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Mass Transport in Deep-Water Long-Crested 
Random Gravity Waves 
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Departmen• o• Meteorology and Oceanography, New York University 
New York, New York 10453 

The theoretical and observed motions of a particle on the surface of deep-water long- 
crested random gravity waves are studied. The experiment was performed at the Stevens 
Institute of Technology. The theoretical model is formed in Lagrangian coordinates by apply- 
ing perturbation and spectral techniques to the equations of motion for an incompressible fluid 
for both viscous and irrotational flows. The theoretical drift agrees very well witl• tile observed 
mass transport. An important contribution consists of a large low-frequency oscillation about 
the mean drift that is correctly predicted by the second-order correction to the spectrum o[ the 
horizontal motion. Spectra, cross spectra, and bispectra are estimated from the data and all 
support the conclusions based on the irrotational model, which correctly describes the behavior 
of the particle. 

INTRODUCTION 

Stokes [1847] was the first to recognize that 
there is a steady second-order mean forward 
velocity of particles associated with gravity 
waves. Ite showed that, if the wave equation for 
the free surface elevation • is 

i(kx--o•) • ---- ae •- O(a2k) 
where k is the wave number, a is the amplitude, 
and eo is the angular frequency, then the velocity 
of mass transport must be 

•_ a•k cosh 2k(z- h) •_ C 
2 sinh 2 kh 

where h is the water depth and C is an arbitrary 
constant. If the total horizontal mass transport 
is assumed to be zero, one must have 

C -- --(a2eo/2h) coth kh 

In deep water, kh • 1, • simply becomes 

•- a%ke 

Laboratory experiments designed to measure 
the mass transport velocity have been per- 
formed by de Caligny [1878], the Beach Erosion 
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Board [1941], Baghold [1947], and Longuet- 
Higgins [1960]. All measurements suggested 
that Stokes' mass transport velocity equation 
is an unsatisfactory model. An observed strong 
forward velocity near the bottom and a back- 
ward velocity in between is not predicted by 
Stokes' model. The main reason for the dis- 

crepancy between observations and Stokes' 
model is the assumption of irrotationality. 
Longuet-Higgins [1953], carrying the analysis to 
the second order, found a markedly different 
result for a viscous fluid. In progressive waves, 
his mass transport velocity near the bottom 
was given by 

•_ 5 a•eok 
4 sinh •' kh 

and the velocity gradient near the surface was 
given by 

.... 4a•k coth kh 
Oz 

This is twice the corresponding value of 
Stokes' model and compared quite well with 
tank measurements. 

Ocean waves are not single sine waves; hence, 
neither Stokes' nor Longuet-Higgins' model can 
be applied to the real oceans. Therefore, another 
model is required that can apply to random 
w•ves. Tick [1959] derived • stationary random 
process with continuous spectrum that satisfied 
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the perturbed equations of motion in Eulerian 
coordinates and obtained a nonlinear random 

model of gravity waves that tended to explain 
the second peak in the spectrum of gravity 
waves. Pierson [1961] solved the equations of 
motion in Lagrangian coordinates to second 
order for a nonviscous fluid and obtained an 

equivalent drift as determined by Stokes. In 
this paper, random process techniques are ap- 
plied to the second-order perturbation equations 
of motion in Lagrangian coordinates for both 
the viscous and the nonviscous case. 

IRROTATIONAL FLOW 

Governing equations. In meteorology and 
oceanography there are two basic ways to de- 
scribe the motion of fluid particles, the Eulerian 
and Lagrangian representations. The Lagran- 
gian representation will be considered here. 

If X and Z (Z positive upward) represent the 
horizontal and vertical coordinates of a particle 
and a and 8 represent the corresponding par- 
ticle tags, or material coordinates, in the Lagran- 
gian system, the inviscid two-dimensional equa- 
tions of motion can be written as 

X,,X• q- Z,,Z, q- gZ• q- (P,/p) -- 0 (1) 

where p is density, g is the acceleration of grav- 
ity, P is pressure, and the subscripts represent 
partiaI differentiation. 

If the water is assumed to be incompressible, 
the Jacobian of these two coordinate systems 
can be set equal to unity; i.e., 

O(X, Z)/O(•, •) = 1 (3) 

Also, if it is assumed that X, Z, and P can be 
expressed as a power series, then 

X a + ex• + • • •X2 • ''' 

=. + x• + x• + ... (4) 

Z •+•+ • = •Z2 + ''' 

: •+z•+z•+... (5) 
P • _pg$ • ep• • e•p• • ... 

• -pg• • P• • P• • ... (•) 

where e is a small quantity. These equations 
with e -- 0 correspond to the unperturbed 
system at rest. 
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After substituting (4), (5), and (6) into (1), 
(2), and (3) and equating the coefficients of e 
and e', one obtains 

• equations 

X,,,-[- gZ,• -37 (P,•/p) = 0 (7) 

Zx,, -•- gZl•-•- (Pxa/p) = 0 (8) 

x,• + z,• = o (9) 
J equatio• 

X:,, + gZ• + (P:•/p) 

+ x,•x,,, + z,•z,,, = o (•o) 

z•,, + gZ• + (•/•) 

+ x•x•,, + z•z•,, = o (1•) 

x• + z• + z•x,• - x•z• = o (•) 

Expressions for Xx, X•, Z•, Z•, Px, and P• can 
then be obtained from the two sets of equations 
above by imposing suitable boundary conditions. 
If an infinitely deep body of water with a free 
upper surface and an unlimited fetch is con- 
sidered, the boundary conditions are that P• = 
P• -- 0 at the free surface (3 =0) and that 
Px, P•, Zx, and Z• become zero as 8 • --•. 

