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On the statistics of the phase of microwave backscatter
from the ocean surface

R. D. Chapman, B. L. Gotwols, and R. E. Sterner II
Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland

Abstract. In this paper we describe what we believe is the first study of the
distribution of the phase of microwave fields backscattered from the ocean surface.
Scatterometry data from the Synthetic Aperture Radar and X band Ocean
Nonlinearities experiment conducted on the German North Sea Research Platform,
Forschungsplatform Nordsee, in November 1990 have been analyzed to reveal the
distribution of phase differences as a function of time lag. A theoretical model for these
statistics is presented based on modulated Gaussian fields. This theoretical model is
shown to be in good agreement with the measured statistics. From this agreement we
conclude that the backscattered fields have a Gaussian distribution on short time scales
but are modulated in amplitude and frequency by the long surface waves. These results

are of more than purely academic interest, with direct applications to the design and
analysis of interferometric synthetic aperture radars, a relatively new class of
instruments that may be capable of providing high-resolution maps of ocean surface

currents from aircraft or satellites.

Introduction

Microwave backscatter from the ocean surface at moder-
ate incidence angles has been investigated in numerous
studies. Most of these studies have been limited to measure-
ment of the mean backscatter power and its dependence on
environmental parameters [e.g., Jones and Schroeder,
1978]. A few studies have reported on the first-order statis-
tics of the amplitude or power of the backscattered field and
their dependence on environmental parameters [Trizna,
1991; Gotwols and Thompson, 1994]. These first-order sta-
tistics are applicable to wind measurements using scatterom-
eters and surface wave and current feature measurements
using synthetic aperture radars (SAR), as well as to a wide
range of problems involving the detection of targets in the
presence of sea clutter.

A second, smaller class of studies has examined the
spectrum of the backscattered field [e.g., Plant and Keller,
1990]. The purpose of most of these studies has been to
examine the details of the scattering mechanism. The prin-
cipal application of such studies has been to SAR imaging
theory.

Another class of statistical studies has examined the joint
statistics of radar backscatter parameters. Examples include
modulation transfer function studies which look at the co-
herence of the mean Doppler frequency with the amplitude
of the return [Plant, 1989]. This has direct applications to
SAR imaging theory. Other joint statistics studies have
characterized the correlation of near-nadir backscattered
power and wave height to examine the electromagnetic bias
that affects radar altimeters [Melville et al., 1991].

None of the studies that we are aware of has presented
measurements of the statistics of the phase of the backscat-
tered field, the topic of this paper. This study is of more than
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academic interest. The backscatter phase fluctuations pro-
vide an underlying noise floor for a relatively new class of
remote sensors, called along-track interferometric synthetic
aperture radars (INSAR) [Goldstein and Zebker, 1987; Gold-
stein et al., 1989]. The INSAR provides a promise of
measuring ocean currents directly from aircraft or satellites
[Thompson and Jensen, 1993; Shemer et al., 1993]. Its
operation depends on making measurements of the differ-
ence in backscatter phase at two separate times. Thus the
statistics of phase fluctuations are a necessary component in
any model of INSAR performance.

This study has been limited to data and models pertinent
to moderate incidence angle backscatter, angles from ap-
proximately 30° to 60°. Hence the model developed here may
not be applicable to normal incidence or near-grazing angle
measurements.

Theory

Consider an ideal continuous wave scatterometer viewing
the ocean surface at a particular frequency f and incidence
angle 6;. The output of this device is a complex time series,
z(t) = I(t) + iQ(t) = a(t) exp [i¢d(2)], where I(¢) and Q(t)
are the in-phase and quadrature components of the backscat-
tered field, a(¢) is the amplitude, and ¢(7) is the phase. The
two representations of the field are related in the usual way:
a= %+ Qz)”2 and ¢ = tan™! (I/Q). To a good first
approximation we can treat the I and Q signals as being joint
Gaussian random variables over short time scales [Gotwols
and Thompson, 1994] with an autocovariance function given
by R(7) = (z(t)z*(t + 7)). In the case of ocean backscatter
the I and Q signals are not linearly correlated so that the
phase ¢(¢) is a uniformly distributed random variable lying
between 0 and 2#. More interesting are the differences in
phase measured at two different times, A¢(¢; t + 7) = arg
[z()z*(¢+ + 7)], and in particular, the distribution of these
phase differences. If the field is ergodic, then this distribu-
tion is only a function of the lag 7.
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Figure 1. Probability density function for phase differ-
ences of a K, band vertically polarized scatterometer for
time lags of 0.33, 1.0, 2.0, and 3.0 ms. Each curve has been
offset vertically an amount proportional to the temporal lag
in order to separate the curves.

