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Abstract A simple and exact numerical scheme for
long-term simulations of 3D potential fully nonlinear
periodic gravity waves is suggested. The scheme is
based on the surface-following nonorthogonal curvilin-
ear coordinate system. Velocity potential is represented
as a sum of analytical and nonlinear components. The
Poisson equation for the nonlinear component of veloc-
ity potential is solved iteratively. Fourier transform
method, the second-order accuracy approximation of
vertical derivatives on a stretched vertical grid and the
fourth-order Runge–Kutta time stepping are used. The
scheme is validated by simulation of steep Stokes
waves. A one-processor version of the model for PC allows
us to simulate evolution of a wave field with thousands
degrees of freedom for hundreds of wave periods. The scheme
is designed for investigation of nonlinear 2D surface waves,
generation of extreme waves, and direct calculations of non-
linear interactions.

Keywords Numerical modeling . Stokes waves . 3D
nonlinear surface waves .McLean instability . Nonlinear
interaction . Hasselmann integral

1 Introduction

A numerical investigation of fully nonlinear 1D surface waves
is based on conformal mapping. Such approach allows us to
reduce the problem to surface equations which can be solved
with high accuracy by the Fourier transform method
(Chalikov and Sheinin 1998, 2005). Naturally, this method
cannot be extended for a case of 3D waves. Majority of the
models designed for investigation of the 3D wave dynamics
are based on simplified equations. Overall, it is unclear which
effects are missing in such simplified models. The most de-
veloped methods are based on the full 3D equations and
surface integral formulations (Clamond and Grue 2001;
Clamond et al. 2005; Fochesato et al. 2006). These methods
can be applied both to periodic and nonperiodic flows. The
main advantage of such methods is accuracy. The methods do
not impose any restrictions on wave steepness, so they can be
used for simulations of the waves that even approach breaking
(Grilli et al. 2001). However, these methods seem to be quite
complicated. Their idea was illustrated by simulations of
relatively simple wave fields, and it is unlikely that it can be
applied to simulation of a long-term evolution of a large-scale
multi-mode wave field. Implementation of a multi-pole tech-
nique for a general problem of the sea wave simulations
obviously leads to considerable algorithmic difficulties.

Another method for 3D waves includes an elliptic bound-
ary layer problem solved by the finite-difference methods.
Such approaches to simulation of the unsteady free surface
flows based on the full equations have been under develop-
ment for at least three decades (see, for example, Asaithambi
1987; Housling and Esseltaine 1975; Yeung 1982). Related
applications were later described by Bingham and Zhang
(2007). The main advantage of these methods is that it is
based on initial equations being transformed into the
surface-following coordinate system. The Laplace-type equa-
tion obtained by transformation into the sigma-coordinate
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system was solved in Cai et al. (1998) by the iterative conju-
gate gradient method, using the 3D finite element
discretization. The finite-difference multi-grid model for a
3D flow was developed in Engsig-Karup et al. (2009). All of
the papers of this group were mostly dedicated to technical
applications of the water wave theory, for example, to calcu-
lations of a dynamic load on submerged bodies, or to simula-
tion of wave dynamics in a domain with a complicated shape.
A long-term evolution of such flows was not simulated; this is
why the exact conservation of energy was not the main
priority of such models. Applicability of these models to
investigations of the nonlinear properties of sea waves is also
uncertain.

Currently, the most popular approach is the high order
scheme (HOS) model developed by Dommermuth and Yue
(1987); West et al. (1987). The HOS is based on a paper of
Zakharov (1968), where a convenient form of the dynamic
and kinematic surface conditions was suggested. The
equations were used by Zakharov, were not intended for
modeling but rather for investigation of stability of the finite
amplitude waves. In that work, a system of coordinates, where
depth is referred to the surface, was used, but the Laplace
equation for velocity potential was accepted in its traditional
form. The Zakharov (1968) followers, however, accepted this
idea literally. They used the two coordinate systems: a curvi-
linear surface-fitting system for surface conditions and the
Cartesian system for calculation of the surface vertical veloc-
ity. Analytic solution for the velocity potential in the Cartesian
coordinate system is known. It is based on the Fourier coeffi-
cients on a fixed level, while the true variables are the Fourier
coefficients for the potential on the free surface. Here, problem
of transition from one coordinate system to another arises.
This problem is solved by expansion of the surface potential
into the Taylor series in vicinity of the surface. Accuracy of
this method depends on accuracy of estimation of the expo-
nential function exp(kη) with the finite number of the Taylor
series. For small-amplitude waves and for narrow wave spec-
trum, such accuracy is evidently satisfactory. However, for a
case of a broad wave spectrum, which contains many wave
modes, the order of the Taylor series should be high. The
problem is now that the waves with high wave numbers are
superposed over the surface of larger waves. Since the ampli-
tudes of the surface potential attenuate exponentially, the
amplitude of a small wave at a positive elevation increases
and on the contrary can approach zero at negative elevations.

Let us consider an idealized Phillips spectrum ak=a1ωk
−5

assigned at frequencies ωk=k
1/2, k=1,2,3… with the peak

wave steepness a1k1=0.1 (k and ω are nondimensional wave
number and frequency, correspondingly). It is easy to estimate
that for the double peak frequency ω/ω1=2, relative accuracy
10−4 of projection of the potential to level z=0 can be reached
with 6 terms of the Taylor series; for ω/ω1=3 with 12 terms;
and for ω/ω1=4 with 15 terms. A typical order or the Taylor

expansion in the HOS model equals 3–5. It is clear that such
setting of the HOS model cannot reproduce high-frequency
waves, which fact reduces the nonlinearity of the model. This
is why suchmodel can be integrated for long periods, using no
high-frequency smoothing. Besides, accuracy of the calcula-
tion of the vertical velocity on the surface depends on the full
elevation at each point. Hence, the accuracy is not uniform
along a wave profile. A substantial increase of the Taylor
expansion order can definitely result in numerical instability,
due to an occasional amplification of the modes with high
wave numbers. A similar point of view was shared by the
authors of the method based on the surface integral
(Clamond et al. 2005). We should note, however, that
comparison of the HOS method based on the West et al.
(1987) approach with the method of the surface integral
for an idealized wave field (Clamond et al. 2006) shows
acceptable results. It was shown in last paper that method
suggested by Dommermuth and Yue (1987) demonstrates
poor divergence of the expansion for the vertical velocity.
Still, applicability of the HOS method for simulation of
waves with a broad wave spectrum is unclear.

In this work, we develop a new approach specifically
targeted at simulation of long-term multi-mode wave
field evolution in the deep ocean. The domain is con-
sidered as a small part of an infinitely large basin. In
this case, it is possible to use a substantial simplifica-
tion of the problem, assuming periodicity over horizon-
tal coordinates. In many applications, wave field in such
a domain can be presented as a superposition of running
harmonic waves with random phases. Such linear ap-
proach becomes inapplicable for direct investigation of
the wave field evolution, resulting from the nonlinear
interactions of waves or from development of a wave
field under the action of wind and dissipation.

It is well known that the nonlinear transformation
and growth of waves occur over hundreds and thou-
sands of wave periods. It imposes tough restrictions on
the model because such modifications of waves should
not be obscured with the numerical errors. This means
that the model should be exact enough to reproduce
such relatively slow spectrum evolution. This condition
is well satisfied in the 2D model in the conformal
coordinates mentioned above. The 3D waves represent
a far more difficult object because it is probably impos-
sible to reduce the problem to the surface problem (in
fact, the surface integral method cannot be referred to as
a 2D method, since it uses the Green function); hence,
the velocity potential should be calculated as a solution
of an elliptic equation. The present paper contains de-
scription of the numerical model and considers several
examples to demonstrate applications of the model. In
Section 2, the primary equations, the transformation of
coordinates, and some technical problems of the 2D
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Fourier approximation are described. Section 3 is dedi-
cated to formulation of the numerical scheme in the
nonorthogonal and nonstationary curvilinear coordinates.
The results of validation of the approach are also given
in Section 4. Results of the long-term simulations of a
multi-mode 3D wave field are described in Section 5.
The main results and prospects of the investigation are
discussed in Section 6.

