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Using a classical example, the Lorenz-63 model, an original stochastic framework is
applied to represent large-scale geophysical flow dynamics. Rigorously derived from

a reformulated material derivative, the proposed framework encompasses several
meaningful mechanisms to model geophysical flows. The slightly compressible set-
up, as treated in the Boussinesqg approximation, brings up a stochastic transport
equation for the density and other related thermo-dynamical variables. Coupled to the
momentum equation through a forcing term, a resulting stochastic Lorenz-63 model is
consistently derived. Based on such a reformulated model, the pertinence of this large-
scale stochastic approach is demonstrated over classical eddy-viscosity based large-scale
representations.
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1. Introduction

Today, in their most common expression, large-scale geophysical flow representations rely on the Reynolds decomposition and the
inclusion of a subgrid dissipative model to represent the action of numerically non-resolved components over the resolved scales. Most
used subgrid models heavily bank on gy viscositgoncept — also called Boussinesq assumption (Boussinesq 1877) — built upon a
straight analogy with the molecular dissipation mechanism. The celebrated Smagorinsky model (Smagorinsky 1963) is one of the most
representative instance of such models. &ty viscositgoncept is essential to achieve a numerical stability in draining the energy
accumulated at the cutoff resolution through the direct energy cascade process. Its pure dissipative behavior further prevent to take into

account local backscattered energy or inhomogeneous turbulence.
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To represent the large-scale evolution of turbulent fluid flows, a different strategy can be envisaged, considering the decomposition of
the flow into a large-scale smooth component and a fast oscillating velocity component modeled as a random field (seen as decorrelated
at large scales). Yet, such a decomposition requires to modify the material derivative through the introduction of a stochastic transport
operator (Memin 2014; Resseguiet al. 2017a).

One advantage of this framework over the Reynolds decomposition lies in its ability to deal with non-smooth expressions of
the small-scale component at the resolved time scale. It further introduces, without any supplementary assumption, the following
mechanisms:i) a dissipative operator directly related to the mixing effect of the large-scale components by the small-scale velocity;

(i) a multiplicative noise representing small-scale energy backscatteringiiigradrfodified advection term related to the so-called
turbophoresiphenomena, associated to the migration of inertial particles in regions of lower turbulent diffusivity (Reeks 1983). Those
properties have already been used to define data-driven inhomogeneous subgrid models to stabilize reduced order flow models in
pturing the principal local dissipation directions and the small-scale induced advection field (Restedy@6i 7d). Corresponding
@dy-viscosity models are not any more constant, but adapted to the dynamics. This random framework also enables to derive stochastic

Mnamics from the very same physical conservation principles as in the deterministic case and is amenable to the usual geophysical

ualing approximations (Resseguérl. 2017b,c).
In this work, this representation is applied to the famous Lorenz-63 model to illustrate the pertinence of such a consistent stochastic

v re‘aresentation over a classical eddy diffusivity model. In particular, it is shown for the Lorenz-63 that a classical eddy-viscosity

H)delling strongly slows down the exploration of the attractor, while the stochastic approach provides a much faster exploration.
= 2.| Stochastic representation of the Lorenz-63 model

The celebrated Lorenz-63 model (Lorenz 1963) corresponds to the description of an incompressible flow undergoing a Rageigh-B
nvection caused by a temperature gradient between the bottom and the top of the fluid domain. It aims at representing atmospheric
convection in a 2D simplified way.
@The Lorenz-63 model is formally derived from the Boussinesq approximation — i.e. small density variations — of the Navier-Stokes
quations. Its complete derivation is described in Lorenz original paper (Lorenz 1963) or given in greater details in the book Berge
1.(1987). To derive its stochastic representation, we closely follow the same derivation. Yet, we start from a stochastic Boussinesq

| s)stem, derived itself from physical conservation principles and a stochastic representation of the flow. Such representation, termed as

hat similar models could be derived from Hamiltonian principles as described in Holm (2015).

@. Flow modeling under location uncertainty

IMthe modeling under uncertainty the model errors are introduced at the lowest level of the dynamics. The basic idea is built on the

jodeling under location uncertainty, has been recently propose@inilv2014); Resseguiet al.(2017a), and is hereafter outlined.

ssumption that the Lagrangian fluid particles displacem¥npt results from a smooth velocity component,and a fast oscillating

dom field uncorrelated in time. At tintethe location of a fluid particle initially located &, is:

O
t t
X=Xy, +/ V(Xs,s)d5+/ o(Xs,s)dBs, 1)
to t0

which reads also in a more compact differential form as:

dX¢ ZV(Xt,t)dt+0'(Xt,t)dBt. (2)

This article is protected by copyright. All rights reserved.



