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ABSTRACT: This paper describes the mathematical formulation, the numerical solution, and the validation of
a linear refraction-diffraction model for steep bathymetry. The model involves two coupled governing equations
derived from, respectively, the exact seabed boundary condition and the Laplace equation. It reduces to the
extended and the original mild-slope model, when the seabed slope is small. Although the present approach is
based on depth-integration of flow characteristics, it correctly accounts for the vertical component of the seabed
fluid velocity. The formulation is based on the weighted-residual method, and the hybrid element solution is
derived from a Galerkin approach. The capability of the present model to simulate flow velocity and wave
amplitude over three-dimensional bedforms is examined in a parametric study. The computed results are com-
pared with the original and extended mild-slope solutions and verified with those of a three-dimensional wave
model. The present depth-integrated model has the same data requirements as other two-dimensional models,
but provides accurate three-dimensional results with only a fraction of the CPU time that would be required by
a three-dimensional model.
INTRODUCTION

Deep ocean waves change their height and direction as they
enter shoaling waters. Numerous linear and nonlinear com-
putational models are available to predict these changes.
Among the linear models, the depth-integrated refraction-dif-
fraction equation derived by Berkhoff (1972) is one of the
most commonly used. It is also known as the mild-slope equa-
tion, because its derivation is based on the assumption of grad-
ually varying bathymetry. This elliptic partial differential equa-
tion has been solved with increasing computational efficiency
and applied to model wave transformation over extensive
coastal regions (e.g., Panchang et al. 1991; Oliveira and An-
astasiou 1998). Numerous studies have been conducted to im-
prove the applicability of the mild-slope equation for rapidly
undulating and relatively steep bathymetry.

Kirby (1986) extended the mild-slope approximation to in-
clude rapidly varying, small amplitude deviations from a grad-
ually varying bathymetry. Porter and Staziker (1995) proposed
a matching condition to ensure the conservation of mass flow
over a discontinuous seabed slope. To account for relatively
steep slopes, Massel (1993) and Chamberlain and Porter
(1995) used, respectively, the Galerkin eigen-function method
and the variational principle to derive an extended mild-slope
equation that contains additional terms proportional to the bot-
tom curvature and the square of the slope. Chandrasekera and
Cheung (1997) provided an alternative derivation of the ex-
tended equation based on Berkhoff’s (1972, 1976) approach
and applied their model to study wave transformation over
three-dimensional bedforms and evaluate the relative signifi-
cance of the curvature and slope-squared terms. Suh et al.
(1997) and Lee et al. (1998) derived time-dependent and hy-
perbolic forms of the extended mild-slope equation.

Despite attempts to extend the mild-slope equation for steep
bathymetry, the extended mild-slope equation is still based on
the original assumption that the seabed slope is small. As a
result, the seabed is treated as locally horizontal in the math-
ematical formulation, and the plane wave solution is used to

1Grad. Res. Asst., Dept. of Oc. and Resour. Engrg., Univ. of Hawaii
at Manoa, Honolulu, HI 96822; presently, Assoc., Philip Williams & As-
sociates, 770 Tamalpaio Drive, Ste. 401, Corte Madera, CA 94925.

2Assoc. Prof., Dept. of Oc. and Resour. Engrg., Univ. of Hawaii at
Manoa, Honolulu, HI (corresponding author).

Note. Discussion open until November 1, 2001. To extend the closing
date one month, a written request must be filed with the ASCE Manager
of Journals. The manuscript for this paper was submitted for review and
possible publication on November 1, 1999; revised October 24, 2000.
This paper is part of the Journal of Waterway, Port, Coastal, and Ocean
Engineering, Vol. 127, No. 3, May/June, 2001. qASCE, ISSN 0733-
950X/01/0003-0161–0170/$8.00 1 $.50 per page. Paper No. 22136.
JOURNAL OF WATERWAY, P
describe the variation of the solution in the vertical direction.
The vertical component of the fluid velocity is, therefore, al-
ways equal to zero at the seabed, regardless of its slope. For
steep bathymetry, this vertical velocity is not negligible and
might affect the overall water particle kinematics and wave
height distribution. Furthermore, the effectiveness of these
depth-integrated refraction-diffraction models has mostly been
studied based on the computed wave height. Few studies have
investigated the accuracy of these models in reproducing the
correct water particle kinematics near the seabed, which is
critical to many coastal engineering applications.

This paper presents a two-equation refraction-diffraction
model that correctly accounts for the vertical component of
the fluid velocity on a sloping seabed. The present model,
which satisfies the exact seabed boundary condition, is more
accurate in modeling wave transformation over steep bathym-
etry. It reduces to the one-equation mild-slope model, if the
seabed slope is small. The validity of the present approach is
examined through a parametric study involving three-dimen-
sional shoals. The computed wave height and water particle
velocity are compared with the results of the mild-slope model
of Berkhoff (1972), the extended refraction-diffraction model
of Chandrasekera and Cheung (1997), and the three-dimen-
sional wave model of Yue et al. (1976). The applicability, com-
putational efficiency, and accuracy of the proposed model to
calculate wave transformation over steep bathymetry are eval-
uated and discussed.