2 Equations and transformation of coordinates

Let us consider a nondimensional form of the principal
3D equations for potential waves written in the
Cartesian coordinates, i.e. the Laplace equation for the
velocity potential

Φxx þ γ2Φyy þ Φzz ¼ 0 ; ð1Þ

and two boundary conditions at free surface η=η(x,y,t), i.e.
the kinematic condition:

ηt þ ηx φx þ γ2ηy φy− Φz ¼ 0; ð2Þ

and the Bernoulli integral:

φt þ
1

2
φx

2 þ γ2φ2
y þ Φz

2
� �

þ ηþ p ¼ 0; ð3Þ

where (x,y,z) are the Cartesian coordinates system, t is
time; η(x,y,t) describes the single-valued interface, i.e. free
surface; Φ is the 3D velocity potential and φ is the value of Φ
at surface η; p is the external pressure created by the flow
above surface and normalized using the density of water. The
subscripts denote partial differentiation with respect to the
corresponding coordinate. Taking into account the surface
tension effect is quite straightforward. However, in this paper,
we are focused on large waves, so the corresponding term in
(3) is omitted.

Equations 1–3 are written in nondimensional form by
using the following scales: length L where 2πL is the
(dimensional) period in the horizontal direction; time
L1/2g−1/2 and velocity potential L3/2g1/2 (g is acceleration
of gravity). The pressure is normalized by water density
so that the pressure scale is Lg. Equations 1–3 are self-
similar to the transformation with respect to L. The wave
spectrum is normally more or less narrow, that is why it is
convenient to introduce different length scales L and Ly in
the directions x and y. Since the equations are solved in
square domain (0<ξ<2π, 0<ϑ<2π), ratio γ=L/Ly is in-
cluded in the equations.

System (1)–(3) is solved as an initial value problem for the
unknown functions Φ and η with the given initial conditions
Φ(x,y,z=η(x,y,t=0),t=0) and η(x,t=0). It should be noted that
though Eqs. 2 and 3 are written for free surface, there are no
straightforward ways to reduce the problem to a 2D problem,
since for evaluation of Φz, the Laplace Eq. 1 should be solved
in the domain

0 < ξ ≤2 π; 0 < ϑ < 2π;H < z≤ηf g ð4Þ

with curvilinear upper boundary which is a function of ξ
and ϑ. Integration of the system in the Cartesian coordinates is
either quite inaccurate or too expensive computationally and
hardly efficient for the time intervals which are much greater
than the chosen time scale. This is why the existing numerical
models of waves are mostly based on strongly simplified
approaches. The periodicity conditions over the “horizontal”
coordinates ξ and ϑ are assumed:

x ξ;ϑ; ζ; τð Þ ¼ x ξ þ 2π;ϑ; ζ; τð Þ þ 2π;
y ξ;ϑ; ζ; τð Þ ¼ y ξ;ϑþ 2π; ζ; τð Þ þ 2π;
z ξ;ϑ; ζ; τð Þ ¼ z ξ þ 2π;ϑ; ζ; τð Þ;
z ξ;ϑ; ζ; τð Þ ¼ z ξ;ϑþ 2π; ζ; τð Þ:

ð5Þ

Let us introduce the nonstationary surface-following
nonorthogonal coordinate system:

ξ ¼ x; ϑ ¼ y; ζ ¼ z−η ξ;ϑ; τð Þ; τ ¼ t ð6Þ

where η(x,y,t)=η(ξ,ϑ,τ) is a moving periodic wave surface
given by the Fourier series

η ξ;ϑ; τð Þ ¼
X

−M< k<M

X
−My< l<My

hk;l τð ÞΘk;l ð7Þ

andM andMy are the numbers of modes in the directions ξ
and ϑ, correspondingly, while Θk,l is the function:

Θkl ¼
cos kξ þ lϑð Þ −Mx≤k≤Mx; −My < l < 0

cos kξð Þ −Mx≤k ≤0; l ¼ 0
sin kξð Þ 0≤k ≤My; l ¼ 0

sin kξ þ lϑð Þ −Mx≤k≤Mx; 0 < l≤My

8>><
>>: : ð8Þ

If accuracy of the Fourier approximation in both
directions is the same, then γ=Mx/My is a ratio of the
domain sides Lx/Ly in ξ and ϑ directions. The formula-
tion (8), which contains real coefficients of the Fourier
transform in the rectangular matrices, allows us to pres-
ent amplitudes in a form convenient for compact pro-
gramming. Form (8) permits simple differentiation over
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ξ and ϑ of any function F represented by the Fourier
coefficients Fk,l in the Fourier space:

∂
∂ξ

X
−M< k<M

X
−My< l<My

Fk;l τð ÞΘk;l

0
@

1
A

¼ −
X

−M< k<M

X
−My< l<My

k F−k;−l τð ÞΘk;l; ð9Þ

∂
∂ϑ

X
−M< k<M

X
−My< l<My

Fk;l τð ÞΘk;l

0
@

1
A

¼ − γ
X

−M< k<M

X
−My< l<My

lF−k;−l τð ÞΘk;l: ð10Þ

Since the ratio of horizontal scales γ is taken into account in
the definition of derivative over ϑ, it is not included in the
equations given below.

The vertical coordinate (6) is constructed for deepwater case.
As seen, vertical fluctuations of the horizontal coordinates ξ and
ϑ do not attenuate with depth. Such fluctuations do not create
any approximation problems. However, the lower boundary
condition is applied at the variable level H=ζ+η. Since all
variables in wave motion attenuate with depth exponentially,
difference between the fixed and fluctuating levels for depth
|H|>>|η| becomes negligible. Possibility of using the coordi-
nates (6) for the finite depth case is mentioned in Conclusion.

3 3D deep-water wave model

The main advantage of the surface-following coordinate sys-
tem is that the variable surface η is mapped onto the fixed
plane ζ=0. The 3D equations of potential waves in the system
of coordinates (6) at ζ<0 take the following form:

ητ ¼ −ηξφξ−ηϑφϑ þ 1þ η2ξ þ η2ϑ

� �
Φς ; ð11Þ

φτ ¼ −
1

2
φ2
ξ þ φ2

ϑ− 1þ η2ξ þ η2ϑ

� �
Φ2
ζ

� �
−η−p; ð12Þ

Φξξ þ Φϑϑ þ Φζζ ¼ ϒ Φð Þ; ð13Þ

whereΦ is a 3D velocity potential; p is the external pressure;
φ is a value of Φ at surface ζ=0 while ϒ( ) is the operator:

ϒ ðÞ ¼ 2ηξðÞξζ þ 2ηϑðÞϑζ þ ηξξ þ ηϑϑ
� �ðÞζ− η2ξ þ η2ϑ

� �
ðÞζζ
ð14Þ

Equations 11 and 12 are written at the free surface whose
position in the surface-following coordinate system is fixed at
ζ=0, as mentioned above. These equations formally look as
2D; however, they include the vertical derivative of the po-
tential Φζ which should be derived from the elliptical Eq. 13
with the following boundary conditions:

Φ ζ ¼ 0ð Þ ¼ φ;
∂Φ
∂ζ

ζ→−∞ð Þ ¼ 0: ð15Þ

The second condition (15) in the numerical scheme is
replaced by the condition at the finite depth ∂Φ

∂ζ ζ ¼ Hð Þ ¼ 0

where depth H should be large enough to be considered as
infinitely large. Previous calculations with the 1Dmodel show
that suchH can be defined by the formulaH=2πn/kpwhere kp
is wave number of the mode with the largest amplitude, while
1<n≤2.

