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Abstract The description of a coupled wind and wave model in conformal coordinates
is given. The wave model is based on potential equations for the flow with a free surface,
extended with the algorithm of breaking dissipation. The wave boundary-layer (WBL) model
is based on the Reynolds equations with the K − ε closure scheme with the solutions for
air and water matched through the interface. The structure of the WBL and vertical profiles
of the wave-produced momentum flux (WPMF) in a long-term simulation of the coupled
dynamics are investigated and parameterized. The shape of the β function connecting ele-
vation and surface pressure is studied up to high nondimensional wave frequencies. The
errors of a linear presentation of the surface pressure are estimated. The β function and the
universal shape of the WPMF profile obtained in coupled simulations allow a formulation of
the one-dimensional theory of the WBL, and the carrying out of a detailed study of the WBL
structure including the dependence of the drag coefficient on the wind speed. It is shown that
a wide scatter of the experimental data on the drag coefficient can be explained, taking into
account the age of waves. It is suggested that a reduction of the drag coefficient at high wind
speeds can be qualitatively explained by the high-frequency wave suppression.
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1 Introduction

The wave boundary layer (WBL) is the lowest part of the atmospheric constant-flux layer
(Chalikov 1976, 1978, 1986) where fluctuations produced by waves are clearly pronounced.
The height of the WBL is of the order of a significant wave height Hs , normally a few
metres. At the bottom it is in contact with the sea surface while at the top it merges with
the atmospheric surface layer in which Monin–Obukhov similarity applies. In most cases
the height of the WBL does not exceed the height of a dynamic sub-layer; hence, the direct
influence of stratification on the wind–wave interaction is negligible. An indirect influence
of stratification through the low-frequency part of the turbulent spectrum (gustiness) may be
traced (Kahma and Calkoen 1992), and can be included into the WBL model using variable
upper boundary conditions. Within the WBL the motion is profoundly influenced by the
ocean surface waves, and since the WBL is responsible for wave drag, its structure changes
the dynamics of the entire constant-flux layer. The total momentum flux τ splits in the WBL
into two branches: the wave-produced momentum flux τw (WPMF) transferring energy and
momentum to waves, and the shear turbulent flux generating currents. The contribution of
the WPMF to the total flux is greatest at the wave surface, while the WPMF rapidly decreases
with height within the WBL, eventually approaching zero at the top of the WBL where all
of the momentum is transferred by shear turbulence.

Previous studies of the boundary layer above waves were based mostly on the conven-
tional theory of a boundary layer above an infinite flat and rigid surface. In fact, the presence
of waves was considered just as a kind of hindrance, and so the influence of waves was
interpreted in terms of the roughness parameter only. No analysis of a wind profile close to
the sea surface in the presence of the finite-amplitude waves has been suggested.

For the first time the dynamic interaction between waves and wind was qualitatively
studied by the linear small-amplitude theories of Miles (1957) and Phillips (1977). These
theories laid a solid foundation for the understanding of the wind and wave interaction mech-
anism provided by the surface pressure field; however, both actually ignored the presence of
finite-amplitude disturbances.

A development of the numerical WBL models began in the 1970s with a simultaneous
publication of several papers. Gent and Taylor (1976) studied a stationary air flow over a
single wave for a broad range of wave and airflow parameters, and were the first to find a
theoretical dependence of the wind–wave energy exchange on wave frequency. A very accu-
rate WBL model based on the stream function was developed by Simonov (1982) whose
most important result referred to the role of different turbulence closure schemes. He con-
cluded that, for the typical magnitudes of the wave steepness, all of the closure schemes
showed similar results. The notion of the fully non-linear modelling of wind–wave interac-
tion (as well as the concept of the ‘WBL’) was first introduced by Chalikov (1976, 1978),
where a fundamental problem of the derivation of the Reynolds equations for a boundary
layer above the curvilinear moving surface was considered. He used a two-dimensional WBL
model based on the finite-difference approximations in both directions, with all calculations
performed either for a monochromatic wave field or just for several wave modes (Chalikov
1986). Development of an accurate numerical method for the solution of the general elliptic
equation for the pressure above a non-stationary multimodal surface presented the most dif-
ficult computational problem. The main results obtained with the use of the old version of
the model are as follows:

(1) The Reynolds equations in a surface-following coordinate system as well as a general
formulation of the WBL problem were derived.
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(2) The spectral shape of the wind–wave interaction parameter (β function) was found
with the pre-assigned angular distribution based on the “apparent” frequency. The sta-
tistical structure of the WBL (including profiles and spectral composition of the first,
second and some of the third moments of the wave-produced pressure, velocities and
turbulence) was studied.

