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Abstract

This study addresses the reflection and transmission of long waves from a trapezoidal breakwater and a series of trapezoidal

breakwaters, using the matching method. A systematic shape transfer is derived to determine wave reflection and transmission. The peak

Bragg reflection of long waves from a series of trapezoidal breakwaters is shifted toward low frequency. In spite of the spacing between

any pair of breakwaters, the top plane width and the arrangement of the series of breakwaters are found to be the two major parameters

in designing multiply composite Bragg breakwaters.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Submerged breakwaters and artificial reefs have become
increasingly common as devices for protecting against
coastal erosion, because they are effective but have minimal
visual impact. Many submerged trapezoidal breakwaters
are built in shallow water regions where most waves are
long waves. Chang and Liou (2004) attempted to clarify the
simple problem of propagation of long waves over a sloping
step, and addressed the extent to which the face slope of the
step affects reflection and transmission of the waves. This
investigation applies Chang and Liou’s (2004) matching
method to elucidate the reflection and transmission of long
waves from a trapezoidal breakwater. Reflection from a
series of trapezoidal breakwaters is also discussed, follow-
ing the work on artificial Bragg breakwaters by Kirby and
Aonton (1990).

Bragg resonance, which was first identified in crystal-
lography, between the surface waves and the sand ripples
occurs under the particular condition in which the bar
spacing is about half of the wavelength of normally incident
waves. The mechanisms of resonant Bragg reflection and
the non-resonant reflection of water waves are examined by
several theoretical analyses and numerical simulations
e front matter r 2006 Elsevier Ltd. All rights reserved.
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(Heathershaw, 1982; Davies, 1982; Davies and Heather-
shaw, 1984; Mei, 1985; Kirby, 1986; Dalrymple and Kirby,
1986; Hara and Mei, 1987; Mattioli, 1991).
Bailard et al. (1992) used a staggered nine-element bar

field to reduce the volume erosion by 25% along beaches on
the US Gulf coast and the Atlantic coast. Their numerical
results reveal that the bandwidths of primary and higher-
order harmonic resonances are narrow. Therefore, Bailard
et al. (1992) determined that the application of a Bragg
breakwater might be practically limited on most US
beaches. Hsu et al. (2002) studied the effect of the shape
of artificial breakwaters on the Bragg reflection in practical
cases. It is interesting to note that in the case with a bottom
comprising a superposition of two or more sinusoids with
different wave numbers, higher-order harmonic Bragg
resonances occur at higher frequencies and subharmonic
Bragg resonances occur at low frequency. Guazzelli et al.
(1992), O’Hare and Davies (1993), Cho and Lee (2000) and
Hsu et al. (2003) proved the existence of higher-order
harmonic and subharmonic Bragg resonances. Hsu et al.
(2003) used multiply composite artificial bars to obtain high
Bragg reflections for engineering purposes.
The rest of this paper is organized as follows. Sections 2

and 3 derive a systematically shaped transfer to determine
the reflection and transmission of long waves propagating
over a trapezoidal breakwater, and a series of trapezoidal
breakwaters, respectively. Section 4.1 compares the wave
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reflections obtained by the method herein with those
obtained by Mei (1983) and Miles (1981). In Section 4.2,
the peak Bragg reflection, shifted downward in low
frequency, is found by the proposed method and its
physical meaning is explained. The analysis indicates that
the width of the top plane and the arrangement of a series
of breakwaters are two other key parameters in the design
of multiply composite Bragg breakwaters for practical use.
Conclusions are finally drawn in Section 5.

2. The solutions for a submerged trapezoidal breakwater

Considering wave reflection by a trapezoidal submerged
breakwater, as shown in Fig. 1, the x-axis positively points
in wave incident direction and is set on the mean water
depth. The original coordinate system is set at the toe of the
ascending slope of a submerged breakwater and B2 denotes
the width of the top plane. Water depths at horizontal
bottom are represented by h1, h2, and h3, for regions I, III
and V, respectively.

