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a b s t r a c t

The paper presents a numerical method for calculating the particle trajectories of nonlinear gravity

waves in deep water. Particle trajectories, mass-transport velocity and Lagrangian wave period can be

accurately determined by the proposed method. The high success rate of the proposed method is

examined by comparing the present results with those of (a) Longuet-Higgins, M.S., 1986, 1987. Eulerian

and Lagrangian aspects of surface waves. Journal of Fluid Mechanics 173, 683–707 and (b) Lagrangian

moments and mass transport in Stokes waves. Journal of Fluid Mechanics 179, 547–555. It is shown that

the dimensionless mass-transport velocity can exceed 10% for large waves, and the Lagrangian wave

period is much larger than the Eulerian wave period for large waves.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Stokes (1847) initiated the study of a Stokes wave with a two-
dimensional symmetric profile travels at a constant speed. The
problem of Stokes waves is one of classic hydrodynamics. Stokes
(1847) initiated the Stokes wave problem can be formulated
mathematically for nonlinear free boundary conditions. When
Stokes waves were first regarded as small disturbances of a flat
water surface, the leading analysis of the problem of finite-
amplitude Stokes waves was pursued in the literature (Lighthill,
1978; Crapper, 1984; Dean and Dalrymple, 1993; Johnson, 1997;
Okamoto and Shoji, 2001). There are two approaches to describe a
flow field. In the Eulerian approach, the flow quantities are
defined as a function of space and time. In the Lagrangian
description, particles are identified by the positions they occupy at
a given moment in time. Most analytical investigations have been
performed using either the Eulerian description of motion or
conformal mapping of two-dimensional irrotational flows. How-
ever, the number of papers using the Lagrangian description has
increased in recent years (Clamond, 2007; Chang et al., 2007). The
Lagrangian approach to describing particle trajectories remains
convenient (Chang et al., 2007; Kapinski, 2006).

The orbits of the particles in progressive gravity waves with
very small amplitude are known to be either elliptical or circular,
depending on their linear solution. Stokes (1847) derived a
second-order Lagrangian approximation for irrotational waves
and found that the particle trajectories are not closed and become
quite distorted due to nonlinearity. In a phenomenon called Stokes
ll rights reserved.
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drift, the particle trajectories lead to a net mass-transport in the
direction of wave propagation for irrotational waves (Stokes, 1847;
Longuet-Higgins, 1953). However, the well-known Gerstner’s
wave theory, discovered by Gerstner (1802) and re-discovered
by Rankine (1863), Constantin (2001), and Craik (2004), showed
that all particles move on circles and Gerstner’s wave in water of
finite depth with vorticity is rotational.

Buldakov et al. (2006) followed Stokes’ perturbation scheme to
derive a third-order solution that includes unexpected and
unphysical secular terms indicating that the wave amplitude
grows indefinitely in time. Thus, Buldakov et al. (2006) proposed
the fixed-point method to overcome this problem. Chen (1994)
succeeded in presenting a third-order Lagrangian solution con-
sidering how the Lagrangian wave frequency varies with water
elevation. Chang et al. (2007) used an alternative perturbation
parameter different from that of Chen and proposed a fifth-order
Lagrangian approximation for Stokes waves in finite water depth.
Clamond (2007) derived a mathematically correct formulation in
the Lagrangian description for both Stokes waves and Gerstner-
like waves, which are irrotational waves and rotational waves,
respectively. Constantin (2006) proved that the trajectories of
particles demonstrate no closed paths in an irrotational inviscid
Stokes wave traveling at the surface of water over a flat bed.
Constantin and Villari (2008) showed that even for linear periodic
gravity water waves the particles in fluid do not have closed orbits
and each particle has a backward–forward motion per period that
yields overall a forward drift.

Some early investigators studied particle trajectories of Stokes
waves (Gerstner, 1802; Miche, 1944; Pierson, 1962; Moe et al.,
1998). The superiority of the Lagrangian approximations to the
corresponding Eulerian approximations in surface wave profile or
physical properties was demonstrated by Buldakov et al. (2006),
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Chang et al. (2007), and Clamond (2007). Although these
analytical approximations could provide insight for physical
interpretation and were accurate for practical applications, some
numerical calculations are required to obtain more accurate
projections for the problem of high nonlinear interaction in steep
Stokes waves.

