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F1c. 1. Experimental (jagged line) and calculated (smooth
lines) Jovian geometric albedos.

cloud particles and atmospheric gases. Both amorphous
and cubic crystal ices were considered. Which form
occurs depends upon whether the ice forms above or
below 125K. The cubic crystal forms above 125K. If
one assumes only gaseous ammonia, the albedo curve
can be fitted nicely down to 1950 A, but at shorter
wavelengths there is a considerable discrepancy be-
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tween theory and experiment. Such a curve is shown as
a dashed line in Fig. 1 for an amount! of 1.6X1073
cm-atm of NH;. If a 8.5 u layer of cubic crystal ammonia
is added to the gas, strong absorption occurs below
1900 A, and a reasonably good fit to the data is ob-
tained. This curve is shown in Fig. 1 as a solid line. If
amorphous ice is used with the gas, the agreement is
poor. A sample calculation for the amorphous ice, also
plotted in Fig. 1, shows that the trend of the curve is
not correct below 1900 A.

A mixture of ammonia gas and cloud particles of
almost pure solid NH; with a cubic structure is quite
consistent with current Jovian atmospheric models. For
example, since Lewis (1969) and others predict pure
solid NH; cloud tops at a temperature level near
150K, the cubic ice form would be expected. It is
thought that this is a much more likely candidate for
the absorption below 2100 A than the hydrocarbons
suggested by Greenspan and Owen (1967).

1 No attempt should be made to attach a physical significance
to the amounts of substances used in our over-simplified model.
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ABSTRACT

A theory is presented for the spectra of horizontal velocity and temperature at high wavenumbers in three-
dimensional quasi-geostrophic flow. The theory predicts a minus third power dependence on both the hori-
zontal and vertical wavenumbers for the spectra of both the kinetic energy and the temperature variance,
with amplitudes determined by the pseudo-potential vorticity transfer function. It also predicts equiparti-
tion among the components of kinetic energy and available potential energy. Comparisons of the predicted
with the observed spectra of kinetic energy and temperature are cited. There is approximate agreement,

notably in the prediction of equipartition.

1. Introduction

Theoretical studies of atmospheric predictability
(Lorenz, 1969; Leith, 1971) have emphasized the im-

portance of the equilibrium energy spectrum of the
atmosphere as determining the rate at which uncer-
tainties at small scales propagate to larger scales and
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ultimately affect the principal energy bearing scales.
Observations (Horn and Bryson, 1963; Wiin-Nielsen,
1967; Julian ef al., 1970) and model calculations
(Manabe ef al., 1970; Wellck ¢t al., 1970) indicate an
approximate K~ dependence of the kinetic energy on
the longitudinal wavenumber K between 7 and 20, i.e.,
for wavelengths in the range 4000-1300 km at middle
latitudes. This spectral behavior is so different from the
Kolmogoroff —5/3 law for the inertial subrange of
three-dimensional homogeneous isotropic turbulence
that it suggests an entirely different mechanism of
turbulent scale interaction. Since the early work of
Rossby et al. (1939), the flow of the atmosphere at a
mid-level has come to be regarded as approximately
two-dimensional. For such flows it has been shown by
Onsager (1949), Lee (1951), Batchelor (1953), and
especially Fjgrtoft (1953) that vorticity conservation
places a strong constraint on the nature of the scale
interactions. The mean-squared vorticity (enstrophy)
as well as the kinetic energy must be conserved, and
this prevents the kind of energy cascade toward high
wavenumbers that is produced in three-dimensional
flow by the stretching of the vortex tubes. In two
dimensions, Fjgrtoft found that a transfer of energy
from one wavenumber to a higher one must be accom-
panied by a transfer of still more energy toward a lower
wavenumber. This circumstance led Kraichnan (1967)
to postulate inertial subranges for two-dimensional
turbulence in which energy injected in a given wave-
number band is transferred uniformly to lower wave-
numbers while enstrophy is transferred uniformly to
higher wavenumbers. The transfers of enstrophy in the
first range and energy in the second are identically zero.
A similarity argument then gives a Kolmogoroff £=5/3
law for the kinetic energy per unit scalar wavenumber
k in the first range and a k=% law in the second.
Kraichnan’s hypotheses were approximately confirmed
in numerical experiments carried out by Lilly (1969,
1971a,b).