The solenoidal (possibly inhomogeneous) random field, representing the small-scale velocity component, is build through the
application of a linear operatos;, to a space-time white noiséB:. It is explicitly defined on a spatial domai from a kernel,
o, as:
o(xz,t)dB; = /Q&(w,y,t)dBt(y)dy. 3)
The kernelg, (or the operatosr) encodes the random field spatial correlations, whereas the white noise function specifies its temporally
decorrelated character.

Decomposition%) leads to a stochastic representation of both the Reynolds transport theorem (RTT) and the material dexivative,
(derivative along the flow). When the material derivative of a quantity is deterministic, (such as in the case of a conservation constraint,

for instance) this derivative coincides with the stochastic transport opebatatefined for any field® as:

D:0=d¢O + (v*dt + 0dB;) - VO — V - <%aV6) dt, 4)

le

volving the time increment termd;© = O(x, ¢t + dt) — O(=x, t), as®© is a non differentiable random function. This function depends

C

ong other things on the particles driven by the Brownian component flowing through a given point. The diffusioramatsialely

]

fined by the one-point one-time covariance of the unresolved displacement per unit of time:

a(@, 1) = o2, )0 (@, 1) = E{cr(a:,t)dBtd(:'(m,t)dBt)T}. 5)

This quantity corresponds to the diagonal of the covariance tensor and has the dimension of an eddy viscosity term (with units in

s~1). The modified drift is given by

* 1 T
v :vfi(le). (6)

d Art

derived, both the stochastic RTT and material derivative involve a diffusive subgrid term, a multiplicative noise and a modified

C

dvection drift induced by the small-scale inhomogeneity. This material derivative has the remarkable property to conserve the energy

{

any randomly transported tracer realization (Ressegtiak 2017a):

d 2 _ 2 _
dt/ﬂ@ _/QDte —0. @)

iven the RTT, the classical conservation laws of mechanics (linear momentum, energy, mass) can be expressed within a stochastic flow

cep

orm (2). It should be noted that an incompressible homogeneous neiseith a divergence-free diffusion tens®t - o (x,t) = 0,

fined over a periodic domain for simplicity, leads to a constant diffusion matrix. In that case, the effective advection reduces to the

G

ge-scale drift component, and the diffusive subgrid term boils down to weighted second order partial derivatives.

he modeling under location uncertainty thus conveys a practical alternative to the design of stochastic representations

geophysical flows. Various techniques have already been considered such as homogeneization, stochastic modes reduction,

A

renormalization closure, a posteriori random forcing, or parameter random perturbation (seeeBeain¢P017); Franzkeet al.
(2015) and references therein for a review). However, the modeling under location uncertainty unambiguously provides a rigorous

physical derivation of the stochastic system that directly stems from the conservation principles. It then facilitates the set-up of classical
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scaling procedures to include all the ingredients needed for a large scale representation, e.g. subgrid diffusion, modified advection akin
to turbophoresigphenomenon and backscattering. To obtain similar stochastic Eulerian equations, Holm (2015) relies on geometric
mechanics and a variational principle to propose an alternative construction. This latter formulation is helicity preserving, whereas the
modeling under uncertainty conserves the energy. Those stochastic models have been recently justified through the homogeneization of
multiscale Lagrangian dynamics Cotegral. (2017), and when restricted to a 3D (energy conserving) Euler model, @tisé{2017)

demonstrates that analytical properties of the 3D deterministic Euler equations are also preserved by such stochastic representations.