First-order solution. Eliminating Px from (7) 
and (8), one obtains 

X•,,- Z,•,, = 0 (13) 

With (9) one has the differential equations (14 
and 15) for Xx and Zx 

x•,, + x•,, = o (14) 

Z•,, + Z•,, = 0 (15) 
Under the assumption that X, Z, and P are 
stationary random processes with respect to a 
and t, the spectral representations are 

X = ff:• e i(ka-•t) 

Z = ff:oa ei(ka-•t) 
ß d•) (k, o•; 3) + M(• 

P = ff:• e i(ka-•t) 
ß d•) (k, o•; •) + 

(•6) 

(17) 

(18) 
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where the expected value of d•' is given as fff k z• - - i lkl 

= {•S(k,•o; •i) if k= k', w=w' oth erw is e 

The overbar denotes the complex conjugate. 
In the above expression S(k, •; 3) is the 

spectral distribution function and M is the mean 
that is assumed to be the unperturbed value. 

Since X•, Z• satisfy (14) and (15), one ob- 
tains 

q- ff/• e •(k"-•'>e -I•1• d•,) (k, w) (19) 
Zi = ff•• ei(•"-•*>e • d•i(z>(k, w) 
+ fff ei(•-•*)e-I•l* d•,) (k, •) (20) 
For deep water the second term on the right- 

hand sides of (19) and (20) must vanish owing 
to the boundary condition as the depth becomes 
infinite. Hence, X• and Z• simply become 

= fff e'(•-•*)e•* d•(•)(k, •) (21) 
= fff e •(•-•)e '•'* di(z>(k , (22) 

Substituting (21) and (22) into (13), one ob- 
tains 

-]- ff:• Ik[ e'(•-'øt)e '•1• d•l(z)(k, 0))• 0 
(2•) 

To satisfy the above identity, it is required that 

• a•(•,(•, •) + 1•1 a•(,,(•, •) = 0 

Since d½(,• (k, o•) ------ d½(,• (k, o•) ---- 0 is a trivial 
solution, it follows that 

k 

a•(•,(•, •) = -i • a•(•,(•, 
Hence, the solution of Z• becomes 

(2•) 
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o,i(ka--ozt),'k'$ d•l(x)(k ' (.0) (25) 
From the boundary condition at the free sur- 
face of the irrotational flow, P• = 0, at 3 -- 0, 
one obtains 

ff:• [--w2 -q - (ikg)!\--i 
.,i(ka--ozt> d•l(x)(k ' (.o) = 0 (26) 

Also, the condition that d½(,• (k, •) is not zero 
requires that 

k = ]w ] •0/g (27) 
in order to satisfy (26). 

The spectral representations of X•, Z•, and P• 
have now been reduced to one-dimensional ran- 

dom processes and are expressed as 

X1 -- f :oa 
ß e (•'/g>' d,• (•) (w) (28) 

ß e'[(l'ølø'/•'>'•-ø"•e(ø"/•')* d•(•>(oo) (29) 

•'• = o (ao) 
Second-order solution. The second-order so- 

lutions can be obtained from substitution of 

(28), (29), and (30)into (10), (11), and (12), 
respectively. These substitutions yield 
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The homogeneous solutions oœ the above set 
of equations are clearly 

.e•,,o/• d•2(x)*(o•, od) (34) 

z? = ff_. -i sgn (w q- 
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Z2*** • f f De 
ß e •"'/•*•""/•" d•(•o) 

P2*** = ff• pgEe 

where 

(41) 

(42) 

where 

_ ipgBe•t (o,.,/,,) o,-( o, + o, ,)• 

ß e '"*'/•'* d//•r,•*½, od) (36) 

To obtain the inhomogeneous solutions, the 
integrations on the right-hand sides of (31), 
(32), and (33) are separated into three parts' 
over the plane o•o' _> 0, the neighborhood of line 
o• -- -% and the remaining portion (R) of the 
o•o' plane. The contribution to the inhomo- 
geneous solutions from the first part of the inte- 
gration is equal to zero. The inhomogeneous 
solution contributed by the second part of the 
integral is obtained by the method of elimination 
of variables, and it is written 

z•** = fo • 2d' e(•..•,, d•(•o) 
(38) 

X2** • f; 
P2** = 0 

A(O, t, •o) a•,•(•o) 

(39) 

The integral over the region R has the same 
form as (31), (32), and (33). The inhomo- 
geneous solutions to this integral are obtained 
by repeating (he same procedures used to solve 
the first-order equations. The resulting expres- 
sions are 

X'2*** • i ff R Ce 
(40) 

g 
2 

0) -- (.dim t + 0) t2 
•) = (•) 

• = c½ + •')• - v½ *•) (•v) •2 

Since the general solution is the sum of the 
homogeneous and inhomogeneous solutions, it is 
written as 

X:• = X•* q- X2** q- X2*** (46) 

Z• = Z2* q- Z2** q- Z•*** (47) 

P2 = P2* + P•*** (48) 

where these quantities are the same as defined 
above. 