The governing equations for long waves are in terms of
vertically depth integrated continuity equation and equa-
tions of motion. For the case of depth varying configura-
tion, the one-dimensional linearized equation of motion is
written in the form (Mei 1983, pp.135)

gh
d2Z
dx2
þ g

dh

dx

dZ
dx
þ s2Z ¼ 0, (1)

where Z is the surface elevation; s ¼ 2p=T is the wave
frequency in which T is the wave period; g is the
gravitational acceleration, and h is the water depth that
varies on the sloping plane. As linear long waves are
considered, all periodic physical quantities can be expressed
as a function multiplied by expð�istÞ where i ¼

ffiffiffiffiffiffiffi
�1
p

is the
unit imaginary number.

If the depth is constant, the second term on the left-hand
of Eq. (1) thus vanishes and Eq. (1) becomes one-
dimensional wave equation of which the solution is

Z ¼ Aie
ikix þ Bie

�ikix, (2)

where ki ¼ s=
ffiffiffiffiffiffiffi
ghi

p
; ði ¼ 1; 3; 5Þ is the wave number; Ai and

Bi are the wave amplitudes to be determined by boundary
conditions. The first term on the right-hand side of Eq. (2)
represents a wave that propagates from the right to the left
and the second term denotes a reflected wave propagating
in opposite direction.

When the face slope is considered in Eq. (1) introducing a
new variable X ¼ h ¼ h1 � x tan b where tan b is the face
I II III IV V
h1

h2 h3

B2

η

Fig. 1. Definition sketch of a trapezoidal submerged breakwater.
slope of the breakwater yields

X
d2Z
dX 2
þ

dZ
dX
þ nZ ¼ 0 (3)

and

n ¼
s2

gtan2b
. (4)

Eq. (3) is a second-order differential equation which can
be transformed into a typical Bessel equation. Thus, the
corresponding solution for regions II and IV is given in
terms of Bessel functions as follows

Z ¼ AJ0ð2
ffiffiffiffiffiffiffi
nX
p
Þ þ BY 0ð2

ffiffiffiffiffiffiffi
nX
p
Þ, (5)

where J0 and Y0 are the Bessel function of the first kind and
the second kind, respectively, of order zero; A and B are the
undetermined constants. Eq. (5) was ready derived by Dean
(1964), Miles (1990) and Dingemans (1997).

The water surface elevation and its first derivative should
be continuous at the junctions between the successive
regions due to the conservations of both mass and
momentum to have the governing equations in a matrix
form as follows:

for regions I and II:

1 1

ik1 �ik1

 !
1

R

 !

¼
J0ð2

ffiffiffiffiffiffiffiffiffiffiffi
n12h1

p
Þ Y 0ð2

ffiffiffiffiffiffiffiffiffiffiffi
n12h1

p
Þ

J 00ð2
ffiffiffiffiffiffiffiffiffiffiffi
n12h1

p
Þ Y 00ð2

ffiffiffiffiffiffiffiffiffiffiffi
n12h1

p
Þ

 !
AI�II

AI�II

 !
ð6Þ

for regions II and III:

J0ð2
ffiffiffiffiffiffiffiffiffiffiffiffi
n12h1Þ

p
Y 0ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
n12h1Þ

p
J 00ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
n12h1Þ

p
Y 00ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
n12h1Þ

p
0
@

1
A AI�II

AI�II

 !

¼
1 1

ik2 �ik2

 !
AII�III

AII�III

 !
ð7Þ

for regions III and IV:

eik2B2 e�ik2B2

ik2e
ik2B2 �ik2e

�ik2B2

 !
AII�III

BII�III

 !