For a joint Gaussian distribution of I and Q, Middleton
[1960, equation 9.32, p. 404] shows that the probability
density function (pdf) of the phase differences, p(A¢, 1), can
be expressed in terms of the autocorrelation function of the
complex process p(7):

1— 2
p(Ag, 7) = Lo lel (1-BH3Bsin~' B
2
+ %B—+ a-p5"1
where

B =|p| cos [A¢p — arg (p)]

and the autocorrelation function is given by the standard
definition

(7) = (z(t)z*(t + 7))
paT (z(£) 2*(2))

These expressions form the basis for our theoretical
predictions, although as will be shown later, some modifica-
tion of (2) is necessary to obtain good agreement between
theory and measurements.

2

Measurements

The statistics of backscatter phase differences were esti-
mated from scatterometer measurements obtained during
the Syntheic Aperture Radar X band Ocean Nonlinearities—
Forschungsplatform Nordsee (SAXON FPN) experiment.
This joint German—United States experiment was conducted
during the month of November 1990 from the German FPN
tower located in the North Sea. The purpose of this exper-
iment was to examine the mechanisms involved in the radar
imaging of large ocean waves.

The principal measurement systems were an extensive set
of coherent scatterometers and radars along with a variety of
environmental measurement systems, all deployed on or
about the FPN tower. In this study we made use of scatter-
ometer data at five different wavelengths: L band (19.0 cm),
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Sband (11.2 cm), X band (3.0 cm), K, band (2.1 cm), and K,
band (0.86 cm). All of these instruments were operated at
moderate incidence angles, typically 45°. The month long
duration of the experiment allowed us to examine a wide
range of environmental conditions. Supporting wind and
wave measurements are presented for the data sets exam-
ined here. The reader is referred to Plant and Alpers [1994]
for a more complete description of the SAXON FPN exper-
iment and to Thompson and Gotwols [1994] and Gotwols and
Thompson [1994] for a study of the amplitude statistics of the
same scatterometer data analyzed in this paper.

To examine the distribution of phase differences in the
backscattered signals as a function of temporal lag, all of the
scatterometer data were analyzed in a similar manner. The
complex backscatter time series were divided first into 5-min
segments. A circularity correction was applied which com-
pensates for mean amplitude and phase differences between
the in-phase (/) and quadrature (Q) channels.

The phase statistics for these data were estimated by
computing histograms of the phase differences over various
temporal lags defined by

A¢ = arg (z(£)z*(t + 7)) A3)

Normalization of the histogram results in an estimate for
the probability of occurrence of a given phase lag given a
specified time lag p(A¢; 7). This is the statistical measure of
the phase differences which we compare with theory.

Figure 1 shows four such pdf estimates made for time lags
of 0.33, 1.0, 2.0, and 3.0 ms from 5 min of data from the K,
band vertically polarized scatterometer. These data were
acquired at 0231 UTC on November 28, 1990. The winds on
this day were coming from 34° at 4.8 m/s, as projected to a
height of 19.5 m under neutral stability conditions. The radar
was looking due north, so the waves were predominantly
toward the radar. A swell of 17 cm rms amplitude from 323°
was present, as measured by a nearby roll-pitch buoy.

At zero time lag we expect that there will be no phase
differences, so the pdf in this limiting case should be a delta
function (not shown in Figure 1). The pdf for the shortest
available time lag of 0.33 ms is narrowly distributed about a
mean phase difference of about 8°. At a time lag of 1 ms the
pdf has broadened considerably, with a mean of about 24°. A
linear relationship between mean phase difference and time
lag exists until the phase decorrelates to the point where it
wraps around onto itself. In the limit of long lag time we
expect that the scattered field will decorrelate and the phase
differences will be uniformly distributed between —180°
and +180° with a mean phase of 0°. The decorrelation of the
phase differences at 3-ms time lag is evident in Figure 1.