MATHEMATICAL FORMULATION

This section presents the derivation of two coupled govern-
ing equations for linear wave refraction-diffraction over steep
bathymetry. The incident waves are assumed to be periodic
and monochromatic, and the steady-state problem is formu-
lated in the frequency domain. The three-dimensional bound-
ary-value problem and its weighted-residual form are pre-
sented first. A new approximation procedure is introduced to
allow integration of the weighted residuals in the vertical di-
rection, while satisfying the exact seabed boundary condition.
The weighted residuals defined in the two-dimensional hori-
zontal plane provide the two governing equations and the
boundary condition.

Three-Dimensional Problem

The three-dimensional boundary-value problem is defined
with a right-handed Cartesian coordinate system (x, y, z), in
which x and y are measured horizontally, and z is measured
vertically upward from the still water level. The fluid is as-
sumed to be incompressible and inviscid, and the flow irro-
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tational. The fluid motion can be described by a flow poten-
tial F

2ivtF(x, y, z, t) = Re[f(x, y, z)e ] (1)

where i = t = time; and v = angular frequency. The21;Ï
spatially dependent potential f satisfies the Laplace equation
within the fluid domain D

2 2 2 f  f  f
1 1 = 0 (2)2 2 2x y z

The wave amplitude is assumed to be small, and energy dis-
sipation is not considered. The combined free surface bound-
ary condition can be linearized and applied at the still water
level as

2f v
2 = 0 (3)

z g

where g = gravitational acceleration. The seabed is imperme-
able and the no-flux boundary condition can be written as

f
= 0 (4)

n

where n = direction normal to a boundary surface. The scat-
tered component of the potential satisfies the radiation condi-
tion on a vertical control surface truncating the infinite domain

Sf S2 ikf = 0 (5)
n

where fS = scattered potential; and k = wave number satisfying
the linear dispersion relation.

The weighted-residual method can be applied to formulate
a solution for the three-dimensional water wave problem. The
method minimizes the numerical errors in the solution by
equating the weighted residuals of the governing equation over
the domain and the boundary conditions over the boundaries
to zero. This results in

2 2 2 2 f  f  f f v
W 1 1 dV 1 W 2 f ds1 2EEE S D EE S D2 2 2x y z z gD S

Sf f S1 W ds 1 W 2 ikf ds = 03 4EE EE S D
n nB C (6)

where V = volume; s = surface; W1, W2, W3, and W4 = weight-
ing functions; and S, B, and C indicate the still water surface,
the seabed, and the control surface, respectively. The weight-
ing functions can be arbitrary as long as the resulting integrals
remain finite (e.g., Zienkiewicz and Taylor 1989).

Two-Dimensional Approximation

The first step to eliminate the z dependence in the three-
dimensional boundary-value problem is to separate the flow
potential f into horizontal and vertical components. The stan-
dard approach is to represent the vertical structure of the po-
tential by that of plane waves using the local water depth. This
approximation does not entirely satisfy the seabed boundary
condition and is only valid when the seabed slope is small. In
the present approach, the approximation of f contains an ad-
ditional term to account more accurately for the seabed bound-
ary condition:

f(x, y, z) ' w(x, y)Z(h(x, y), z) 1 w (x, y)Z (h(x, y), z) (7)1 1

in which

cosh[k(z 1 h)]
Z(h(x, y), z) = (8)

cosh(kh)
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1 2 cosh(kz)
Z (h(x, y), z) = (9)1 cosh(kh)

where w and w1 = flow potentials defined in the two-dimen-
sional horizontal plane; and h = water depth.

The proposed solution form, (7), satisfies the free surface
boundary condition (3) and the linear dispersion relation. The
first term of (7) is also known as the zeroth-order term and
has been used in the derivation of the original and extended
mild-slope equations. It represents the plane wave component,
which has a zero vertical velocity at the seabed. The second
term has a nonzero derivative with respect to z at z = 2h and
is used here to account for the vertical component of the fluid
velocity on a sloping seabed. This vertical velocity is maxi-
mum at the seabed and decreases to zero at the still water level
to satisfy the free surface boundary condition. The function Z1

described by (9) is selected here, because it gives a linear
distribution in shallow water and a more rapid decrease toward
the water surface for larger values of kh. Other functions could
be selected as long as they possess similar characteristics.

The residual of the free surface boundary condition in (6)
vanishes, because of the solution form (7). With the seabed
boundary condition written in terms of the water depth, the
weighted-residual equation (6) becomes

0 2 2 2 f  f  f
W Z 1 1 dz ds1EE E S D2 2 2x y zS 2h

f
1 W 1 =f ?=h ds3EE S D

zS

0
Sf S1 W Z 2 ikf dz dl = 04E E S D

nR 2h (10)

where = = (/x, /y); S = two-dimensional domain; R =
radiation boundary; and l = distance along R. The function Z
is used as the weighting function in the depth-integration to
give more emphasis to the propagating mode. For arbitrary
weighting functions W1, W3, and W4, (10) is satisfied provided
that

0 2 2 2 f  f  f
Z 1 1 dz = 0 (11)E S D2 2 2x y z2h

f
1 =f ?=h = 0 (12)

z

0
Sf SZ 2 ikf dz = 0 (13)E S D

n2h

After evaluating the depth-integration, the entire weighted-re-
sidual formulation is defined in the two-dimensional horizontal
plane. Eqs. (11) and (12) give rise to the two governing equa-
tions in the horizontal plane, and (13) corresponds to the ra-
diation condition of the two-dimensional boundary-value prob-
lem.