Equations 11 and 12 were suggested by Zakharov (1968),
but the approach has not been extended for the full system of
the equations.

The 2D equations for potential waves written in the confor-
mal coordinates have a remarkable property, i.e. the Laplace
equation remains the same. This is why the Fourier modes of
the velocity potential can be represented through a standard
expansion. It means that the potential and any of its derivatives
decrease exponentially from the free surface. In a 3D case in the
Cartesian coordinates, as well as in the curvilinear coordinates,
this is not so. However, it would be reasonable to suggest that
the exponential behavior remains dominant, while the potential
can be represented as a sum of two components, i.e. the analytic

(“linear”) one Φ; φ¼ Φ ξ;ϑ; 0ð Þ� �
and an arbitrary nonlinear

component eΦ; eφ ¼eΦ ξ;ϑ; 0ð Þ
� �

1:

φ ¼ φ̄ þ eφ; Φ ¼ Φ̄ þ eΦ: ð16Þ

The analytic component Φsatisfies the Laplace equation:

Φ̄ξξ þ Φ̄ϑϑ þ Φ̄ζζ ¼ 0; ð17Þ

with the known solution:

Φ̄ ξ;ϑ; ζð Þ ¼
X
k;l

φ̄k;lexp kj jζð ÞΘk;l; ð18Þ

(φk;l are the Fourier coefficients of the surface ana-
lytical potential φat z=0). The solution satisfies the boundary
conditions:

ς ¼ 0 : Φ̄ ¼ φ̄

ς→ − ∞ :
~
Φζ → 0

ð19Þ

1 Note that the term “linear” is conventional, since this component is also
influenced by the nonlinearity due to curvature of the surface.
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The nonlinear component satisfies the equation:

eΦξξ þ eΦϑϑ þ eΦζζ ¼ ϒ eΦ� �
þ ϒ Φ̄

� �
: ð20Þ

Equation 20 is solved with the boundary conditions:

ς ¼ 0 : eΦ ¼ 0

ς→−∞ :
~
Φζ→0

ð21Þ

Derivatives of the linear component Φare calculated directly
with the use of (9) and (10). The scheme combines the 2D
Fourier transform method in the “horizontal surfaces” and the
second-order finite-difference approximation on stretched stag-
gered grid defined by the relation Δζj+1=χΔζj (Δζ is vertical
step, and j=1 at the surface). The stretched grid provides
increase of accuracy of approximation for the exponentially
decaying modes. Values of the stretching coefficient χ lie
within the interval 1.10–1.20. Finite-difference second-order
approximation of Eq. 20 on a nonuniform vertical grid is quite
straightforward. The vertical derivatives of the first and second
orders for ζ<0 are approximated with the following formulas:

∂2Φk;l; j

∂ζ2
≈A1 jð ÞΦk;l; j−1 þ A2 jð ÞΦk;l; j þ A3 jð ÞΦk;l; j−1

∂Φk;l; j

∂ζ
≈A4 jð ÞΦk;l; j−1 þ A5 jð ÞΦk;l; j þ A6 jð ÞΦk;l; j−1

ð22Þ

where

A1 jð Þ ¼ 2Δζ jþ1

Dj
; A3 jð Þ ¼ 2Δζ j

D j
; A2 jð Þ ¼ −A1 jð Þ−A2 jð Þ

A4 jð Þ ¼ 2Δζ jþ1

Dj
; A6 jð Þ ¼ −

2Δζ j

D j
; A5 jð Þ ¼ −A4 jð Þ−A6 jð Þ

ð23Þ
and

Dj ¼ Δζ jþ1 Δζ j

� �2 þΔζ j Δζ jþ1

� �2
: ð24Þ

Number of levels Lw depends on a shape of spectrum, and
in the calculations represented below, Lw varies within the
limits Lw=15÷100. Contrary to the HOS and the surface
integral methods, this numerical scheme for 3Dwave problem
is written directly for the initial system of Eqs. 11–13.

The diagnostic Poisson-like Eq. 20 for the nonlinear com-

ponent of the velocity potential eΦ is solved using the
tridiagonal matrix algorithm (TDMA, Thomas 1949) general-
ized for a 3D case through the Fourier presentation over the

horizontal coordinates. Term ϒ eΦ� �
in the right-hand side of

Eq. 20 is calculated at each iteration, using the values of eΦ
obtained at the previous iteration. The term ϒ Φ

� �
, as well as

the coefficients that include derivatives of η in the right-hand

side of (20), are fixed inside the iterations. The initial eΦ
is equal to zero, while in the process of calculations,
this value is taken from the previous time step. The
iterations continue until the residual error for Eq. 20
yields accuracy of ε~10−9−10−6, depending on parame-
ters of the vertical grid. Typically, for all calculations consid-
ered, the error ε decreases exponentially during iterations.
Speed of the calculations for a multi-mode wave field is
reasonably high if the rms steepness does not exceed the value
of 0.2. However, the model remains stable even if the local
steepness considerably exceeds 1 at certain points.

The suggested scheme has obvious advantages if compared
with the schemes that do not use separation into nonlinear and

linear parts, i.e. (1) values of eΦ are two orders less than the

values of Φ; (2) derivatives Φ are calculated with analytical
accuracy. This is why the number of levels and the prescribed

relative accuracy of the solution for eΦ can be reduced; (3)
number of iterations is reduced than compared with the
scheme for Eq. 12, so the calculation speed is higher. A typical
number of iterations for Eq. 12 for ε=10−7 is 5–10, while the
number of iterations for Eq. 20 seldom exceeds 2. The 3D
solution being found, the Fourier coefficients for the vertical
velocity (∂Φ/∂ζ)k,l,0 on the surface, are calculated as a sum of
the linear and nonlinear components:

∂Φ
∂ζ

� �
k;l;0

¼
X
k;l

kj jφ̄k;lΘk;l þ A1
j
eΦk;l;1−A2

j
eΦk;l2; ð25Þ

where Aj
1 and Aj

2 are the coefficients used for calculation of
the vertical velocity at ζ=0 with the second-order accuracy:

A1 ¼ ζ1
ζ1ζ2−ζ

2
2

; A2 ¼ ζ2
ζ21−ζ1ζ2

; ð26Þ

and ζ1, ζ2 are the vertical coordinates of eΦk;l;1 and eΦk;l;2 ,

respectively. Note that eΦk;l;0 ¼ 0 and ζ0=0.
The Fourier transform method assumes that all nonlinear

terms are calculated on the extended grid N×Ny (N=4M,
Ny=4My) in physical space, the result being transformed into
the Fourier space. Description of variables in terms of the
Fourier components is more compact than that in terms of
the grid values. That is why the Fourier components are
considered as the basic presentation, while the grid fields are
calculated and stored only when and where they are required.