From the boundary condition at the free sur- 
face (P•. -- P? + P?• -- 0), the function 
d•(•(to, to') can be defined as 

•(•*(•o •o') 

E 

= •iM: --i • a•(•)(•) d•(,)(•') over R oth erw is e 

(40) 

If the motion of the fluid is started from rest, 
then under the irrotational assumption, the 
vorticity of the fluid is always equal to zero. 
Therefore, there must exist a function, say, 
F(a, 3, t) such that 

+ (x,x• + z,z,) a, (•o) 

is a perfect differential. Linearizing the above 
equations, one obtains 
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aF• •- (X•, + X•,X• + Z•Z•)&. 

+ (Z. + X•X,• + Z•Z•) • (5•) 
On substituting (28), (29), (46), (47), and 
(49) into (51) and (52), one obtains 

dF• = --i•L •e © •' 
ß e (•/•>• d•r•>(w)• da 

+ a(•, •')e ••+(•'•) 

+ Q½, •')e • (• +(•,• •) 

ß e '•'•*•'•-(•+•"• a•<•,(•) a•l(•>½')• a* 
whero 

(53) 

(54) 

I(• o•') 

_co**(,•2 __ co,•) if coco' < 0 and co > 0 
g 

._ co**(co2 _ co,z) if woo' < 0 and co < 0 
g 

• 0 otherwise 

-• [(I,.,,:•l q- io/l) + .,',,,(i,,,i q- I,,./I)] 
over R 

on the line --co -- co' 0 otherwise 

ovcr R 

otherwise 

over R 

otherwise 

Equation 53 is a perfect differential for F, 
given by 

F• = -- f:,,, j-w•j e•t(l'øl'"/")ø'-'"'•e('ø'/")* d•(•)(co) 
(55) 

Equation 54 can be expressed as a perfect differ- 
ential if A is chosen to be 

A.= 2, f_•,• g 

ß e d•l(x)((..,o) d,•jl(x)(--(..D) (56) 

A was defined in equaton 39. 
Hence, the form of the perfect differential is 

F2 : ffa i(co**e 
_ (., + ,,./)et (,or,)+(,,,../,) 

ß e "('ø*•")"-('ø'"'ø')" a•,(•)(,,.,) ,/½(•)(.,') (b7) 

The solution for irrotational random long- 
crested gravity waves in deep water to second 
order is now complete and is written as 

+ i ff• (Ce t(ø"/")+(ø'"/")]• -- -IlIe 'ø'*'/"'*) 
COt 

+ 4t • d (ø"")• a,h(,,)(,o) a,h(,,)(-o.,) (58) 
t7 
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Z - • -- if:•sgn(eo)e 
ß + 
- M.sgn (• • •')e •*'•) 

ß e i•(•*'/o)"-(•+•')'l d•(•)(•) 

• •• 2w • e d•(•>(•) d•i(•)(--•) (59) 
g 

P • _pg S -- ff• pgE( e•*• 

where C, D, E, and M are defined by (43), (44), 
(45), and (49), respectively. 

M•s transport and second-order spectrum, 
cross spectrum, and bispectrum. If the mean 
position of a particle at the free surface is con- 
sidered, it can be seen from examination of (58) 
and (59) that the particle does not remain at 
its undisturbed position but has a small vertical 
shift, which can be removed by a coordinate 
shift 

g 

from the mean position, •nd a horizontal for- 
ward velocity 

g 

Equation 61 is usualIy called the mass trans- 
port velocity (or simply the drift). For a single 
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sine wave, 4S(,•(•o)do• is, by definition of the 
spectrum, equal to the square of the amplitude. 
The expression for the mass transport velocity 
can then be written as 

3 

600 2 -- a½ 

g 

where a is the amplitude. This corresponds to 
Stokes' result. Since U depends on the first-order 
X spectrum, Sl(x)(•o), it is necessary to deter- 
mine the spectrum in order to calculate the 
mass transport velocity. 

If it is assumed that •,(x)(•o) is a Gaussian 
random process of independent increments with 
zero mean, the spectrum of the processes 

and 

for any particle in the fluid can be obtained. 
The spectra of X' and Z' at the free surface are 
derived as follows. 

Set 8 -- 0 in (58), (59), and (60). This re- 
sults in 

x, = e it•!•l•/•)"-•'l d•l(•)(w) 

• i (c- M)e 

-- 4t • s•,•,(•) • (• 

Z' = --f:• i sgn (w)e 't(l•'•/•)•-•t' 
q- ff• [O- M sgn ½ q-cot)le 't(•*•/•)•-(•+•')'l d•(•)½) 

g 
and 

L ffff R(•>(r) = E[X'(t)X'(t + r)] = e &r•>(w) dw + [C(w, w') -- M(w, 

[C(•" •"') M(•" )]e 

(63) 

(64) 
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R(z)(r) - E[Z'(t)Z'(t q- r)] - f-••o eiøør•1(x)(03) dco 

(65) 

The cross-product term is zero since d•,rx, (•o) 
is assumed to be a Gaussian random variable 

with zero mean. A further consequence of this 
assumption is that the expected values of four- 
fold products of d/j, rx,(oo) can be expressed by 
twofold products [Isserlis, 1918]. 