The linear relationship between mean phase difference and
time lag corresponds to a mean positive Doppler shift due to
the surface scatterers moving toward the radar. A mean
scatterer ‘‘velocity,”” actually the mean velocity of the
scattering phase center, can be estimated from the slope of
this relationship.

An alternative contour representation of the same pdf
estimates is shown in Figure 2. This figure was created by
computing the pdf over a rectilinear grid of phase differences
and temporal lags and then contouring the resulting array.
We have cut off the data at the shortest nonzero lag
supported by the 3-kHz sampling rate used in this experi-
ment. This cutoff was applied specifically to avoid the
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Figure 2. Contour plot of probability density function for
phase differences of a K, band scatterometer as a function of
time lag. The probability contours occur at values of 0.002,
0.004, 0.008, 0.012, 0.016, 0.020, 0.024, 0.028, and 0.032,
with the smallest probability densities occurring at the
largest phase differences. The dotted curve is a plot of the
mean phase difference versus temporal lag. The linearity of
this relationship for short lag times is evident.

difficulties associated with drawing contours about a delta
function.

Similar phase difference pdf estimates were computed
from the other scatterometer data taken during the same
5-min time period. The estimated phase difference decorre-
lation times (the times for the peak in the autocorrelation of
the phase difference to fall below 0.004) are listed in Table 1.
The backscatter phase decorrelates due to a combination of
the random motions and finite lifetimes of the surface
scatterers [Plant, 1991]. Plant et al. [1994] have shown that
the correlation times at X and K, bands can be accurately
estimated from measurements of the rms surface velocities
within the radar footprint using a relatively simple model.
The decorrelation times measured here are not directly
comparable to the more standard correlation time, except in
the limit of Gaussian statistics, but it is interesting to note
that the correlation times at X and K, bands reported by
Plant et al. [1994] are comparable to the decorrelation times
measured here.

Comparison of Theory and Measurements

We have presented a simple theory and measurements
describing the first-order statistics of phase differences for
microwave energy backscattered from the ocean surface. In
this section we compare theory and measurements, showing
that there are substantial discrepancies between the two. We

Table 1. Estimated Phase Difference Decorrelation Time
as a Function of Radar Frequency
Frequency, Decorrelation

Band GHz Time, ms

K, 35.000 3

K, 14.000 7

X 10.000 10

S 2.671 35

L 1.579 58
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Figure 3. Comparison of theoretical (dashed) and mea-
sured (solid) K, band vertically polarized phase difference
pdf. The theoretical curve is derived from the standard
theory of Gaussian-distributed fields.

then describe the physical mechanisms for these discrepan-
cies and present an amended theory with substantially better
agreement.

Comparison With Theory for Gaussian-Distributed Fields

Figure 3 shows a comparison of the standard theory for
joint Gaussian-distributed fields (equation (1)) with the mea-
sured data, corresponding to the 5-min data set in Figures 1
and 2. The theoretical curves were computed by estimating
the complex autocorrelation function from the 5 min of data
using (2) and substituting the result into Middleton’s equa-
tion (1). While the general character of the curves is similar,
there are also substantial differences: the measured decorre-
lation times are slightly longer than predicted, the width of
the measured pdf is slightly greater than predicted, and the
mean phase difference is overpredicted for each lag. The
implications of this latter observation are particularly impor-
tant for INSAR measurements, as it suggests a mechanism
for error in estimating surface currents from remote phase
difference measurements. Similar discrepancies have been
observed at the other wavelengths, although the discrepancy
in the mean phase difference is smaller at L band than at K,
band.

Non-Gaussian Surface Mechanisms

This discrepancy between the simple theory of joint Gaus-
sian-distributed fields and the measurements can be ex-
plained in terms of the correlation of amplitude and fre-
quency modulations of the ocean scatterers. The physical
picture is a simple one. It has been shown that microwave
backscatter at moderate incidence angles is dominated by
Bragg scattering [Plant and Keller, 1990]. The returns from
these small-scale surface scatterers are subjected to both
amplitude and frequency modulations. The amplitude mod-
ulations in the scattered field are due to hydrodynamic
modulation of the Bragg scatterer amplitudes as well as tilt
modulation, where the local Bragg condition varies with the
local mean tilt of the surface causing an apparent modulation
in the Bragg scatterer amplitudes. At the same time the
Bragg scatterers are being advected toward and away from
the radar by the orbital currents of longer gravity waves.
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Figure 4. Doppler spectra conditionally sampled on the
mean Doppler frequency. The thin solid, dotted, and dashed
curves are an average of those spectra whose mean Doppler
frequencies lie within =10 Hz of —50, +50, and +150 Hz,
respectively. The thick solid curve is the mean Doppler
spectrum for the entire 5-min period. The correlation of
frequency and amplitude modulations are clearly apparent in
the conditionally sampled spectra, with the high-frequency
spectra having larger amplitude than the low-frequency
spectra. The notch at 0 Hz is an instrumental effect.