¼
J0ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
n23h2Þ

p
Y 0ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
n23h2Þ

p
J 00ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
n23h2Þ

p
Y 00ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
n23h2Þ

p
0
@

1
A AIII�IV

BIII�IV

 !
ð8Þ

for regions IV and V:

J0ð2
ffiffiffiffiffiffiffiffiffiffiffi
n23h3

p
Þ Y 0ð2

ffiffiffiffiffiffiffiffiffiffiffi
n23h3

p
Þ

J 00ð2
ffiffiffiffiffiffiffiffiffiffiffi
n23h3

p
Þ Y 00ð2

ffiffiffiffiffiffiffiffiffiffiffi
n23h3

p
Þ

 !
AIII�IV

BIII�IV

 !
¼

1

ik3

 !
T .

(9)

Applying matrix multiplication to Eqs. (6)–(9) leads to
the following expression:

1

R

� �
¼ HiS2W3S4HtT ¼

c11

c21

 !
T , (10)
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where

Hi ¼
1 1

ik1 �ik1

 !�1
¼

1

2

1 � i
k1

1 i
k1

0
@

1
A, (11a)

S2 ¼

J0 2
ffiffiffiffiffiffiffiffiffiffiffi
n12h1

p� �
Y 0 2

ffiffiffiffiffiffiffiffiffiffiffi
n12h1

p� �
J 00 2

ffiffiffiffiffiffiffiffiffiffiffi
n12h1

p� �
Y 00 2

ffiffiffiffiffiffiffiffiffiffiffi
n12h1

p� �
0
@

1
A

J0 2
ffiffiffiffiffiffiffiffiffiffiffi
n12h2

p� �
Y 0 2

ffiffiffiffiffiffiffiffiffiffiffi
n12h2

p� �
J 00 2

ffiffiffiffiffiffiffiffiffiffiffi
n12h2

p� �
Y 00 2

ffiffiffiffiffiffiffiffiffiffiffi
n12h2

p� �
0
@

1
A�1, ð11bÞ

W3 ¼
1 1

ik2 �ik2

 !
eik2B2 e�ik2B2

ik2e
ik2B2 �ik2e

�ik2B2

 !�1

¼
cos k2B2 � 1

k2
sin k2B2

k2 sin k2B2 cos k2B2

 !
, ð11cÞ

S4 ¼
J0ð2

ffiffiffiffiffiffiffiffiffiffiffi
n23h2

p
Þ Y 0ð2

ffiffiffiffiffiffiffiffiffiffiffi
n23h2

p
Þ

J 00ð2
ffiffiffiffiffiffiffiffiffiffiffi
n23h2

p
Þ Y 00ð2

ffiffiffiffiffiffiffiffiffiffiffi
n23h2

p
Þ

 !

J0ð2
ffiffiffiffiffiffiffiffiffiffiffi
n23h3

p
Þ Y 0ð2

ffiffiffiffiffiffiffiffiffiffiffi
n23h3

p
Þ

J 00ð2
ffiffiffiffiffiffiffiffiffiffiffi
n23h3

p
Þ Y 00ð2

ffiffiffiffiffiffiffiffiffiffiffi
n23h3

p
Þ

 !�1
, ð11dÞ

Ht ¼
1

ik3

 !
. (11e)

Both Hi and Ht, called radiation transfers hereafter,
indicate the waves radiating at the ends of infinite
horizontal beds. S2 and S4 display the slope effect on wave
reflection and transmission so that we call them slope
transfer. The former represents a wave traveling up from
the deep region to the shallow region and the latter
indicating a wave going down from the shallow region to
the deep region. If a trapezoidal breakwater is symmetrical
the slope face and water depths of both sides are the same
and then have n12 ¼ n23 and h1 ¼ h3. Comparing Eq. (11b)
and Eq. (11d) thus yields S4 ¼ S�12 for a symmetrical
trapezoidal breakwater. Finally, W3 is the width transfer
showing waves propagating over a finite horizontal plane.