The asymptotic behavior of eΦk;l in the vicinity of ζ=0 is
very close to the linear one, which fact provides high relative
accuracy of the order of 10−5−10−4 for the second-order
approximation for the vertical derivative in Eq. 20 at ζ<0
and for the vertical velocity of the order of 10−7−10−8 on
surface ζ=0. Profiles of the Fourier amplitudes of linear and
nonlinear components are given in Fig. 1. The calculations
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were done for initial wave field defined by the Pierson–
Moskowitz (1964) spectrum, with Mx=256, My=64, Lw=15
for t=500 (which time corresponds to 100,000 time steps). As

seen, the values of eΦk;l are by two decimal orders smaller than

the values of Φk;l .
The model is mostly intended for simulation of the multi-

mode long-term wave field evolution with realistic spectrum.
No matter how high the spectral resolution might be, for the
long-term simulations of nonlinear waves, the energy flux into

a truncated part of spectrum
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p
> M

� �
must be

parameterized. Otherwise, the spurious energy accumulation,
violating the energy conservation law at large wave numbers,
always corrupts the numerical solution. In numerical solutions
of the fluid mechanics equations, this effect is suppressed by
introducing different types of viscosity. Thus, the atmospheric
models often include purely artificial operators formulated in
the Fourier space. A similar scheme was described in the
previous articles which considered the conformal method for
the direct wave modeling (Chalikov and Sheinin 1998, 2005).
Following the scheme, simple dumping terms were added to
the right-hand sides of the Fourier form of Eqs. 11 and 12:

∂ηk;l
∂τ

¼ Ek;l − μk;lηk;l; ð27Þ

∂φk;l

∂τ
¼ Fk;l − μk;lϕk;l ð28Þ

where Ek,l and Fk,l are the Fourier coefficients for the right-
hand sides of Eqs. 14 and 15, and

μk;l ¼ rM
kj j−kd
M−kd

� �2

if kj j > kd

0 otherwise

8<
: ð29Þ

where kj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ γ2l2

p
and kd is radius of the domain

which is not affected by smoothing. Value of kd depends on
the spectral resolution and position of the spectrum in the
Fourier domain. The value of kd is chosen in the interval
(0.5, 0.9M) in different versions of the model. The value of
r=0.25 is chosen for all of the runs discussed below, since it
was found that the results were reasonably insensitive to the
variations of r. The dissipation effectively absorbs energy at
wave numbers close to the truncation numberM and does not
affect the energy at wave numbers |k|≤kd. Note that increase of
the truncation number M shifts the dissipation area to higher
wave numbers (if M→∞, the energy sink due to dissipation
tends to zero), so the scheme described above retains the
approximation of the original (nondissipative) system. Note
also that the scheme (27)–(29) is introduced in order to de-
scribe a real physical process, i.e. the dissipation of wave
energy due to the flux of energy into a truncated part of
spectrum. This process is usually very slow. Decay of the total

energy E at each time step is of the order of (10−7−10−6)E, but
in the absence of such dissipation, the numerical instability,
growing exponentially in the vicinity of k=M, occurs and
finally terminates solution. To avoid such smoothing, for
example, a similar model (Zakharov et al. 2002) uses the
number of modes M=1,000,000, which can hardly be con-
sidered a rational solution of the problem.

The fourth-order Runge–Kutta scheme was used for time
integration of Eqs. 11 and 12. For any explicit time integration
scheme, a stability criterion has the form Δτ≤Cωmax

−1 (if dis-
sipation does not play a significant role), where Δτ is time
step; ωmax=kmax

1/2 is the maximum frequency of the system; and
C is a constant depending on the scheme, for the Runge–Kutta

scheme C ¼ 2
ffiffiffi
2

p
. We should note that such estimation does

not always work in our case because of the strong nonlinear
local effects. Finally, the time stepwas chosen empirically. For
example, for M=256 time step used was 0.005.

4 Validation of the 3D deep-water model

No doubt that at a sufficient number of modes in Eqs. 11 and
12 can be integrated in time with the Fourier transformmethod
and Runge–Kutta scheme, with high accuracy. Thus, the
critical point of the entire scheme is accuracy of solution of
the 3D equations for the velocity potential (20) with the
boundary condition (21). There are several methods of

Fig. 1 Upper panel: vertical profiles of Fourier coefficients for analytic
components of velocity potential 104Φk;l ζð Þ ; bottom panel: vertical pro-

files of Fourier coefficients for nonlinear component 106eΦk;l ζð Þ
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validation of the scheme for Eq. 20. The most straightforward
method is based on comparison of the vertical velocity on
surface ∂Φ/∂ζ for 2D problem obtained in the current scheme,
with the vertical velocity calculated using the precise scheme
based on conformal mapping. Such comparison was done for
the Stokes wave with steepness ak=0.40. Transferring the
solution from the conformal coordinates to the uniform-
over-x grid was done using the fourth-order periodic spline

interpolation. It was found that the solutions for vertical
velocities obtained in 2D and 3D models coincided, the
accuracy being of the order of 10−5ak. Note that the
two-dimensionality assumption used in such validation
does not create a problem, since only the vertical operator is
being checked.

The second method of validation is based on solution for
Eq. 13:

Φ ξ;ϑ; ζð Þ ¼
X

−Mx< k<Mx

X
−My< l<My

X
1< i<Nx

X
1< j<Ny

φ0
k;lexp kj j ζ þ η ξi;ϑ j

� �� �� �
Θk;l; ð30Þ

where N and Ny are the numbers of grid points in the
directions ξ and ϑ, correspondingly; φk,l

0 are Fourier coeffi-
cients of the velocity potential at the fixed level z=0.
Equation 30 defines the potential on surface φ=Φ(ξ,ϑ,0)
through the Fourier coefficients φk,l

0 in the Cartesian coordi-
nate system for z=0. Since the coefficients φk,l

0 are unknown,
Eq. 30 cannot be used directly for integration of the system
(11)–(13). However, Eq. 30 is useful for a detailed validation

of accuracy of its numerical solution. First, arbitrary
Fourier coefficients φk,l

0 for the velocity potential at
level z=0 are chosen. Then, the velocity potential at
free surface z=η is transferred using (30). Values of
the velocity potential are used as a surface boundary
condition for Eq. 20. The calculated vertical velocity on
the surface is then compared with the result calculated
directly with Eq. 30

∂Φ
∂ζ

ξ;ϑ; 0ð Þ ¼
X

−Mx< k<Mx

X
−My< l<My

X
1< i<Nx

X
1< j<Ny

kj jφ0
k;lexp kj jη ξi;ϑ j

� �� �
Θk;l ð31Þ

Such calculations prove that the analytical solution (28)
coincides with the results of the numerical solution of Eq. 20,
the accuracy being 10−5−10−4ak.

The second method of validation was applied for a wave
field defined by JONSWAP spectrum at Ωp=U10/cp=2, with
the directional spreading proportional to (sech(θ))4, (θ is the
direction of a mode), which corresponds to steep waves. The
exact calculations were made at resolution M=128, My=32,
number of levels Lw=100, with accuracy of the solution of
Eq. 20 being ε=10−10. Then, the solution at a lower resolution
was compared with the high-accuracy solution. In Fig. 2,
dependence of rms error Erms:

Erms ¼
�������
w100−wLð Þ2

� �1=2
; ð32Þ

is given (w100 and wL are the grid surface vertical velocities
obtained at Lw=100 and at variable Lw). As seen, rms accura-
cy Erms monotonically decreases when approaching the num-
ber of levels of Lw=100.

The methods described above are targeted at validation of
the numerical scheme for the elliptic Eq. 20 used at every time
step. The most efficient method of validation of both the

numerical scheme and the codes for Eqs. 11–13 is comparison
of the results of integration of Eq. 11–13 with the exact steady
solution of the equations obtained in a moving coordinate
system. To obtain steady solutions with a very high accuracy
(crucial for the model validation), an iterative algorithm was
developed on the basis of integration operators and the Hilbert
transform in the Fourier space. The scheme uses the Fourier
transform method to calculate nonlinearities. Algorithms for
calculation of the stationary gravity Stokes waves (Stokes
1847), as well as capillary gravity and capillary waves for
deep water, were described in detail in Chalikov and Sheinin
(1998). An algorithm of calculation of the Stokes waves for
finite depth was developed in Sheinin and Chalikov (2000).

This method is also used in the current paper. The calcula-
tions are performed for the Stokes waves propagating along
the x-axis defined at wave numbers k=1,2,3…M,My=0. This
setting is most appropriate for validation of numerical scheme,
since there is no room for development of the Benjamin–Feir
instability (Benjamin and Feir 1967). That is, all the modes
with wave numbers k>1 represent components (“bound
waves”) of the Stokes wave. Similar calculations using the
2D conformal model demonstrate absolute stability of the first
800 modes of the Stokes wave over hundreds of wave periods
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(see Chalikov 2005). Note that the Stokes waves can be also
assigned at k=nk0 (n is a whole number); however, the un-
avoidable numerical errors finally can play a role of distur-
bances initiating development of the Benjamin–Feir
instability.

