude test cases (with no wave breaking), wave reflection from
the blocking point was observed. Reflection at the blocking point involves the transfer
of energy between two waves which are both apparently propagating upstream against
the current, but where group velocity in the reflected wave is less than current speed,
causing it’s energy to be swept downstream. The reflected waves get shorter with distance
away from the blocking point (Trulsen and Mei 1993, Shyu and Phillips 1990). These
short waves were visually observed in the experiments just after the first wave crests
were blocked. No wave reflection was observed for the larger wave amplitudes because
of energy dissipation due to wave breaking. To observe the dynamics of wave reflection,
a second set of monochromatic wave tests were conducted in which the wave amplitude
was slowly varied to cover a range of blocking conditions from reflection with not much
dissipation to complete dissipation with no discernible reflection (see Table 1 for test
particulars). Gages were placed very close to each other around the blocking region to
capture the spatial variation of the amplitude. Since these results have not been covered
in the earlier manuscripts, they shall be covered in some detail here.

Figure 3 shows the spatial variation of amplitude for the different test conditions. The
spatial variation of amplitude shows a distinct transition as the initial wave amplitude
increases. Linear theory predicts the spatial variation of amplitude around the blocking
region to be described by an Airy function (Smith 1975), given by

a = bodi(a®?(z — z4)) (2.1)

where, a is the wave amplitude, by is a function related to the initial incident wave
amplitude (see Trulsen and Mei (1993) for details), x5 is the location of the blocking
point based on linear theory, and

au
2 dz kO' |
U2 T=Tgt "
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TABLE 1. Parameters for reflected monochromatic wave tests (determined at x = —4.6 m),
where H is the wave height, h is the water depth and k is the wave number determined from
the doppler-shifted linear dispersion relation.

| Test No. | T' (sec) | H (m) |kH/2| kh |

1.2 10.0125 | 0.029 [2.35
1.2 |0.0129|0.030 | 2.35
. 0.0136 | 0.032 | 2.35
1.2 |0.0145|0.034 | 2.35
1.2 |0.0159|0.037 | 2.35

Ul W N =
[
)

The Airy function distribution is shown by the solid line in Figure 3. Since, the aim here
was to see how well the amplitude distribution resembles an Airy function, a detailed
modeling of the amplitude distribution was not attempted here. Instead, by was taken to
be constant and scaled such that the Airy function and data matched at the smaller peak
of the amplitude distribution. From the figure we see that the Airy function describes the
amplitude distribution fairly well in Test 1, except at the larger peak, which is probably
due to non-linear effects. The mismatch at the minima of the envelopes is enhanced by
fluctuations of the water surface owing to fluid turbulence, which can form the dom-
inant part of the water surface signature when wave height is small. With increasing
initial amplitude, the amplitude distribution deviates from the Airy function. The effect
of non-linear processes can be seen clearly in the shifting of the blocking point with in-
creasing amplitude. The decay beyond the blocking point is also stronger, probably due
to the advent of wave breaking, and the signs of wave reflection (the nodal/anti-nodal
distribution of wave amplitude) also disappears.

2.2. Narrow banded spectral tests

Two sets of experiments were conducted. The first set consisted of a series of tests on wave
groups generated by a bichromatic spectrum, while the second set was a series of tests
on wave packets generated by a Gaussian shaped spectrum. The aim was to study the
evolution of the wave field through the blocking region, and also if the moving blocking
point, due to the temporally varying amplitude envelope of a narrow banded spectrum,
acts as a generating mechanism for long waves downstream of the blocking region in a
way similar to the moving breaker line in nearshore regions.

2.2.1. Wave groups

Wave groups were constructed by superposing two monochromatic waves having the
same amplitude but slightly different frequencies. The difference between the frequencies
determining the number of waves in a group. Three different sets of wave groups were
used. Each set consisted of 4 different energy levels, making a total of 12 tests. The
test particulars are given in Table 2, where the tests with similar frequencies have been
grouped together. 36 gage measurements were made for each test between z = —4.6 m
and z = 4.61 m.

From frequency spectra plots (figure not shown) it was found that even though a
bichromatic signal was sent to the wavemaker, in most of the test cases the waves do not
remain bichromatic by the time they reach the first gage. For the larger wave amplitude
tests, wave energy is transferred to the side bands. Also when the frequency of one
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FIGURE 3. Wave height and period distribution for the reflected monochromatic wave tests.
Solid line represents an Airy function. Narrow part of the channel begins at x = 0

of the design wave components is close to 1 hz, the growth of an anomalous third wave
component is observed. This anomalous wave component does not have significant energy
in Tests 5,6,11 and 12, where the design frequencies are further away from 1 Hz. The
cleanest wave groups at the first gage were observed for Test 6. Thus, only results from
this test shall be presented here.

The evolution of the wave groups through the blocking region for Test 6 is shown in
Figures 4 and 5. The figures show the time series at 12 different locations in the channel.
The corresponding spectral plots are shown in Figure 6. As the waves propagate into
stronger currents, the higher frequency wave component being shorter has the higher
shoaling coefficient. As a result, in the initial stages there is greater energy in the higher
frequency component. However, with increasing opposing current, the steeper higher
frequency component starts breaking and losing energy till it’s blocking criterion is met.
Subsequently, beyond x = —0.4 m, the waves are transformed from being groupy to
being monochromatic. The lower frequency component continues to lose energy due to
the combined action of wave breaking and growth of side band instabilities. At x =
1.2 m, the wave field becomes groupy again due to equal energy levels in the primary
lower frequency component and its side bands. Beyond that point, the primary wave
component is also blocked. It should also be noted that prior to being transformed from a
groupy time series to a monochromatic time series, the wave groups transform from being
symmetric (at £ = —4.6 m) to asymmetric (at £ = —1.393 m and x = —0.793 m). This
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TABLE 2. Parameters for wave group tests determined at x = —4.6 m

| Test No. | T1 (s) | T2 (s) | Hs (m) | Sampling freq (hz) |

1 1.06 1.2 0.028 88.889
2 1.06 1.2 0.054 88.889
7 1.06 1.2 0.068 88.889
8 1.06 1.2 0.098 88.889
3 1.01 1.3 0.028 87.912
4 1.01 1.3 0.054 87.912
9 1.01 1.3 0.068 87.912
10 1.01 1.3 0.083 87.912
5 1.15 1.3 0.025 82.051
6 1.15 1.3 0.053 82.051
11 1.15 1.3 0.074 82.051
12 1.15 1.3 0.089 82.051

is probably due to the wave amplitudes of the individual wave components transforming
differently under the opposing current. The experiment shows that the characteristics of
wave groups, under blocking conditions are determined by the properties of the individual
monochromatic wave components. Similar results were also observed by Chen et al. (1998)
(for intermediate to shallow water depths) and Moreira (2001) (for deep water waves) in
their numerical simulations. No significant long wave energy was observed downstream
of the blocking region, and the only effects of the beats in the wave groups seems to be
the enhanced wave breaking at the crests of the beats.