Since the publication of Kraichnan’s theory, the k3
behavior of atmospheric turbulence at wavelengths
smaller than the baroclinic instability excitation wave-
length has been ascribed to the approximate two-
dimensional character of the motions. But one must ask:
Are the motions in the atmosphere, especially in the
range K = 7— 20, two dimensional in any real sense? Ob-
servations show that the main synoptic-scale motions
in the atmosphere are decidedly baroclinic, with vertical
variations in velocity, temperature, etc., through the
depth of the troposphere as great as the horizontal
variations. In general, changes in the vertical vorticity
component are as much due to vertical stretching of the
vortex tubes of the earth’s rotation as to horizontal
advection. The similarity between the observed spec-
trum and that of two-dimensional flow would thus
seem to be somewhat fortuitous.
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There is, however, a deeper similarity. Two-
dimensional inviscid flow is governed by the conserva-
tion of a single scalar invariant, the vorticity. Three-
dimensional quasi-geostrophic flow is governed by the
conservation of two scalar invariants, potential vorticity
and potential temperature (Charney, 1948). A syste-
matic scaling analysis permits these two inviscid-
adiabatic constants of the motion to be combined into a
single constant which will be called the “pseudo-
potential vorticity,” and whose conservation law com-
pletely determines the motion (Charney, 1960; Charney
and Stern, 1961). In the next section it will be shown
that conservation of the pseudo-potential vorticity also
forbids an energy cascade under certain conditions, and
in the following section that it leads in a natural way to
the 43 law at wavenumbers higher than the excitation
wavenumber for both the horizontal kinetic energy and
the temperature variance.

2. Energy cascades in quasi-geostrophic flow

The proof to be presented has already been given by
Charney (1966) but in a publication which is not easily
accessible. Following the scaling analysis presented by
Charney and Stern for geostrophic flow on a 8 plane,
we introduce the geostrophic streamfunction

p—p
Y= 0 (1)
f (VY
in terms of which the geostrophic relationship becomes

and the hydrostatic equation

_0—8 _ fo
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In the above p is pressure, p density, T temperature,
6 potential temperature, |V| the horizontal velocity,
V the horizontal gradient operator, z the vertical
coordinate, k a vertical unit vector, g the acceleration
of gravity, fo=2Qsing, the Coriolis parameter at the
latitude ¢o, @ the angular speed of the earth’s rotation,
and the bars denote horizontally averaged mean values
depending on z. If y is the meridional distance from the
latitude ¢ and w the vertical velocity, the equation
for the vertical component of vorticity in inviscid flow
on the 8 plane becomes

InT—InT~
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a Jo
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at p
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where 8= 2Q cosgy/a and ¢ is the radius of the earth.
The first law of thermodynamics for adiabatic motion
may be written

d N?
at fo
where
N*(z) =g(Inf), (7)

is the square of the mean Brunt-Viisilid frequency.
Elimination of w between (5) and (6) gives

(§;+ \2 v)[vﬁwip‘_’f(;;w,) z+ﬁy:l =0, (8

which asserts that the quantity in brackets is conserved
at the horizontal projection of the particle motion. This
quantity will be called the “pseudo-potential vorticity”
to distinguish it from the “potential vorticity’”” which is
conserved at a particle,

It was shown by Charney and Stern that the above
equation is subject to the scale restrictions

N

kaUy,

<0(1)

0

OZk 2
f/H<mn

g/ kv }’ (9)

kv
— < O(Ro)?

H
(aku)' < O(Ro)
kv>O0(Inb). )

where ky and ky are characteristic horizontal and
vertical wavenumbers, and U, is a characteristic hori-
zontal velocity corresponding to the scales 2z and ky.
Not by accident these inequalities define bands of Zy
and %y which include the spectral ranges of interest.