This advection causes frequency modulation of the Bragg
scattering peaks.

The frequency and amplitude modulations of the Bragg
scatterers are in fact coherent, as measured by the classic
Modulation Transfer Function (MTF) analysis pioneered by
Keller and Wright [1975]. The correlation of these modula-
tions can be seen in the scatterometer data by conditionally
averaging short time Doppler spectra based on their mean
Doppler frequency. In particular, the time series is broken
into 0.25-s segments, which is short compared to the domi-
nant wave period of 6.7 s but long with respect to the
measured backscatter power decorrelation time of 10 ms, as
measured at K, band. A 2 degree of freedom Doppler
spectrum estimate is made from each of these segments
along with a mean Doppler frequency estimate. In particular,
for each 0.25-s segment of data we compute ®(f) =
IS k() z(H)e 2™ dt|?, where h(t) is a Hanning window. From
this spectral estimate we derive an estimate for the short term
mean Doppler frequency from f; = [ f®(f) dfif ®(f) df. All of
the Doppler spectra whose mean Doppler frequency fell within
a specified range were then averaged together. Figure 4 pre-
sents the results of such a calculation.

The correlation of the frequency and amplitude modula-
tions is quite apparent in Figure 4. The spectra which peak at
high frequencies have larger amplitudes than the low-
frequency spectra. This correlation tends to bias long-term
estimates of mean frequency to higher values, as the higher-
frequency components are weighted more heavily than the
lower-frequency components.

The reason for the discrepancies in the predicted and
measured phase difference statistics arises from this simple
physical model. The phase statistics are insensitive to any
variations in amplitude, at least as long as the signals are
above the system noise floor. In contrast, the simple Gaus-
sian theory depends on estimates of the autocorrelation
function of the field which are sensitive to amplitude varia-
tions. In particular, the autocorrelation function is biased
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toward decorrelation at shorter lags due to the same mech-
anism that biases the Doppler spectrum. Thus we were
motivated to remove the amplitude modulations from the
autocorrelation estimates used to predict the phase differ-
ence distributions.

Comparison With Normalized Gaussian Theory

Equation (4) is an expression for a normalized autocorre-
lation function estimate p’(7) that removes the effect of
amplitude variations:

"7 = <<z(t)z*(t + )o.2ss
(2(8) 2*(1))o.255

where the notation ( )|o.,5;, means average over 0.25-s time
intervals and angle brackets mean average over all measure-
ments. To evaluate (4) we broke the 5-min data record into
1200 individual 0.25-s segments, computed an autocorrela-
tion function estimate for each segment, and then averaged
all of these estimates together to obtain a single normalized
autocorrelation estimate for the entire time series. This
initial averaging over 0.25-s intervals removes the influence
of amplitude variations occurring on time scales longer than
0.25 s. This estimator was used with (1) to compute an
improved prediction for the distribution of phase differences.
The results, shown in Figure 5, agree quite well with the
measured values.

The same calculations have been performed at all of the
other available wavelengths and polarizations (Figure 6).
Similar levels of agreement are observed. We have per-
formed similar calculations with data from another time
period during the SAXON FPN experiment (with higher
wind speeds of 9.9 m/s) and for some K, band data taken
during the 1988 SAXON experiment at the Chesapeake
Light Tower. (The details of the environmental conditions
during these three periods are given by Gotwols and Thomp-
son [1994].) Again the agreement is quite good in all of the
cases we examined.
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Figure 5. Comparison of improved theoretical (dashed)
and measured (solid) K, band vertically polarized phase
difference pdf. The theoretical curve is derived from the
theory for a joint Gaussian-distributed field with a normal-
ized autocorrelation estimate which removes the effects of
slow amplitude modulations due to long waves. This im-
proved theory agrees with measurements significantly better
than the simple theory shown in Figure 3.
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Figure 6. Comparison of improved theoretical (dotted) and measured (solid) phase difference pdf for all
wavelengths and polarizations. While these data were obtained under a uniform set of environmental
conditions (wind speed of 4.8 m/s at a height of 19.5 m), similar levels of agreement have been obtained
for other data sets obtained under different environmental conditions.
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The reader is cautioned, however, that we have restricted
our studies to portions of the data set where the waves were
propagating mostly into the look direction of the scatterom-
eters. Other data were ignored due to the possible contam-
ination of the wind field by the tower and reflections of
surface waves from the tower legs. The accuracy of applying
this theory to the case of cross-wind illumination direction is
not known, although we foresee no mechanism that would
reduce the accuracy in these cases.