2.2.2. Wave Packets

Wave packets have been generated with the help of Gaussian shaped frequency spectra.
For our experiments 12 design test conditions were generated. As in the case of the wave
group tests, these tests have been divided into 3 sets. Each set consisting of 4 different
test conditions with varying energy content. The equation for the design spectra was
given by

Y (f -1 p)2
St = exp[ 0.5 ] (2.2)
where, f, is the peak frequency, and v and a are coefficients determining the energy
content and width of the spectrum. The larger the value of «, the lesser the number of
individual wave components in the packet. The test particulars for the wave packet tests
are given in Table 3. Hy,q, is the maximum wave height in the wave packet. T}, is the
peak period and « is the parameter used in (2.2).

Similar to the wave group tests, Test 6 consists of a relatively clean packet and the
evolution of this packet in space is shown in Figure 7. The amplitude envelopes of the
wave packets have been computed using continuous wavelet transforms (CWT). CWT
techniques resolve a time series in both frequency and temporal space and are useful for
analyzing non-stationary signals. Here they have been employed to determine the am-
plitude variations at the peak period T}, only. Analysis was performed using the Morlet
wavelet. Figure 8 shows the spatial evolution of the amplitude envelope computed by
CWT. In the region close to the blocking point, the amplitude envelope shows the pres-
ence of two wave packets. Since the temporal separation between the two wave packets
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FIGURE 4. Time series of the wave groups at six different locations in the channel (Test 6)

TABLE 3. Parameters for wave packet tests determined at * = —4.6 m

| Test No. | T}, (s) | Hmaz (m)| o |

1.125 | 0.0175 |0.08
1.125 0.035 0.08
1.125 0.07 0.08
1.125 0.094 0.08
1.137 0.013 0.15
1.137 0.02 0.15
1.137 0.031 0.15
1.137 0.05 0.15
1.219 0.017 |0.08
1.219 0.032 0.08
1.219 0.054 0.08
1.219 0.084 0.08

— = =
MH@C’YO@JRWOO\]MI—‘

increases further behind the blocking point, the second wave packet must represent waves
reflected from the blocking point. The energy in the smaller wave packets also decreases
for gages located further from the blocking region, which is expected from the reflected
waves. At = 0, which is very close to the blocking point the reflected and incident wave
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FIGURE 5. Time series of the wave groups at six different locations in the channel (Test 6)

packets are indistinguishable, and we have a more or less symmetric amplitude envelope.
The spectral plots (not shown here) show that no long waves are generated in the wave
packet tests either.

3. Model for narrow-banded waves

Numerical models of wave blocking are either based on linear wave approximations
(Shyu and Phillips 1990, Trulsen and Mei 1993), or have weak dispersive characteristics
(Chen et al. 1998), and cannot be used to simulate the experimental results shown in
this paper. We therefore seek to develop a non-linear blocking model which is valid in
intermediate to deep water environments. Since the experiments show the rapid evolution
of side bands near the blocking region, a numerical model for a slowly varying amplitude
envelope shall be developed, by considering perturbations of a carrier wave. Almost all
models describing the envelope evolution can be reduced to a Schrédinger type equation
in a reference frame moving with the group velocity of the carrier wave. This approach
cannot be used under blocking conditions as the group velocity goes to zero at the
blocking point, and the envelope will not propagate any further into the domain.

One of the key issues in the development of such a numerical model is the nature of the
roots of the dispersion relation through the blocking region. The kinematic dispersion
relation for water waves riding on a depth uniform current is doppler shifted and given
by

(w — kU)?* = gk tanh kh (3.1)
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FIGURE 6. Frequency spectra corresponding to the time series shown in Figure 4 and
Figure 5(Test 6). The y—axis is the spectral density S(f) (in m?s)

where k is the wave number, h the water depth, w the wave frequency and U the depth
uniform current. A graphical solution of the above equation (Figure 9) shows that, in
the presence of currents, the dispersion relation has two roots (denoted by B and C in
the figure). As the opposing current increases, the two roots move toward each other. At
the blocking point the two real-valued solutions of the dispersion relation converge. As
current increases further, the two corresponding roots take on complex conjugate values,
with the real part corresponding to continuing phase propagation against the current and
the imaginary parts corresponding either to exponential growth or decay of the carrier
wave. Assuming deep water, and solving the corresponding quadratic equation in k we
get

[ 4
2Uw+g=+xg 1-|-ﬂ
k= g (3.2)

202

k becomes complex for U < —% (which is the blocking limit based on linear theory).

Figure 10 shows how the real and imaginary roots of the dispersion relation vary with
the current. Beyond the blocking point two complex conjugate solutions are obtained.
This leads to a complex phase function. The water surface motion 7 is given by

e~ e
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FIGURE 7. Time series of the wave packet at seven different locations in the channel (Test 6).
The y—axis is surface elevation 7 in m

where 9 is the phase given by

P = /(kd;c — wdt).

For a complex phase the wave changes from a sinusoidal form to an exponential form,
and a decaying solution can be obtained by using the appropriate root.

A numerical model has thus been developed which accounts for blocking effects by
allowing the phase to be complex. The model is one-dimensional in space and has been
developed for narrow channels with varying width. The orientation of the coordinate
system is chosen such that the z axis lies along the channel centerline, the y axis is in
the cross channel direction and the z axis points in the vertical direction. The short wave
motion is in the positive  direction, while the underlying steady depth uniform current
is in the opposite direction.

The governing equations for the model have been developed using a WKB perturbation
expansion technique, with the difference being that the phase is allowed to be complex.
The detailed derivation is outlined in appendix A. The model for a width averaged
amplitude envelope, correct to the third order is given by
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FIGURE 8. Amplitude envelope of the wave packet at 14 different locations in the channel
(Test 6). The y—axis is the amplitude in m
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FIGURE 9. Graphical solution of the dispersion relation (’Dash Dot line’ U = 0; 'Dash line’ U
< blocking current; ’Solid line’ U = blocking current)
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FIGURE 10. real and imaginary components of the roots of the Doppler shifted linear dispersion
relation as a function of U (T = 1.2 s). The y—axis corresponds to the real (top) and imaginary
(bottom) component of the wave number in m™?

D10, +2Ud1,0,, + (U> = g(h +1¢)) P10,

2 *
_ ag g—0 1 A* A* 1 * T A% R2 (330’)
— T{ (W)(AM Ry — AL AR ™) + {AwA (7 + R3) + c.c.}}
. - U+Cyby - -
24; +2(U + Cyp)A, + % (%)zfl — ioppAss
o _ 3.3b)
2ickA [ - h2q - . (
_ 2iokd <q> (v~ w)m) + 2i0l AP A(gRs + Ry) = 0
gsinh 2¢ o

where g = k(h+n,.), A is the width average amplitude envelope and @ g is the associated
width averaged long wave potential. o, o and the coefficients R; to Rs are given by

o? = gktanhgq (3.4a)

2qocosh’q  C7  2gsinh ¢C,
_ _G 4
Okk k2 sinh 2¢ o kcoshgq (3.45)
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Ry =k"+ 2 + (0*)?(q + tanh q) (3.4¢)
k 5 gtanhgq k2 *

= —(2 —tanh®¢) — 4

R a( tanh” q) - <acosh2q) (3.4d)
|k ? (k) .