Eq. (10) indicates the resultant wave reflection and
transmission through a sequence of radiation transfer, slope
transfer and width transfer of an incident wave passing over
a submerged trapezoidal breakwater. The resultant trans-
fers constitute a shape transfer. Matrix multiplication in
Eq. (10) finally gives a dimension of 2� 1 matrix, and
transmission and reflection coefficients are easily obtained
as follows:

T ¼
1

c11
(12)

and

R ¼
c21

c11
. (13)
When the face slope of a breakwater is neglected, the
depth changes discontinuity at the junctions. Considering
the simple case, Mei (1983) related the water surface
elevation and mass flux across the discontinuity to identify
the reflected and the transmitted waves. The reflection and
transmission coefficients are presented in a simple form

RMei ¼
ð1� s12Þð1þ s32Þe

�ik2B2 þ ð1þ s12Þð1� s32Þe
ik2B2

ð1þ s12Þð1þ s32Þe�ik2B2 � ð1� s12Þð1� s32Þeik2B2

����
����,
(14)

and

TMei ¼
4s12

ð1þ s12Þð1þ s32Þe�ik2B2 � ð1� s12Þð1� s32Þeik2B2

����
����,
(15)

where the substitutions sij ¼ kihi=kjhj (i; j ¼ 1; 2; 3) denote
the relative water depth.
Miles (1981) applied finite Fourier cosine transform to

solve the problem of a wave reflected by an obstacle with
small and continuous height variation and derived the wave
reflection and transmission coefficients. Kirby and Anton
(1990) extended Miles’ theory to the situation of a mildly
sloping bottom with rapidly varying but small-amplitude
undulation. The expressions for reflection and transmission
coefficients derived by Miles (1981) are written as

RMiles ¼
2k2

2khþ sinh 2kh

Z 1
�1

dðxÞe2ikxdx

����
���� (16)

and

TMiles ¼ 1þ i
2k2

2khþ sinh 2kh

Z 1
�1

dðxÞdx

����
����, (17)

where d(x) is the shape function of the obstacle of which the
height is measured from the horizontal bottom. Neglecting
the effect of depth variation on the wave number in the
integrals of Eqs. (16) and (17) associated with the shape of a
trapezoidal breakwater produces

RMiles ¼
1

2ð2khþ sinh 2khÞ

�2ie2ikL2 ð�1þ e2ikB2Þðh1 � h2Þk

þ h1�h2
L2
ð�1þ e2ikL2 � 2ie2ikL2kL2Þ

þ
e2ikðL2þB2 Þðh2�h3Þ

L4
ð1� e2ikL4

þ2ik ð�1þ e2ikL4 ÞðL2 þ B2Þ þ e2ikL4L4Þ
� 	

�����������

�����������
(18)

and

TMiles ¼ 1þ
i

2

2k2

2khþ sinh 2kh
½h1ðL2 þ 2B2Þ

����
þh2ðL2 þ L4Þ � h3ð2L2 þ 2B2 þ L4Þ�

���� ð19Þ

where k ¼ s=
ffiffiffiffiffiffiffiffi
ghm

p
is the mean wave number in which hm is

the mean water depth.
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3. The solutions for a series of submerged trapezoidal

breakwaters

A series of N sets of submerged trapezoidal breakwaters
over a horizontal bed is plotted in Fig. 2. The width at the
bottom plane between two breakwaters is B1.

The region V at the bottom plane between two break-
waters is finite which is similar to the region III at the top
plane. Thus the wave in the region V propagates in a similar
way to that in the region III. The effect of a finitely
horizontal bottom plane on wave reflection and transmis-
sion can be expressed by a width transfer alike Eq. (11c)
having the form

W5 ¼
cos k1B1 � 1

k1
sin k1B1

k1 sin k1B1 cos k1B1

 !
. (20)

Following the procedure mentioned in the above section,
the wave reflection and transmission from a series of
breakwaters can be related and equated by

1

R

 !
¼ Hi S2W3S4W5S2W3S4W5 � � �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N�1

S2W3S4HtT

¼ Hi½S2W3S4W5�
N�1S2W3S4HtT . ð21Þ

A sequence of matrix multiplication is accomplished on
the right hand side of Eq. (21) and then two equations are
available to solve wave reflection and transmission coeffi-
cients.