+ E{d•½i) d•½4)}E{d•½2 ) d•½3) } (66) 
Therefore 

+ fff• e'(•+•"•{[c½, •') - •0, •')1• 
+ [c0, •') - •0, •')1 

ß[c½', •) - •0', •)]} 

' Sl(x)(•)Sl(x>(• g) & d• l (67) 

- MO, •') sgn 0 + •')]• 

+ [•0, •') - •O, •') •g• O + •')] 

' [•0', •) - MO', •) sgn O + •')]} 

Replacing •' by X -- • in (67) and (68), one 
obtains the spectrum of X' and Z' upon taking 
•he Fourier transfo•. 

S(x)O) = Sl(x)O) 

+ 4 K(X; o•) Si (x) (X) Si (x, (X -- o•) dX 
(69) 

+ 4 u(x; •) & (• (x) s1(• (x - •) ax 
(70) 

whero 

•(x; •) 

u(x; •) 

X)a-- X(2X-- w)12/ g 2 
for X > w > 0 

w>0, 

for X>w>0 w>0, 

(71) 

(72) 

The remainder of the definition of H and K 

follows from the symmetry of the spectrum. 
The convolutions on the right-hand sides of 

(69) and (70) are the second-order spectrum 
corrections due to the nonlinear effects. The 

effect of the function K(X; oo) on the second- 
order term in the X spectrum is to provide high 
spectral values around the origin, oo = 0. The 
function H(X; oo) contributes little to the Z 
spectrum because it does not have any singu- 
larities. 

Since the second-order correction of the Z 

spectrum is small in comparison with the first- 
order X spectrum, it is reasonable to say that 
the Z spectrum is approximately equal to the 
first-order X spectrum, &(•(oo). Therefore, one 
can replace S•(• (oo) by S(• (oo) in (61). The mass 
transport velocity 
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Decreasing 
Froquency 

•o 3 g 

• Ws e(2•,/•)• • • 4 y (,)(•) d• (73) 
can then be evaluated from an estimated 
trum of the vertical motion. Also, from these 
aspects of the X spectrum and Z spectrum, the 

2 2 

where Cr(o•) is the cross spectrum, Qrl(o•) is 
the first-order quadrature spectrum, and Qr2(o•) 
is the second-order quadrature spectrum. 

0 if 

J(X;•o) - iX__ i (k--to • if -- 2•)k' if 

0•k• 

0••k 

0•k0• 

(75) 

bispectrum of the horizontal motion is expected 
to have a relatively high value over the low 
plane and to decrease diagonally toward the high 
o•o/ plane. The accompanying diagram shows 
the expected nature of the X bispectrum. The 
Z bispectrum is expected to have low values 
over the whole o•o/plane, because of the assump- 
tion of a Gaussian distribution in d•,(=•(o•) and 
the small second-order correction in Z. 

The cross spectrum of the motion of a par- 
ticle between the X and Z coordinates can be 

derived in a similar manner. It is obtained as 

Cr(o•) ---- i(Qr•(o•) + Q 

Hence the cross spectrum consists only of the 
quadrature spectrum, and it is almost the same 
as the first-order X spectrum in the high- 
frequency range. The second-order correction in 
the cross spectrum is significant in the low- 
frequency region, but it is still very small in 
comparison with the second-order correction to 
the X spectrum. 

VISCOUS FLOW 

Governing equations. If the functions x -- 
x (a, 8, t) and z = z (a, 8, t) are assumed to be 
invertible, it is possible to express a and 8 in 
terms of x and z (where a = a(x, z, t) and 
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$ -- $(x, z, t)). For a given function F(x, z, t), 
then, there must exist another function f (a, 3, t) 
luch that 

where a and 3 are functions of x, z, and t. 
Hence the derivatives of the function F with 

respect to x and z can be related to the deriva- 
tives of • with respect to a and 3 by 

OF 

OF 

Oz 

(76) 

If J (x, z/a, 3) is equal to unity, the above equa- 
tions reduce to 

OF/Ox - J(l, z/•, •) (77) 

o•/o• = Z(x, I/•, •) (7s) 

It can be seen that the viscous terms in the 

Eulerian equations of motion can be trans- 
formed into Lagrangian coordinates by use of 
(77) and (78), if the fluid is assumed to be in- 
compressible (see also Pierson [1962] and Corr- 
sin [ 1961] ). This results in 

•V • U(x, z, t) 

= r[FU(a, •, t) + G U(•, •, t)] (79) 
and 

•V• W(x. z. t) 

= ,•(•. s. t) + 6•(•. s. t)] (so) 

for the Navier-Stokes terms in the Eulerian 

equations. In (79) and (80) • is the kinematic 
viscosity and V• is the Laplace operator. 

The equation of motion for viscous flow can 
then be stated as 
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x,,x• - •(•u + •u)x• + (z,, + g)Z• 

-- •,(FW + GW)Z• + P---• •-- 0 (81) 

x,,x• - •(•u + •v)x• + (z,, + 

- ,•(•w + •w)z• + • = o (s•) 
Upon linearizing equations 81 and 82 and 

the continuity equation in the same manner as 
that for the nonviscous equations, one obtains 

e equatio• 

Xltt + gZla + P•y 

= •(X•,• + X•,•) (83) 

P•s 
Zx• + gZx• + 

p 

= •(z•,• + z•,•) (84) 

x• + z• = o (85) 
•' equatio• 

x•,, + gZ• + •/• - •(x•,• + x•,•) 

= --X•X•- Zx•Z•. 