_ o (IFE ol — 4
R3 Cg(|a|2 2o cosh? olc—o )) (3.4e)
Ry = %W?(k + k*)(tanh ¢ + tanh g*) (3-4f)

1 3lk? , . 2 o s
Ry = —— 50 (20 — 0*) cosh 2q + 3k|o|*(20 — 0*) sinh 2¢
8sinh® q |0|
2 2
+ 30k%(1 — 2sinh? g) — o® sinh? q('al (thrj;{;fq' )
|k|>c* sinh 2¢(1 4 2 cosh?® q)

(ktanhq + k* tanh g )) S sinh g (3.49)

o ([P0 k(=K o [R]? >
— sinh q( EE sinh q(W + |o| ))

2
+ :]c?a sinh? ¢(k + k*)(tanh ¢ + tanh q*)}

o

When there is no wave blocking then 1, k and o are real and (3.3) simplifies to

3

_ _ . - o C,o?
O, +2UB1 0 + (U?—g(h+1n.))® =a —+ —2 AP,
10w 10, + 9 ne)®Lo.. {2ktanh2 g 4sinh®q }(| )

(3.5a)

. = o ((U+Cyby - . < 2ickA [ -
24, +2 A — (=97 A— A, ————| @
e+ 2(U+ Cg) @t b ( o )z 1Okk S gsinh 2¢ ( 1.0,

(3.5b)

+ (U 3
( 10 16sinh? ¢

For a constant width (3.5) reduces to the 1-D evolution model of Turpin et al. (1983). Ne-
glecting frequency dispersion and non-linear terms, and converting to an energy equation

inh 2q\ - _, - rok?(cosh 4 — 2tanh®
—L"; q) >+2ia|A|2A(U (coshdg +8 — 2tan q)):o

by multiplying with —gA* and adding the complex conjugate of the resulting equation,
p

we get
R

1 _
where E = 3 pg|AJ2. Eqn. (3.6) is the width integrated wave action conservation principle.

3.1. Choice of k beyond the blocking point
We have already seen from the graphical solution of the dispersion relation in Figure 10
that beyond the blocking point we get a pair of complex conjugate roots. The choice of
the wave number has to be made carefully so as to choose the decaying solution beyond
the blocking point.
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FIGURE 11. K; and K> as a function of Q. (T =1.2s, U=0.0m/s, h = 0.5 m)

A .
Since the surface motion is denoted by 7, = Eew + O(e) a positive Im(k) (Im(f)

refers to the imaginary part of complex function f) seems to be the appropriate choice
as it leads to a decaying solution for the surface motion. However, that is only true if
the wave amplitude does not change rapidly beyond the blocking point. Since the surface
motion is dependent on the wave amplitude, it is necessary to study how the envelope
equation varies beyond the blocking point before choosing the wave number root.

Consider a linearized version of the evolution equation (3.3) in a uniform medium (i.e.
no shoaling)

2At + 2(U + Cg)Aw - ia'kk;lmz =0 (37)
Assuming a plane wave solution for the wave amplitude

A= aei(Kzfﬂt)

and substituting in (3.7) we get

0= (U+cg)K+K2% (3.8)

Solving the quadratic eqn. (3.8) for K, we get a pair of solutions

K (—(U+C’g)+\/(U+Cg)2+2Q‘7kk) (3.94)
1= Okk |
Ko (—(U+Cg)—\/(U+Cg)2+2QUkk) (3.90)
2= Okk |

Figure 11 shows the plots of the two roots as a function of ) for a wave with T' = 1.2 s.

In the figure K1 — 0 as © — 0, which means that for this root the wave amplitude
will be constant in space when there are no modulations in time, which makes physical
sense. However, in the case of K, there will be spatial modulations in the wave amplitude
even in the absence of any temporal variations. Furthermore, in the deep water limit,
and assuming that temporal variations in amplitude are much slower than phase changes
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FIGURE 12. Im(K1) as a function of Im(k)

(— < 1), the roots can be approximated as
o

20

K, ~ (3.10a)
g

Q

Ky ~ 2k<2 - —) (3.10b)
o

which yields

dQ Q

dQ Q

K> has a negative group velocity and will propagate wave energy backwards. Thus, K»
is a spurious root to the solution, which leads to spatial modulations that propagate
backwards.

A positive Im(K;) will yield a decaying solution for the wave amplitude beyond the
blocking point. Using (A 48) and (A 40) I'm(K;) has been plotted as a function of I'm/(k)
in Figure 12, for Q ~ 0.5s~!. From the figure we see that the signs of Im(K;) and I'm(k)
are opposite, and a choice of a positive I'm(k) will lead to an exponential growth in
the wave amplitude A. Since [Im(K71)| > [Im(k)|, the growth in the amplitude will be
stronger than the subsequent decay due to the complex phase, causing the waves to blow
up beyond the blocking point. Thus, to simulate wave blocking we have to choose the
root with a negative Im(k).

3.2. Energy dissipation due to wave breaking

Energy dissipation due to wave breaking is introduced as an additional sink term in the
envelope equation. Considering only the shoaling model we have

24; +2(U + Cy)A, + %(%) A+~v4=0 (3.12)

where v is the energy dissipation coefficient. The expression for v is evaluated using the
empirical dissipation term D developed for monochromatic breaking waves on opposing
current by Chawla and Kirby (2002).
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To compare v with D, we first write (3.12) as an energy equation in exactly the same
way as we did for (3.6)

1 [6 (M)] __nE (3.13)

ox o o

where we have made the assumption of steady waves to eliminate the time derivative
term. Comparing eqn. (3.13), with eqns. (7) and (12) in Chawla and Kirby (2002), we
get

v = ﬂ k2|A| (3.14)

where, B is a coefficient to quantify energy loss due to wave breaking. Similar to a
Miche’s criterion used in Chawla and Kirby (2002), a slope criterion is used to determine
the onset of wave breaking. But for numerical stability reasons the energy dissipation
term is ramped up smoothly as waves approach the limiting slope.

4. Numerical Scheme

The set of coupled equations in (3.3) are solved using two second order finite difference
schemes. The spatial coordinate  has been discretized by =; = jAz, while time has been
discretized by tr = kAt.

For the long wave motion we use a backward time centered space (BTCS) numerical
scheme. The derivatives are thus given by

®10,, = @ (<I>thl + ‘I’ 2‘i’lf,oj)

EPLON = (A‘lm)2 (c}’f});l + (Pk’tl 1 2&)’16’—511)

Bro, = g (B8~ B~k + 8, )
A, = o (A - a)

Solving for the entire spatial domain at any time step leads to a set of equations which
in matrix form can be written as

lC;| {@f};l} = {F(‘i’lf,m @f,_ol, nonlinear terms in fl’”‘l)} (4.2)

For the envelope equation we use a Crank-Nicolson scheme. The scheme is centered in

1 At
space, and centered in time but about grid level k + 3 with a grid spacing of - The
derivatives are thus given by

A= At (Ak+1 A3 )

_ 1 _ _
A= g (B - A - 21)

_ 1 k+1 ket E+1 | 7k o gk
Aue = 50 (A Y LAt ). LAs Ry LA L 2Aj)
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Once again solving for the entire spatial domain at a particular time step leads to a set
of equations which in matrix form are given by

Cy {f_lkﬂ} = {S(@’fj}l, @f,o,ﬁk, nonlinear terms in Akﬂ)} (4.4)

The coefficient matrices in (4.2) and (4.4) are tridiagonal and can be easily inverted
to obtain @19 and A at the new time step for all points in the spatial domain. Since
the forcing vectors F' and S involve terms at time step k£ + 1 the solution is obtained
iteratively.