To fix ideas we suppose the flow to be periodic in the
zonal direction and to be contained between two
vertical walls at the latitudes y; and y,. We write (8)
in the form

a
(5+v-v)/:(¢>+wx=o, (10)

where x is the eastwardly directed zonal coordinate,
and L(y) is defined by

L<¢>Ew+§(—;¢,}z. a1
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Multiplication of (10) by —p and integration over
%, ¥, z gives the equation for the total energy E:

dE d
—=— / / / <v¢ V¢+—¢z )pdxdydz 0. (12)
dt

The second term in brackets is the geostrophic form of
the available potential energy. Similarly, multiplication
by pL(¥), integration by parts, and utilization of the
boundary condition obtained from (6) by setting w=0
at =0 gives

iF d
—== | / [ [LG) Fadudyds
a di
So?
= 0 W dx =0,
() o 0

providing ¢,=0 at 2=0, ie., if the ground is an isen-
tropic or isothermal surface. Let us first suppose that
this is the case. Then both E and F are constants of the
motion, and we find that

2E+ / / / YL()sdxdydz
=— / / (,r—w) dudy=0. (14)

Now L is a self-adjoint elliptic operator with a com-
plete orthonormal set of eigenfunctions ¥, and eigen-
values A, (m=12,-..) satisfying the homogeneous
boundary conditions (¥'n).=0 at z=0 and 5| Vn|2— 0
or p|¥mfm:|— 0 at z—o0. The latter correspond to
vanishing energy density or energy flow. These eigen-
functions may be so ordered that M, is a positive, non-
decreasing function of m which tends toward infinity
like (%)% Moreover, the nodal surfaces of these eigen-
functions divide the fluid into m subdomains whose
volumes approach zero like (m?*)=3. Thus, the eigen-
functions are completely analogous to Fourier series,
and if we can show that energy cannot cascade toward
higher m, it will be equivalent to showing that it cannot
cascade into smaller scales.

By virtue of the completeness property, we may set

12 =i; @nim, (15)

where

L(‘!/m) =—Nlm. (16)

Substituting the above into (13) and (14) and utilizing
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the orthonormality property,

/ / / mi¥ndxdydz =107, 17
we obtain
2E=3" An@n?=2_ b,=constant
1 1
w % (18)
2F =3 Anlam?=>, Aubn=constant
1 1

It then follows that

© 1 » F
Z bm<‘—2 )‘mbm<—_;
M

)\M M )\m

i.e., that X b, approaches zero with increasing M, and
M

an energy cascade is impossible. All the other theorems
pertaining to energy exchange among spectral com-
ponents in two-dimensional flow may now be shown to
apply to three-dimensional quasi-geostrophic flow as
well, but now it is the geostrophic constraint, not the
two-dimensionality, that prevents the cascade.

3. Spectral properties of quasi-geostrophic flow

The theorem just derived is not strictly valid if the
ground is not an isentropic or isothermal surface, for in
that case the right-hand integrals in (13) and (14) do
not vanish. Surface temperature gradients permit the
formation of velocity and temperature discontinuities
and therefore an energy cascade.! Nevertheless, we shall
postulate that, in general, small-scale motions at some
distance from the bottom boundary are not appreciably
influenced by the boundary condition on ¥ and behave
as if this condition were homogeneous—in the same
manner as small-scale turbulence bounded by walls is
assumed in the Kolmogoroff theory to be independent
of the walls if sufficiently far from them. We are less
justified in making this assumption in the present case
because of the existence of fronts which penetrate into
the fluid. (Quasi-geostrophic fronts appear to form only
at boundaries.) But if these fronts are sufficiently
sporadic, random, and of sufficiently small amplitude,
they will merely produce a weak k=2 spectrum super-
imposed on the spectrum the principal motions dictate.

We therefore suppose that energy is prevented from
flowing from large to small scales but not from small to
large scales. A formal analogy with Kraichnan’s argu-
ments for two-dimensional flow may then be established.