+ •[(x•,•. + 3x•,•)x• 

+ 2Xx•Z• + X•(Zxa•- X•) 

- •x•,•(z•. + x•) 

- X•,•(Z•- X•) 

+ (z•,• + Zl,•)z•] (86) 

z•, + gZ• + •/• - •(z•,• + 

= --Xi•Xx• -- Zi•Zx• 

+ •[(x•,• + x•,•)x• 

+ (Zl,• + Zl,•)z• + •z•,•z• 

+ 2Zx•Xx• + Zx•(Zx.•- Zi•) 

- •z•,•(z• + Xl•) 

- z•(z•- x•)] (87) 

x• + z• + Zl•Xl• - X•Z• = o (ss) 

Boundary condition. To derive the boundary 
conditions at a free surface, consider the balance 
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of forces on a small triangular element just be- 
neath the surface of a genera1 fluid. The vertical 
and horizontaI balance of forces (for details, see 
Kinsman [1965]) are given, respectively, by 

--(Pon t- KS) dS cos 0 -{- r dS sin 0 

= P•' dS cos 0 n t- px, dS sin 0 (89) 

(Pon t- KS) dS sin 0 -+- r dS cos 0 

= Px• dS cos 0 -- P• dS sin 0 (90) 
where 

Po = pressure at the surface. 
K -- curvature. 

5 = surface tension. 

r -- tangential surface stress. 

Now, for a free surface, Po=0 and • = 0 at 
$ - 0. Hence, if the vertical position of the 
particle is given by Z(a) and the surface tension 
5 is neglected, equations 89 and 90 become, 
respectively, 

Pz•x,, n t- P•Z,, = 0 

=o 

at 

However, for a Newtontan fluid, 

P• = --p n t- 2pr[X,,Z,, - Zt,,X,] (93) 

•'•= -p + 2o•[x,.z•- x,•z.] (94) 

p•. = pz•= o•[X.X,• + Z,.Z• 

- z,•z.- x•x,.] (95) 

Since water can be approximated by a New- 
tonian fluid, the boundary condition at the free 
surface ($ = 0) can be obtained by substituting 
(93), (94), and (95) into (91) and (92). These 
substitutions result in 

+ (z,.z•- z,•z.)]z. = o (•) 

at • = 0 

o•[(x.x,,- x•x,2 

+ (z,.z,- 
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--• [P- 2p•(X,.Z,- X,aZ.)]Z. = 0 
(97) 

Upon linearizing the above equations, one 
finally obtains first-order boundary conditions 

--P• + 2p•Z•,• = 0 

Zi,. + X•, = 0 
(9s) 

at 6=0 

and second-order boundary conditions 

P• + P•X• • 

-- 2p•(Z•,, + 2Z•,,X•- X•,Z•) 

+ p•(z,,•Zl• + x•,,z, 2 = o (OOa) 

at • = 0 

PiZi• -- 2prXi•Z• + pr(Zi•Z1, 

+ Z•X• + Z2• -- Zi•,Zi• 
(9•) 

+ 2Xi,,X• + X•, -- X1,X•) = 0 
, = o (99•) 

(92) •t ,=o 
• = 0 First-order solution. The method of obtain- 

ing the general solution of the above system is 
the same as for the irrotational case. The first- 
order solutions can be written as 

X• = ff•• e•r•-O•)e •* d•1(•)½, k) 
+ fff• e"•-•"e • a•I,•, ½, •) (lOO) 

fff• k e•(•._•t)e•a (w, k) (101) 

fff• o (ka-wt) Pl : i • [(w" -- g Ikl 
ß e •*] a•1(•,½, •) 

ff•• gk e•(•._•,)e6, 
where 

(102) 
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I /d q 1/2 •= • + (• - 0•• 
Substituting the above equations into boundary 
condition 98, one obtains 

• (co 2 -- g [k[) d•(x,(co, k) 

- g••(• , 
- • •(• (•, •): o (lOS) 

k • 

•ence, 

• ]•] •(•,(• •) (•o•) •• (•, •) - (•/•) - • , 

__ g•• k%• k•]k•••: 0 (106) 
For surface waves on water, •e ratio •/2rk • 

is very large. For the shortest wave, for ex•ple, 
k -- 3.8 cm -• and • -- 0.01 cm • sec -•, one has 
(•/2rk •) • 280. Therefore, it is safe to make 
the following approximation' 

6_ 1•(1_ i)•2• k 

•(1 --i) • • 1 

On neglecting the higher-order terms of k/• in 
(105) and (106) one obtains 

• • g !k](1 -- 2ik•l •) 

• g [k[ (1 -- 2ik•l • -- k•l •) 

= (•(•, + •(•))• (107) 

a•(•,(•, •) = -•[(•/6•) - •] (lOS) 
wh• 

1 

1 - i)• if •o > 0 
1 

1-l-i)• if eo < 0 
The expressions for first order, then, become 

X 1 • f:• ½-I•ølk•l•tei[(l•øl•ø/•)•-•øt] 