4.1. Boundary conditions

For the long wave motion, Sommerfeld radiating boundary conditions were used at both
the upwave and downwave boundaries

®10, — (U++/gh)®10, =0 Upwave boundary (4.50)
®10, + (U ++/gh)®10, =0 Downwave boundary (4.5b)

For the wave envelope equation the Sommerfeld radiating boundary condition was used
for the downwave boundary while the upwave boundary condition was the prescribed
wave amplitude.

A = ag(t) tanh(¢t) Upwave boundary (4.6a)

A+ (U +Cy)A, =0 Downwave boundary (4.6b)

where the tanh(¢) function is used to slowly ramp up the signal to its full value and
suppress noise associated with a sudden start. The initial condition is the at rest state
over the entire domain, except for the prescribed underlying steady flow field.

To test our coupled equation numerical model we simulated the propagation of a
soliton. Zakharov and Shabat (1972), using an inverse scattering technique showed that
solitons are a permanent form solution of the Schrodinger equation. In the absence of
any wave blocking and in a uniform medium (i.e. constant depth and width) our model
can be reduced to a Schrodinger equation. Thus, it should be able to propagate a soliton
without changing shape. In a test case for a propagating soliton (maximum amplitude
0.05 m), the change in the maximum amplitude was less than 0.16% over a propagation
distance of 150 m.

4.2. Numerical Filter

The contracting channel leads to the growth of numerical instabilities that propagates
along the spurious root Ks. This necessitates the need for a numerical filter to damp out
these instabilities. A ‘3 point’ filter is used for this purpose (Shapiro 1970).

I—v
Anewlz:jAz = 'YfA|z=]Az + 2 / (Alz:(j—l)Az + Alz:(j+1)Az) (47)

Detailed analysis on the need for numerical filtering and its properties are given in ap-
pendix B, where the filter has been shown to succesfully remove the spurious oscillations.

An important question is how the numerical filtering effects any of the reflected waves.
According to linear theory, the reflected wave will travel back from the blocking point
with a wave number given by the larger of the two roots in (3.2). Assuming plane wave
oscillations of the amplitude envelope, the wave number for the spurious wave is given by
the sum of K (in 3.9b) and the wave number of the carrier wave (smaller of the two roots
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FI1GURE 13. Comparison of reflected wave wave number (’solid line’) and spurious oscillation
wave number ('dashed line’) as a function of current, close to the blocking region for T = 1.0
s. Temporal oscillation Q in (3.95) have been ignored while computing the spurious oscillation
wave number.

in (3.2)). Figure 13 shows the two wave numbers as a function of current speed close to
the linear blocking point for a 1 sec wave. At the blocking point, the spurious oscillation
and the reflected wave both have the same wave number as the forward propagating
carrier wave as can also be deduced from the eqns. (3.2) and (3.9b). However, away from
the blocking point we see that the reflected waves are much shorter than the spurious
oscillations. As a result, any numerical filter that damps out the spurious waves is also
going to damp out the reflected waves as well. This is a limitation of using numerical
filtering.

5. Comparison with data

For comparisons with experimental results numerical simulations were done in a do-
main which is linearly varying just like in the experiments. The filtering was done only
until the blocking point. It should be kept in mind that since the phase function is allowed
to be complex, the actual amplitude envelope is given by |A|e ™) and this expression
is used to compare the amplitude envelope with the data.

5.1. Monochromatic wave tests

For numerical simulations of monochromatic wave trains we had Az = 0.05 m and
At = 0.005 s. Numerical filtering was done every 10 time steps. Test 1 of the reflected wave
tests was used to compare the wave blocking capabilities of the numerical model, while
Tests 2 and 4 of the monochromatic breaking wave tests were used to compare model
capabilities under larger amplitudes. Figure 14 shows the snapshots of the amplitude
envelope at different instances in time for Test 1 of the reflected wave tests. The data has
been plotted for comparison. The model picks up the features of wave blocking. Since the
numerical filtering damps out both the reflected waves and the spurious scillations, the
modulation of wave amplitude observed in the data is not well represented. Figures 15
and 16 shows the amplitude comparison for the larger amplitude tests (Tests 2 and 4
of the monochromatic breaking wave tests). From the plots we can see that though the
model is able to block the waves, the blocking occurs earlier than in the data, with the
disparity increasing with increasing wave amplitude. This is because the model uses a
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FIGURE 14. Model to data comparison of the amplitude envelope for a monochromatic wave
(T =125, H=0.0125m, v5 = 0.7)

linear dispersion relation (A 52) to predict the location of the blocking point, while the
actual blocking occurs later due to amplitude dispersion effects. The importance of non-
linear dispersion in wave blocking was pointed out in Chawla and Kirby (2002), and the
inability of the model to predict this effect is a fairly strong limitation of the model.

5.2. Wave group tests

For the experimental studies on wave groups, the groups were constructed by superposing
two monochromatic waves having the same amplitude but slightly different frequencies.
For the model, similar wave groups can be constructed by modulating a carrier wave. To
correspond with the wave groups of Test 6, the carrier wave has a wave period T' = 1.22
s, and the amplitude forced at the boundary is a sine wave with a period T, = 19.92 s.
For the simulations we used Az = 0.05 m and At = 0.012 s, which corresponds to the
sampling frequency at which the data was collected in the experiment.

A comparison of the model and data surface elevation time series at the first gage
(x = —4.6 m) is shown in Figure 17. In the experiments the waves have evolved by the
time they reach the first gage and do not strictly consist of just two components (see
Figure 6), hence the mismatch between the model and data time series. Nevertheless,
the wave groups generated by the model and data are fairly similar at this location.
Figures 18 and 19 show the evolution of the amplitude envelopes for the model and data
as a function of time and space. In the experiments we observed that the individual wave
components of the wave group are blocked at their respective blocking points and the
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FIGURE 15. Model to data comparison of the amplitude envelope for a monochromatic wave
(T =12, H=0.018 m, y; = 0.70)

time series goes from being groupy to becoming monochromatic around z = 0 m, by
which time the shorter wave component is blocked, and then being completely blocked
by £ = 1.6 m. In the model such a transformation would be expected to occur even
earlier since the model, using linear theory, predicts earlier wave blocking. However, the
comparisons show that the waves tend to remain groupy in the model even when they
are being transformed in the data, and instead of the individual wave components being
blocked at their respective blocking points, the wave group gets blocked at the blocking
point of the carrier wave. The blocking characteristics of the model and data can be seen
from the spectrum comparisons shown in Figure 20. While wave blocking in the data
occurs selectively, with the higher frequencies getting blocked first, wave blocking in the
model occurs at the blocking point of the carrier frequency, with considerable energy
present in higher frequency components past their linear blocking limits.

This limitation of the model to not separately block parts of the frequency spectrum
also prevents the model to reproduce the experimental results of monochromatic wave
tests in which it was seen that for bigger wave conditions, wave blocking was prevented
because of the transfer of wave energy from the principal wave component to the lower
side band instabilities (Chawla and Kirby 2002).