Simulation of a very steep Stokes wave with steepness ak=
0.40 (assigned in the initial condition) in the current work is
performed with parameters M=128, My=16, Lw=30, and ε=
10−6. Note that for simulation of the 2D process, number of the
lateral modesMy can be chosen as 1. Value Ly=16 was used for
a purely technical check of the codes, proving that the lateral
modes are not generated during integration. The wave surface
assigned in the initial condition and that obtained after almost
100 periods of the calculations (10,000 time steps) are shown in
Fig. 3. As seen, the surface remains smooth without any signs
of disturbances. The theoretical phase velocity of the Stokes
wave with steepness ak=0.40 is equal to 1.0822. The phase
velocity reproduced with the numerical model is 1.0820. More
detailed validations show the time evolution of amplitudes of
the first 13 Stokes wave modes (Fig. 4). As seen, the first
several modes of the Stokes wave with amplitudes as small as
10−4 remain practically unchanged, while the rest of the ampli-
tudes fluctuate. The relative magnitude of fluctuation increases
with growth of wave number. However, the average values of
amplitudes for each mode do not change, their values decreas-
ing monotonically with growth of wave number. There are no
signs of instability which would indicate that the high-order
Stokes modes start growing. Evolution of the rms difference
Erms between the initial wave surface η0 and the surfaces η
simulated in the course of integration

Erms ¼
�������
η0−η τð Þð Þ

� �1=2
ð33Þ

is shown in Fig. 5 (top curve). As seen, Erms is a strictly
periodic function of time.When the phases become equalized,
the rms difference decreases to 10−3ak with no tendency for
growing. In reality, the error is smaller, because accuracy of

coincidence of the surfaces depends on a frequency of sam-
pling. The bottom curve represents a similar rms difference
between the initial η0 and current waves η(τ) calculated over
the interval between two consequent peaks of the Stokes
wave. Since domain 0<ξ>2π contains only one wave peak,
in order to calculate the rms difference, the domain was
periodically extended over the interval −2π<ξ<4π. As seen,
this error fluctuates around the value of 10−3 with no tendency
for growing.

Unlike the 2Dmodel, the 3Dmodel uses a finite-difference
approximation for the velocity potential equation. This is why
the solution for Stokes wave is not as exact as the same
solution in the conformal coordinates. A higher vertical reso-
lution results in a higher accuracy of the solution for the
velocity potential, though such calculations certainly become
more expensive. Note that this method of validation is full and
nontrivial, and the results being combined with the investiga-
tion of the numerical scheme for Eq. 20 prove the high
accuracy of the entire numerical model. For technical reasons,
a similar validation was also done for the Stokes wave prop-
agating along the y-axis.

In the following numerical experiment, the Stokes wave
with steepness ak=0.35 was assigned at wave numbers k=8,
16,24…M, while the surface was initially distorted by the
random linear waves with amplitudes five decimal orders
smaller if compared with the amplitude of the Stokes first
mode. The calculations were done in rectangular Fourier
domain with dimensions Mx =128 and My =32. Since the
modes of the Stokes wave were set over the interval of Δk=
8, the noise modes started to grow similarly to the process
simulated with the 2D conformal model (Chalikov 2007). The
medium steepness ak=0.35 was chosen here, because at large
steepness, instability develops too fast.

Evolution of extreme values of steepness is shown in Fig. 6.
Absolute values of the negative steepness are larger than those
of the positive one, which indicates a forward inclination of the
waves linked to the horizontal asymmetry. Awave field finally
becomes too steep, while the waves tend to overturn. Unlike the
2D conformal model, which allows us to reproduce the

Fig. 2 Dependence of rms error Erms (32) on the number of levels Lw
(Eq. (20))

Fig. 3 Shape of Stokes wave (ak=0.40) at t=0 and t=100 periods
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nonsingle-valued shape of surface, the current model becomes
unstable when the local steepness exceeds 1.1. Before this
moment, the total wave energy is preserved with very high
accuracy. A limiting value of steepness depends on the number
of modes and magnitude of a time step.

The initial wave surface and the wave surface prior to
breaking are shown in Fig. 7. As seen, the 2D instability leads
to formation of a “horseshoe” regular structure well known
from the experiments (Su 1982) and numerical simulations
based on the surface integral (Fructus et al. 2005).

Evolution of the amplitudes of the first seven modes of the
Stokes wave is shown in Fig. 8. Solid lines correspond to the
amplitudes of the Stokes modes, while the aggregated gray
lines show growing and fast-fluctuating intermediate modes.
The main mode with amplitude of A8=0.35 does not show a

visible change; the amplitudes of all other modes decrease
while the intermediate modes are developing by taking energy
from all modes of the Stokes wave. The total energy remains
constant within the range of six decimal digits.

The 2D wave spectrum prior to breaking (which corre-
sponds to the developed horseshoe quasi-regular structure of
Fig. 7), is shown in Fig. 9 (top panel). Since all variables are
nondimensional, the spectrum is shown in conventional units,
the darkest color corresponding to the maximum of spectral
density Sm, while white color is showing the values less than
10−12Sm. Spectrum in Fig. 9 demonstrates that development of
new modes in a 2D case occurs in a more complicated way,
i.e. the nearly discrete disturbances develop not at l=0 but
rather at some angle to the main modes with wave numbers
l=±9, 18, 27. The main mode of the Stokes wave located at
k=8 generates disturbances at the lateral wave number l=9.
Ratio of the wave numbers is l/k=1.125, which is reasonably
close to the value l/k=1.15 found in the linear 2D instability
theory of the Stokes wave (McLean 1982). As seen, the full
equations also predict development of new rows of modes at
l=9n (n=1,2,3…), which corresponds to higher modes of

Fig. 4 Evolution of amplitudes
of steep (ak=0.40) Stokes wave
As assigned initially at wave
numbers k=1,2,3,…M

Fig. 5 Top curve represents evolution of rms difference Erms
1 between the

initial wave surface η0 and the surfaces η simulated in the course of
integration. Bottom curve corresponds to rms difference between the
initial and superimposed wave profiles

Fig. 6 Evolution of maximum positive steepness (dashed curve) and
minimum negative steepness (solid curve) for a train of Stokes waves,
ak=0.35 assigned at wave numbers k=8n, (n=1,2,3..,) with imposed
disturbances
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the Stokes wave. Such evolution of growing modes can be
approximated by the expression

Ak;l τð Þ ¼ Ak;l 0ð Þexp βk;lωτ
� �

: ð34Þ

Values of βk,lwere calculated for Ak,i(τ) with use of the rms
method. In the bottom panel of Fig. 9, the local maxima of β
are shown by dots whose sizes depend on the magnitude of β.
Positions of the original Stokes wave modes are indicated by
crosses. Figure 9 shows that the disturbances are located
symmetrically with respect to k axis.

5 Simulation of a multi-mode wave field

The third series of the calculations was performed to simulate
a multi-mode wave field initially defined as a superposition of
linear modes with random phases, corresponding to the
Pierson–Moskowitz (1964) spectrum with directional spread-
ing in the energy-containing part of the spectrum proportional
to (sech(θ))4. The simulations were performed in rectangular
domain with number of modes different in x and y directions,
i.e. Mx=256, My=64. In this case, the grid includes 564,288
knots (130,302 degrees of freedom). All the calculations were
conducted on a Dell workstation.

Peak of the spectrum was initially placed at (k,l)=(64,0).
The calculations with time step Δτ=0.0025 were performed
up to the nondimensional time τ=250 (10,000 time steps),
which time corresponds to 318 peak wave periods.