Coupled Refraction-Diffraction Equations

The coupled governing equations for wave refraction-dif-
fraction over steep bathymetry are defined in (11) and (12).
We first derive the governing equation based on the seabed
boundary condition, because it is already defined in the two-
dimensional horizontal plane. Substitution of the solution form
(7) into the seabed boundary condition (12) gives

Z=h ?=w 1 (=Z ?=h)w 1 Z w 1 Z =h ?=wz 1 1

1 Z w 1 (=Z ?=h)w = 01,z 1 1 1 (14)
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FIG. 1. Variation of Coefficients b1, b2, b3, and b4 with kh (------, b1;
– – –, b2; – - –, b3; ——, b4)

where the subscript z denotes partial derivative with respect to
z. By noting that = 0 and substituting z = 2h in (14),Z uz z=2h

we obtain the first governing equation:
2v2 2b =h ?=w 2 kb u=hu w 1 b =h ?=w 1 [1 1 b u=hu ]w = 01 2 3 1 4 1

g

(15)

in which

1
b = (16)1 cosh(kh)

sinh(kh)sinh(2kh)
b = (17)2 2cosh (kh)[2kh 1 sinh(2kh)]

1 2 cosh(kh)
b = (18)3 cosh(kh)

2kh 2 2 sinh(kh) 1 sinh(2kh)
b = (19)4 2kh 1 sinh(2kh)

Fig. 1 shows the dimensionless coefficients as functions of the
water depth parameter kh. The coefficients b1 and b2 are, re-
spectively, associated with the seabed slope and the slope-
squared terms of the plane wave potential w. Both coefficients
approach zero in deep water, where the seabed has negligible
effects on the surface waves. The coefficients b3 and b4 are
related to the potential w1 and become unity in deep water.
When the water is deep or the depth is constant

w = 0 (20)1

This condition can also be applied to reflective boundaries on
a locally flat bottom, over which the normal velocity is equal
to zero.

The second governing equation is obtained from the depth-
integration of the Laplace equation, as indicated in (11). Sub-
stituting (7), this depth-integration becomes

0 0 0

2 2 2 2= w Z dz 1 =w ? =(Z ) dz 1 w Z= Z dzE E E
2h 2h 2h

0 0 0

2 2 21 wk Z dz 1 = w ZZ dz 1 2=w ? Z=Z dz1 1 1 1E E E
2h 2h 2h

0 0

21 w Z= Z dz 1 w ZZ dz = 01 1 1 1,zzE E
2h 2h (21)
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FIG. 2. Variation of Coefficients c1, c2, c3, and c4 with kh (------, c1;
– – –, c2; – - –, c3; ——, c4)

The second integral in (21) is difficult to evaluate in its present
form and is rewritten based on Leibniz’s rule of integration as

0 0

2 2 2=w ? =(Z ) dz = =w ?= Z dz 2 (=w ?=h)Z u (22)2hE E
2h 2h

After evaluating the integrals, the depth-integrated Laplace
equation defined in the two-dimensional horizontal plane is
given by

2CC =CC k CCg g g2 2 2= w 1 2 b =h ?=w 1 1 f = h1 1S D Fg g g

c12 21 ( f 1 b b )u=hu k w 1 = w 1 2c =h ?=w2 1 2 1 2 1G k

2 21 [c = h 1 kc u=hu 2 kc ]w = 02 3 4 1 (23)

where C and Cg are, respectively, the phase speed and group
velocity; f1 and f2 = coefficients for the curvature and slope-
squared terms as given by Chandrasekera and Cheung (1997)
for the extended refraction-diffraction equation; and c1, c2, c3,
and c4 are given, respectively, by

tanh(kh) 2 kh
c = (24)1 2 cosh(kh)

2c = {kh cosh(kh) 1 kh cosh (3kh) 2 2[2(kh)2

21 cosh(2kh)]sinh(kh)}/{[2kh 1 sinh(2kh)]cosh (kh)} (25)

4 2c = 2{[15 1 64(kh) ]cosh(kh) 1 3[3 1 28(kh) ]cosh(3kh)3

22 21 cosh(5kh) 1 12(kh) cosh(5kh) 2 3 cosh(7kh)

31 39kh sinh(kh) 1 160(kh) sinh(kh) 2 21(kh)sinh(3kh)

31 64(kh) sinh(3kh) 1 39kh sinh(5kh) 1 3kh sinh(7kh)}

3 2/{48[2kh 1 sinh(2kh)] cosh kh} (26)

kh 1 tanh(kh)
c = (27)4 2 cosh(kh)

The coefficients from (24)–(27) are plotted as functions of kh
in Fig. 2. Since the coefficients modify the vertical flow struc-
ture of plane waves to account for the seabed boundary con-
ditions, their values are maximum in shallow or intermediate
water and vanish in deep water. As kh → 0, the solution is
not senstiive to the vertical velocity on the seabed and the
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coefficients vanish. The coefficients b1 and b2 are present in
(23), because the seabed boundary condition is not incorpo-
rated into the depth-integrated Laplace equation as in the der-
ivations of the original and extended mild-slope equations.