A physical plane of z ¼ x+iy defined by a function of complex
potential is commonly used to express wave motion in a steady
state. The wave motion becomes steady by superimposing a
velocity equal and opposite to the wave celerity on the flow. The
complex Fourier expansion and Stokes coefficients were used to
solve a closed set of nonlinear equations by an iterative computing
algorithm (Schwartz, 1974; Cokelet, 1977; Williams, 1981; Longuet
-Higgins, 1979, 1984, 1987). Longuet-Higgins and Fox (1978) and
Longuet-Higgins (1979) discussed particle trajectories at the free
surface for steep Stokes waves through these computing algo-
rithms. The basic definition of a Lagrangian description for the
path of a particle provides an alternative way for computing
particle trajectories of Stokes waves. This method can solve a set
of two ordinary differential equations when the flow of a Stokes
wave in a fixed Eulerian system is known (Constantin, 2006;
Constantin and Villari, 2008).

First introduced by Rienecker and Fenton (1981), the Fourier
approximation method accurately calculates the physical quanti-
ties of Stoke waves in a moving Eulerian system. In the present
paper, the Fourier approximation method effectively calculated the
velocity of a particle in a deep water Stokes wave at any position in
an Eulerian system. A Runge–Kutta–Verner numerical algorithm
(Jackson et al., 1978; William, 1971) was used to solve a set of two
ordinary differential equations for the trajectory of any Stokes
wave particle. Additionally, an algorithm for computing mass-
transport velocity and Lagrangian wave period was employed.
2. The governing equations for a Stokes wave

A Stokes wave propagates at a constant speed, c, on the surface
of the sea. The Cartesian coordinates (X, Y) shown in Fig. 1 are used
to describe the wave motion; the Y-axis is vertical, and the X-axis
represents the direction of wave propagation. The origin of
Cartesian coordinates lies on the mean water level. Let U (t, X, Y)
and V (t, X, Y) be two components of the velocity field of the flow
below the free surface, Z(t, X). Furthermore, physical quantities U,
V, and Z are periodic in the X-variable and time and act in the form
of (X–ct). The motion of a Stokes wave is almost identical in any
direction parallel to the crest line and its wave profile keeps a
constant form. For this type of Stokes wave, it is convenient to
eliminate time from the problem by using a moving frame with
the same speed of wave celerity in the positive X-axis. The moving
Y

y

0

L

c

x = X-ct

x, X

y = η (x)

Y = η (t, X)

Fig. 1. Coordinates definition and symbolic notations for a Stokes wave.
frame denoted by (x, y) can be related to fixed coordinates as

x ¼ X � ct; y ¼ Y . (1)

When the fluid is assumed to be incompressible and the wave
motion is irrotational, the flow field holds equations for both mass
conservation and energy conservation. Hence a stream function
satisfying the Laplace equation for this wave field can be given as
(Rienecker and Fenton, 1981)

cxx þ cyy ¼ 0; �1oyoZ; �1oxo1, (2)

where c(x,y) is the stream function. The stream function indicates
both the x- and y-components of a particle’s the velocity by an
expression of (u(x,y),v(x,y)) ¼ (cy, �cx) where the subscripts
indicate the partial derivatives. The solution for Eq. (2) subjects
to the bottom boundary condition

ðu;vÞ ¼ ð�c;0Þ; y!�1, (3)

and kinematic and dynamic boundary conditions at the free
surface

cðx;ZðxÞÞ ¼ �Q ; y ¼ ZðxÞ, (4)

and

gZþ 1

2
ðu2 þ v2Þ ¼ R; y ¼ ZðxÞ, (5)

respectively. Here �Q is the value of the stream function on the
surface, R is the Bernoulli constant and g is the gravitational
acceleration. Assuming that the wave is symmetrical about the
crest, the governing equations admit a general solution of the
form

cðx; yÞ ¼ �cyþ
X1
n¼1

Bnenky cos nkx, (6)

where Bn (n ¼ 1, 2,y) are the Fourier coefficients for a specified
wave, and k ¼ 2p/L is the wave number with L as the wavelength.
Since the free surface Z(x) is unknown and the equation of
dynamic boundary condition on the free surface is nonlinear, the
exact solution of this problem is difficult to obtain.
3. Computing algorithm for trajectories of particles

The Fourier method can give a direct solution in which the
values of stream function and surface elevations are obtained as a
function of position. Moreover, it does not depend on the wave
being small and is valid for all depths. Rienecker and Fenton
(1981) showed that the Fourier method gives highly accurate
results up to a point equal to about 99% of the maximum wave
height, but did not converge to a solution for the highest waves.