Z1 • f/• e-I•ølk•l•te 

ß -i• - i 
(110) 

f • • t•i Pl = g--I•lkal [(l•l•/g) a--•t] 

ß -• • (• - g I•1 )• 

+ ip 2gk•Jk[ e•, ] d•(•,(w) (111) 
where (R) is dropped from .•(• for convenience 
and where the last term in each bracket of 

(110) may be neglected. 
Second-order solution. Substitution of the 

first-order solutions into the second-order differ- 

ential equations 86, 87, and 88 and the boundary 
conditions 99 yields 

X• = ffr e-•'[A•e •+•'• • A.e •+•'• 
• Aa•(l•l+•')a]ei[(k+•')ale -i(•+•')t 

ß a•(•(•) a•(•(•') + M•.•, (1•. 

Z2 • ffR •-etl• Ik+k'la toxe • B•e( 

where the higher-order terms of k/fi have been 
neglected and the other constants are defined as 

c = 2•(• • + •'•) (11•) 
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--i 

(115) 

g(• _]_ •,) (116) 

-i 2k I'1 - + (117) 

• 4 •ok d•l(x)• ) d•l(x)(-- (.0) -- 

Hence, the surface mass transport velocity at 
the free surface for the viscous solution is nearly 
the same as that of the nonviscous solution. 

The gradient of the mass transport velocity 
near the free surface is 

k -]- k' 

B• = --iA• [k-]- k'[ (118) 
B• = (co • -- coco' -[- co'•) / g (119) 

Bs ---- --2 ]kk'] /fi• (120) 

--2cok2/(sin-• (•-• - cos-• 
-•- •k sin 2k$• d•l(•)(•) d•l(•)(-- •) (121) 

M,e(•) = •-•ke • 

ß (122) 

Hence, the motion of a particle is damped ex- 
ponentially with time by viscous effects. The 
motion will then be approximately at rest again 
after a certain time. Since water waves have 

quite small c; k = 1, c = 0.02, and k = 0.1, 
c = 0.0002, the damping is slow and can be 
neglected if the time interval under analysis is 
smaller than a few minutes. 

M•s transport gradient. If ct (( 1, then, 
by neglecting the higher-order terms of ct, one 
has 

sin (- 
At the free surface ($ = 0), this becomes 

E[OU/O$]---• 16 (z0k2Sl(x)(fM) &0 (123) 

which is twice as large as the result for the 
irrotational solution and agrees with the results 
of Longuet-Higgins [1953]. This implies that, if 
one is interested only in the mass transport 
velocity at the free surface, the motion can be 
considered to be irrotational. If the mass trans- 

port gradient is considered, the viscous effect 
cannot be neglected. 

EXPERIMENTAL RESULTS 

Description of experiment and data. In 1962 
• water tank experiment to determine the posi- 
tion of a particle on a water surface subjected 
to • train of artificially generated waves was 
performed at the Stevens Institute of Tech- 
nology under the direction of John F. Dalzell. 
The data obtained from this experiment can be 
used to verify parts of the above theoretical 
results. A brief description of this experiment 
will be given here. Pierson [1962] gives addi- 
tional details on the experiment. 

Small wooden balls (0.50 cm in diameter) 
were placed on the water surface of a water-filled 
tank (dimensions, 92 X 1.8 X 3.6 meters) to 
represent typical fluid particles. Long-crested 
random waves were then generated at one end 
of the tank while the motions of the particles 
were tracked by an optical-photographic instru- 
ment. Thus, the floating positions of the spheres 
in X, Y, and Z Cartesian coordinates were de- 
termined as a function of time from the films. 

The optical-photographic instrument consisted 
of a mirror, strobe lights, an Airifiex 35-mm 
camera, and an electric timing device, mounted 
on a moving carriage and 100 feet of Keuffel 
and Esser tape. The apparatus is illustrated in 
Figure la. The camera, with a 28-ram Schneider 
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Fig. la. 
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Design of experimental apparatus. (1) mirror, (2) s•.robe light, (3) timing device, and 
(4) carriage. 

lens attached, was synchronized with the strobe 
light to take 10 frames per second. The mirror 
with a zero-line indicator was mounted in front 

of the camera at a 45 ø angle, so that the 
camera would see the mirror in the top half of 

each frame. This is similar to viewing the balls 
from directly overhead. Figure lb is a sample 
photograph from this experiment. The white 
spot labeled a represents a ball on the water sur- 
face and the one labeled b is the mirror image 

F•g. lb. Sample photo of the ball on the wave surface and its image in the mirror. 
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of a. In the mirror view, the balls moved mostly 
to the left and right, to provide data on the X 
and Y components of the fluid motion (the 
motion normal to X was small). The X and Z 
motions of the balls were recorded in the lower 

half of the frame. An electfie clock was placed 
on the lower right-hand side of the mirror frame 
to identify the films. One end of the 100 feet 
of Keuffel and Esser tape was fastened to the 
edge of one end of the tank. It was then passed 
along rollers on the camera transport, beneath 
the mirror and along the length of the tank, 
where it was then spring-loaded to a tension of 
5 pounds. The point-positions of the sphere were 
digitized at Aero Service Corporation, Phila- 
delphia, under the direction of David S. Fuller 
by the use of a specially constructed reticle that 
was placed over the film frame and yielded read- 
ings of high accuracy when viewed with a stereo- 
microscope. 