Over such a long period of integration, the energy of waves
in the absence of any energy input decreases due to the flux of
energy into the subgrid domain as described above. The
Pierson–Moskowitz spectrum corresponds to statistically
steady wave regime, when the total energy input equals the
total energy dissipation. This balance can be introduced by
using the energy input from wind, as formulated in Chalikov
and Rainchik (2011), as well as the energy dissipation through

Fig. 7 Train of Stokes waves (ak=0.35) at initial conditions (t=0)
and a shape of surface just prior to development of numerical
instability (t=20 periods)

Fig. 8 Evolution of amplitudes of Stokes wave (ak=0.35, solid curves)
assigned initially with superimposed noise. Aggregated gray lines corre-
spond to new growing modes

Fig. 9 Top panel: 2D wave spectrum (conventional units) prior to
development of breaking (see Fig. 7). Bottom panel: rate of development
β of intermediate mode amplitudes (Eq. 25). The values of β are given
outside the frame for each row. Crosses indicate the initial position of
Stokes wave modes
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the breaking adjustment as suggested in Chalikov and Sheinin
(2005). In any case, at present stage, implementation of a
complicated physics seems premature. This is why a
quasi-stationary regime is reproduced on the basis of a
simple scheme designed to preserve the total energy. It is done
by introduction of additional terms in the spectral form of
Eqs. 11 and 12:

∂ηk;l
∂τ

¼ Hk;l þ 1−γð Þηk;l; ð35Þ

∂φk;l

∂τ
¼ Fk;l þ 1−γð Þφk;l; ð36Þ

where ηk,l and φk,l are the Fourier amplitudes for η, while
Hk,l and Fk,l are the Fourier amplitudes of the right-hand sides
of Eqs. 11 and 12, including additional terms introduced by
(27)–(29); γ is coefficient:

γ ¼ E=E0ð Þ1=2; ð37Þ

and E0 is the initial total wave energy equal to the sum of
kinetic and potential energies; E is the total energy at the
previous time step. Since the coefficient (1−γ) is very small
(of the order of 10−6), the algorithm (35)–(37) supports the
total energy with accuracy of the order of 10−6, which practi-
cally does not change a structure of the solution either in the
Fourier space or in the physical space. Note that the algorithm
(35)–(37) is designed to compensate attenuation of energy due
to the flux to the high wave number range.

For a typical peakwavelength, corresponding to the Pierson–
Moscowitz spectrum, the horizontal size of domain is of the
order of several kilometers. The domain includes too many
waves, which is why Fig. 10 shows a 1/64 part of the computed
wave surface for τ=250. Visually, the surface reminds a natural
ocean wave surface. Animations generated in the course of
integration depict a highly authentic wave field. After just one
peak wave period, the initially sinusoidal waves obtain a typical
Stokes-like shape with sharp crests and flat troughs. The prob-
ability of surface elevation (normalized by significant wave
height) is shown in Fig. 11. For the calculations, 655,360,000
values of ηi,j were used. The dashed line represents a reflected
branch of the probability distribution for negative z. As seen, the
probability of positive elevation (wave crests) is considerably
larger than that of the negative one (troughs), exactly as in the
2D modeling. The thin line in Fig. 11 corresponds to the
Gaussian distribution. As seen, the negative values of η have a
smaller probability than the Gaussian distribution predicts,
while the probability of the positive values η considerably
exceeds the Gaussian probability. It can be explained by the
tendency of waves to approach the Stokes-like shape. This
feature also explains the mechanism of wave breaking and
extreme wave generation. Some of the waves change their

shape so significantly that they become unstable. It happens
without a noticeable exchange between the modes, with no sign
of modulational instability found (see Chalikov 2009). The

integral probability of wave trough-to-crest height eH f ¼ H f =

Hs (Hs is significant wave height) is shown in Fig. 12. As seen,

a wave with a nondimensional height eH f > 2:1 can emerge as
frequently as one among one thousand waves. Naturally, to be
really “freak”, a wave should be large in the physical space. The

largest value of eH f was equal to 2.71.
Evolution of kinetic (solid curve) and potential (dashed

curve) energies are shown in the top panels of Fig. 13 аs
percentage of the total energy divided by two. To make the
figure clearer, only ten successive peak wave periods of the
initial and final intervals are shown. The potential and kinetic
energies fluctuate considerably (up to 1 %) over the period of
adjustment of the linear initial conditions to the nonlinearity.
These fluctuations fall in the range of the order of 0.1 %,
almost over the entire period of integration. Sum of potential
and kinetic energies is preserved with accuracy of the order of
10−5. In the bottom panel of Fig. 13, evolution of skewness
(solid line) and kurtosis (dashed line) are given. During the
initial period, fast transformation of the elevation and the
surface potential (initially assigned according to the linear
theory) occurs. Then, the system enters a quasi-stationary
regime maintained for most of the integration time. Both
skewness and kurtosis (exceeding 3) are positive, which is a
particular feature of the nonlinear waves.

It is generally accepted that the linear dispersion relation
k=ω2 (k and ω are the nondimensional wave number and
frequency) is valid in a broad range of wave frequencies. The
experimental data, however, confirm applicability of this formu-
la to the relatively low frequencies. The numerical model gives
us an opportunity to investigate this problem in more detail.

For the short time periods, when the rate of amplitude |hk,l|
change is small, i.e.

∂ hk;l
		 		
∂τ

<< ωk;l hk;l
		 		 ð38Þ

the mode evolution is described by the following relation:

η ξ;ϑ; τð Þ ¼
X
k;l

hk;lθk;l kξ þ lϑ − ωτð Þ; ð39Þ

which gives

∂η
∂τ

¼
X
k;l

ωk;lh−k;−lθk;l kξ þ lϑ−ωk;lτ
� �

; ð40Þ

and the instantaneous value of frequency can be calculated
as follows:

ωk;l ¼
hτk;l
h−k;−l

; ð41Þ
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where the notation hτk;l ¼ ∂hk;l
∂τ is used. Calculations with

the use of (41) give large scatter. This is why the rms method
for calculating averaged values of frequency ωk;l is used

ω̄k;l ¼
�����
hτk;lhk;l��
h2k;l

: ð42Þ

Accuracy of this method was verified with the hk,l and hk,l
τ

data, generated by the linear version of the model which was
integrated over several tens of the peak wave periods. It was
found that for this case, formula (42) satisfies the linear
dispersion relation k=ω2 with very high accuracy. Note that
the waves with the same wave numbers running in opposite
directions cannot be separated, i.e. formula (42) gives absolute
values of frequency. In this particular case, it is not important,
since the energy of opposite waves is very small. It was found
that deviation from the linear dispersion relation depends on
the energy of mode, i.e. the less the energy, the stronger the
deviation. These effects are demonstrated in Fig. 14 where the
spectral density of energy is plotted in the coordinates

(ωlin,ωmod) where ωlin=k
1/2 and ωmod ¼ ω. Different levels of

energy (normalized by its maximum) are shown by different
densities of the gray tone. The solid curve shows the spectral
energy distribution averaged over equal values of ωlin, i.e.
over directions. As seen, the modes with the large energy
obey the linear dispersion relation, i.e. the large energy is
concentrated along the straight line ωlin=ωmod, while starting
approximately from 0.1Sp (Sp is a peak value of spectrum), the
calculated frequency ωmod is mostly larger than the linear
frequency ωlin. This effect was discovered experimentally,
being reproduced in numerical models and explained in
Lake and Yuen (1978); Chalikov and Sheinin (1998). In
reality, surface waves are nonlinear, each wave being con-
structed from a carrying mode and the so-called bound waves.
These waves are not real waves; they are just shorter modes
moving with the speed of the main mode. Besides, a wave
field contains free small amplitude waves whose phase veloc-
ity is close to the linear phase velocity c=ω/k. Consequently,
at each wave number, the free waves and bound waves coex-
ist. Their averaged calculated frequency is larger than the

Fig. 10 Example of the surface
obtained at 318 periods of
simulation of a wave field
assigned initially with Pierson–
Moskowitz spectrum. 1/64 part of
the entire surface is shown

Fig. 11 Probability of surface elevation. Thick curve corresponds to the
model result, while dashed curve corresponds to the reversed probability
distribution for negative values z; thin curve represents Gauss distribution

Fig. 12 Thick curve shows the integral probability of trough-to-crest
wave height Hf normalized by significant wave height Hs. Thin curve
corresponds to Rayleigh distribution
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linear frequency ωlin. This effect is pronounced more clearly if
the total nonlinearity is large, while the energy of free waves
remains small.