2.2. Boussinesq system under location uncertainty

Following the location uncertainty principle, stochastic Navier-Stokes and Boussinesq models have been derarethi{2®14) and
@sseguie@t al.(2017a), respectively. In a 2D inertial frame of reference indexed by the horizontal and vertical coordaradesan
Incompressible anisotropic homogeneous random figdwith V - &(x — ') = 0) is characterized by a constant diagonal diffusion

tehsora = diag(ax, a,). Accordingly, the momentum equation of the large scale velocity (u, w)” reads:

w ere with usual notationg denotes the dynamic viscosit¥, is the pressure, angl the gravity force. Thanks to the homogeneous

p(Bev+(v- vafZazanv = pg—VP+uV3v, (8)

S ucture of the noise component, these equations closely resemble a large-scale model with proper constant eddy viscosity coefficients
ng the horizontal and vertical directions. Yet, this system is complemented by a stochastic thermo-dynamical equation describing
the temperature evolution:

DT = DpATdt. 9)

@ previously discussed’), when the thermal diffusion coefficied is negligible, the temperature is transported and its norm is
re

served. In the steady non-convective state (when the fluid is at rest), the temperature varies linearly with the domain depth
=T, — #0T, wheredT = T, — T, is positive as the bottom temperatdrgis higher than the temperature at the #p The

|at|on from this linear model is:

r(z,2,t) = T(z, 2,t) — Ty + %5T, (10)
% evolution obeys the following stochastic evolution law:
Q) oT 6T

DT — w—dt — T(O'dBt)z = DpV2rdt. (11)
is latter model introduces a random transport of the temperature fluctuation, together with deterministic and random forcing of the
chau velocity component. Writing the density variations in power of temperature fluctu@tienT}), to leading order we may
ite p(T) = po — apo [— 56T + 7|, wherepy = p(T},) and the thermal expansion coefficientis= —i— Under the assumption
of negligible compressibility, the Boussinesq approximation states that the density variations can be ignored in the momentum equation
(8) and only kept within the gravity term. This system further simplifies through the hydrostatic equilibrium, which holds for the fluid
atrest:

Ov+(v:-V)v— 1 Z a;0%v = —arg — iVP—&—VVzv, (12)
2 - PO
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wherev denotes the kinematic viscosity. First, the formulation is adimensionalized with respect to the time \téﬁia@ét, where

h? /Dy corresponds to the typical time of a thermal diffusion okeand the spatial variables’ = z/h, 2’ = z/h. The uncertainty

ratio Y, characterizing the order of magnitude of the horizontal turbulent diffusjor Ya., a, = Ya., is then introduced, together

with the temperature deviatiari = 7/§t. Multiplying the system bthTSV and finally incorporating the dimensionless Prandtl number

Ra = £, ratio of the kinematic viscosity to the thermal diffusivity, the Rayleigh nunitae adTah® and the dimensionless pressure

variablell =

Q

cle

I/DT
1 _n?
po Drv

0, P', the following 2D system is obtained (where the prime index has been dropped for sake of clarity):

1
Ra

(Osv+(v-V)v— % Zaﬁ%v) = _VII+vV3y, (13)

Dir — wdt — YT 2(0dBy). = V2rdt.

cev(z,z) = (u(z, 2),w(z, 2)) is divergence-free, the 2D momentum equations can be written in a vorticity stream function form:

1

2 2 11 22 4
= <atv U+J(0,V q:)—i?zuiaﬁv \If>=Raag;T+7/V v, (14)
7

PY Mere@ denotes the stream function anif¥, w) = V¥ . Vw =v - Vw denotes the Jacobian of the transformation (¥, w)”

|1o4 Wh the 2D vorticityw = V* - v = —d,u + d,w . This equation together with the thermal equation describes the whole dynamics of

the flow. As for the divergence-free random field, we similarly consider a stream function vector formuldfiyn= VL\IlgdBt.

5
0s Note that the kernelf,, of the linear operato# , is a vector of two components:

2

dz Z (‘ilg(:c, z))’C (dB¢(2))y, - (15)

k=1

(¥5dB)) (@) = [

9]

ﬁ. Fourier modes projection and simplified solution
108 _I he Lorenz model corresponds to a simplified solution of this system, considering a Galerkin projection onto the first Fourier modes

aP

pled with suited boundary conditions. The boundary conditions ar® atz = 0, 1 to get the appropriate fixed temperature on the

|11o g'main frontiers and,u = 0 andw = 0 atz = 0, 1, i.e. neglecting the shear forces on the boundary. For the random term, we assume

modi}c boundary conditions for simplicity. Indeed, it is a necessary condition for homogeneity, and thus for a constant diagonal

>
QO
QO

n tensor. These specific boundary conditions may be understood as a random forcing at the domain boundary, and are satisfied

the following ansatz for the streamfunction and the temperature deviation:

T(z,2,t) = T1(t)sin(wz) cos(fz) —To(t) sin(27z), (16)
U(z,z,t) = &(t)sin(rz)sin(lz). (17)

e two partsy; andrs of the temperature fluctuation are random (throglandT) and provide the temperature deviation on the