The entire experiment yielded 24 sets of 
data. Each set consisted of three series of data 

representing the simultaneous X, Y, and Z co- 
ordinates of a ball. The coordinate position 
sampling time was 0.1 second, and the length of 
a particular set of data varied from 20 to 100 
seconds, depending on experimental conditions. 
Figure 2 shows graphs of one of the longest sets 
of data. 

A motion picture has been made from a com- 
posite of these photographs. to give a general 
idea of the motion of a particle on a surface sub- 
jected to a series of long-crested random waves. 
This film may be of special interest to those 
studying the problems of breaking waves [Pier- 
son, 1963]. 

Under the assumption that the horizontal 
position X(t) of the sphere at a given time t 
after initial time to is an algebraic sum of the 
initial position X(0), the horizontal displace- 
ment due to the oscillatory part of the wave 
motion Xp(t), and the product of the mean 
velocity and time t, i.e., 

x(0 = x(o) + + x(t) 

the mean mass transport velocity for each set 
of data was evaluated by a least-squares method 
to minimize •[Xp(t)]'. That is, 

tz(t)l - t] V: 

hi7] ?] - t] 
(124) 

x(o) 

[• t•l[• X(t)l - [• t][• (tX(t))l 
n[• t 21 -- [• t] 2 

(125) 

After calculation of V and X(0), X(0)-+- Vt 
and Z(O were subtracted from the data X(t) 
and Z(t), respectively. Then the X spectrum and 
the Z spectrum were calculated for each set of 
these experimental data with the drift in X and 
the mean of Z removed. The X and Z bispectra 
and the cross spectrum between X and Z were 
also estimated. 

Comparison o• theoretical and observed spec- 
tra. The twenty-four pairs of X and Z spectra 
calculated in this manner appear to have one 
particular property. There are high spectral 
values over the low-frequency region of the X 
spectrum but not in the Z spectrum. Figure 3 
is the same as Figure 2 except for the removal 
of the drift. Figure 4 is the spectrum corre- 
sponding to Figure 3. The big difference between 
the X spectrum and the Z spectrum over the 
frequency region below 0.3 see -• is clearly shown 
in the spectral curves. Actually, this low- 
frequency oscillation in the X coordinate can 
even be seen from Figure 3. 

It was then interesting to investigate whether 
the theoretical model would explain this feature. 
During the experiment, the wave heights at the 
50.7- and 27.0-foot marks on the tape were also 
recorded every tenth of a second by using a 
Sanborn two-channel recorder. Recording was 
started when the first wave passed the 50.7-foot 
mark and stopped when the camera was 
switched off. The wave probes were calibrated 
before and after the experiment by curve fitting. 

Tick [1959] showed that the surface wave 
spectrum of random waves to the second order 
is approximately the same as the first order 
except for a small correction over the high- 
frequency region and small values at low fre- 
quencies that, for this purpose, can be set equal 
to zero. Thus, a theoretical X spectrum and a 
theoretical Z spectrum were calculated accord- 
ing to (69) and (70) by taking the surface 
spectrum as a first-order X spectrum. These 
curves are shown in Figure 5. The curves show 
good agreement between theory and observa- 
tions (Figure 4). The ratio •S(,• (.•o)/•S(,• (•o) 
is also given in the figure. This indicates the 



MASS TRANSPORT IN GRAVITY WAVES 1529 

z 

oo 

L•I 



1530 MING-SHUN CHANG 

i.u 

.1- 
i- 

o 

z 

o 

x 

o 

o 

Q • • 0 

i 

-8 

0 

z 

o 

o 

o 

o 

o 



MASS TRANSPORT IN GRAVITY WAVES 1531 

5O 

4O 

E 

io 

Spectrum Vs. Frequency 

-- X- Spectrum 
.... Z- Spectrum 
----- Qr- Spectrum 

Co- Spectrum 

•S(x) (•) = •.z 
•s(z )(o.,) 
Degrees of freedom = 20 
Upper limit = 1.6:5 S(f ) 
Lower limit = 0,;58 S(f) 

//"- \ 

0.0 0.25 0.50 

sec'• 

0.0 0.25 0.50 0.75 1.00 1.25 1.50 
Frequency (sec -I) 

Fig. 4. Corresponding spectra and cross spectra of Figure 3. 

•mportance of the second-order correction. Us- 
ually, a large second-order correction is taken 
as an improper solution and an indication that 
the solution is diverging. However, the large 
second-order effect is both observed and cor- 

rectly explained theoretically in this investiga- 
tion. 

Comparison o• theoretical and observed cross 
spectra. The estimated cross spectra consist of 
both a quadrature spectrum and a co-spectrum. 
The quadrature spectrum is almost the same 
as the spectra of both X and Z over the high- 
frequency region and has a significant value over 

the low-frequency band, but it is not compar- 
able to the X spectrum over this region. The 
co-spectrum is very low over the whole fre- 
quency range. It is one order of magnitude 
smaller than the quadrature spectrum. Figure 4 
also shows the corresponding cross spectrum for 
that run. 