5.3. Wave packet tests

For the wave packet tests, wave packets in the experiments were generated with the help
of Gaussian shaped frequency spectra. The wave packet in the model was created by
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FIGURE 16. Model to data comparison of the amplitude envelope for a monochromatic wave
(T=1.2s, H=0.066 m, v = 0.70)

modulating the wave amplitude using a half-sine wave with a wave period T, = 19.92 s.
The wave period of the carrier wave was 1.22 s. The time step At was set to 0.01 s to
match with the sampling frequency for the experiments. A strong filter (v = 0.6 and
filtering every 5 time steps) was used to remove all the numerical instabilities.

Figure 21, shows the comparison of the model and data surface elevation time series
at the first gage (z = —4.6 m). Both time series are very similar at this position, though
the amplitude envelope in the data is less symmetrical when compared to that of the
model. Following the analysis done for the experimental results in Figure 8, we again
use wavelet transforms to obtain the amplitude envelope for the numerical simulation.
Figure 22 shows the comparison between the amplitude envelope for the model and the
data. Cross correlation between the model and data elevation time series at the first
gage was used to remove the temporal lag between the model and data results. Just like
in the experimental results, a reflected wave packet can be observed between x = —2.6
m and £ = —0.59 m. The separation distance between the incident and reflected wave
packets at any particular gage location is greater in the experimental data as compared
to model simulations because the blocking point in the experiments is further away due
to non-linear dispersion effects. The greater dissipation in reflected wave packets of the
data is probably due to capillary dissipative processes in the very short reflected waves
that are not simulated in the model.
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FIGURE 17. Model (’solid line’) to data (’dashed line’) comparisons of surface elevation time
series at gage 1 (x = —4.6 m) for wave groups Test 6

6. Conclusions

A weakly non-linear model has been developed for the evolution of the envelope of a
narrow-banded spectrum propagating in strong currents. The model has been developed
for channels of varying width and depth. Beyond the blocking point, the roots of the
dispersion relation branch out to give a pair of complex conjugate roots. Thus, the wave
changes from a progressive periodic form to an exponentially damped form. Choosing
the correct root leads to the decay of wave motion beyond the blocking point. In the
absence of wave blocking and for a channel of constant width, our model can be reduced
to the model of Turpin et al. (1983).

The model consists of a pair of coupled equations for the wave envelope and the long
wave motion. Usually in the literature the long wave motion is integrated out to yield
just a single equation. However, due to the complex nature of the coefficients this is not
possible in our case and we have to solve a coupled system of equations. The numerical
scheme consists of a BTCS scheme for the long wave equation and a Crank-Nicolson
scheme for the envelope equation. Numerical tests on the propagation of a soliton have
shown that the model works well. The governing envelope equation has two roots, one in
which the wave energy is transported in the direction of propagation of the carrier wave,
and a second spurious root in which the energy is transported in the opposite direction.
In the uniform channel, the model picks up the correct root. However, within a rapid
channel transition with increasing opposing current, the model is unstable. The strength
of the instability grows with the rate at which the group velocity is decreasing and the
disturbance is propagated backwards as the spurious root. To counteract the growth of
the unstable mode a 3 point filter is used in the model.

The choice of the correct root to damp out the waves beyond the blocking point is not
straightforward. The apparent choice is the wave number with the positive imaginary
component, which will lead to decay of the surface wave amplitude for a fixed reference
wave amplitude. However, the choice of this root actually causes the complex wave am-
plitude to increase exponentially. Since the increase in the amplitude is greater than the
decay due to the phase function, the overall solution will blow up. Therefore, the correct
choice to simulate wave blocking is the root with the negative imaginary wave number.

Numerical simulations with very small amplitude monochromatic waves and wave pack-
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FIGURE 18. Model (’solid line’) to data (’dashed line’) comparisons of the amplitude envelope
at six different locations (yf = 0.6)

ets show that the model does a reasonable job in blocking the waves. However the model
has a few major limitations. The development of spurious backward propagating numeri-
cal instabilities requires the implementation of a numerical filter which unfortunately also
damps out the shorter reflected waves. The model also predicts the blocking point based
on the linear dispersion relation and cannot account for non-linear dispersive effects. The
experimental results reported in Chawla and Kirby (2002) have shown that due to the
sharp steepening of the waves prior to the blocking point, the non-linear terms in the
dispersion relation become important and the linear dispersion relation does a poor job
of predicting the position of wave blocking. Another major limitation of the model is that
blocking occurs at the blocking point of the carrier wave. However, experimental obser-
vations both in the blocking of monochromatic wave trains with side bands and in the
blocking of wave groups have shown that this is not the case, and the waves are blocked
selectively at the blocking points for the individual wave components in the spectrum.
This inability of the model to block the wave components of the spectrum separately
means that the model is unable to simulate wave propagation with transfer of energy
into lower side bands as observed in the monochromatic wave tests. The modeling ex-
ercise carried out in this paper shows that the wave blocking process can be simulated
by allowing the wave number to be complex. The limitations in the model indicates the
need for a spectral solution along the lines of the non-linear integro-differential model
of Zakharov (1968) which treats the dynamics of each frequency component separately.
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FIGURE 19. Model (’solid line’) to data (’dashed line’) comparisons of the amplitude envelope
at six different locations (yf = 0.6)

The wave frequency also needs to be perturbed (Lin and Perrie 1997) so as to retrieve a

non-linear dispersive relation.
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Appendix A. Derivation of the evolution equation

The boundary value problem for irrotational fluid flow in terms of a velocity potential

$ is given by

(Ala)

(A 1b)

(Ale)
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FIGURE 20. Model (’solid line’) to data (‘dashed line’) comparisons of the frequency spectra

for Test 6
ét't'+g<i),; + (éi + éz + (i)z)t
A1ld)
1, 8 . 8 . 8 \/2 10 19 o (
+ 50 Begg  Bugs + iy (¢i+q>g+<1>z,)=0, f=1
q,)g = :*:l’)zq’)z, :l] = :i:l’) (A le)

where 2) is the channel width and 7] is the surface displacement due to the combined
effect of current and waves.
We now nondimensionalize the problem using the following scaling
ek?
: o=—229 (A2)
Vgko

t = \/gkot; (x,y, 2, h,b) = ko(%,9, %, h, b)

’r’:

ISHIESN

where a is the measure of wave amplitude, kg is the measure of wave number and € = kpa
is a nonlinearity parameter.
The resulting B.V.P. is given by

S, + q)yy +@,..,=0;, —-h<z<en (A 30’)

O, + hpdy + hyd, =0; z=—h (A3b)
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FIGURE 21. Model (’solid line’) to data ('dashed line’) comparisons of surface elevation time
series at gage 1 (r = —4.6 m) for wave packets Test 6

_ € (&2 2 2. _
n_—@t—i(@ﬁ@ﬁ@), Z=en (A3c)

i+ 0. +e(22+ 0%+ 92)

e 8 9 9 (A3d)
P, — 4+ P, — + D, (P2 4+ P2+ D) =0; 2=

+ 2{ Fra Yoy z@z}( 2Tyt z) 0 z=en

¢, = +£b,®,; y=+b (A 3e)

Since the waves are propagating in the positive z direction, we have a fast scale in z
and t over which the phase of wave motion changes and a slower scale over which the
wavenumber and wave amplitude changes. Across the channel there are no fast scales.
Using stretched coordinates we thus have

X, X
T=r 4+ (A 4a)
€ €
T, T
t=t+— + = - (A 4b)
€ €
Y, Y.
=t gt (A 4c)

Furthermore, since we are studying the interactions between an O(1) current and wave
motion, we can write ® and 7 as

&=+, (Ab5a)

N ="1c + N (A 5b)
where the sub-scripts ¢ and w correspond to current and wave motion respectively.