1In a similar manner, a free surface in two-dimensional flow
may be shown to permit an energy cascade.
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For this purpose we introduce the substitutions

N
d¢=—ds, (19)
A
- Z % .
x=[59] " (20)
5(0)
into (10) and (11), and obtain
a
<—a—+ V. V)G(X) +BX,=0, (21)
¢
where
V=¢fl@kX VX, (22)
) X\ X
G0)= X bt — (Xt ) —, 29)
AVARRSY:
providing p is approximated by
p=poe*", (24)

H being defined as the scale height R7,,/g corresponding
to the volume-averaged mean temperature 7', and
A=HN/f, is the Rossby radius of deformation cor-
responding to the vertical scale H.

The following additional assumptions are made:

1) The horizontal scale of the turbulence, as well as
the vertical scale in the stretched coordinate ¢, are small
in comparison with 2\. (This implies that the scales are
small in comparison with the baroclinic excitation
scales.)

2) The excitation energies are so high that advection
of relative vorticity dominates advection of the earth’s
vorticity: if Uy is the energy at horizontal wavenumber
kg, then kg?U>>B. Hence the 8 term in (21) may be
ignored and the energy cannot be dispersed by Rossby
waves.

3) The scale of variation of N in the stretched
coordinate is larger than the wvertical scale of the
turbulence.

4) Away from boundaries the turbulence is locally
homogeneous and isotropic in horizontal planes, except
possibly for an irrelevant Gallilean translation with the
mean flow. This is permitted by assumption 2) which
results in an invariance of (21) under rotation about a
vertical axis.

5) The nonlinear interactions are local in wave-
number space, that is, the wave components interact
only with components of comparable wavenumber. This
assumption is made by both Kolmogoroff and Kraichnan
but is by no means obvious. Kraichnan (1967) and
Lilly (1969) have considered the consequences of
non-localness.

6) The input energy is high enough to guarantee
an inertial subrange for which the Reynolds numbers
are so high that no appreciable internal viscous dissipa-
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tion occurs. Moreover, boundary friction is assumed
not to affect the internal turbulent motion at sufficiently
high wavenumbers.

As a consequence of assumptions 1)-6), the exponent
in (22), the zero- and first-order terms in (23), and the
8 term in (21) may be ignored. They will only influence
the large-scale flows which, by assumption 4), can only
produce a translation which leaves unaffected the
energy relationships. The pseudo-potential vorticity
equation is thereby reduced to

a(AXX)
Xpmm (25)
()
where
AXEX,Z-!—XW,—I—X”, (26)
and results in the energy equation
fo
= [ [ [ S0 o+ G styar
=constant. (27)

We now invoke assumption 4), which may be in-
terpreted as stating that X, X, and X; are random,
uncorrelated functions of x and y for each { whose
statistics are similar and homogeneous in x and .
Since (25) is invariant under vertical translation, we
also assume that VX is not correlated with VX; as
well as X;., It then follows that VX is homogeneous in ¢
as well as in x and y. Consequently, X; must also be
homogeneous in {, and we may assume that for some
scale factor ¢ the vector (X;,X,,0X;) is homogeneous and
isotropic in x, y and {. Since all physical parameters
have been removed from (25), and because of the three-
dimensional symmetry of AX, it is difficult to see how
this factor can be other than unity. We therefore postu-
late that this is so, and, following Kraichnan, assume
that the total scalar energy spectrum Z(%) depends only
on the pseudo-potential vorticity transfer function 7.
Dimensional considerations then lead to the expression

E(k)=Cnik3, (28)
where

= (k1) (k2)*+ (ks)? (29)

is the scalar wavenumber, and ki, %k, and %; are the
component wavenumbers. Because of the isotropy, the
energy spectrum for each of the components X,, X,, and
X; has the same form. Thus, there is equipartition of
energy among the x and y components of the kinetic
energy and the available potential energy. We note
from (27) that it is the energy per unit volume, weighted
by N-1 which is locally independent of height.