The most curious property of the surface waves is demon-
strated in Fig. 15. The spectrum assigned in the initial condi-
tions is smooth (top panel). However, after just several peak
wave periods, the spectrum starts transforming, i.e. sharp
peaks and deep holes appear. Finally, a continuous spectrum
transforms into a nearly discrete one which consists of indi-
vidual peaks. It is tempting to explain this phenomenon on the
basis of the wave–wave resonance mechanism, i.e. the reso-
lution is not high enough to cover all possible resonant com-
binations of wave numbers and frequencies. This explanation,
however, should be based on the assumption that exact dis-
persion relation is valid. In reality, the phase velocity of each
wave mode is fluctuating due to many reasons, such as non-
linearity, Doppler effects, presence of bound waves, etc.
Consequently, the resonant conditions can get blurred over a
finite area, and therefore, such an explanation is not valid. If it
was, the spectrum should be continuous. Moreover, if the
resolution was a problem, then, following its increase, the
spectrum would have been converging to the continuous
spectrum similar to that in the top panel of Fig. 15, which
actually does not happen. Note that similar results were ob-
tained using a simplified model based on the equations de-
rived through expansion of the Hamiltonian up to the fourth
order (Zakharov et al. 2002). The simplified approach allowed
the authors to use a resolution several times higher than that
used in the current work. However, simulation of an evolution
of the initially homogeneous spectrum resulted in a strictly
discrete spectrum similar to that in Fig. 15. It should be noted
that the discretization effect can be visible in the 2D Fourier
wave number space, while this effect manifests itself much
weaker in a single-point low-resolution frequency spectrum.

Another hypothesis of the wave spectrum tendency for
discretization is based on consideration of a convergence prob-
lem. Actually, the nonlinear interactions occur in the orbital

velocity field. A change of the spectral resolution results in
modification of the statistical characteristics of the elevation
and velocity fields. It is quite obvious that with increase of the
spectral resolution (provided that the total energy conservation
is strictly valid), the statistical properties of the velocity and
elevation fields cannot formally come to any reasonable limit. It
means that the physical mechanism that prevents homogeniza-
tion of spectrum does exist. Probably, the modes with very
close wave numbers cannot exist independently; hence, a wave
spectrum consists of a finite number of the nonlinear modes
rather than from an infinite number of the linear modes (see also
Babanin et al. 2014). In other words, a wave field probably has
a “corpuscular nature”. This can be a real cause of the
“Manhattan-like” shape of the 2D spectrum in Fig. 15.

It is interesting to note that locations of peaks in spectrum
are not fixed; the peaks can slowly migrate in the Fourier
space. This effect is illustrated in Fig. 16 where a temporal
evolution of amplitudes of 25 modes in the vicinity of the
initial peak (kx,ky)=(64,0) is represented. The curve seems
thick because of the high-frequency fluctuations of unknown
nature. Probably, these fluctuations are caused by a fast ex-
change between the potential and kinetic energies visible in
Fig. 13 (top panel). Such fluctuations were also observed in
the calculations with an exact 1D conformal model. As seen,
each mode in the process of evolution changes its location
quasi-periodically up to several times. The total change of
amplitudes over the entire period reflects downshifting.

Looking at the details of consequent spectra, it is possible
to see that each peak undergoes the quasi-periodic fluctua-
tions. The data on the spectrum evolution are used for calcu-
lations of the nonlinear spectrum transformation rate N

ΔSk;l
Δt

¼ Nk;l; ð43Þ

where ΔSk,l is a change of spectral density over time Δt
and Nk,l is an average rate of evolution of the spectral density

Fig. 13 The top panels represent
evolution of kinetic (solid curve)
and potential (dashed curve)
energies; the bottom frames show
skewness (solid curve) and
kurtosis (dashed curve) of wave
surface. The left panels
correspond to the first ten peak
wave periods, the right panels
represent the last ten
peak wave periods
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due to the nonlinear interactions. In Fig. 17, spectrum N l
k

integrated over the lateral wave numbers ky is shown (slightly

smoothed over the wave numbers). As seen, the shape of N l
k

is qualitatively similar to the results of the calculations based
on the Hasselmann’s integral. The energy in the front slope of
the spectrum increases, while the energy in the back slope of the
spectrum decreases providing downshifting. Unfortunately, all
the available schemes for the Hasselmann’s integral

calculations do not allow us to perform any calculations for
such a high resolution used in the present work.

The nonuniformity of a wave spectrum is convenient to
estimate with parameter J

J ¼
��������������X
k;l

S−1k;l
�����
ΔS2k;l

� �1=2
ð44Þ

which characterises a ratio of the local dispersion of spec-

trum ΔS2k;l

� �1=2
(calculated over four adjacent points) and

the central value of spectrum Sk,l averaged over the entire
spectrum. When the spectrum is smooth, the value of J is
small and J approaches 1 when the local differences are of the
order of the local values of spectrum. An evolution of J
calculated for 50 runs is shown in Fig. 18. The initial spectra
for all the runs were identical, but the wave fields were
assigned with different random sets of phases. As seen, the
rates of J growth in different runs were close to each other,
while J increases from J=0.1 up to J=0.48−0.55 and pre-
serves a tendency for further growth. Such high values of J
indicate that the patchiness of spectrum is a typical phenom-
enon of a simulated wave field. The data obtained in different
runs allow us to compare the spectra calculated with the model
to the end of each run at 94th peak wave period. The results of
such comparison are given in Fig. 19. The gray curves corre-
spond to different runs; the solid curve corresponds to the
averaged over ensemble spectrum, while the dashed curves
correspond to dispersion. As seen, the difference between the
spectra is very large, which means that the evolution of
spectrum depends on a set of the initial phases. The locations
of peaks and holes are different in different runs. It is con-
firmed by Fig. 20 where in the top panel, the positions of the
local maxima in a wave spectrum are shown. To the local
maxima, we refer all points where the value of spectrum
exceeds the values in all eight surrounding points. To make
the plot clearer, only the points where the spectral density in
the central point exceeds 0.01Sp (Sp is the peak spectral
density) are included. The data in the top panel refer to a

Fig. 14 Distribution of spectral energy log10S (S is spectral
density, normalized by its maximum) in the coordinates
(ωlin,ωmod), where ωlin=k

1/2 and ωmod ¼ ω (Eq. 40). Solid line
shows the spectral density averaged over directions

Fig. 15 Top panel corresponds to the initial Pierson–Moskowitz 2D
wave spectrum log10(S). Bottom panel corresponds to the final spectrum
after integration over 318 peak wave periods

Fig. 16 Time evolution of 25 Fourier amplitudes in the vicinity of the
initial wave peak
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single spectrum, and the data in the bottom panel include the
points for all of the 50 spectra. As seen, the points in the
bottom panel are distributed over the wave number space
more or less evenly. Note that the maxima change their loca-
tion also during a single long integration, but this process is

very slow, i.e. the uniformity shown in the bottom panel of
Fig. 20 can be reached over thousands of peak wave periods.
These results completely turn down the idea that the peaks and
holes can be explained by the resonance mechanisms.