The governing equations for the present refraction-diffrac-
tion model are given in (15) and (23). The two equations are
coupled and must be solved simultaneously for the solution of
w and w1. In addition, the solution is subjected to appropriate
conditions on the lateral or open boundary, and these are
treated in the numerical procedures. The two governing equa-
tions derived here are complete and can be solved using a
standard numerical method. This two-equation model reduces
to the one-equation extended refraction-diffraction model in
the absence of the terms associated with w1 and becomes the
mild-slope model if the terms associated with f1 and f2 are also
omitted.

Athanassoulis and Belibassakis (1999) recently presented a
linear refraction-diffraction model for steep bathymetry based
on the coupled-mode approach in hydroacoustics (e.g., Faw-
cett 1992). The premises of their and our models are similar
in that an approximation in the form of (7) is used to account
for the vertical fluid velocity on a sloping seabed. However,
they used a distribution equivalent to Z1 = (z/h)2 1 (z/h)3 to
account for this vertical velocity and expressed the flow po-
tential as a series of propagating and evanescent modes, which
include a sloping-bottom mode. A series of coupled governing
equations in the two-dimensional vertical plane are derived
from the Laplace equation and the exact seabed boundary con-
dition using the variational method. Although their governing
equations can be extended to three-dimensional problems, hav-
ing to solve a large number of coupled equations simultane-
ously may limit the practical application of their approach due
to high computational and memory requirements. The present
method, on the other hand, follows the weighted-residual ap-
proach and derives two governing equations from the Laplace
equation and the exact seabed boundary condition, and it pro-
vides a more efficient approach to simulate wave transforma-
tion over arbitrary bathymetry in three dimensions.

NUMERICAL FORMULATION

The numerical formulation is summarized in the weighted-
residual equation, (10), which includes integration of the two
governing equations in the two-dimensional horizontal plane
and the radiation condition along the open boundary. A finite-
element equation can be derived directly from the seabed
boundary residual. The domain and open boundary residuals
are treated together using the hybrid element method of Chen
and Mei (1974) and provide a second finite-element equation
for the two unknown potentials.

Hybrid-Element Method

The hybrid-element method divides the domain S into an
inner region A and an outer region R, as shown in Fig. 3. In
the inner region, the variation of the bathymetry is significant
and the solution to the governing equations is approximated
by finite elements. The water depth in the outer region is either
constant or too large to affect wave propagation. As a result,
the potential w1 vanishes and the potential w can be represented
by an analytical function. Continuity of the pressure and nor-
mal velocity along the boundary A separating the regions A
and R requires that

CC CCg g
w 2 w = 0 (28)S D S Dg gR A

and

CC w CC wg g
2 = 0 (29)S D S Dg n g nA AA R
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where nA is directed outward from A. The flow potential w in
the outer region can be separated into the incident and scat-
tered components. The incident potential wI is known, and the
scattered potential wS must satisfy the Laplace equation and
the radiation condition.

The depth-integration of the Laplace equation, (11), in the
outer domain R gives rise to the Helmholtz equation for the
scattered potential

2CC =CC k CCg g g2 S S S= w 1 ?=w 1 w = 0 (30)
g g g

The depth-integration of the radiation condition, (13), on the
boundary R becomes

SCC w CCg g S2 1 ikw = 0 (31)
g n gR

where nR is directed outward from R. If the matching boundary
A is a circular arc, the scattered potential satisfying the Helm-
holtz equation and the radiation condition can be expressed as

`

Sw = H (kr)(a cos nu1 b sin nu) (32)n n nO
n=0

where an and bn = unknown coefficients; and Hn = Hankel
function.

Seabed Boundary Residual

The finite-element formulation of the seabed boundary re-
sidual is straightforward and is given directly by the second
term of (10). With the seabed boundary condition represented
by (15), the residual becomes

2[b =h ?=w 2 kb u=hu w 1 b =h ?=w1 2 3 1EE
A

2v 21 (1 1 b u=hu )w ]W dA = 04 1 3
g (33)

There is no need to extend this integration into the outer region
R, because the analytical solution of w satisfies the seabed
boundary condition and the potential w1 = 0. The condition
(20) is automatically satisifed on the boundary A, which has
a constant depth.