To facilitate numerical computation in Eq. (6), the number of
terms was limited to N. A set of N+1 equally spaced points on
the free surface, from wave crest to trough, was chosen to satisfy
Eqs. (4) and (5). Hence, a system of 2N+2 nonlinear equations with
2N+4 unknowns, namely, Bn (n ¼ 1, 2,y, N), Zn (n ¼ 1, 2,y, N+1),
c, Q and R, was obtained. Thus, two additional equations were
required to solve the two extra unknowns. That the mean water
level is equal to zero as required by mass conservation gives an
equation asZ L

0
ZðxÞdx ¼ 0. (7)

Eq. (7) can be obtained using Simpson’s one-third rule for
numerical integration of a periodic function. An additional
equation for nonbreaking waves of a specified height was
introduced as

H ¼ Zð0Þ � ZðpÞ. (8)
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Table 1
Formulas for coefficients in Eqs. (13)–(15).

X11 ¼ �(H/2)ekb Y11 ¼ (H/2)ekb
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Finally, a closed system of 2N+4 nonlinear equations for the
solution of 2N+4 unknown variables was formed. All quantities
were nondimensionalized by virtue of g and k. This set of
equations can be solved and programmed using Newton’s
iteration method, which has the advantage of quadratic conver-
gence (Gerald and Wheatley, 1994). To accomplish this, a Fortran-
95 computer program was written in double precision. The
computation started with a linear sinusoidal wave as its first
approximation. The convergence criterion of all the variables at
each iteration and the residuals of the governing equations were
set at a value of 10�7. The convergence of the iteration is
extremely rapid, and convergence criterion usually is satisfied
after about 5 iterations. Rienecker and Fenton (1981) showed that
accurate results can be obtained for high and long waves when
more than 8 Fourier terms are retained. For N440, the results
diverged. In this paper, 32 terms were used to attain even higher
accuracy.

When the coefficients Bn (n ¼ 1, 2,y, N) are evaluated, the
velocity at any position (x,y) can be directly obtained by the
definition of (u(x,y),v(x,y)) ¼ (cy, �cx) associated with Eq. (6).
The corresponding system in the fixed frame is the Hamiltonian
system and has expressions for the velocity at any position (X, Y)
for any time

UðX;Y ; tÞ ¼ uðx; yÞ þ c; ðx/X � ct; y/YÞ

¼
XN

n¼1

nkBnenkY cos nkðX � ctÞ, (9)

and

VðX;Y ; tÞ ¼ vðx; yÞ; ðx/X � ct; y/YÞ

¼
XN

n¼1

nkBnenkY sin nkðX � ctÞ. (10)

The path (X(t), Y(t)) of a particle with an initial position (X(0),
Y(0)) can be determined by solving the following system of two
differential equations in an implicit form as

dX

dt
¼
XN

n¼1

nkBnenkY cos nðkX � sEtÞ, (11)

and

dY

dt
¼
XN

n¼1

nkBnenkY sin nðkX � sEtÞ, (12)

where sE ¼ 2p/TE is the Eulerian wave frequency that is physically
related to the wave number and wave celerity. Thus, it holds that
sE ¼ kc. Eqs. (11) and (12) form an initial problem of two ordinary
differential equations. Subroutine DIVPRK in the IMSL software
programmed based on the Runge–Kutta–Verner fifth and sixth
order method was chosen due to its high efficiency for nonstiff
systems where the derivative evaluations are not expensive and
where the solution is not required at a large number of finitely
spaced points (IMSL, 1986). The routine attempts to keep the
global error proportional to a user-specified tolerance. The
tolerance of maximum absolute error is specified to be 10�9. For
intensively plotting the particle trajectories, a fine time step is set
to be TE/N.
X20 ¼ (kH2/4)e2kbs0t Y20 ¼ kH2/8

X31 ¼ k2H3((�ekb/8)�(e3kb/4)) Y31 ¼ k2H3((�ekb/8)+(�e3kb/4))

X40 ¼ k3H4((�3e2kb/32)+(e4kb/8)s0t) Y40 ¼ k3H4((�e2kb/16)+(�3e4kb/32))

X42 ¼ k3H4((�e2kb/32)+(e4kb/96)) Y42 ¼ k3H4((e2kb/32)�(e4kb/48))

X51 ¼ k4H5((7ekb/192)+(7ekb/

64)�(53e3kb/256))

X51 ¼ k4H5((�7ekb/192)�(3e3kb/

64)+(21e3kb/256))