(3) One-dimensional theory of the WBL considering the spectral structure of wave-pro-
duced momentum fluxes (Chalikov and Belevich 1993; Chalikov 1995) was developed.

(4) New energy input and dissipation schemes (Tolman and Chalikov 1994, 1996) in the
NWS operational wave forecast WAVEWATCH model (see the website http://polar.wwb.
noaa.gov/waves) were implemented. The energy input formulation is more accurate than
that used in the wave model (WAM). The comparison of wave forecasts produced by
the WAVEWATCH III (Version 1.15) and the WAM (Cycle 4) models using buoy and
satellite data has clearly shown that the WAVEWATCH model has some advantages, as
compared with the WAM model.

The results of further numerical modelling (Chalikov 2005) showed that the term “very
small amplitude” is more appropriate than “small amplitude” since, even for the steepness
of the order of 0.05, the non-linearity becomes an essential property of the wave dynamics.
Also note that applicability of the single-mode linear analysis for real finite-amplitude multi-
modal wave fields was never seriously discussed. What makes this problem special is the
necessity of using a surface-following coordinate system for derivation of correct non-linear
equations. After transformation the dynamic equations become highly complex and difficult
to integrate, however, they allow the essence of the process to be described, i.e. the interaction
of a turbulent wind with finite-amplitude waves.

The wind–wave interaction mechanism has been comprehensively studied within the
framework of the ocean wave evolution problem. All of the studies were focused on the param-
eterization of the so-called input and dissipation source terms in the wave prediction models.
Even for such processes the existing theories seem to be either highly simplified (e.g., the
Miles’ quasi-linear wind input theory) or purely speculative, as in the case of the wave energy
dissipation due to whitecapping. Moreover, it is a bare reality that the frequently cited Hassel-
mann (1962) approach to the calculation of a non-linear interaction was never used in wave
forecasting models due to its high complexity. Furthermore, direct observations of a number
of characteristics are hardly possible. An indirect analysis based on observations of the spec-
trum evolution is unable to separate the input, dissipation and non-linear interaction effects.

A standard spectral description of the energy input to waves is based on a concept of
the linear superposition of fluxes to spectral components calculated according to the Miles’
theory. This principle is incorrect for steep waves. All the previous models considered an air
flow above the single harmonic wave and suggested steadiness of the flow (see, for example,
Janssen 1991). Actually, this assumption is acceptable only for small-amplitude waves. Due
to a strong non-linearity (leading to the formation of bound waves, focusing of the energy in
a physical space, and wave breaking), the wave field cannot be represented as a superposition
of linear waves with random phases. The dynamic wind–wave interaction is highly complex.
For example, long waves modify local flow, which influences the energy input to short waves,
while the short waves produce a local drag that influences the flow over large waves. In gen-
eral, all waves ‘spring, burgeon and fall’ in the environment created by the entire spectrum.
The energy input to waves, even with moderate steepness, is rather concentrated in physical
space than in Fourier space. Hence, a Fourier image of the input is often difficult to interpret.

The more comprehensive theoretical formulation of the coupled problem became possi-
ble after introduction of the unsteady surface-following conformal mapping (Chalikov and

123

http://polar.wwb.noaa.gov/waves
http://polar.wwb.noaa.gov/waves


D. Chalikov, S. Rainchik

Sheinin 1996, 1998). The new method used for the direct wave modelling was success-
fully validated and showed very high accuracy. The method was used for investigation of
the potential wave dynamics, such as the wavenumber/frequency two-dimensional (2-D)
spectrum (Chalikov and Sheinin 1996, 1998), shallow water-wave dynamics (Sheinin and
Chalikov 2005), steep wave dynamics (Chalikov and Sheinin 2005), the statistical properties
of waves (Chalikov 2005), the Benjamin–Feir instability (Chalikov 2009) and freak wave
dynamics (Chalikov 2009). After transformation to conformal coordinates the one-dimen-
sional (1-D) equations obtain quite a simple form. The model is so precise that any comparison
with observations allows judging rather of the 1-D potential approach applicability to the real
process than of the accuracy of the model itself.