Upon completing this paper, we received Reviewer’s rec-
ommendation to reproduce the results obtained with the 3D
MNLS model (Dysthe et al. 2003) where evolution of a
narrow bandwidth spectrum assigned by the Gaussian distri-
bution in the 2D Fourier space was calculated using the
nonlinear 2D Dysthe equation (Dysthe 1979). The initial
conditions for spectrum were assigned according to Eq. 7 in
the work cited, i.e. the width of spectrum was 0.2 and steep-
ness was 0.1. The number of modes, along x- and y-axis’s, was
equal to 128; the total number of the Fourier modes was
66,049; the number of grid points was 262,144. The first runs
were done when a maximum of spectrum was initially located
at kp=64, lp=0, but in this case, the spectrum showed an
unrealistic behavior at high wave numbers, since the energy
was suppressed by dumping (27)–(29) introduced to support
stability. In the next runs, a maximum of the spectrum was
shifted to position kp=32, lp=0. As well as in the work cited
above, the results are obtained by averaging over ensemble of
20 runs for various sets of the initial random phase distribu-
tion. The spectrum simulated with our model is compared
with the spectrum obtained with the Dysthe’s model in
Fig. 21. As seen, both of the models identically reproduce
the angle widening of spectrum. An asymmetry of this evo-
lution can be explained by different wave steepness in the
high-frequency and low-frequency parts of spectrum, i.e. the
root-mean-square steepness of the initial wave field is equal to
0.073, while the steepness formed by the modes with wave
numbers k≤kp is equal to 0.042 and by the modes with wave
numbers k≥kp is equal to 0.063. Crowding of contours at
panel a in Fig. 20 can be probably explained by using a filter
outside the domain:

k−kp
kp

� �2

þ l

kp

� �2

¼ 1; k > kp

A qualitatively similar effect was observed in our calcula-
tions with kp=64. We found that the location of spectrum at
kp=32 provided room for smooth developing of spectrum
toward high wave numbers. Hence, the computational domain
in panel b has the size 4×4, while in panel a it is 2×2. The
spectrum obtained in Dysthe et al. shows downshifting. The
same effect was obtained in our calculations. The low-energy
“horns” in a low wave number part of spectrum b (Fig. 20)
was never reproduced in our calculations, probably because of
an insufficient resolution at low wave numbers. As a whole, it
can be concluded that our results are in a reasonable qualita-
tive agreement with the results of Dysthe et al. (2003). More
detailed comparison of our model with the Dysthe (1979)

Fig. 17 a Wave spectrum integrated over lateral wave numbers ky. Thick
line shows the initial wave spectrum, and thin line shows the final wave
spectrum obtained by 318th wave period. b Thin curve represents spectrum
of a nonlinear interaction rate integrated over lateral wave numbers ky (see
Eq. (27)), thick curve shows the same but smoothed spectrum

Fig. 18 Temporal evolution of “patchiness” index (Eq. 37). Thin
curves correspond to the data obtained in parallel runs, thick
curve shows the averaged over ensemble data, dashed curves character-
ize dispersion of the data
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model is still underway.We are also planning to use our model
for simulation of more complicated processes.

6 Conclusions

In this paper, a straightforward method of the numerical
solution of 3D potential wave equations is suggested. The

method uses a surface-following coordinate system. In the
new coordinates. the kinematic and dynamic conditions on
surface become more complicated, but if we consider them as
the evolutionary equations for the surface potential and eleva-
tion, we come to the conclusion that these conditions can be
easily integrated in the same way as the similar 1D equations
in the conformal coordinates. However, calculations of
the vertical derivative of the potential on the surface
become more complicated, since the Laplace equation
for the 3D velocity potential turns into the elliptic
equation that should be solved at every time step, which
requires a use of extensive computer resources.
However, it should be noted that this problem is still
much simpler than, for example, standard simulations
of the 3D Navier–Stokes equations (or large eddy
simulation (LES) equations) in the curvilinear coordinates
when a problem of solving the elliptic equation for pressure
arises.

The potential wave problem gives a unique opportunity for
validation of a full nonlinear model by comparison with the
exact stationary solution obtained in a moving coordinate
system. This solution is obtained with a completely different
algorithm; hence, such validation can be considered as full,
nontrivial, and exact. Since the model uses a finite-difference
approximation in the vertical direction, we can not expect a
perfect agreement between the exact and approximate
solutions, though the results of such comparison are quite
convincing. A structure of the Stokes wave was supported
over a long interval of integration. If the numerical scheme
were not accurate enough, an evolution of modes would
exhibit a chaotic behavior and the Stokes wave would
quickly disintegrate due to the numerical instability. Such
evolution was observed many times in the course of
development of codes. The scheme is consistent, since with
increase of the resolution, its accuracy increases. Note that
highly efficient method by Clamond and Grue (2001) has
been generalized to 3D finite variable water depth by
Fructus and Grue (2007). Currently, we investigate a

Fig. 21 The wave spectrum log10S in coordinates ((k/kp, l/kp). a
Calculations of Dysthe et al. (2003) obtained after integration for Tp=
95 wave peak periods and b calculation with model (11)–(13) obtained
after integration for Tp=67. Both spectra are normalized by their maxi-
mum value

Fig. 20 Top panel shows positions of local maxima in a single spectrum.
Bottom panel shows position of maxima in 50 parallel runs

Fig. 19 The wave spectra obtained by 94th peak wave period corre-
sponding to the runs starting from the same wave spectrum but with a
different random set of initial phases. Thick curve corresponds to the
spectrum averaged over ensemble, dashed curve characterizes dispersion
of the data
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possibility of application of the model to the finite depth
problem. Such idea is based on presentation of the analytic
component of the surface potential in the following form:

Φ̄ ξ;ϑ; ζð Þ ¼
X
k;l

φ̄k;l
cos kj j ζ þ Hð Þð Þ

cos kj jHð Þ Θk;l; ð45Þ

where H is depth. Because the nonlinear component
of velocity potential attenuates with depth faster than
the analytical one, a scheme of the solution remains essentially
the same.

The model was used here for simulation of the evo-
lut ion of a steep Stokes wave train with the
superimposed initial noise. In case of the directional
wave fields, it was shown that an evolution of a wave
field occurs in a different way, as compared to that of a
unidirectional case, i.e. the new developing modes are oblique
toward propagation of a carrier wave.

The most disappointing and unexpected property of the
wave model is that the results depend essentially on the initial
set of phases; hence, the most reliable results can be obtained
with the ensemble modelling. Such simulation can be effec-
tively done in parallel processors. It is not excluded that the
stable and smooth results can be obtained by introducing the
local viscosity in the Fourier space. Currently, it is unclear in
what way this property can be brought into correlation with
the natural process. However, we came to conclusion that the
primary physical variables are rather the fields of velocity (in
the potential assumption, it is a velocity potential) and eleva-
tion. The Fourier modes are the result of a formal presentation
of wave fields, while they not necessarily present the real
objects.

The numerical experiments are performed under quasi-
adiabatic conditions. However, the model is designed for
investigation of the nonlinear mechanics of the 2D surface
waves, particularly for investigation of the extreme waves.
After implementation of the energy input scheme and wave
breaking parameterization, the model can be used for direct
simulations of a 2D wave field evolution under the action of
wind, nonlinear interactions, and dissipation. This model can
be combined with the 3D LES model for the atmospheric
wave boundary layer, being formulated in the same coordinate
system. Such approach can be considered as an ultimate
solution of the wind–wave interaction problem.

All of the numerical results presented in the current work
were obtained using a standard one-processor Dell computer
with a speed of 3.00 GHz. Since the model is based in the
Fourier transformmethod, a parallel version of the model does
not provide many advantages, while parallel processors are
convenient to simultaneously run many versions of the same
model, as well as to perform the ensemble modeling.
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