Discussion

A simple theory has been presented that accurately pre-
dicts the distribution of phase differences of microwave
backscatter at moderate incidence angles. This theory works
surprisingly well at all five wavelengths studied: L, S, X, K,
and K, bands and under a variety of conditions where the
surface waves were propagating toward the radar look
direction. The theory is based on a modification of Middle-
ton’s formula for the distribution of phase differences as a
function of time lag for a jointly Gaussian distributed pro-
cess. This modification removes the amplitude variations
that occur in the backscattered signal due to the tilting and
modulation of the local scatterers by long waves.

Gotwols and Thompson [1994] used a similar technique for
removal of long wave-induced amplitude modulations to
show that the backscatter amplitude is Rayleigh distributed
over time scales short with respect to the long wave periods.
A Rayleigh distribution of amplitude arises directly from a
joint Gaussian distribution of the field. In this study we have
shown that over similarly short time scales the distribution
of the phase differences corresponds to that predicted for a
Gaussian field. Thus we can conclude that the full complex
backscattered field is essentially joint Gaussian distributed
over time scales short with respect to the periods of the long
waves.

The 0.25-s time scale used in this study was chosen
specifically to be short with respect to the long wave period
but long with respect to the phase decorrelation time. While
the effects described in this work could have been illustrated
with 0.1- to 0.5-s averages, it is interesting to consider the
question of how long can one wait before the distributions
become significantly non-Gaussian. In general, the answer is
dependent on the amplitude and frequency of the modulating
long waves. Note that this does not necessarily correspond
to the dominant wave associated with a peak in the wave
height spectrum. The amplitude modulations are principally
correlated with the local surface slope, and the frequency
modulations are correlated with the orbital velocity of the
long waves. The peaks in the spectra of slope and orbital
velocity occur at higher frequencies than the peak in the
wave amplitude. Thus the modulations occur at shorter time
scales than one might initially expect from the wave height
spectrum.

Applications to Interferometry

The canonical along-track interferometric synthetic aper-
ture radar consists of two separate synthetic aperture radars
mounted on the same platform with antennas separated in
the along-track dimension. Actual systems typically consist
of a single transmitter and a pair of receivers and receive
antennas, but the operation of such a system is most easily
understood in terms of two separate SARs. One additional
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requirement for such a system is that the two SARs must be
phase coherent over the time scales used to form the image.

In the first step of INSAR processing, returns from each of
the two SARs are processed to form two separate complex
radar backscatter images. These images are then coregis-
tered such that each covers the same area on the ground.
The image from the trailing SAR is formed at time At = D/V
after the formation of the leading SAR image, where D is the
distance between the antennas and V is the velocity of the
INSAR platform. The phase difference between the two
images is then calculated pixel by pixel to provide the
interferometric estimate of the scatterer velocities observed

throughout the imaged swath.

Ignoring the complexities of the SAR image formation
mechanisms, it is apparent that the INSAR measurement of
phase differences is identical to the process examined in this
paper using scatterometer data. This correspondence holds
as long as the actual scatterer velocity is less than the
INSAR ambiguity velocity, that is, the radial velocity at
which a scatterer must move for the SAR to misregister the
location of that scatterer by exactly one half pixel in azi-
muth. Thus the statistics of the phase differences that we
have presented here also apply to the phase differences
observed with an INSAR. There are several implications of
this observation.

Noise floor. The fundamental noise floor of an INSAR
system is set by the phase difference fluctuations examined
in this paper. Given a system with an infinite signal-to-noise
ratio (which turns out to be very expensive to build!), the
accuracy with which the mean phase difference can be
computed depends on the width of the distributions de-
scribed by (1) and (4).