In this study, the inner region A is composed of six-node
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triangular elements based on the isoparametric formulation. In
each element, the potentials w and w1 and their derivatives are
respectively approximated by

6 6

w = N w , =w = =N w (34a,b)j j j jO O
j=1 j=1

6 6

w = N w , =w = =N w (35a,b)1 j 1j 1 j 1jO O
j=1 j=1

where Nj = quadratic shape functions; and wj and w1j = values
of the potentials at the nodes. The water depth and its gradient
and curvature at any point within an element can be calculated
from the known water depths defined at the nodes through the
use of the same shape functions. Since quadratic isoparametric
elements are used, the sides of the triangles are not necessarily
straight lines; therefore, curved boundaries can be represented
more accurately.

In the Galerkin finite-element formulation, the shape func-
tion Ni is used as the weighting functions. With the values of
w and w1 and their derivatives expressed by (34) and (35), the
Galerkin approximation of the residual (33) can be written as
a system of linear equations:

[X ]{w } 1 [Y ]{w} = {0} (36)1 1 1

where [X1] and [Y1] = square coefficient matrices, which are
sparse and banded. Eq. (36) provides a relation between the
potentials w and w1 based on the exact seabed boundary con-
dition, which is not considered in the extended and original
mild-slope models.

Domain and Open Boundary Residuals

The depth-integrated Laplace equation, (23), is not self-ad-
joint. The variational approach that was used in the original
hybrid-element method to derive the functional is not directly
applicable here. The Galerkin approach is therefore used to
derive the finite-element equations. Based on the governing
equation (23) in A and the matching conditions (28) and (29)
on A, the first and last integrals in (10) become

CC =CCg g2 22 N = w 1 2 b =h ?=wi 1EE H S Dg gA

2k CC cg 12 2 21 1 f = h 1 ( f 1 b b )u=hu k w 1 = w1 2 1 2 1F Gg k

2 21 2c =h ?=w 1 [c = h 1 kc u=hu 2 kc ]w dA2 1 2 3 4 1J
CC CCg g

1 M w 2 w dliE FS D S D Gg gA R A

CC w CC wg g
1 N 2 dl = 0iE FS D S D Gg n g nA AA A R (37)

where Mi is a weighting function. Since an analytical solution
for w is used in R, the Helmholtz equation (30) over R and
the radiation condition (31) over R are satisfied automatically.
The two matching conditions connect the numerical solution
in the inner region A with the analytical solution in the outer
region R.

As part of the weighted-residual method, the higher order
derivatives of the unknown variables are expanded into lower
order terms. Using Green’s first identity, the integral involving
the second-order derivative of the potential w in (37) can be
reduced to
JOURNAL OF WATERWAY, P
CC CCg g22 N = w dA = =N ?=w dAi iEE EEg gA A

=CC CC wg g
1 N ?=w dA 2 N dli iEE Eg g nAA A (38)

The boundary term represents the matching normal velocity
on A and is a natural boundary condition in the weighted-
residual formulation. It is also part of the continuation of mass
flux at the boundary and can account for fully reflective
boundaries on a locally flat seabed. Similarly, the second-order
derivative term of w1 in (37) can be expressed as

c c1 122 N = w dA = =N ?=w dAi 1 i 1EE EEk kA A

c c w1 1 1
1 N = ?=w dA 2 N dli 1 iEE S D Ek k nAA A (39)

Along the boundary A, the water depth is constant and the
potential w1 = 0; therefore, the boundary integral in (39) van-
ishes.

The residuals of the continuity equations of mass flux and
pressure over A in (37) can be expressed in terms of the
incident and scattered potentials as

CC CC CCg g g SM w 2 w dl = M w dli iE FS D S D G Eg g gA R A A

CC CCg gI ¯1 M w dl 2 M w dli iE Eg gA A (40)

¯CC w CC w CC wg g g
N 2 dl = N dli i AE FS D S D G Eg n g n g nAA A R A

S ICC w CC wg g
2 N dl 2 N dli iE Eg n g nA AA A (41)

where = unknown potential on the boundary A.w̄
Substituting (38)–(41) into the weighted-residual equation,

(37), we obtain

CCg 2=N ?=w dA 1 N b =h ?=w dAi i 1EE EEgA A

2k CCg 2 22 N 1 f = h 1 ( f 1 b b )u=hu k w dAi 1 2 1 2EE F GgA

c c1 1
1 =N ?=w dA 1 N = ?=w dAi 1 i 1EE EEk kA A

2 22 2c N =h ?=w dA 2 N (c = h 1 kc u=hu 2 kc )w dA2 i 1 i 2 3 4 1EE EE
A A

SCC CC CC wg g gS ¯1 M w dl 2 M w dl 2 N dli i iE E Eg g g nAA A A

ICC w CCg g I2 N dl 1 M w dl = 0i iE Eg n gAA A (42)

Although the five boundary integrals in (42) are derived from
the Galerkin method, they can be shown to be equivalent to
those derived by Tsay and Liu (1983) using the variational
approach. In the numerical solution, the weighting functions
Mi on the matching boundary are taken as the coefficients of
ai and bi from the derivative of (32) with respect to n.