1
fluid parcel boundary and at the parcel center, respectively. To ensure a diagonal diffusion tensor as previously specified, the random

116 Stfeam function term is defined on the two first Fourier modes and their conjugates :

2

vIdB;= i3 Z (cos (gij) dﬁ;j +sin (gij) d(t”), (18)
ij=1
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where the phases are givengs= (—1)'rz — (—1)J £z and the modulus are defined from the constant/? and eight independent

scalar Brownian variable{s@iﬂ ¢¥:i,j7=1,2}. It may be checked that this representation fits the homogeneity condition:

2
E{®7(z1,21)dB WY (29, 29)dB; } = % 3 cos ((—1)”77(21 ) — (—1)l(z1 — xg)) dt. (19)
ij=1

The small-scale random velocity becomes:

TY26dB, =V, (z,2)dB; (20)
2 (=" ij ij
= i} (sin(giz) B¢ —cos(9i)¢t ),

ich can be developed in factors@k x sin, cos x cos, andsin x sin. We may check that the diffusion tensor is then given by

2 —1)%ig2 —1)itire ™ 0
a— % 3 ( )_ ' (=1 T = % . 1)
ij=1 \ (1) ire  (=1)%¢2 0 £

cle

This choice, though simple, remains sufficiently general for our purpose. Factorizingh®@y) sin(¢z) the dynamics 14), we

t1

immediately infer that the stream function temporal magie), has to satisfy the following differential equation

I

_ RaRaT (1) 202

6t¢(t)_m_(7r2 +52)(Ra+%m)¢(t). (22)

A

is equation includes a random forcing term coming from the temperature variation. As for the thermo-dynamical equation, removing

the high-order frequency terms, gathering on the one hand the texing7a) cos(¢z) and in the other hand the termssin(27z), and

2

oducing a new scalar Brownian motidh = % Zi,jzl(—l)”jﬂzj (for which it can be easily verified that the quadratic variation

d,

st), we get:

14 IrT:
dB; = —¢rTodt — Tl—/;dBt, (23)

T1/2

C.

ATy + (¢ + 7% + %772€2)T1 (t)dt — pdt —

{

a

leﬂTl
271/2

—dTy — (14 %62)4731’2(175 = —%Zﬂquldt - dB, (24)

P

rdspectively.

CGQ

4. Lorenz system under uncertainty

C

Tq get to the final simplified system, we finally consider the time s€ate(x? + ¢?)t, the change of variables:

I

=

&)
+
15
=&
>

=

(25)
Y(t) = %Tl (1), (26)
Z(t) = 7rTy(t), (27)
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and the reduced Rayleigh number

Ra/?
S et (28)
With this time renormalized, the new Brownian variableéBis = v/72 + ¢2 B;. We also note
1 _ 2 I (29)

T1/2 T1/2 /92 +7T2\/§'

Those changes of variables, with the paraméter4x? /(=2 + ¢?), lead to the final system of equations where, for the sake of

readability, we kept the notation instead oft" and dropped the prime index on time:

% - m(y _ X) _ %X, (30a)
Q) day = <(r X -y - iy) dt+ " —Zap,, (30b)
27 T1/2
M dz = <XY —bZ — iZ) dt + 2 _aB,. (30c)
27 Y172
Q

s model constitutes a stochastic version of the Lorenz model. It is composed of a deterministic differential equation on the velocity

1

variable together with two coupled stochastic differential equations associated with the temperature fluctuations. For a negligible noise

{

— 00), we recover the original model. Besides, in thend Z equations, the noise terms involve the same factors as the advection

I

ms in factor of the velocity variablgX). Hence, they both correspond to the advection of temperature variables by the small-scale
locity. An additive noise component, weighted by the Rayleigh coefficient, is obtainedyiretheation. It corresponds to the random

interaction between the small-scale velocity and the stratificatioappearing in 11). This term and its influence on the buoyancy

A

variations has been detailed in Ressegetal. (2017a).

t should be noticed that in this stochastic Lorenz system, the velocity variable is driven by an ordinary differential equation. This is

d

he first place due to our assumption of a smooth in time large-scale velocity. Relaxing this assumption (i.e. in considering that the

I2kge-scale velocity component depends also on a Brownian variable, which is fully authorized by our derivation) the expression of the

-

elocity for the Lorenz 63 system would however remains deterministic. As a matter of fact, the multiplicative noise is antisymmetric,

{

and thus described (in an orthonormal basis) by an antisymmetric matrix with a null diagonal. Consequently, the noise would have no

ect, as only one Fourier mode is kept in the Lorenz-63 model to represent the velocity. In other words, the noise transfers energy

D

from dne mode to the other. If only one mode is considered, the noise has no effect. In the other hand, the turbulent diffusion is still

sent as it takes out energy from the resolved mode to transfer it to the truncated modes.