4. Discussion

The mechanism by which vertical homogeneity at
large wavenumbers is established would seem to be
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through direct interaction of moderate scales with larger
scales and through vertical propagation of Rossby wave
energy. If we ignore the horizontal Reynolds’ stresses,
the eddy energy equation may be written

LG (1) ()2 le=xV - V=N (w’),  (30)

where the primes denote perturbations and the bars
horizontal averages. It states that the eddy energy is
increased by conversion of mean flow potential energy
to perturbation potential energy and by convergence of
the vertical energy flux due to the vertical pressure
work. When the horizontal scales have been reduced to
the point where the 8 effect as well as the horizontal
Reynolds’ stress is no longer appreciable, only the first
mechanism remains. Then the only parameters on which
the eddy energies can depend at statistical equilibrium
are |V;| and the wavenumber kg, suggesting energy
spectra of the form

K(kﬂ)=C11Vr12kH‘3}

31
P(kH)=C2{V;]2kH_3 ( )

for the kinetic and potential energies, respectively. It
follows that for increasingly smaller vertical and
horizontal scales the energies will tend to become
homogeneous. At sufficiently small scales the inter-
action with the mean flow will cease, and the dependence
on |V;| will end. The energies will then become
partitioned equally among the two components of
kinetic energy and the potential energy, and the spec-
trum will satisfy a universal relation of the form (28).

It has been assumed that internal and boundary
dissipation do not affect the spectra in the range of
wavenumbers under consideration. In the quasi-geo-
strophic theory, surface friction may be incorporated by
altering the surface boundary condition to provide for
convergence in the frictional boundary layer (Charney
and Eliassen, 1949). The resultant vertical pumping
does work on the fluid and thereby contributes a
dissipative term to Eq. (12) which then becomes, in the
new variables,

;‘j [[] %[(x,>2+(xu>2+ (Xp)?Madyd

— —VEfE / / AL 0 Temodady,  (32)

where E is the Ekman number, »/(f,H?), and the eddy
viscosity » is assumed constant. Since energy is pre-
vented from cascading to high wavenumbers, the bulk
of the energy dissipation occurs through surface friction
at low wave numbers.?

The dissipation of pseudo-potential enstrophy, un-
like energy, is not affected by surface friction away from

2 By hypothesis, dissipation in frontal zones is excluded.
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boundaries. This is because the horizontal, as well as
the three-dimensional integral of [L({) Pin Eq. (13),are
conserved in the absence of 3 effects. Any dissipation
raust be due to internal vertical diffusion of momentum
and heat. If we assume that the coefficients of eddy
viscosity and heat conduction are constant and equal,
Eq. (25) becomes

(33)

where v* =y (N/ fo)2. Multiplying by AX, we obtain the
dissipation equation

_;z f / / L AX)dadydt = —v* / f / (AXy)dxdyds

+v*//(AXAXr)r=odxdy. (34)

The integral at the ground does not in general vanish
unless the ground is isentropic. Thus, it seems possible
for diffusion to increase the pseudo-potential enstrophy.
However, diffusive effects will become important
only when the Reynolds’ number, Re="U;/(kv*), is
of order unity. Setting (Ui)2=O[ZE(k)]=0(2),
we find that Re<O(1) when k2O (nY6*#), Setting
»=~10° cm? sec, N/fo=10% and estimating n* from
observed spectra to be 1075 sec™!, we get 2> 10~7 cm™!
or K> 45 at 45°. Hence, appreciable dissipation does not
occur until the scales are so small that the flow is no
longer geostrophic.

The estimate (Ux)2=0(n¥2) also gives 8/ (kun?) for
the ratio 8/ (knU}). This ratio then becomes small for
kp>10"% cm™! or K>4. Hence, we are justified in
ignoring B effects at the higher wavenumbers.