4. Results and discussions

4.1. Single breakwater

Two computational conditions are specified for deter-
mining the reflection and transmission of a wave propagat-
ing over a single breakwater by the proposed method. The
η

I II IIIII IV V

h1 h1

h2

B2

B1

Fig. 2. Definition sketch of a series of trapezoidal submerged break-

waters.

Table 1

A comparison of the reflection and transmission coefficients obtained by the

Author/equation used Case 1

R T

Chang/Eq. (13), (12) 0.4724 0.8814

Mei/Eq. (14), (15) 0.4113 0.9115

Miles/Eq. (18), (19) 0.5227 1.0092
conditions for case one are h1 ¼ h3 ¼ 2:4m, h2 ¼ 0:8m,
L2 ¼ 3:2m, B2 ¼ 4m, L4 ¼ 2:4m and T ¼ 10 s. In the
other case, the only difference is h3 ¼ 1:6m instead of 2.4m
in order to make the bottom depth different at both ends.
The relative water depth, defined as the ratio of the water
depth to the wavelength, at the ends is 1/19.9, which value is
regarded as shallow water area for long wave propagation.
These computational conditions are often applied in
the practical design of submerged breakwaters. Table 1
presents the obtained reflection and transmission coeffi-
cients.

In case one, the proposed method and Mei (1983) both
have a value of R2 þ T2 ¼ 1, which represents the
conservation of energy flux. The wave transmission
evaluated by Eq. (17) definitely exceeds unity. Hence, the
formula of Miles (1981) fails to conserve energy flux.
However, the wave reflection obtained by Eq. (18) slightly
exceeds that obtained by the proposed method, by 0.05.
The reflection coefficient calculated by the proposed
method is slightly higher than that of Mei (1983) by 0.06.

In case 2, all results demonstrate that R2 þ T241,
because the depth of the bottom differs at the ends. The
proposed method predicts a higher wave reflection coeffi-
cient than Mei (1983). The transmission coefficient calcu-
lated by the method proposed herein is 0.023 lower than
that of Mei (1983).

The energy flux is defined as the wave energy times the
group velocity, where the wave energy is rgH2/8, and r is
the density of water and H is the wave height. According to
linear wave theory, the group velocity is

ffiffiffiffiffi
gh

p
in shallow

water region. The energy flux in one direction must be
conserved through any two cross sections. Equating the
energy fluxes in regions III and V yields,

ð1� R2Þ
rgH2

1

8

ffiffiffiffiffiffiffi
gh1

p
¼

rgH2
3

8

ffiffiffiffiffiffiffi
gh3

p
, (22)

where H1 represents the wave height at h1 and H3 is the
wave height at h3. Accordingly, the transmission coefficient
is

T ¼
H3

H1
¼ ð1� R2Þ

ffiffiffiffiffi
h1

h3

s" #1=2
(23)

Substituting R ¼ 0:3967 and h1=h3 ¼ 1:5 into Eq. (23)
yields T ¼ 1:0159, which is the same value as that obtained
using Eq. (12) and presented in Table 1. The shoaling effect
yields a transmission coefficient of greater than unity.
present method, Mei (1983) and Miles (1981)