¢

n the three equations and as compared to the original Lorenz system, the diffusion terms are increased by a factor that depends on the

C

oise variance scal€. Due to the scale truncation, the energy los¥ dfy turbulent diffusion ist times larger than the multiplicative

C

ise intake. It i times larger forZ. The stochastic system exhibits a symmetry(feX, —Y, Z, — B). Thus, the law of the solution

ymmetric for(— X, Y, Z).

To infer the different physical mechanisms, it is usefull to rewrite sys&@nwith Stratonovich notations (Oksendal 1998):

A

Y
d —Fdt+ 71 Y2@dB, = F*dt + Y /?G 0 dBy, (31)
Z
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whereF* = F — %(G - Vy2)G, (32)
1 0\ (Y 1 [3 o) (Y
= GX - “aT :
Large-scale 0 b A 0 7 Z
advection
Molecular Turbulent diffusion due
diffusion to scale truncation
r 0 -1 Y Jdy
G = + s andVYZ = . (33)
0 1 0 Z Jy

SinceG represents an advection term, its linear part is antisymmetric and thus has no effect either on the temperatiré engfgy
or on the dilation or contraction of the state spa¥g £ - G = 0). However, according to the system’s flow Jacobian (Resseguér

2017a), the drift termF™*, uniformly shrinks the state space volume:

V() = V(0) exp (/Ot ((aXX 1 Vyy- F) dt + Vyz - GdBt>> ,

= V(0) exp (f (Ha+ 1+b+ %) t) : (34)

cle

® mo te that the noise term increases the shrinking rate through the turbulent diffusion term induced by the spatial scale truncation. In
dition, the random terms are volume-preserving since they have an antisymmetric multiplicative structure as stated by the transport

Herator {). More arbitrary choices of multiplicative random Lorenz systems studied in the literature do not necessarily keep such

153 __agoperties Chekroust al. (2011). This key difference between stochastic systems build from a stochastic transport operator and the
@ multiplicative stochastic system studied in Chekretial. (2011) has also been put forward through the Lyapunov exponents in Geurts
etjal. (2017). While obtained from a different derivation, the stochastic system with noise transport studied ineGalu(2017) is

156 close to the system derived from the modeling under location uncertainty.

dditive noise terms in the sytems (Dorfle and Graham 1983) have also been considered. However, those latter models do not
5 : rrespond to the observed small-scale tracers, which are non-Gaussian and intermittent. Such phenomena are well described in simple

lar advection models with multiplicative random processes (Kraichnan 1968, 1994; Majda and Kramer 199%|32085).

he system expectation (conditionally to the velocity) corresponds to a Lorenz model with an augmented diffusion and hence
stitutes a damped version of the deterministic version of the original model. There are still three equilibrium paintsl for

d at(0,0,0) (£[(1 + 2)(b+ 4)a]Y/2, £[(b+ £)a)'/2,a) with o = (r — (1 + 2)(1 + v23)). For a small noise variance, we

¢rover to leading order the usual equilibrium points, but for strong noise, there is a shift due to the large-scale diffusion engendered

by the noise.
he classical Lorenz system corresponds to a description of the flow in which the small-scale velocity fluctuations are simply ignored
ough a truncation on the Fourier space. The diffusions introduced are then only related to the kinematic viscosity and to the thermal
|ffu5|V|ty The modeling of the small-scale effects as purely dissipative processes, as this is done in Large Eddies Simulation (LES),
uld introduce stronger diffusions through eddy viscosity and eddy diffusivity coefficients.
he Lorenz system under location uncertainty can thus be interpreted as a coarse time-scale description of the dynamical system
170 in which the intrinsic Lagrangian velocity anomaly is encoded through a temporally uncorrelated random variable. Here, the latter

171 is encoded as a scalar white noise variable depicting an uncertainty on the temporal evolution of the two first Fourier modes of the