Antenna separation distance. The optimum along-track
antenna separation distance, a key INSAR design parame-
ter, is dependent on the backscatter phase statistics. To see
this, imagine an INSAR with an antenna separation and
platform velocity such that the time lag between the forma-
tion of the leading and trailing images was greater than the
phase decorrelation time. In this case the phases in the two
images would be uncorrelated, and the interferometer would
provide no useful information. Phase correlation increases
with decreasing temporal lag, suggesting that the antenna
separation should be as small as possible. On the other hand,
the mean phase difference also decreases as the antenna
separation decreases. The minimum detectable mean phase
difference is typically set by receiver noise characteristics.
Thus the optimal separation of antennas is set by a balance
between the decorrelation of the backscattered phase and
receiver phase noise.

Phase difference estimator. The phase difference estima-
tor used in INSAR processing can be formed in one of
several ways. Two estimators that have been used in existing
INSAR systems are arg [(z(¢)z*(¢+ + 7))] and (arg [z(?)z*
(t + 7)1). These two forms are not equivalent, that is, the
phase of the means is not equal to the mean of the phases.
The former estimator is biased by any correlations of ampli-
tude and phase modulations, just as in the example of Figure
4. The latter estimator, which is amplitude independent, is
an optimal estimator for the mean phase difference.

The bias introduced by use of the first estimator is
illustrated in Figure 7. The mean Doppler frequency derived
from the standard Doppler spectrum (solid line) is 113 Hz.
An optimal scatterer velocity estimate would be uninflu-
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enced by amplitude variations within the signal, so we
computed a normalized Doppler spectrum from the Fourier
transform of the normalized autocorrelation function given
in (4) multiplied by the variance of the entire time series. It
is easy to show that this normalized Doppler spectrum is
equivalent to the spectrum of the time series with the
amplitude variations removed. In addition, it is interesting to
note that according to Woodward’s theorem this normalized
spectrum asymptotically approaches the form of the short
time lag phase difference pdf in the limit of slow frequency
modulations [Blachman and McAlpine, 1969]. The center
frequency of this normalized spectrum is 70 Hz. Thus in this
example an INSAR-derived current estimate would be in
error by a factor of 60% if the INSAR phase was based on a
5-min average using the biased phase difference estimator.

Realistic INSAR systems have integration times from a
few tenths of a second to a few tens of seconds. The degree
of bias in such a system would depend on the actual
integration time and the amplitude and wave period of the
dominant modulating long waves. For example, a reduction
of the integration time to 5 s in the above example shifts the
mean frequency of the biased estimator to approximately 90
Hz. This effect is illustrated by comparing various mean
frequency estimators as a function of the temporal length of
the processing window (Figure 8).

There are three mean frequency estimators shown in
Figure 8. The mean Doppler frequency estimate is computed
from an ensemble average of spectra compuited from sec-
tions of the data with the specified window length. Thus the
mean Doppler frequency estimate for a 10-s window is based
on the mean frequency of an ensemble average of 30 spectra,
each computed from 10 s of data. The mean normalized
Doppler frequency estimate is computed by normalizing
each member spectrum from the ensemble to unity power
prior to performing the ensemble average. This has the effect
of removing amplitude fluctuations longer than the time scale
of the processing window. The final estimator, which we

2 1.0

2 — Average

8 .| Normalized

— 0.8 —

g

8

:?_ 0.4 — _‘

N 0.2 /f,=T0Hzi | f=113hz

: A i

2 o0 ] ! =

-400 -200 0 200 400

Doppler Frequency (Hz)

Figure 7. Doppler spectrum for 5 min of K, band data
(solid curve) and the normalized Doppler spectrum (dashed
curve) formed from the Fourier transform of the normalized
autocorrelation given in (4) multiplied by the variance of the
entire time series. The mean frequency of the normalized
Doppler spectra (70 Hz) is an optimum estimate of the mean
phase velocity of the scattered field. In contrast, the mean
Doppler frequency (113 Hz) is a biased estimator with added
weight given to higher-amplitude portions of the signal.
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Figure 8. Three mean frequency estimates as a function of
the temporal length of the processing window. The Doppler
estimator is always biased high. The normalized Doppler
estimator varies between the normalized data estimator at
short times to the Doppler estimator at long times.

refer to as the normalized data frequency estimator, is a pure
phase-based estimate made by normalizing each individual
complex sample in the 5-min time series to unit amplitude
prior to computation of the mean Doppler frequency.