The theoretical cross spectrum has been de- 
rived and calculated from the surface wave 

spectrum, which has been discussed previously. 
It is shown in Figure 5. The estimated and 
theoretical quadrature spectra show good agree- 
ment. The theoretical co-spectrum is equal to 
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Theoretically calculated spectrum and cross spectrum from estimated surface wave 
spectrum. 

zero for all frequencies. The actual observed 
co-spectrum shows a rather small value, how- 
ever, which may be due either to noise or to 
sampling variation. 

Comparison o/ theoretical and observed drift. 
Theoretical mass transport velocities for each 
set of data were evaluated according to (73) by 
using the estimated spectrum of Z in that run 
as an approximation to the first-order spectra 
of X and Z. The resulting observed values (cal- 
culated according to equation 124) and theoreti- 
cal values for these twenty-four sets of data are 
given in Table 1 and plotted as a scatter dia- 
gram in Figure 6. The averages of the observed 
and theoretical mass transport velocities are 2.64 

and 2.72 cm sec -•, respectively, when the data 
are weighted according to the length of the run. 
The theoretical drift calculated from the esti- 

mated surface spectrum is 2.77 cm sec-L The 
correlation coefficient between them is 0.76. This 

shows that the observed drift for a small sample 
of data is correlated with the integral of the 
product of frequency cubed and the vertical 
displacement spectrum estimated from that sam- 
ple. A higher observed drift is associated with 
a higher value of the integral. The variation of 
sampling length and the least-squares technique 
used to evaluate the observed drifts are believed 

to be responsible for the scatter of the data 
points. 
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TABLE 1. Theoretical and Observed Drift 
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Run Length of Run, Observed Drift, Theoretical Drift, 
Number sec cm/sec cm/sec 

i 20.0 2.19 1.71 
2 25.1 1.52 2.64 
3 20.0 1.37 2.12 
4 39.5 2.48 3.12 
5 21.5 2.27 2.20 
6 35.8 1.80 2.12 
7 29.3 2.30 2.27 
8 29.6 2.44 1.97 
9 21.8 2.25 2.21 

10 22.7 3.29 3.36 
11 100.0 2.25 2.74 
12 100.0 3.11 3.29 
13 30.7 3.03 2.97 
14 58.4 3.63 3. O0 
15 16.5 0.56 1.11 
16 33.0 3.05 2.68 
17 23.7 2.08 2.42 
18 60.4 3.38 3.64 
19 33.1 2.01 2.66 
20 62.3 4.27 3.23 
21 20.8 0.79 1.57 
22 25.8 2.25 3.58 
23 45.0 1.24 1.74 
24 92.5 3.06 2.63 

Sum 967.5 

• (Length of Run X Observed Drift) 
Average Observed Drift = = 2.64 cm/sec 

Y. (Length of Run) 

Y. (Length of Run X Theoretically Cal. Drift) 
Average Theoretical Drift = 

• (Length of Run) 
= 2.72 cm/sec 

Correlation Coefficient = 0.76 
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Fig. 6. Scatter diagram of estimated and theoretically calculated drifts. 
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The averaged estimated X spectrum obtained after removal of theoretical drift and 
the theoretical X spectrum. 

An average X spectrum was calculated from 
the data after removing the theoretical drift 
instead of the observed drift for each run. Fig- 
ure 7 shows both this average X spectrum and 
the theoretical X spectrum evaluated from the 
surface spectrum. The good agreement between 
these two curves shows that the low-frequency 
parts of the X spectrum can be better estimated 
by removing the theoretical drift and leaving a 
residual linear trend associated with each sample. 
The agreement between observation and theory 

would be better for continuous sample runs 
about ten times longer than those actually used 
in this experiment because the linear trend 
would then better approximate the drift and 
the oscillations about this drift would be re- 

moved correctly. 
Estimate o] the bispectrum. The bispectra 

of the horizontal and vertical motions of the 

sphere were estimated by Paul Shaman. Fig- 
ure 8 is the amplitude of the corresponding bi- 
spectrum of Figure 3. The high values for the X 
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bispectrum over the low-frequency area of the 
•o•o' plane and the diagonal decrease of the bi- 
spectrum are expected from the theory as de- 
scribed previously. The estimated Z bispectra 
are quite small. Theoretically, the Z bispectrum 
should be approximately equal to zero, as dis- 
cussed above. Therefore, the estimated bispectra 
are just what one would expect. 

CONCLUSIONS 

This study indicates the need of the second- 
order solution in describing the motion of par- 
ticles in random gravity waves and demon- 
strates that the second-order solution approxi- 
mates the motion of the particle very well. 

To the first-order approximation, the spectra 
of the vertical and horizontal movements and 

their quadrature spectrum are identical. The 
high values over the low-frequency band of the 
experimental X spectrum and quadrature spec- 
trum of X and Z (as shown in Figure 4) are 
missed in this model. To the second order, the 
irrotational model (equation 69) gives the right 
spectral corrections. The estimated bispectrum 
in the horizontal motion of the particle also 
shows this significant nonlinear effect. 

From the first-order solution, it is suggested 
that no mean motion should appear in both the 
X and the Z coordinates. The experimental data 
show, however, a visible drift in the horizontal 
coordinate. This discrepancy has been removed 
by the second-order approximation. The mean 
velocity calculated from (73) is in substantial 
agreement with the experimental results (Table 
1). 
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