Using the finite-element approximations (34) and (35), the
weighted-residual equation (42) is reduced to a system of lin-
ear equations in terms of the unknown values of w and w1 at
the nodes as well as the unknown coefficients ai and bi as-
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sociated with the scattered potential. The system of equations
can be expressed in matrix form as

T ¯[Y ]{w} 1 [X ]{w } 1 [K ]{m} 1 [K ]{m} 1 [K ] {w}2 2 1 2 1 1

= {{Q }, {Q }}1 2 (43)

where {m} = {ai, bi}; [Y2] and [X2] = sparse square matrices;
[K1] is only associated with the boundary terms; [K2] is a di-
agonal matrix; and {{Q1}, {Q2}} = forcing vector derived
from the last two integrals of (42), which contains the incident
wave conditions on the boundary A. Following the method
of Chen and Mei (1974), the unknown coefficients of the an-
alytical solution {m} can be eliminated from the matrix equa-
tion, (43), giving rise to

[X ]{w } 1 [K ]{w} = {Q} (44)2 1

in which [K] is a square matrix; and {Q} is the known input
vector, given, respectively, as

21 T[K ] = [Y ] 2 [K ][K ] [K ] (45)2 1 2 1

21{Q} = {Q } 2 [K ][K ] {Q } (46)1 1 2 2

The unknown vector on A is now considered as a subset¯{w}
of {w}. The boundary nodes are arranged at the end of the
vector {w} to improve the computational efficiency.

The two finite-element equations (36) and (44) are coupled
and combined to give a system of simultaneous equations in
terms of w and w1 as

X Y w 01 1 1 = (47)F G H J H JX K w Q2

where the right-hand-side input vector is determined from the
incident wave conditions. The rank of the final matrix equation
(47) is twice that of the original or extended mild-slope equa-
tion model with the same number of nodes. However, the left-
hand-side matrix is sparse and can efficiently be solved using
an iterative method. Once the solution of the potential w and
w1 are obtained from (47), the vertical velocity distribution can
be evaluated from (7).

RESULTS AND DISCUSSION

The validity of the present approach and its application to
steep three-dimensional bathymetry are examined through a
parametric study. The wave height and flow velocity over a
circular shoal are calculated from the present coupled model
and compared with those obtained from the original and ex-
tended mild-slope models as well as the three-dimensional
wave model of Yue et al. (1976). The origin of the coordinate
system (x, y) is placed at the center of the circular shoal and
the incident waves propagate in the positive x direction. The
water depth on the shoal at a distance r from the center is
given by

b pr
h = h 2 cos 1 1 for r # R (48)0 F S D G2 R

where h0 = constant water depth outside the shoal; and R and
b = respectively, the radius and height of the shoal. The shoal
has a slope ranging from zero at r = 0 and R to the maximum
pb/2R at r = R/2. Two configurations are considered: b/R =
0.2 and b/h0 =0.4; and b/R = 0.4 and b/h0 = 0.8. It should be
noted that the slope of this shoal is continuous. Although the
method of Porter and Staziker (1995) can be applied to treat
discontinuous bathymetry, we select this shoal so that we can
focus our attention on the performance of the model with steep
bathymetry.

Computational Considerations

The computational domain is circular, with the shoal located
at the center and the matching boundary at a distance of 1.5R
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FIG. 4. Amplitudes of Potential vw1/a0g over Circular Shoal: (a) b/R
= 0.2, b/h0 = 0.4, and kh0 = 1.0; (b) b/R = 0.4, b/h0 = 0.8, and kh0 = 1.0

TABLE 1. Comparison of CPU Times for Two-Dimensional Models

Number
of nodes

CPU Time (min)

Mild-slope Extended Present

2,000 0.2 0.2 0.7
4,000 0.7 0.7 3.4
6,000 1.3 1.4 5.8
8,000 2.4 2.7 8.8

10,000 4.0 4.5 12.6

from the center. The 20-node hexahedral element of the ‘‘ser-
endipity’’ family is used in the three-dimensional model. Both
the two- and three-dimensional models have been tested for
their sensitivity with respective to the grid and domain sizes
(Chandrasekera 2000). For the results presented in this paper,
at least 20 nodes are used to model a wavelength in the two-
dimensional models and 10 nodes for the three-dimensional
model. Five hexahedral elements are used to resolve the ver-
tical variation of the solution in the three-dimensional model.
These resolutions are higher than those required for practical
applications, but are used here to produce highly accurate nu-
merical results for this comparative study.