We note finally that the properties of isotropy and
equipartition are not dependent on the postulates of
localness or uniformity of the pseudo-potential en-
strophy transfer function required for the establishment
of the 72 dependence. They are due essentially to the
symmetry of the A operator in (25). The horizontal
scale, kz71, is simply the Rossby radius of deformation,
N/ (foks), corresponding to the vertical scale ,~L

Saffman (1971) has pointed out that the observed
kinetic energy spectra appear to be as consistent with
a k% as with a %2 dependence, and Deem and
Zabusky (1971) have found a k—* dependence in
numerical simulations of two-dimensional turbulent
flows. Saffman attributes this behavior to the property
that near-discontinuities develop in the vorticity. A
random collection of vorticity discontinuities separated
by regions with small vorticity gradient will give a k2
behavior for enstrophy and a 2% behavior for kinetic
energy. If it should be found that the pseudo-potential
vorticity also exhibits such near-discontinuities, Saff-
man’s argument could be generalized to three-dimen-
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sional quasi-geostrophic flow to account for a k¢
behavior.

The data to be shown in the next section do not dis-
tinguish clearly between generalizations of Kraichnan’s
and Saffman’s hypotheses. We have not shown spectra
for hemispheric wavenumbers >20 because of lack of
confidence in the measured and calculated values, but
the values derived from numerical simulations do show
an increasing slope toward higher wavenumbers in a
log-log energy-wavenumber diagram. This suggests the
possibility that the Kraichnan mechanism operates
at relatively lower wavenumbers and the Saffman
mechanism at higher wavenumbers. At still higher
wavenumbers one might expect genuine frontal dis-
continuities to produce a k72 dependence, which ulti-
mately becomes superceded by the Kolmogoroff k~5/8
dependence,

5. Comparison with observation

We present comparisons of observed and computed
one-dimensional spectra along circles of latitude. If
“( )’ denotes an average over a sufficiently large
volume V in the x, y, { space, and X is the Fourier
transform of X, we have

Ko DR ADR(CHD

+o0
1
= / / / (k2 k2 k]| X |2dkdkadks, (35)
Vv

(XD () il wk|X|dk
X,)? ,,2 2\ — 4 2
() H((x)?) +H((X0)%) V/

0

=2 / ) E(E)dE, (36)

where X=X (k) by isotropy. Carrying out the inte-
grations in (35) with respect to k5 and ks, we find

() =((xs)2) = f Puedits (1)
(1]
because of the isotropy, and
() = j Gy (ki) (38)
where ’
00 k2—'k12
Fy(ln) = / Rk, 39)
no R
R yan= (40)
G k = —_— g —
1(k1) /h . ) 1ﬂ31

Setting E=Ak™™, we get Fi=2n"'(n+2)"4ks™ and
Gi1=2(n+2)""4k, ™, showing that the longitudinal
spectral function for the transverse velocity v is # times
greater than that for the longitudinal velocity # or for
X;. This result has been verified for # and v observation-
ally by Leith (Joc. cif) on the assumption that #=3.
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The hypotheses of Section 3 permit several immediate
comparisons with observation. They of course predict
a k3 spectrum for the kinetic energy of the horizontal
velocity and for its # and y components. They also
predict a 272 spectrum for the temperature variance.
Such a spectral behavior was observed by Kao and
Wendell (1970) and Kao (1970) in a longitudinal
spectral analysis of winter and summer 500-mb data
at 20, 40, 60 and 80N. The data were taken from routine
objective analyses prepared by the National Meteoro-
logical Center. The spectra at 60 and 80N show a
greater decrease of spectral energy with increasing wave-
number but are not reliable because the data were not
adequate to resolve the high wavenumber components.
The 20N spectra are also inaccurate because of lack of
data. We expect equipartition among the power spectra
of X, X, and X;. Transferring back to ¢ and z, this
implies that the two-dimensional kinetic energy spec-
trum E; should equal fwice the available potential
energy spectrum E, [cf. Eq. (12)7]. In particular, the
longitudinal spectra of #'(y.)?% (,)? and(f2/N?)(,)t
should be equal. Utilizing (4), we find that g2/ (V?T?) is
the factor that converts the temperature variance spec-
trum to the power spectrum of the # velocity com-
ponent. At 500 mb and 40N this factor is found to be
about 1.1X10° cm? sec™® (°K)~2 in both summer and
winter. Fig. 1 shows the variance spectrum of (g/N)
X (T—T)/T for the winter and summer of 1964 calcu-
lated by Kao as functions of the hemispheric wave-
number K =£k;. The corresponding power spectra of «
and v are superimposed as dashed and dotted lines,