172 flow velocity. The velocity anomalies have a characteristic time that is much smaller than the resolved (differentiable) velocity. At the
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resolution characteristic time, these velocities anomalies can thus be considered as fully decorrelated. One crucial property of such
large scale representations concerns the rate at which they tend to the "finest” original system when the noise tends to zero (e.g. when
T — o). We will show in the following section that the proposed stochastic system includes the property to approach the original
system for moderates values 6fand to provide reasonable coarse descriptions for sthatlues. This ability constitute the most

striking difference with a diffusive "eddy-viscosity” model, which has a good convergence behavior but yields a wrong representation

at high eddy-viscosity value, or with @ad hocstochastic multiplicative forcing approach that appears to have a poor representation

property even for low noise.

3. Numerical simulations of large-scale representations

IMthe following, we consider several simulations of this stochastic Lorenz system. The gold standard to which this system should be

-

compared with, would ideally consist to reconstruct an ensemble of trajectories of an equivalent reduced order model built from a full

]

difect numerical simulation of a Raleigh-Benard convection (with a large number of different initial conditions). This solution would

stitute a huge computational effort. Instead of doing that, we will compare the performances of different representations of the

¢

° ﬂrenz-&? system with the original system. The deterministic Lorenz system does not constitute per se a gold standard in the sense

| tWt it corresponds to a reduced order model that represents the evolution of only the first Fourier modes (one mode for the velocity,
two modes for the temperature) with no model for the truncated modes. However these modes capture well — in an ideal setting — the
recurrent pattern of the metastable Raleigh-Benard convection cells. A representation of the small-scale effects will not considerably

ect the representation of these large scale effects at least in average. Obviously, intermittency and small-scale perturbations will likely
mpdify an instantaneous picture of these cells and of their motion. As a consequence, any Lorenz systems with a representation of the

truncated modes should statistically not differ too much from the original Lorenz system. All of them should statistically represent the
me large-scale physics. In particular the pdf or the mean spectrum of the system variables at large scale should be close to those

he deterministic Lorenz-63 system. Furthermore beyond its relation with the Raleigh-Benard convection, the Lorenz-63 model is

oy model that reproduces qualitatively essential mechanisms of geophysical dynamics: a temperature advection and a non linearity

Qh a velocity forced by temperature. It is interesting to observe how different modifications introducing multiplicative noise and

de-diffusion mechanisms depart from the original deterministic system.

\We consider the original Lorenz system for the usual chaotic param&tets {0, = 28,b = 8/3). Its small dimension enables to

easllylvisualize the solution attractor and to obtain empirical probability density function of the phase space. The Lorenz-63 system
@I be termed with the LZ acronym. For the parameter values investigated here, LZ admits an invariant set, over which almost all
igitial conditions are attracted.

The second system we will consider corresponds to the dissipative system without the noise terms. This latter system can be
iMierpreted as a damped version of LZ. The temporal modes are further damped from a supplementary diffusion term, akin to classical
arge eddies representations of the dynamics through eddy viscosity subgrid models. Expressed as a spatial diffusion in the physical

main, these subgrid effects are represented by a damping term on the Fourier temporal modes. The action of the unresolved variables
on the resolved variables solely results from the dissipative subgrid operator. This system will be denoted LES-LZ.

The third model corresponds to the proposed stochastic model. It includes the previous dissipative terms, but also the multiplicative

noise terms borne by the location uncertainty formulation. This system is referred to LUS-LZ — for Location Uncertainty Stochastic

Lorenz-63.
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Figure 1. Trajectory of the Lorenz system under location uncertainty (a) and the Basic stochastic Lorenz systems (b) in a strong rbise tajse (

A fourth system is empirically defined by adding to LZ, multiplicative noise variabl&sZdB; and1/YY dB, on Z andY variables,
rgspectively. Hence the noise has a diagonal structure and there is here no additional diffusion. This basic stochastic model is termed

B$-LZ.