The computation was performed on a Pentium III 500 MHz
PC with 256 MB of memory. Table 1 shows the CPU times
required for solving the mild-slope, the extended refraction-
diffraction, and the present models. All three models are
RING / MAY/JUNE 2001



FIG. 5. Wave Amplitudes over Circular Shoal for b/R = 0.2 and b/h0

= 0.4: (a) kh0 = 1.0; (b) kh0 = 2.0 (------, Mild-Slope Equation;
– – – –, Extended Mild-Slope Equation; ——, Present Model; ●, Three-
Dimensional Model)

solved using a conjugate gradient solver specially adapted for
complex sparse matrices. The physical problem corresponds
to the configuration b/R = 0.4 and b/h0 = 0.8 and the wave
conditions kh0 = 1. The computations were performed for the
same domain but with increasing resolution to yield different
numbers of nodes. The results show that all three models are
highly efficient and can easily be solved on a PC even for a
problem with 10,000 nodes. The extended mild-slope model
has slightly higher computational requirements compared with
the original mild-slope model, as already discussed in Chan-
drasekera and Cheung (1997). The present model requires
more CPU time, because twice as many unknowns are in-
volved, but the increase is reasonable.

The present model can be viewed as a three-dimensional
model with two layers of nodes: one at the water surface and
the other at the seabed. The variation of the solution in the
vertical direction follows the analytical functions Z and Z1 in
(7). For the model of Yue et al. (1976), the use of 1,905 nodes
at the water surface and five elements in the vertical direction
results in a total of 14,635 nodes and a CPU time of 15.5 min
using a banded matrix solver. The present model with 2,000
nodes on the water surface requires 0.7 min of CPU time on
the same machine. The increase in CPU time and storage re-
quirements of the three-dimensional model is much more dra-
matic for a higher number of nodes. Furthermore, the gener-
ation of a three-dimensional finite-element grid involving
realistic bathymetry and coastlines over an extensive region is
not a trivial task. The input data preparation time, which is
crucial to engineering applications, is much shorter for a two-
JOURNAL OF WATERWAY,
FIG. 6. Wave Amplitudes over Circular Shoal for b/R = 0.4 and b/h0

= 0.8: (a) kh0 = 1.0; (b) kh0 = 2.0 (See Fig. 5 Caption for Legend)

dimensional model. The present two-dimensional model,
which can produce three-dimensional results with comparable
data preparation time to the mild-slope model, has many en-
gineering applications.

Seabed Boundary Correction

The present approach uses the potential w1 to satisfy the
seabed boundary condition and subsequently to calculate the
vertical component of the fluid velocity on the seabed. The
role of this potential in the solution of the present model is
examined in this section. Fig. 4(a) shows the amplitude plot
of the potential vw1/a0g for b/R = 0.2, b/h0 = 0.4, and kh0 =
1, where a0 denotes incident wave amplitude. The amplitude
of the potential is highest along the x axis, because the flow
is in the direction of the maximum slope and the vertical com-
ponent of the seabed fluid velocity is significant. The ampli-
tude decreases rapidly in the circumferential direction of the
shoal and becomes minimum along the y axis, where the local
wave propagation direction is almost tangent to the shoal con-
tours and, therefore, the correction to the seabed vertical fluid
velocity is small.

The results for b/R = 0.4, b/h0 = 0.8, and kh0 = 1 are pre-
sented in Fig. 4(b). Because this shoal has a larger average
slope, the vertical fluid velocity on the shoal and subsequently
the amplitude of the potential w1 are higher in comparison with
the results in Fig. 4(a). The waves are also refracted to a
greater extent due to the larger slope. Along the y axis, the
waves cross the contours of the shoal at greater angles, re-
sulting in greater vertical fluid velocity on the shoal and rel-
atively higher amplitude of the potential w1. In Figs. 4(a and
b), the amplitude of the potential w1 is zero at the top of the
PORT, COASTAL, AND OCEAN ENGINEERING / MAY/JUNE 2001 / 167



shoal and on the flat seabed immediately outside the shoal in
accordance with the formulation. The potential, however, does
not necessarily become maximum at r/R = 60.5, where the
slope is maximum. This is because the distribution of the po-
tential w1 also depends on the local water depth as well as the
refracted wave amplitude and direction.

Wave Amplitude Distribution

The wave amplitude computed by the present model is com-
pared with those obtained from the original and extended mild-
slope models as well as the three-dimensional wave model.
Although the potential w1 vanishes at the still water level, it
affects the wave amplitude distribution over the entire com-
putational domain through its coupling with w in the two gov-
erning equations. The wave amplitudes along the x axis, nor-
malized by the incident wave amplitude, are shown in Fig. 5
for the shoal configuration b/R = 0.2 and b/h0 = 0.4 and in
Fig. 6 for b/R = 0.4 and b/h0 = 0.8. Two incident wave con-
ditions corresponding to kh0 = 1 and 2 are considered. The
three-dimensional model results, which do not involve any as-
sumption on the distribution of the solution in the vertical
direction, are used here as a reference to assess the validity of
the three depth-integrated models.

The wave amplitudes computed by the present model are
noticeably different from those of the other two depth-inte-
grated models. In comparison with the results of the mild-
slope model, the present and the extended models consistently
give lower predictions of the wave height behind the top of
the shoal. This can be explained by the modification of the
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local wave number and the refractive focusing of the waves
by the curvature term in the governing equations (Lee 1999).
In comparison with the three-dimensional model results, the
extended mild-slope model appears to overcorrect this effect.
When kh0 = 1, the present model gives very good agreement
with the three-dimensional model for both shoal configura-
tions. Although the present model slightly overestimates the
wave height behind the top of the shoal for kh0 = 2, its results
are still better than those of the original and extended mild-
slope models.