X53 ¼ k4H5((�e3kb/384)+(e3kb/2304)) Y53 ¼ k4H5((e3kb/384)�(e3kb/768))

sE2 ¼ k2H2/8 sL2 ¼ k2H2e2kb/4

sE4 ¼ k4H4/128 sL4 ¼ k4H4((2e2kb/32)�(e4kb/8))
4. The fifth-order Lagrangian approximation

An fifth-order Lagrangian approximation (Chang et al., 2007)
for Stokes waves in water of finite depth provided explicit
expressions for describing particle trajectories. The fifth-order
Lagrangian approximation can be limited to a case of deep water
when h-N was set in the approximation. The theories and
results were briefly introduced in this section.

Lagrangian variables (a,b) designate a label for individual
particles in the Lagrangian approach to a physical problem. For a
regular train of irrotational gravity waves in a uniform water
depth, any particle at a specified mean level is expected to equal b

after it advances for a wavelength. Thus, the free surface can be
specified as b ¼ 0. Based on the results (Ursell, 1953; Longuet-
Higgins, 1986), the Lagrangian period is reasonably assumed to be
a function of the designated position of each individual particle.
The fifth-order Lagrangian approximation for Stokes waves in
deep water can be expressed by

Xða;b; tÞ ¼ aþ
X3

n¼1

X5

m¼1

XmnðbÞ

" #
sin nðka� sLtÞ þ

X
m¼2;4

Xm0ðb; tÞ,

(13)

Yða;b; tÞ ¼ bþ
X3

n¼1

X5

m¼1

YmnðbÞ

" #
cos nðka� sLtÞ þ

X
m¼2;4

Ym0ðbÞ,

(14)

and

sLðbÞ ¼ s0ð1þ sE2 þ sE4Þ þ s0ðsL2ðbÞ þ sL4ðbÞÞ, (15)

where s0 ¼ gk is the wave frequency of first-order and the
coefficients on the right hand of Eqs. (13)–(15) listed in Table 1 are
obtained by setting h-N to the corresponding coefficients
(Chang et al., 2007; Liou, 2005).

The first summation on the right-hand side of both Eqs. (13)
and (14) includes some terms that indicate trajectories of a
particle moving in a periodic function. The second summation on
the right-hand side of Eq. (13) shows an aperiodic function
increasing linearly in time, implying that a particle marches
forward continuously and horizontally in time. The second
summation on the right-hand side of Eq. (14) indicates a function
of b only, independent of time. This summation indicates a high
order vertical correction, decreasing with depth, on the vertical
displacement.

Eq. (15) shows that the Lagrangian wave frequency includes
the Eulerian wave frequency, sE ¼ s0(1+sE2+sE4), that is constant
for all particles and involves the second-order and fourth-order
corrections that are negative and decay with depth. The obtained
Eulerian wave frequency is equivalent to that of Fenton’s fifth-
order Stokes wave theory (Chang et al., 2007; Liou, 2005). The
Lagrangian–Eulerian wave frequency relation, Eq. (15), is applic-
able to all particles at different elevation. Thus, the relation
indicates a more general expression than that of Longuet-Higgins
(1986), which is valid only at the free surface. Negative values of
the corrections, s0(sL2(b)+sL4(b)), in Eq. (15) imply that the
Lagrangian wave frequency is smaller than the Eulerian wave
frequency. An alternative interpretation is that the Lagrangian
wave period (TL) is longer than the Eulerian wave period (TE)
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(Longuet-Higgins, 1986). The fifth-order Lagrangian approxima-
tion can provide comprehensible physical interpretations of the
particle trajectories of Stokes waves.
1.0
5. The results and discussion

5.1. Trajectories of particles

Using both the numerical algorithm in Section 3 and the fifth-
order Lagrangian approximation, the trajectory of a particle
initially located at the crest during a period of 2TE is plotted in
Fig. 2. The case of kH ¼ 0.84 indicates a very large wave in deep
water and is also a case used to compute the mass-transport by
Longuet-Higgins (1987). The solid and dashed lines in Fig. 2
denote the path by two methods. Circles on the lines show the
positions of the particle’s movement for every half Eulerian
period.