A 1. Solution for current motion

Assuming that the current is steady and uniform in depth, and that both the channel
geometry and depth averaged current U are a function of the slow coordinate X2, we can
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FIGURE 22. Model (’solid line’) to data ('dashed line’) comparisons of the amplitude envelope

as a function of space and time for wave packet Test 6

write &, as

1 ~
o, = ?/U(Xz)dXz +0c(X2, Y1, Y2, 2)

(A6)

The resulting boundary value problem for current motion in the stretched coordinate

system is then given

eUx, + 62<i>cylyl + ‘i)c“ =0; —-h<z<n
&, = —€Uhx,; z=—h

1 = -
ne=—5 (U2 + (@0, + (@:)%); 2=

by

e (ncx2 U+ Ney, "i)cyl) = (i)cz§ 2 =1Tec

., = tebx,U; Y1 ==*eb
From the B.V.P. it is clear that the vertical velocity ®.. is O(e?). We can thus write &,

as

d. = o, (Xz,Yl,Yz) + €2, (X2,Z)

(A7a)
(A7D)
(ATc)
(A7d)

(ATe)
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Substituting the above expression in (A 7) and solving the B.V.P. by first integrating out
the Y7 dependency using the lateral boundary conditions, we get

% Ubx, (Y1)°
o4 =—27 A
YT 2 (A 8a)

~ 2

B0 = —%@ ~ Uhy, = (A8D)

and the combined expression for @, is given by
1 2 2

B, = / U(X2)dx, + L0 B7 62((Ub)x2 (th) | Uhx.>) (A9)
€2 b 2 b 2

From (A9) it is clear that the horizontal velocity along the channel has variations in
depth and across the channel. However, for our experimental setup these variations were
less than 1%. Substituting (A 9) in the surface boundary conditions yields

Ne = —@ +O(e") (A10a)
(Ub(h +1¢)) x, = O(€*) (A 100)

A 2. Solution for the combined wave-current interaction

Substituting (A 5) in (A 3), doing a Taylor series expansion about the current surface
z = n. and separating the B.V.P. for the steady current (eqn. A7), we get a resulting
B.V.P. for the combined wave-current interaction

Dypr + wayy + Py, =0; —h<z<eny (A 110’)
Dy, +he®Py, =0; z2=-h (A 11b)
P d P
T = = Bt — 5 (528 4 Bua)” + (-2 + 20)” + (2 + 202
1 € € € (A1lle)
2 2 2. —
+£<q)cz+q)6y+¢02)7 Z—an
3., o 3,
Dypy + Py + nw¢c2z+6(( 6C + "I)wz)2 +( :y + ‘I’wy)z +( : + ‘I’wz)2)
e ., 0 ® 0 ® 0
i i S Yip )= 2 4P )=
+2{( € + wz)8m+( € + wy)6y+( € + wz)az
(A11d)
P P P
((C2 4 @0)? + (F22 4 By + (52 + )% -
€ € €
€2 ch 6 écy 6 ch 6 @Cz 2 ¢Cy 2 écz 2
- e e - = 0 = w
2{66.73 € Oy e@z((e)+(e)+(e)) AT
@y = £b,Py,; y==b (A1lle)

Substituting the stretched coordinates (A 4), the velocity potential for current (A 9)
and perturbing the wave motion using the small parameter e

B, =Dy + By + 203 (A120)

The =T + €M + €213 (A 12b)
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the nonlinear B.V.P. can be reduced to a set of linear B.V.P.s at different orders of e.

For compactness the following definitions shall be used

DE%-}-U%
FED2+%
Dlzaiﬂ+U6i)ﬁ
DQEaiTQ+U6iX2
o (3.2)

and the corresponding B.V.P.s for the first three orders of € are given by

Dy + P =Fn; —-h<2z<L0, n=12,3
b,,=Gn; z=-h, n=1,23

M=Ky, z2z=n., n=123

re,=J,; z=n, n=123

®,y, =Hp; Y1 =2deb, n=1,2
where the forcing terms are given by

F1 = 0
F2 = —2@1:”)(1

F3 = _(¢1X1X1 + ¢1Y1Y1) - ((PIZ'XQ + QIXQE) - 2¢2EX1

Gi=0

Ga=0

G3 = —hx,®1,
Hl =0

H2 = :l:bX2¢1z
Ky =-D%,

1
K2 = —DCDQ — chbl — §(V<I>1 . V(I)l) — 7’]1D‘§12

K3 = — D& — D1®y — Do®; — 1y (qunz + Dy, + = (VE - V<1>1)Z)

1
2

2
— 1,D®,, — %D@uz - (qannxl + B, B, + <1>1z<1>2z)

+ Uney,

(A13a)
(A 13b)
(A13c)
(A13d)

(A 13e)

(A 164)
(A 16b)
(A16¢)

(A 17a)
(A 17b)

(A 18a)

(A 18b)
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(A 18¢)
Ji=0 (A 194)
JQ = —2DD1(I)1 - D(V‘bl - V(I)l) - 7’)1F(I>12 (A ].gb)
b b
J3 =—=2U 22 Y1D®y, + Th% — DyD®; — DDy®; — Di®; + Nexy P1o
—2DD, &, — D, (V& - V&) — 2D (¢11®1X1 4By, By, + <1>lz<1>2z)
(A19¢)

1
— 5V®1 - V(Ve; - V&) — 1 (2DD1@1 +T@; + D(VE; - V1))
-
— 772]."(1)12 — ?1].—“1)122
The first order solution of (A 14) is the linear solution for a propagating wave. Due

to the presence of nonlinear forcing terms at higher orders in the surface boundary
conditions, we expand the velocity potential using a WKB expansion

B, =Pp0+ (Z @n,me""”/’ + c.c.) (A 20)
m=1

where c.c. is the complex conjugate and ) is the phase function given by

= / (h(X2)dz — wdt) (A21)

Thus

k=v, 5 w=—v (A22)

w remains constant through the domain but k varies with the current and beyond the
blocking point k becomes complex. The solution thus changes from a propagating wave
form to an exponentially decaying one. Therefore, to propagate the solution through the
blocking region, the phase function %) is allowed to be complex. The forcing terms in the
boundary value problem are also expanded using the WKB expansion. Substituting the
expansion in (A 14) we get

2

(% - m2k2) B =Fom; —h<2z2<0 (A 23a)
Qn,mz = Gn,m; z=—h (A 23b)
q)n,myl = Gn,m§ y= +b (A 236)

6 2 2

9 m o | ®pm =Jnm; 2= (A 23d)
Tn,m = Kn,m; 2 =T (A 236)
where
c=w—kU (A24)

Eqn (A 23) has to be solved sequentially for all m at a particular n before going to the
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next n level. For n > 2 there are two special cases.

m = Q : The governing equation is given by

"I)n,Ozz = Fn,O (A 25)

Integrating (A 25) in depth and using the boundary conditions we get

Ne

Fn,Odz = Jn,O - Gn,O (A 26)
h
m = 1 : The boundary value problem is given by
0? 9
57 E° | ®p1=Fn1; —h<z<n (A 27a)
(I)n,1z = Gn,l; z2=—h (A 27b)
2—02 Sp1=Jdp1; z= (A27¢)
Oz n,l — Jn,l, =Tec
M1 = Kni; z2=1c (A 27d)

The homogeneous solution to (A 27) is a freely propagating wave governed by the lin-
earized problem. To prevent secular terms, the inhomogeneous solution must satisfy a
solvability condition which is given by

Ne
/ D1 Fp1dz =1 1dn —®11Gn (A 28)
h z z=

=Te

The two solvability conditions (A 26) and (A 28) yield the evolution equations for the
wave amplitude and the corresponding long wave motion.