los;——l—l—r—rrrrrrmmm IOSE—r—r"l—anrmmE
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F1c. 1. The observed power spectra of #, v, and (g/N) (T'—T)/T
at 40N and 500 mb for winter and summer 1964 as a function of
the hemispheric wavenumber K=4;.
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respectively. It will be seen that there is approximate
equipartition for hemispheric wavenumbers >6. We
note that the actual slopes in the log-log diagram are
closer to —4 than to —3, but this may be due to lack of
data or to excessive smoothing in the NMC analysis.
Ten-day averages of velocity and temperature spectra
computed from an NCAR six-level model prediction
for a period of ten days with a grid resolution of 23° in
latitude and longitude were kindly made available to
the author by Wellck and Washington of NCAR. These
spectra are shown in Fig. 2 for the levels 1.5, 3.5, 7.5,
and 10.5 km at 40N in winter. The temperature vari-
ance spectra have been multiplied by the factor
g%/ (N2T?), whose zonally averaged values were found
to be 0.7X105, 0.7X10%, 1.2XX10° and 4.0X10° at the
respective levels. We see that there is equipartition and
that the spectra do have an approximate 2~* behavior.
It is thought that the above theory should also apply
to the oceans in regions of strong baroclinic excitation,
such as in the region of the Gulf Stream meanders. No
observations are yet available for comparisons.
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ABSTRACT

Supersonic transport planes currently under development will cruise in the stratosphere and there is
concern about possible environmental effects. In particular, NO emitted by these aircraft may catalytically
affect atmospheric ozone. Here we investigate an important natural source of NO, the reaction O('D)
+N:0 — 2NO, and compare the natural source with estimates for the source due to a fleet of 500 planes
cruising for an average of 7 hr a day. The natural and artificial inputs above 15 km are of comparable mag-
nitude. The natural source corresponds to a net production of NO, averaged over the globe, of about 2 X107
molecules cm™2 sec™?, and offers a yardstick for judging the possible significance of any artificial input. Addi-
tional sources of stratospheric NO, due to downward diffusion from the ionosphere and upward transport
from the earth’s surface, are discussed but have not been quantitatively estimated at this time.

1. Introduction

Crutzen (1971) has argued that odd oxides of nitrogen
may play a significant role in the chemistry of ozone in
the atmosphere below 45 km. They act to catalyze its
destruction and, according to Johnston (1971), this
catalysis may be of crucial importance in the context of
the supersonic transport plane (SST).

A major uncertainty concerns the abundance of
nitrogen oxides present normally in the atmosphere at
SST cruise levels. Nitrogen oxides are formed at high
levels in the atmosphere by reactions involving charged
particles and are transported downward into the
stratosphere by eddy processes. Oxides of nitrogen are
also produced at the earth’s surface, a source which is
likewise expected to contribute significantly to the
stratospheric input.

Detailed analyses of airglow data (Meira, 1971)
indicate downward fluxes of NO at 80 km in the range

1-5X 108 molecules cm—2 sec™! (Strobel ef al., 1970), but
the fraction of this flux which eventually reaches the
stratosphere cannot be reliably estimated at the present
time due to the probable importance of slow-loss
processes for odd nitrogen atoms. Strobel (1971) indi-
cates that the concentration of odd nitrogen atoms at
30 km, which results from downward flow, is uncertain
by perhaps three orders of magnitude, and the flux at
this level is similarly ill-defined.

Bates and Hays (1967) estimate a globally averaged
source of NO and NO; equal to about 2X10° cm™2 sec™!
due to combustion of crude oil, coal, natural gas and the
primary metal industry. Junge (1963) discusses an
additional source due to bacterial activity in the soil.
The fraction of the surface production which penetrates
the stratosphere depends on a variety of factors. The
dominant loss of odd nitrogen atoms in the troposphere
is believed due to rainout of NO; and soluble photo-
chemical products such as HNO; and HNO;.