The numerical solution shows that the particle at the crest
marches forward in a non-closed loop and stays around the trough
at time 2TE, implying that more time than 2TE is needed for the
particle to reach the crest again. If the time for a particle at the
crest takes to move forward and reach the next crest is defined as
the Lagrangian period, it is obvious from the present result that
the Lagrangian wave period is longer than the Eulerian period. The
result agrees with the conclusions of Chang et al. (2007) and
Longuet-Higgins (1986). Fig. 2 indicates that a Lagrangian wave
period may be between TE and 1.5TE. Longuet-Higgins (1986)
derived a relationship between the Lagrangian wave period and
the Eulerian wave period for the limiting wave in deep water,
indicating that TL ¼ 1.38TE. The trajectories of Stokes wave
particles obtained by the fifth-order Lagrangian approximation
form a similar path to that by the proposed method, but move
slightly slower. The proposed Fourier approximation method,
which includes 32 harmonic components, is of a much higher
order than the fifth-order Lagrangian approximation. Therefore
proposed method accounts for the highly nonlinear interaction
between each component as bringing about the fast movement of
particles. The fifth-order approximation of Chang et al. (2007)
obtained by the perturbation method is valid for a gravity wave of
finite-amplitude so that a large difference between the numerical
solution and the approximation occurs for the case of the very
large wave. The trajectories of Stokes wave particles from small
amplitude almost to the highest one are calculated to have non-
closed paths, indicating that any particle of a Stokes wave moves a
horizontal distance over one wave period. The distance divided
by the Lagrangian period is called the mass-transport velocity
or Stokes drift. The result corresponds to the conclusion of
Constantin (2006) and Constantin and Villari (2008), proving that
there are no closed particle orbits for Stokes waves of small or
large amplitude. Constantin and Escher (2007) proved that in a
0

X/L

-0.10

-0.05

0.00

0.05

0.10

Y
/L

numerical solution
fifth-order solution

TE/2

TE

3TE/2

2TE

0.1 0.2 0.3 0.4 0.5

Fig. 2. Trajectory of a particle initially located at the crest during a period of 2TE for

the wave case of kH ¼ 0.84.
solitary water wave there is no backward motion, meaning all
particles in a solitary wave move in the direction of wave
propagation at a positive speed.

5.2. Mass-transport velocity

Stokes (1847) showed that in a fixed frame the fluid motion in
a wave train is oscillatory and that there is a slow drift in the
direction of wave propagation that is positive near the surface.
Conversely, it decreases toward the bottom in deep water and
becomes negative in the case of shallow water. Ursell (1953) and
Longuet-Higgins (1984) presented strong proof that the mass-
transport velocity has a zero net transport of water. The mass-
transport velocity is important in determining the Lagrangian
residual velocity from the current measurement at a fixed point in
the sea (Zimmerman, 1979).

In this paper, the trajectory of a particle is implicitly expressed
by (X,Y) in terms of time t, and solved by using the Runge–Kutta–
Verner method for two first-order differential equations. The
position of a particle at a given time step can be obtained by
the Runge–Kutta–Verner method when the earlier position at the
proceeding time is given. Three positions whose vertical eleva-
tions are denoted by Y1, Y2, and Y3 are calculated at time t1, t2 and
t3, respectively. A set of data with three pairs of Y- and t ¼ f(Y)-
values is depicted as three solid circles in Fig. 3. The time of a
particle moving to Yc can be estimated by interpolation scheme
using a specified function with undetermined coefficients for the
collected data. A suggested function in terms of polynomials for
these data is drawn in Fig. 3. A Lagrangian form in which uniform
spacing is not required is an easy way to establish interpolating
polynomials. Through these three data pairs a quadratic Lagran-
gian polynomial can be given as (Gerald and Wheatley, 1994)

tðYÞ ¼
ðY � Y2ÞðY � Y3Þ

ðY1 � Y2ÞðY1 � Y3Þ
t1 þ

ðY � Y1ÞðY � Y3Þ

ðY2 � Y1ÞðY2 � Y3Þ
t2

þ
ðY � Y1ÞðY � Y2Þ

ðY3 � Y1ÞðY3 � Y2Þ
t3. (16)

When Y ¼ Yc is specified for the elevation of the wave crest,
the estimated Lagrangian period, tL, can be obtained by Eq. (16).
Substitution of end time tL into the Runge–Kutta–Verner algo-
rithm associated with a proceeding point, (X2(t2), Y2(t2)) yields a
new end point (X3(tL), Y3(tL)) that would be closer to the expected
point (Xc, Yc) than the original point (X3(t3), Y3(t3)). The updated
data set of three points, (X1(t1), Y1(t1)), (X2(t2), Y2(t2)), and (X3(tL),
Y3(tL)) is inserted into Eq. (16) again to compute a newly estimated
Lagrangian wave period, tL. Using the new Lagrangian wave period
in the Runge–Kutta–Verner algorithm a new (X3(tL), Y3(tL)) more
0.03 0.07