A first remark on the different systems can immediately be done. The stochastic and diffusive systems straightforwardly tend to LZ

cle

en the noise (or the diffusion) tend to zero. Yet, the rate at which those modified systems tend to the deterministic system is crucial.
Y ﬁparticular, for very small noise condition, it is not desirable to greatly differ from LZ.
For those four systems, simulations with different initial conditions have been carried out. For the two deterministic systems, LZ

and the diffusive LES-LZ, an ensemble is engendered by random perturbations of the initial condition. The same point is used to

It

initiate the realizations of the stochastic systems. The noise amplitude and the initial perturbation have been fixed through the scaling

T. Numerically, the four systems have been set on equal footing. We employed a simple Euler-Maruyama integration for the stochastic

A

erential equations associated with a tiny time step ). To obtain comparable results, an Euler scheme has been used with the
same value for the deterministic systems. Several simulations with 100 particles have been run with different noise levels and initial

ditions. An example of the trajectories of one realization of the two stochastic systems with the same initial condition and the same

d

el of noise are displayed on FiguteThe BS-LZ trajectory is rough while the smoother LUS-LZ trajectory is more akin to that of

tie deterministic LZ.

G

The curves plotted in Figur&@ and4) show, for two different noise levels, the empirical (marginal) probability distribution and

t

the power spectrum of the variabl&s Y andZ, respectively. As immediately noticed, the diffusive Lorenz system for a strong noise

= 10) strongly modifies the empirical pdf. Two peaks are now observed at the equilibrium points, located at the center of the attractor

1%

ings. The trajectories are more easily trapped in the attraction bassin of these points. Yet, the eddy viscosity coefficient is smaller
&n one, 1/5 and 2/5 o and Z, respectively. The spectrum for long time-scale is also modified for the three variables, especially
Z variable. For small diffusiorfy = 100, and eddy viscosity coefficients 0f50, 1/50 and1/25 for X Y andZ, respectively, the
fs and the power spectra superimpose almost perfectly with pdfs and spectra of the deterministic system. This model converges to
< t} deterministic system for small diffusion. Note, we recover here the common practice in computer fluid dynamics that limits the use
ofdiffusive LES to resolutions quite close to high resolution simulations. At variance, the random empirically forced system (BS-LZ)
performs quite badly. Even for small noise, it leads to significant changes for the pdf shapes of the three variables. Strong discrepancies
n be observed in the spectrum of thevariable in the transition regions between frequency peaks4figrhe BS-LZ thus badly
converge toward the deterministic system. It constitutes a bad random representation of the original system. Compared to the others, the
LUS-LZ still holds well for high noise. Though slightly smoothed, the shapes of the marginal pdf and of the spectra are well preserved

at large time scale. Some discrepancies only appear at high frequency where the noise impact is clearly visible.
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Ce

To quantify the exploration of the Lorenz attractor, we rely on a discrete covering of the usual deterministic attractor made of 611550
cubic boxes of radius = 0.15625, computed with the GAIO software Dellni&t al. (2001). Figure$ and6 depict for the LZ, LES-
and LUS-LZ systems examples of the attractor’s discrete covering visited by an ensemble of realizations started from an initial
condition on the attractor. Those maps exemplify the differences between the three systems for a strofg-naige(fig. 5) and
a small noise { = 100) (fig. 6), respectively. In the strong noise case, the diffusive systemSffigremains stuck in the basin of an

equilibrium point. This explains the pdf peaks observed in the upper left panels of figiBesnd4), and also highlights a problematic
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Fiure 5. Attractor’s points visited by 100-particles ensembles initialized with the same random initial condition (strong noide-=eas® for ¢ € [0, 40] for the
erministic Lorenz system (a), the diffusive "LES-LZ” Lorenz system (b) and the "LUS-LZ" stochastic Lorenz system under location uncertainty ” (c). The color
codes the time necessary to reach a given point of the attractor for the first time.

ed Art

t

P

atic bias of diffusive large-scale systems toward system’s stable states. On the contrary, LUSEYV{Bds a much larger

rt of the attractor. The shape of the visited part of the attractor is similar to the set of points explored by 5@) (tigough the

-

2 ochastic system seems to visit the attractor in a faster way. At small noise, the three maps are sirBjlaHfwever, surprisingly
247 ugh, the stochastic system still seems to visit more rapidly the attractor. It rapidly escapes the equilibrium basin, whereas the LES-

(fig. 6b) remains near the equilibrium point. The LZ (fga) succeeds to visit both attractor wings, but in a less efficient way than

C

stochastic system does.

hose experiments have been generalized for 100 random different initial conditions (still on the attractor) of the 100-particles

ensemble (which amounts to 10,000 realizations). The results are displayehfthe strong and low noise case, respectively. for the