Case 2

R2+T2 R T R2+T2

1.0000 0.3967 1.0159 1.1894

1.0000 0.3449 1.0388 1.1980

1.2917 0.3579 1.0062 1.1132
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Fig. 3. Reflection coefficients for a wave over a trapezoidal breakwater

with various sloping faces but with a fixed top width.
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Fig. 4. Wave reflection from sets of different numbers of breakwaters,

using the proposed method and Miles method.
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If the slope of the sloping face varies, but the width of the
top plane is fixed, then the calculated reflection coefficients
of a wave with a period of 10 s are as plotted in Fig. 3. The
depth of the water at each part of a breakwater is the same
as in case 1; the step is fixed at a height of 1.6m. The face
slope on the ascending side varies from 1 to 1/8 and that
on the leeward side varies from one to 1/3.5. The spac-
ing between the two breakwaters is defined as
S ¼ L2 þ B2 þ L4. Fig. 3 reveals that the reflection
obtained by Eq. (14), and denoted by a dashed line is a
constant of 0.4113, because a breakwater has a fixed height,
and that the proposed method yields the reflection denoted
by a solid line with a maximum value of 0.4731 at
S=L ¼ 0:21. The triangular parts of a breakwater on both
sides are deformed into a rectangular shape with an
equivalent area. Therefore, (L2+L4)/3 is added to the
original top width of a breakwater so the corrected top
width is B2+(L2+L4)/3. According to the corrected top
width of the breakwater, the reflection coefficient obtained
by Eq. (14), represented by the broken line in Fig. 3,
exceeds that obtained by the proposed method, reaching a
maximum value of 0.5000 at S=L ¼ 0:266.

4.2. Multiply composite breakwaters

Substituting the shape of each breakwater into the
undulation in Eq. (16) and integrating it for each of a
series of N sets of breakwaters, yields a resultant wave
reflection. Fig. 4 compares the wave reflection from a series
of N sets of symmetrical breakwaters using the proposed
method with that obtained by Miles’ method. The shape of
each breakwater is given by h1 ¼ 2:4m, h2 ¼ 1:2m,
L2 ¼ L4 ¼ 2:4m, B2 ¼ 4m; the spacing between the two
breakwaters B1 ¼ 20m is fixed, and N ¼ 4 or 6 is used in
the computation. In practical engineering design, a break-
water face slope of 1:2 is commonly used.

Miles’ result shows that the peak amplitude of Bragg
reflection increases quickly and the bandwidth falls as the
number of breakwaters rises. However, Fig. 4 depicts a slow
increase in the peak amplitude of the Bragg reflection and a
slow decline in the bandwidth obtained by the proposed
method. The peak Bragg reflection obtained by Miles’
method occurs exactly at 2S=L ¼ 1 and 2. An interesting
finding of the proposed method is that the peak Bragg
reflection shifts toward 2S/LE0.93, and 1.84, respectively,
which are lower than Miles’ values. According to the
original Bragg law in optics and Miles’ theory for wave
Bragg reflection, the peak Bragg reflection occurs exactly at
2S=L ¼ 1 and 2, based on the assumption that the speed of
propagation of a wave remains constant. Variation in the
wave celerity with water depth is considered, so the wave
has a shorter wavelength and moves more slowly in the
ridge region because the water is shallower there than it is in
the flat bottom plane. When an incident wave travels for a
distance S ¼ L=2 and then the reflected wave returns for
the same distance, both waves are in phase and form an
envelope. In this situation in which Bragg reflection occurs,
the envelope has a maximum amplitude at anti-nodes and
minimum amplitude at nodes. If the spacing between the
two breakwaters is fixed, then a wave with a constant
wavelength of L ¼ 2S is required to satisfy Bragg’s law.
A longer wave is required to compensate for phase loss
because the wave is slower in the shallow region than in the
deep region. Therefore, this method, accounting for the
variation of the wavelength with the depth of water, reveals
downward shift in the frequency of the peak Bragg
reflection.
The peak Bragg reflection at 2S=L ¼ 2, obtained by

Miles’ method, is 1.06, which is greater than one. This
unexpected finding indicates the neglect of the necessary
variations in wavenumber with the change in water depth.
As stated above, the proposed method conserves energy
such that the sum of the squares of the transmission
coefficient and the reflection coefficient is unity. Thus, the
reflection coefficient obtained by the proposed method
never exceeds unity.
The space between the two breakwaters is a key

parameter in determining Bragg reflection. The effect of
the width of a top plane on wave reflection when the
spacing between two breakwaters is fixed, is discussed.
Fig. 5 displays the results. The computational conditions of
Fig. 4 involve N ¼ 4, but two other cases with (B1,B2)
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Fig. 6. Wave reflection from a series of breakwaters in cases 1–3.
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Fig. 5. Wave reflection from a series of breakwaters with top planes of

various widths.