Velocity Profile

The most important characteristic of the present model is
that is satisfies the exact seabed boundary condition. This gives
better predictions of the overall flow kinematics through cou-
pling with the Laplace equation. This section examines the
capability of the present model to correctly reproduce the fluid
velocity above a sloping seabed. Fig. 7 shows profiles of the
horizontal and vertical velocities, denoted by u and w, respec-
tively, at x/R = 21.0, 20.5, 0.0, and 0.5, in the x-z plane. The
results are presented for the shoal with b/R = 0.4 and b/h0 =
0.8 and for the wave condition kh0 = 1.0.

The improvement on the prediction of both the horizontal
and vertical fluid velocities by the present approach is evident.
Both the original and extended mild-slope models fail to re-
produce the correct velocities over a significant portion of the
water columns at x/R = 20.5 and 0.5, where the shoal has a
maximum slope of 0.63. Despite the use of a simple vertical
distribution for the potential w1, the results obtained from the
FIG. 7. Amplitudes of Horizontal and Vertical Velocity as Functions of z/h for b/R = 0.4, b/h0 = 0.8 and kh0 = 1.0: (a) x/R = 21.0; (b) x/R = 20.5;
(c) x/R = 0.0; (d) x/R = 0.5 (See Fig. 5 Caption for Legend)
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FIG. 8. Velocity Field in x-z Plane for b/R = 0.4, b/h0 = 0.8, and
kh0 = 1.0

present model give good agreement with the three-dimensional
model results over the entire water column. Although the pri-
mary purpose of the present model is to correctly account for
the vertical velocity above a sloping seabed, it improves the
horizontal velocity as well. In fact, the horizontal velocity ob-
tained by the present model is almost identical to the three-
dimensional result. All four models produce similar distri-
butions of the velocity at the edge and the top of the shoal
(x/R = 21.0 and 0), where the slope is zero. This indicates
that the present model can be applied to a wide range of con-
ditions and produces results that are consistent with the mild-
slope model, when the seabed slope is small or negligible.

For the same shoal configuration and wave conditions, Fig.
8 shows the velocity fields in the x-z plane predicted by the
present model over one half of a wave period (denoted by
T). The surface wave profiles are also presented in the figure
for reference. The shoal and the flow fields are shown in pro-
portional scale and the length and direction of each arrow in-
dicate, respectively, the magnitude and direction of the fluid
velocity. The velocity vectors closely follow the shoal profile,
indicating that the solution satisfies the seabed boundary con-
dition. The effect of the sloping seabed on the flow velocity
decreases toward the water surface due to the hyperbolic dis-
JOURNAL OF WATERWAY
tribution in the second term of (7). Unlike a plane wave so-
lution, the phase angle of the water particle velocity over the
shoal varies in the vertical direction and the horizontal flow
direction over some of the water columns reverses toward the
seabed. Comparison of the flow velocities in Fig. 7 and the
illustration of the flow fields in Fig. 8 shows that the present
approach is capable of predicting realistic and accurate flow
kinematics above a sloping seabed.

CONCLUSIONS

Two linear governing equations for wave refraction-diffrac-
tion over steep bathymetry have been derived from the Laplace
equation and the exact seabed boundary condition. The two
equations are coupled and involve two flow potentials corre-
sponding, respectively, to the plane-wave component with a
zero vertical velocity at the seabed and a correction term ac-
counting for the vertical fluid velocity on a sloping seabed.
When the seabed slope is small, the latter component vanishes
and the two equations reduce to the extended or the original
mild-slope equation. The governing equations can be readily
applied to steep bathymetry and solved by a standard numer-
ical method.

The two governing equations along with the radiation con-
dition constitute the weighted-residual formulation of the
boundary-value problem in the horizontal plane. Because the
mathematical problem is not self-adjoint, two systems of fi-
nite-element equations are derived by a Galerkin formulation
of the hybrid-element method. The present coupled model is
analogous to a linear three-dimensional model with two layers
of nodes and an analytical solution in between. Its computa-
tional requirements are higher than those of the original and
extended mild-slope equations, but are much less compared
with a three-dimensional model with the same horizontal res-
olution. Most importantly, the data preparation time required
by the present model is much less compared with that of a
three-dimensional model, thereby enhancing its practical use-
fulness.

The capability of the present model to simulate wave trans-
formation over three-dimensional bedforms is examined in a
parametric study. The computed results are compared with
those of a three-dimensional wave model as well as the ex-
tended and original mild-slope models. Both the extended and
original mild-slope models fail to correctly evaluate the ver-
tical fluid velocity over a significant portion of the water col-
umn above a steep shoal. The present model provides consis-
tently better predictions of the wave amplitude and water
particle kinematics as compared with the mild-slope models.
The present depth-integrated model provides results that are
comparable to those of a three-dimensional model, but without
the need to solve the actual three-dimensional boundary-value
problem.
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