Y/L

0.6

0.7

0.8

0.9

t

(Y1, t1)

(Y3, t3)

Yc

(Y2, t2)

tL

0.04 0.05 0.06 0.08 0.09 0.1

Fig. 3. Graphical interpretation of the Lagrangian form of quadratic polynomials

for estimating the Lagrangian wave period.
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closely approximates to (Xc, Yc) than the previous one. After some
such iterations, an accurate (X3(tL), Y3(tL)) is decided under a
requested tolerance of the absolute value of the difference
between the estimated Y3(tL) and Yc. The tolerance is specified
by 10�7 in the computation. A computational case of ak ¼ 0.42 is
used for demonstrating the procedure. The first data set at time
t ¼ TE, (1+2/32) TE, and (1+5/32) TE is given for the particle at the
crest of which Yc ¼ 0.08692. When the computation is terminated,
the time tL is set as the Lagrangian period and the estimated
horizontal distance, Xc, divided by tL is then denoted the mass-
transport velocity, Um.

A dimensionless mass-transport velocity, Um/c, is used to
compare the present solution with that of Longuet-Higgins (1987),
denoted by UmN, and UmL, respectively, for a particle at the free
surface in deep water. The comparison is listed in Table 2. The
fourth column lists the absolute errors between UmN/c to UmL/c. If
the result of Longuet-Higgins (1987) is taken as a standard, small
errors occurring at the fourth decimal digit shown in the fourth
column of Table 2 indicates that the obtained UmN/c slightly
deviates from UmL/c. Thus, the proposed method is an accurate
way for calculating the mass-transport velocity.

A relationship between the relative mass-transport velocity at
the free surface and a ratio of two wave frequencies was also
derived by Longuet-Higgins (1986, 1987) as

Um

c
þ

TE

TL
¼ 1. (17)

The formula can be used to examine the accuracy of the present
numerical solution. The estimated values of (UmL/c)+(TE/TL) are
shown in the last column of Table 2 and are very close to one,
showing the high accuracy of the proposed solution. The
estimated Um/c shows that the nondimensionized mass-transport
velocity may exceed 10% for ak40.32.

An efficient method of general Lagrangian mean theory
proposed by Ardhuin et al. (2008) provides for explicit wave-
averaged primitive equations for general wave–turbulence–mean
flow interactions.
5.3. Lagrangian period

Computed values of TL/TE of all Stokes waves are plotted in
Fig. 4. Fig. 4 shows that the values of TL/TE obtained by both
methods are greater, and these values increase with wave
steepness for very large waves much faster than those for small
waves. The former conclusion once again identified that the
Lagrangian period is larger than the Eulerian period. Very small
discrepancy between both results for small waves is shown in
Fig. 4 but a gradually increasing difference occurs for large waves.
The increasing variation with wave steepness results from more
highly nonlinear interaction between components considered in
the proposed numerical method than that in the fifth-order
Lagrangian approximation.
Table 2
A comparison of the mass-transport velocity at the free surface of Stokes waves in

deep water.

kH/2 UmL/c UmN/c |UmL�UmN|/c (UmN/c)+(TL/TE)

0.10 0.01000 0.01018 0.00018 0.99843

0.20 0.04009 0.04034 0.00025 0.99910

0.30 0.09137 0.09114 0.00023 1.00059

0.35 0.12691 0.12723 0.00032 0.99956

0.40 0.17369 0.17331 0.00038 1.00031

0.42 0.19988 0.19996 0.00008 0.99995
6. Conclusions

Accurate evaluation of the mass-transport of Stokes waves is
significant in determining the Lagrangian residual velocity in
practical use. The proposed method combines the Fourier
approximation method for computing the flow of Stokes waves
in a moving frame and the Runge–Kutta–Verner algorithm for
solving the particle position at any time from a set of two
differential equations in an implicit form based on the definition
of Lagrangian approach to the particle trajectories of a flow. The
proposed algorithm can compute the particle trajectories, mass-
transport velocity and Lagrangian wave period of any particle of a
Stokes wave in deep water. Good agreement between the
computed results and those of Longuet-Higgins (1986, 1987)
shows the high accuracy of the proposed method. It is found that
the dimensionless mass-transport velocity may be exceeded 10%
for ak40.32 and the ratio TL/TE increases with the wave steepness.
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