Table 2

Three kinds of different arrangement of multiply composite break-

waters examined

Case B1-1 (m) B1-2 (m) B1-3 (m)

Case 1 20 12 8

Case 2 12 8 20

Case 3 8 20 12

H.-K. Chang, J.-C. Liou / Ocean Engineering 34 (2007) 185–191190
values of (22m, 2m) and (23m, 1m) are considered. Fig. 5
demonstrates that the width of a top plane influences wave
reflection especially near 2S=L ¼ 1 and the downshift in the
peak Bragg reflection is larger from a larger top plane.
Accordingly, the width of a top plane becomes important in
designing wave Bragg reflection.

Guazzelli et al. (1992), and Hsu et al. (2003) investigated
two combinations of multiply composite bars. They found
that the bandwidth of Bragg reflection can be improved
using multiply composite bars, and the number of the bars,
and spacing between them, are key parameters that lead to
optimal and variable Bragg reflection. They divided their
multiply composite bars into two groups. The bars were
equally spaced in both groups. If the shape of the bars and
the spacing between two bars are fixed, whether the Bragg
reflection depends on the arrangement of the bars is an
interesting question. Four breakwaters whose shapes are
specified by h1 ¼ 2:4m, h2 ¼ 1:2m, L2 ¼ L4 ¼ 2:4m, B2 ¼

4m are separated by three spaces of 8, 12 and 20m. Table 2
specifies three arrangement of these composite breakwaters.
Fig. 6 plots the wave reflection obtained by the proposed
method from the multiply composite breakwater in cases
1–3. Fig. 6 presents the wave reflections in these three cases.
The reflection is minimum, with a value of 0.1, near 2S/
LE1.78 in case 1. In case 3, the minimum wave reflection is
extremely low, 0.015, near 2S/LE1.37. In the 2S/L range
between unity and two, the wave reflection always exceeds
0.5 in case 2. This finding verifies that, in practical
engineering, multiply composite breakwaters designed as
in case 2 can provide high wave reflection matching,
meeting the design requirements to handle waves with large
periods in the real sea. In contrast, when a wave with a
period of 8.68 s has 2S/LE1.37 as in case 3, its reflection
coefficient is 0.015, so the design requirement of high wave
reflection is not met. A favorable arrangement of multiply
composite breakwaters helps to ensure the high Bragg
reflection of waves with large periods.
5. Conclusions

Chang and Liou’s (2004) matching method is used to
determine the reflection and transmission of long waves
from a trapezoidal breakwater and a series of trapezoidal
breakwaters. Shape transfer, including radiation transfer,
width transfer and slope transfer, are derived as a pair of
equations to determine the reflection and transmission of
long waves from a trapezoidal breakwater. The proposed
method incorporates the conservations of both energy flux
and mass, yielding more reasonable reflections than those
obtained by Miles’ (1981) method. Mei’s (1983) method,
using a corrected top width of a breakwater based on an
equivalent area to the triangular parts of a trapezoidal
breakwater, yields a wave reflection that differs slightly
from that obtained by the proposed approach.

The peak Bragg reflection of long waves from a series of
trapezoidal breakwaters obtained herein is found to be
shifted toward low frequency. The phenomenon is clarified
by the variation in phase loss with the wavelength, caused
by a variation in water depth on the sloping face and the
top plane of the breakwaters. Multiply composite Bragg
breakwaters, providing wide bandwidths around harmonic
resonances, can be applied in practical engineering. The
width of the top plane and the arrangement of a series of
breakwaters are two other key parameters in the design of
multiply composite Bragg breakwaters.
References

Bailard, J.A., DeVries, J., Kirby, J.M., Guza, R.T., 1992. Bragg reflection

breakwater: a new shore protection method. Proceedings of the 23nd

International Conference Coastal Engineering, ASCE, New York, pp.