The numerical hydrodynamic modelling is similar to ideal laboratory modelling (no scale
limitation, wide parameter ranges, and the availability of simple ‘observations’ of any char-
acteristics in any location); however, the applicability depends on the efficiency of the theo-
retical assumptions used. Numerical modelling provides more detailed data than a physical
simulation. Such a situation is typical in other branches of fluid dynamics (perhaps better
developed), especially in technical fluid mechanics. It has been proved that numerical meth-
ods really do provide high quality results that can be combined with those obtained from the
experiments.

Thus, the motivations for the development of a new approach are quite obvious. It is impos-
sible to prove that co-existing waves interact with the atmosphere as a set of independent
waves, whilst the integral result can be obtained by a simple superposition of monochro-
matic cases. It is well known that even a single wave produces a broad spectrum of pressure
fluctuations, which modifies the flow. The first attempt to consider non-linearity and group
effects was made with the use of a finite-difference model (see Chalikov 1986), where the
wave surface was assigned as a superposition of running waves with different frequencies.
This approach is much closer to reality than that based on a stationary single-mode model.
However, it was found that such an approach, being more precise (and more complicated)
than the monochromatic stationary approach, turned out to be also imperfect due to two
reasons: (1) the peculiar wave shapes and the non-linear group structure are not represented
in the above model; (2) the finite-difference model cannot provide the required accuracy.

The most reliable approach for the study of the wind–wave interaction problem involves
modelling of the coupled wave and the WBL dynamics (Chalikov 1998). The spectral ap-
proach to this problem is quite suitable; however, it should be used as a method for a numerical
solution of the equations, and for presentation of the results. The most complicated processes,
such as group effects, wave breaking, bound waves and the development of extreme waves
occur in physical space; hence, the spectral image of the above processes is often not repre-
sentative.

It is quite obvious that real waves have more or less sharp crests and smooth troughs. At the
same time, the Stokes waves are the exact solution of the full equations. The Stokes waves are
stable in the absence of disturbances, while they slowly transform as a result of the Benjamin
and Feir (1967) instability in the presence of disturbances. However, harmonic waves quickly
disintegrate and obtain the shape of the Stokes waves even in the absence of disturbances. The
wave field always includes the so-called ‘bound waves’ whose phase speed is equal to that
of a carrying wave. The term “bound waves” is quite vague as it obscures the genuine nature
of the phenomenon. Actually, large waves are non-linear phenomena that are more or less
stable and consist of a great number of linear modes with the nearly constant amplitudes and
fixed phases. As a result, the multi-mode wave field is rather approximated by the superposi-
tion of non-linear modes (the Stokes waves) than by the superposition of linear modes with
random phases (Chalikov 2005). Such properties of real waves are closely connected with
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the problem of wind and wave interaction. This problem of geophysical fluid dynamics has
always been the object of broad investigations; however, the majority of studies was based
on the small-amplitude assumption, though it was never discussed which amplitudes may
be considered small. Numerous analytical studies (based on the simplified equations) that
followed Miles (1957) actually did not lead to a deeper understanding of the problem. The
structure of the flow and a wave-produced drag above the sharp-crested waves differ from
those for the harmonic waves. A more realistic approach is based on numerical modelling of
a stationary flow above a wavy surface (represented by one mode). Such models based on the
Reynolds equations and turbulent closure schemes (Gent and Taylor 1976; Chalikov 1978)
were used for investigation of the structure of a boundary layer above the finite-amplitude
harmonic waves (see Chalikov 1986). The results obtained with the use of such models are
definitely closer to reality than the results of analytical exercises, though they are also imper-
fect. Despite the fact that Chalikov’s model has undergone numerous modifications (see, for
example, Mastenbroek et al. 1996), it remained hardly suitable for investigation of the real
process. Moreover, this scheme was based on the finite-difference approach, while for the
periodic-wave problem it would be more appropriate to use the Fourier-transform method.
The pressure field was calculated through the solution of the finite-difference Poisson equa-
tion, which imposes tough limitations on the wave steepness. The first attempts to consider
more than one harmonic mode were also not quite successful.