A.2.1. First order solution

The forcing terms at the lowest order are given by

F1=0 y G1=0 y J1=0

Atm=0
®10,=0
Thus,
@10 = @1,0(X1, X2, V1,72, T3, Tn, -+ ) (A29)
At m = 1 the boundary value problem is
0? 9
(w—k>‘1’1,1=0; —h<z<n (A 30)
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which yields the linear solution for a propagating wave

1A scosh @
- A3l
P11 20 ( coshgq ) (A31a)
0? = ktanhgq (A 31b)

where A is the wave amplitude, and the following definitions have been used for com-
pactness

Q=k(z+h) q=k(h+n) (A32)

Substituting the solution for ®; in the forcing term for 1, yields at the different harmonics

Mo =0 (A 33a)
A

mi=g (A 33b)

A.2.2. Second order solution

Using the solutions at n = 1, the forcing terms at this order can be determined and
are given by

kAx, ( cosh @)
cosh q

GQ’OZO 3 G21:0 3 GQ’QZO

Jo,0 = Oé|A|2{ (L +c c.) - w (1 + |tanhq|2) } ;

FBog=0 ; F;= ) i Foo=0

g

4sinh?q 2|tanhg|?
3io3 A2
Jo1 = Ap, +UA i Joo = ———
2,1 T X1 2,2 4sinh2q
where « defined by
a=eV ¥ (A 35)

is a coefficient which denotes the nonlinear forcing mechanism. Note that a = 1 every-
where before the blocking point. Beyond the blocking point « will either be an exponen-
tially growing or decaying function depending upon the choice of the wave number.

At m = 0 we have

®2,0,, =0 —h<z<n

WZZ

q)g’(]z =0 z2=—h
and thus get

®2,0:(PZ,O(X17X27)/1;)/27T17T27"') (A37)

At m = 1 we have

0? 5 kAx, (cosh@
g _ = . _h<z2<
<8z2 k )QZ’I o (coshq)’ h<z<n
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<£—U2>¢271:AT1+UAX1; Z =1

0z
Substituting the forcing terms F51,G21 and J2 1, and solution at n =1 in (A 28) yields
AT1 + (U + Cg)AX1 =0 (A 39)

where C is the group velocity for a wave propagating in a frame of reference with the
current and is given by

o 2q
Co =5 (1* G zq) (A 40)

The homogeneous solution for ®,; is the same as ®; 1, and the particular solution can
be obtained by the method of variation of parameters to yield

iB rcosh @ @ sinh @
Py = —— — A
2.1 20 ( cosh ¢ ) (2ka coshq) X1
The first term in the expression can be absorbed in the solution for ®; ; and we get
Q@ sinh @
Py =—(—07— 14 A4l
21 (Qka coshq) X ( )
At m = 2 we have
w—‘lk‘ (1)2,2:0; —hSzSnc
@2,22 = 0; z=—h
3io3A?
— —40% |® =
<6z > > 4sinh? q e
which yields the particular solution
jo A% cosh 2
By = 2104 osh2Q (A43)
16 sinh™ ¢

Eqns (A 37), (A41) and (A 43) give the solution for ®,, and together with the solutions
for ®; and n; can be substituted in the forcing term for 72 to yield at the different
harmonics

_ |[A]> r|o[*(1 + |tanhg|?)
Tho = [(cbl,oﬂ + U@l,oxl) + Ta( g (ktanhq+c.c.)) (A 44a)
i qo tanh ¢
M = o | An + (U - =) Ay, (A 44b)
h
2,2 = kc.ois?,q@ cosh? ¢ + 1) A? (Ad4c)
8sinh” ¢

A.2.3. Third order solution

To determine the governing envelope equations at third order we only need to evaluate
the solvability condition at n = 3. Using the solutions at n = 2 and n = 1, the forcing



36 A. Chawla and J. T. Kirby

terms for m = 0,1 at third order are given by

F30 = —<‘I’1,0X1X1 + Ql’OYIYI)

i coshQ 1 Acosh @ kAcosh@
Fa=—(4 A = | (2 EACOShE
Bt 2(7( xix + Ylyl) coshqg 2 k(acoshq) +( o coshgq )X (Ad5a)
0 sinh
+2Qs1n QAX1X1
o coshq
kA
-0 - - _h _ A 45b
Gso=0 35 Gsa X2 20 cosh g (A 45)
Jso=—(ronm + 2oy, 7, + U P10k, , )
a o—ao" * * * R2
+ 5{(W)(AX1A Ry — A%, AR}) + {AXIA (5 +R) +cc. }}
Ubx. kA A C anC
= X w2 it A4
J31 YiAy, + % Mex, + Qb(Ub)Xz +7’(2 + k2 )AX1X1 (Ad5¢)

1 AT2 Uo A
+a(dn U )+ (7))

ickA sinh 2¢ ) 9
- (‘Pwn + (U -= )<1>1,OX1> +iaAPA(Ry + Rs)
where

k’2 2
Ri=k k';’ + (6*)(q + tanhq) (A 464)
k 9 gtanhgq k2 *
Ry = —(2 — tanh” q) — A 46b
> U( nh’ ) k (acoshzq) ( )
|k ? (k*)?

_ o (FF —olo— o* A4
Rs Cg(|0|2 2o cosh® g oloc—o )) (A46¢)
Ry = (U4| B )|k| (k + k*)(tanh ¢ + tanh ¢*) (A464d)

1 3|k|2 2 * 2 *\ o3
Rs = —— 50 (20 — 0*) cosh 2q + 3k|o|*(20 — 0*) sinh 2¢
8sinh* ¢ | |o]

2 2

+ 30k2(1 — 2sinh? g) — o sinh2q(|0| (Ttg;’;glﬂ )

20* sinh 2¢(1 + 2 cosh®

—(ktanhq+k*tanhq*)) _ k0" sin 'q( + 2 cosh” g) (A 46¢)

2 sinh 2¢*

, kPo®  k(k—k*) L
_s1nh2q( o + = sinh® ¢ (| z + |o |))

2
+ %U sinh* g(k + k*)(tanh ¢ + tanh q*)}
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Substituting the forcing terms in (A 26) and (A 28) and simplifying, we get a set of
coupled equations