1702–1715.



ARTICLE IN PRESS
H.-K. Chang, J.-C. Liou / Ocean Engineering 34 (2007) 185–191 191
Chang, H.K., Liou, J.C., 2004. Long wave reflection and transmission over

a sloping step. China Ocean Engineering 18, 371–380.

Cho, Y.S., Lee, C., 2000. Resonant reflection of waves over sinusoidally

varying topographies. Journal of Coastal Research 16 (3), 870–876.

Dalrymple, R.A., Kirby, J.T., 1986. Water waves over ripples. Journal of

Waterways, Port, Coastal and Ocean Engineering, ASCE 112, 309–319.

Davies, A.G., 1982. On the interaction between surface waves and

undulations of the seabed. Journal of Marine Research 40, 331–368.

Davies, A.G., Heathershaw, A.D., 1984. Surface propagation over

sinusoidally varying topography. Journal of Fluid Mechanics 144,

419–446.

Dean, R.G., 1964. Long wave modification by linear transitions. Journal of

the Waterways and Harbors Division, ASCE 90, 1–29.

Dingemans, M.W., 1997. Water Wave Propagation over Uneven Bottoms,

Part 1 – Linear Wave Propagation, Word Scientific, Singapore, pp.

141-143.

Guazzelli, E., Rey, V., Belzons, M., 1992. Higher-order Bragg reflection of

gravity surface waves by periodic beds. Journal of Fluid Mechanics

245, 301–317.

Hara, T., Mei, C.C., 1987. Bragg reflection of surface waves by periodic

beds: theory and experiments. Journal of Fluid Mechanics 178,

221–241.

Heathershaw, A.D., 1982. Seabed-wave resonance and sand bar growth.

Nature 296, 343–345.
Hsu, T.W., Chang, H.K., Tsai, L.H., 2002. Bragg reflection of

waves by different shapes of artificial bars. China Ocean Engineering

16, 21–30.

Hsu, T.W., Tsai, L.H., Huang, Y.T., 2003. Bragg scattering of water wave

by multiply composite artificial bars. Coastal Engineering Journal 45

(2), 235–254.

Kirby, J.T., 1986. A general wave equation for waves over rippled beds.

Journal of Fluid Mechanics 162, 171–186.

Kirby, J.T., Anton, J.P., 1990. Bragg reflection of waves by artificial bars,

Proceedings of the 22nd International Conference Coastal Engineering

ASCE, New York, pp., 757–768

Mattioli, F., 1991. Resonant reflection of surface waves by nonsinusoidal

bottom undulations. Applied Ocean Research 13, 49–53.

Mei, C.C., 1983. The Applied Dynamics of Ocean Surface Waves, Second

ed. World Scientific, Singapore.

Mei, C.C., 1985. Resonant reflection of surface water waves by periodic

sandbars. Journal of Fluid Mechanics 152, 315–335.

Miles, J., 1981. Oblique surface-wave diffraction by a cylindrical obstacle.

Dynamics of Atmospheres and Oceans 6, 121–123.

Miles, J., 1990. Wave reflection from a gentle sloping beach. Journal of

Fluid Mechanics 214, 59–66.

O’Hare, T.J., Davies, A.G., 1993. A comparison of two models for surface-

wave propagation over rapidly varying topography. Applied Ocean

Research 15, 1–15.


	Long wave reflection from submerged trapezoidal breakwaters
	Introduction
	The solutions for a submerged trapezoidal breakwater
	The solutions for a series of submerged trapezoidal breakwaters
	Results and discussions
	Single breakwater
	Multiply composite breakwaters

	Conclusions
	References