The current approach to the problem (Chalikov 1998) is based on several new principles:
(1) the model is formulated as a high-resolution spectral problem in a non-stationary sur-
face-following coordinate system, (2) waves are the object of modelling: the full potential
wave equations are solved along with the equations for the boundary layer with matching of
the solutions on the interface, (3) a well-developed and powerful Fourier-transform method
is used.

It is obvious that even minor obstacles (such as sharpening of a crest) produce a dramatic
change in the pressure field and form drag (this effect is well known in engineering fluid
mechanics). It is also well-known that just a simple group effect can produce high and steep
waves (in physical space) with a deep minimum of the pressure behind the crests. Non-line-
arity enhances the effect of sharpening, thus strongly increasing the pressure anomalies. On
the whole, the wave drag and the energy exchange are the result of the ensemble effect of
non-stationary fluctuations of pressure and surface stresses. It is clear that all such processes
are completely absent in monochromatic stationary models.

2 Equations of the WBL

It is impossible to provide an exact formulation of the 2-D wind–wave interaction problem
without introduction of the surface-following conformal coordinates. A consistent develop-
ment of the approach to the problem of wind–wave interaction began with Chalikov (1976,
1978). Let us consider a boundary layer above a curved periodic surface η(x, t), and whose
shape is represented by the Fourier expansion:

η(x, t) =
M∑

−M

hk (t) ϑk (x), (1)

where hk is amplitude, M is a truncation number, and ϑk(x) denotes the following function:

ϑk (ξ) =
{

cos(kξ) k ≥ 0
sin(kξ) k < 0

, (2)
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noting that (ϑk)ξ = kϑ−k , and
∑
(Akϑk)ξ = −∑

k A−kϑk . Let us introduce the conformal
surface-following coordinate transformation for the domain (0 < x ≤ 2π, Hw < z < Ha)

(Chalikov and Sheinin 1996, 1998):

x = ξ ∓
∑

−M≤k≤M,k �=0

η−k (τ )
cosh k ([Ha, Hw] ∓ ζ )

sinh k [Ha, Hw]
ϑk (ξ) , (3a)

z = ξ +
∑

−M≤k≤M,k �=0

η−k (τ )
sinh k ([Ha, Hw] ∓ ζ )

sinh k [Ha, Hw]
ϑk (ξ) , (3b)

t = τ, (3c)

where Ha is the WBL height, and −Hw is the water domain depth. The top signs in Eq. 3a,b
refer to the air domain, while the bottom signs refer to the water domain. Note that the
transformation (3a,b) is non-linear, since ϑk (ξ) are functions of the new coordinate ξ .
At ς = 0 function z(ξ) describes the wave surface:

z(ξ, 0, τ ) = η(ξ, τ ) =
M∑

−M

ηk (τ ) ϑk(ξ), (4)

where M is the assigned number of modes while ηk are the Fourier coefficients in a curvilin-
ear coordinate system. Those coefficients differ from the Fourier coefficients hk for the water
surface in the Cartesian coordinate system. To obtain the same accuracy of approximation
of the surface η the number of modes in the Cartesian coordinates should be less than in the
lower coordinates and more than in the upper coordinates.

The governing equations are obtained by averaging the Navier–Stokes equations, but in
the presence of a moving 2-D interface averaging is not a simple problem; Phillips (1977)
discussed this problem in detail (see also Chalikov 1978). However, it should be pointed out
that averaging of the equations for the 3-D case is always connected with some ‘a priori’
simplifications, so it cannot be done formally as was done for a quasi-stationary flow in
a simple domain (Monin and Yaglom 1971). Obviously, the best way to avoid some of the
simplifications is usage of the large-eddy simulation (LES) technique. Above the 1-D surface
averaging can be understood as averaging along y = constant (Phillips 1977).

After transformation into the new coordinate system and averaging (discussion of an aver-
aging procedure in the presence of a curvilinear surface was given by Chalikov (1978)), the
Euler equations can be written as follows (the sign of averaging for the first-order moments
is omitted):

d Ju

dτ
= −∂pxξ

∂ξ
+ ∂pzξ

∂ζ
−
∂

(
xξu′u′ + zξu′w′

)

∂ξ
−
∂

(
−zξu′u′ + xξu′w′

)

∂ζ
, (5a)

d Jw

dτ
= −∂pzξ

∂ξ
− ∂pxξ

∂ζ
−
∂

(
xξu′w′ + zξw′w′

)