2
Sror7 +20810x,7, U r0x,x, = (Rt 1) (cbl’OXle + ‘1)170Y1Y1)

_af(o-o . . . « B2 (
= 5{ (W)(A&A Ry — A%, AR]) + {AXIA (7 + R3) + C'C'}}
U+C C
2Aq, +2(U + Cy)Ax, +U(g) A —ioprAx,x, —i=2Avy,
o X2 k
Ubx, 2iokA sinh 2¢ (A 470)
Ty A m( vor, + (U - )‘1’1’”‘1)

+ 2ia|APA(Rs + Rg) =0
where

2qocosh’q  C;  2gsinh¢C,
_ Y A4
Tk k2 sinh 2q o kcoshq (4.48)

The variation in the channel width can be taken into account by integrating (A 47)
across the channel and using the lateral boundary conditions. From (A 14) and (A 17)
the lateral boundary conditions is given by

q)170Y1 = 0; Yi = +eb (A 49(1)

Ay1 = :l:iekAbX2; Yi = +eb (A 49b)
Integrating (A 47) across Y7 = +eb and using (A 49) we get a set of coupled equations

for the width averaged amplitude A, and long wave @0

D100, T 2010, + U = (h+1) P10y,

(TN (G ARy — A% ARyY) + { Ay, A7 (22 (A 50a)
= 5{( |U|2 )(AXlA Rl - AXIARI ) + {AXlA (7 +R3) +C.C,}}
i = U+C,)b _ _
241, +2(U + Cy)Ax, + 2 (M) A—iopwAx, x,
b o X,
(A 500)

2ickA [ - sinh 2g+ o
~ sinh2g (q)l’OTl + (U _— )‘1)1,0X1> + 2ia|A|*A(Rys + Rs) = 0

Eqgn. (A 50) is a third order weakly non-linear evolution model for a narrow-banded
wave envelope propagating on a strong current in a narrow varying channel. The model
is also valid beyond the blocking point.

For sake of convenience we shall rewrite (A 50) in dimensional form

&)1,0“ + ZU&)I,OM + (U2 _ g(h + nc))(i)l,ON

_ag’
2

R, (A5la)

{ (%) (AzA*Ry — AXAR™) + {AEA* (7 + R3) + c.c.}}
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FIGURE 23. Snapshots of the spatial evolution of the wave envelope for a monochromatic wave
in a uniform domain(T = 1.25,U = 0). Vertical axis corresponds to the amplitude envelope in
m.

24, +2(U + Cy) Ay + 2 (M

5 )zz‘i — iopkAge

ag

2iockA (A51b)

= sinh 2¢\ = -
- CI)I,O + (U - u)q)l’o + 2za|A|2A(gR4 + R5) =0
gsinh 2¢ t o =
where the primes have been omitted for brevity. The expression for ¢ is now given by
0% = gktanhgq (A52)

The expressions for the coefficients R; to Rs, Cy and oy, remain unchanged except that
they are now evaluated with the dimensional values of ¢ and k.

Appendix B. Numerical filter

In Section 3.1 we found that the simplified version of the evolution equation (eqn. (3.7))
yields two roots for a plane wave, of which (3.9a) is the correct root. There are several
examples in the literature of numerical simulations of monochromatic wave envelopes in
a uniform medium showing that the models pick up the correct root (see Mei (1992)).
Similar results have also been obtained in our numerical model for a monochromatic
wave (see Figure 23).
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However, a varying channel leads to the development of instabilities which propagate
backwards. To illustrate this point consider the linearized version of (3.3)
o ((U + Cy)b

24; +2(U + Cy) A, + 3

Once again assuming a plane wave solution for the wave amplitude

) /1 - iakk;lww =0 (B 1)
g T

A= aei(K:c—Qt)

and substituting in the equation we get

Q:(U+Cg)K+K2%—i% (B2)
where
o ((U+Cy)b
Ve = 3( g )m
or
.YVs
0N=Q,—i—=
P
and
s
A =qge 2 iKz-rt) (B3)

For a channel which contracts in the direction of wave propagation, vs < 0 and according
to (B3) this would lead to the growth of instabilities. In a domain that is very slowly
varying the growth of these instabilities may be insignificant. However in our experi-
mental tests the domain varies abruptly over a few wave lengths (see Figure 1) and the
instabilities are expected to grow faster.

Numerical tests have thus been conducted to study the growth of instabilities in the
varying domain. The numerical domain used is similar to the one used in the experiments,
except that the constricting channel is described by a continuous function to remove
discontinuities. The domain width was defined as

b(x) = 0.48 — 0.12 tanh(2(x — xo)) (B4)

where xy is defined as the mid point of the transition region, and for our simulations
29 = —1.4 m. For the simulations Az = 0.05 m, At = 0.0074 s, h = 0.5 m and initial
amplitude 4y = 0.01m. Flow is prescribed through a discharge @, and velocity profile
determined using a simple continuity equation

_Q
U@ = o

For the case with no opposing current () = 0) Figure 24 shows the spatial snapshots
of the wave envelope at different times. The limits of the region where the channel is
narrowing is shown by the dashed line. The growth of the instability in the constricting
part of the channel can be clearly observed. This instability propagates along the spurious
root K>, and since this root has a negative group velocity the disturbance is propagated
backward into the domain. Introducing an opposing current (Q = —0.05 m?®/s) leads to
a larger value of v and consequently a faster growth of the instability as can be seen in
Figure 25.

Considering now a test case in which the numerical domain consists of an expanding
channel instead of a contracting channel,

b(x) = 0.48 4+ 0.12 tanh(2(x — xo)) (B5)
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FIGURE 24. Snapshots of the spatial evolution of the wave envelope for a monochromatic wave
in a contracting channel. Spatial location of the start and end of narrowing channel denoted by
dashed line. (T = 1.25,Q = 0)

and using the same initial conditions that were used in Figure 25 we observe that the
instability is now damped out as 7y, > 0 (see Figure 26).

To validate model with experimental tests conducted on narrow-banded waves our
numerical domain has to have a contracting channel. We thus need a numerical filter
which will damp out the instability that propagates along the root K5. A ‘3 point’ filter
is used for this purpose (Shapiro 1970).

-~
Anewlz:jAz = ’YfA|a:=]Az + 2 / (Ale(j—l)A:I: + Alx:(j-i—l)Aw) (B 6)

Substituting
A= Aoei(Kw—Qt)
in the above equation, we get an amplification factor or response function R as a function

of K and Ax

A’I’LG’UJ
A

where vy is a weighting function. Damping occurs when R < 1. Substituting (3.10) in
(B7) we can get the response functions for the two roots K; and K> (see Figure 27).

R=

=5+ (1 — ) cos(KAz) (B7)
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FI1GURE 25. Snapshots of the spatial evolution of the wave envelope for a monochromatic wave
in a contracting channel. Spatial location of the start and end of contracting channel denoted
by dashed line. (T = 1.25,Q = -0.05 m?3/s)

The undesired root K> has a much higher damping rate, and can be damped out.
Figure 28 shows the snapshots of the evolution of the same monochromatic wave as
shown in Figure 25 with the exception that a 3 point filter with vy = 0.65 is used every
10 time steps. The filter damps out the backward propagating instability, with negligible
effects on the forward propagating envelope.
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FIGURE 28. Snapshots of the spatial evolution of the wave envelope for a monochromatic wave
for the same conditions as in Figure 25, but now using a 3 point filter (T = 1.2s,vy = 0.65)
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