The mean Doppler and normalized data estimators are
relatively insensitive to the windowing time, although the
mean Doppler estimates are biased high (for approaching
waves) due to the correlation of amplitude and frequency
modulations. The noise in the mean Doppler estimator can
be associated with the amplitude fluctuations in the time
series which are not present in the normalized data estima-
tor. The normalized Doppler frequency varies from agree-
ment with the normalized data estimate for short time
windows to the mean Doppler estimate for long time win-
dows. In this particular case, processing times would have to
be kept to less than 2 s (25% of the long wave period) in order
for the frequency estimator to be within 10% of the unbiased
value. Given this sensitivity, INSAR phase differences
should be estimated using the unbiased estimator.

Spectral Width. The width of the phase difference distri-
bution is proportional to the noise in the mean phase
estimate. This width is in turn dependent on the width of the
normalized Doppler spectrum. In Figure 4 it is clear that the
long time average Doppler spectrum is wider than the
short-term Doppler spectrum. A crude estimate of the rela-
tive widths shows a factor of 3 difference in this example.
The frequency modulation of the short-term signals is thus
responsible for a major portion of the width of the spectra.
We expect that this same broadening of the Doppler spec-
trum occurs on short time scales if the scatterometer foot-
print is increased to dimensions approaching those of the
long waves. From this observation we conclude that a
high-resolution, short-dwell time INSAR would have lower
per pixel phase noise than a system with either low-
resolution or long-dwell time. (In this case the qualifiers long
and short are determined from comparison with the period
and wavelengths of the dominant modulating waves.) This is
directly related to the previous point, in that we suggest that
the phases be determined first and then averaged together,
and not the other way around.
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Figure 9. Comparisons of three different methods of estimat-
ing mean frequencies. Shown are the mean Doppler frequency
£, the Rummler estimator f,, and the mean phase estimator fp,
evaluated for = 333 us. If the estimators were in perfect
agreement, all of the points would lie along the thin solid
reference line.

Applications to MTF Analysis

In the mid 1970s the concept of MTF analysis was
introduced [Keller and Wright, 1975] to provide a means of
estimating the hydrodynamic modulation of scatterers by
long waves for use in SAR imaging theories. This technique
involves several steps. First, time series of power and mean
Doppler frequency are derived from the complex backscat-
tered signal. The mean Doppler frequency is then associated
with the radial velocity of the scatterers along the radar line
of sight. Application of simple wave dynamics allows the
velocity time series to be transformed into a slope time
series, at least for each frequency component of the long
waves. Switching into the spectral domain, where the coher-
ence of the slope and power are then computed, provides
information on the relative modulation of the scatterers by
different long wave spectral components.

We have discussed the biases that exist in phase velocity
estimators derived from mean Doppler frequencies. The
question naturally arises as to whether the frequency esti-
mates commonly used in the MTF technique are biased. We
believe that the bias is negligible as long as estimates of the
mean frequency and power are made over time intervals that
are short with respect to the period of the modulating waves.
Thus the amplitude varies little during the estimation period,
typically 0.1 to 0.4 s, and so the mean Doppler frequency is
unbiased. To demonstrate this we computed time series of
the mean frequency for the sample data set using three

CHAPMAN ET AL.: PHASE STATISTICS OF MICROWAVE BACKSCATTER

distinct estimators. Each estimator was applied to 0.25-s
intervals of data, and comparisons were made to examine
any differences between the three methods. The first estima-
tor was the mean Doppler frequency, defined by f; =
J fOf) dflf ®(f) df, where ®(f) is the short-term
Doppler spectrum. The second method is the Rummler
estimator given by f, = Q#n~! arg [(z(t)z*(t + )],
where 7 is taken to be as small as possible. Miller and
Rochwarger [1972] show that this estimator converges to the
mean Doppler frequency for short lag times. Finally, we
computed a mean phase estimator, defined by f =
(27 ~Yarg [z(f) z*(t + D]). The mean phase estimator is
taken as the true value of the mean phase difference.

A comparison of the values derived using these three esti-
mators for 7= 333 us is presented in Figure 9. It is evident that
all of these estimators agree quite well, and any errors due to
estimator bias on these short time scales must be small.
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