A

252 average visit rate, computed over 100 ensembles, of the attractor. For a given ensemble of 100 particles, the ratasé figiiction

253 of timet is defined as:

~ #{boxes visited byl00 particles over timgo; ] }
B #{boxes covering the attractpr

T(t) (35)
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Figure 6. Attractor’s points visited by 100-particles ensembles initialized with the same random initial condition (strong noi¥e-eas®) for ¢ € [0, 40] for the
deterministic Lorenz system (a), the diffusive "LES-LZ" Lorenz system (b) and the "LUS-LZ" stochastic Lorenz system under location uncertainty (c). The color encodes
the time necessary to reach a given point of the attractor for the first time.
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Fidure 7. Mean attractor visiting rate (see text) upite- 40 computed for 10,000 realizations (100 ensembles of 100 particles) for the deterministic Lorenz system (black);
diffusive "LES-LZ” Lorenz system (green) and the "LUS-LZ" stochastic Lorenz under location uncertainty ” (red); stendard deviations are superimposed in
lighter color: (a) strong noise case; (b) small noise case.

A

In the strong noise case, the visiting rate significantly differs for the three systems. As previously observed, the LES-LZ shows some

iculties to efficiently explore the attractor. A significant part of the trajectories remains close to the equilibrium points. On average,

d

s thars% of the attractor has been visited at time 40. The LZ system certainly performs better, but several configurations remains
inithe equilibrium basin. On average, abatit of the attractor have been explored in the same lapse of time. The stochastic system

rovides much better results. It enables to explore a much greater part of the attractordstgaryaverage) for the same number of

e

realizations. In the small noise case, as could have been anticipated, the LES-LZ results are much closer to the LZ one. It can be noted

t almost the same portion of the attractor, as in the strongly perturbed case, have been explored by both LES-LZ and LZ. Therefore

19

a strohger perturbation of the initial condition of the classical Lorenz system only results in a small increase of the attractor visit. The

ndard deviation associated to the deterministic systems (LES-LZ and LZ) is not significantly strengthened by a strong perturbation

¢

the initial condition. The LUS-LZ, even in a small noise configuration, shows a remarkable ability to visit a larger portion of the

C

ractor & 10%).

t can be noticed that for LUS-LZ and LZ the variance of the visiting rate grows rapidly at short time while it strongly decreases at

C

the end of the temporal window. The large variance increase at the beginning is connected to the different initial conditions (randomly
drawn on the attractor). Some ensembles will reach the regions of bifurcation of the attractor more rapidly than others, depending on
ere they have been started. When visiting these regions, particles of a given ensemble are sent to very different trajectories. Therefore,
for such ensembles, the visiting rate increases rapidly at short time. Other ensembles will take longer to reach the bifurcations, their
particles stay close together for a longer time and the visiting rate increases slowly. But, given enough time and for both models, most

ensembles go through the bifurcations, spread and explore a similar amount of the attractor the initial condition has been forgotten

This article is protected by copyright. All rights reserved.



and the variance of the visiting rate decreases. The stochastic model is advantaged by the noise and continues to explore faster than the
deterministic one even in a low noise context (the mean visit rate for LUS-LZ increases faster than that of LZ at T = 40). At the end of
temporal window, the variance of LUS-LZ remains also higher than the variance of LZ, especially for strong noise. For high diffusion

the LES-LZ keeps a high variance as some trajectories remain stuck in the attraction bassin of the equilibrium points.

Conclusion

As considered for this reduced system, the proposed stochastic strategy demonstrates great potential to model geophysical flows. The
resulting stochastic system helps to very efficiently explore the entire dynamical landscape of the flows. Without considering a large
computational load, a traditional diffusive setting appears more hazardous to use. This is especially true when a significant diffusion is
studied. In that case, a purely diffusive subgrid model shows limited performances, and implies supplementary computational efforts.

apidly reaches the burdens of almost fully resolved systems ! As rigorously derived, the stochastic strategy helps to avoid eventual

g

falls leading to strongly biased scenarios from insufficient exploration of the phase space dynamics. As also tested, the addition of an

l

pirical stochastic forcing barely constitutes an acceptable solution, as possibly leading to a bad representation of the target system.

m these results, it thus appears mandatory to more systematically promote the derivation of proper stochastic representations of

G

classical geophysical systems for climatic analysis of geophysical flows, following geometric mechanics and variational principle

[0}

Im (2015), or the location uncertainty formalism as developed here above.
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