∂ξ
−
∂

(
−zξu′w′ + xξw′w′

)

∂ζ
, (5b)

where p is a deviation from the hydrostatic pressure normalized by air density, xξ and zξ are
metric coefficients, J is the Jacobian of mapping

J = x2
ξ + z2

ξ , (6)

and d/dτ denotes a full derivative on time,

d J ()

dτ
= ∂ J ()

∂τ
+ ∂ JU ()

∂ξ
+ ∂ J W ()

∂ζ
, (7)
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where U, W are contravariant velocity components

U = J−1 (
(u − xτ ) xξ + (w − zτ ) zξ

)
, (8a)

W = J−1 (− (u − xτ ) zξ + (w − zτ ) xξ
)
. (8b)

The continuity equation takes the form:

∂ ũ

∂ξ
+ ∂w̃

∂ζ
= 0, (9)

where ũ and w̃ are covariant velocity components:

ũ = uxξ + wzξ , (10a)

w̃ = −uzξ + wxξ . (10b)

While approaching the surface the’vertical’ velocity W tends to zero, and the kinematic con-
dition W = 0 becomes valid with increasing accuracy. On the surface itself W = 0 strictly,
and u = u0, w = w0, where u0 and w0 are the surface velocity components. The fact that
W = 0 implies that the momentum and any substance are not transferred by velocity through
the interface. To derive Eqs. 2–9 the following properties of conformal mapping were used:

xξ = zζ , xζ = −zξ , xξ = J−1ξx , xζ = −J−1ξz . (11)

The second- and third-order moments, containing fluctuations of metric coefficients and the
Jacobian, are omitted, since such subgrid moments rapidly attenuate with increase of distance
from the surface (see a discussion of this problem in Chalikov 1978). The second-order tur-
bulence moments are represented as a product of the turbulent viscosity coefficient Km , and
the corresponding component of the velocity strain tensor �i j (Monin and Yaglom 1971).
The coefficient Km is taken in the form:

Km = cke2/ε, (12)

(K − ε model), where e is the kinetic energy of turbulence, ε is the rate of dissipation of e
(Launder and Spalding 1974), ck = 0.0073, and

u′u′ = 2Km J−1�11 = 2Km J−1
(
∂uxξ
∂ξ

− ∂uzξ
∂ζ

)
+ 2

3
e, (13a)

u′w′ = Km J−1�12 = Km J−1

(
∂

(
uzξ + wxξ

)

∂ξ
− ∂

(
uxξ − wzξ

)

∂ζ

)
(13b)

u′u′ = 2Km J−1�22 = 2Km J−1
(
∂wzξ
∂ξ

− ∂wxξ
∂ζ

)
+ 2

3
e. (13c)

At the upper bound the metric coefficients obtain the values: zξ = 0 and xξ = 1, hence, the
boundary conditions take the following form:

z = ζ = Ha : u′w′ = τ, w = 0, (14)

where τ is the vertical flux of the horizontal momentum beyond the WBL (an outer stress).
The tangential turbulent stress on the surface τ0 is calculated with use of the quadratic law:

τ0 = Cl |ũ1 − ũ0| (ũ1 − ũ0) . (15)

Here ũ1 and ũ0 are covariant components of the velocity in the lowest layer and on the
interface, respectively, Cl is the local drag coefficient, the definition of which is given below.
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The evolution of e and ε is described by

d Je

dτ
= ∂

∂ξ
Ke
∂e

∂ξ
+ ∂

∂ζ
Ke
∂e

∂ζ
+ P − ε, (16a)

d Je

dτ
= ∂

∂ξ
Kε
∂ε

∂ξ
+ ∂

∂ζ
Kε
∂e

∂ζ
+ ε

e
(c2 P − c4ε) , (16b)

where the diffusion coefficients Ke and Kε are proportional to the coefficient of the turbulent
viscosity Ke = Km/ce, Kε = Km/cε , while P is a rate of turbulent energy production:

P = 0.5J Km
(
�2

11 + 2�2
12 +�2

22

)
. (17)

The rate of production PH at the upper boundary of the domain z = ζ = Ha is calculated
through

PH = v3∗
κHa

, (18)

where v∗ = τ 1/2 is a friction velocity at z = Ha , and the energy of turbulence e and the rate
of dissipation ε are given by

eH = c1v
2∗, (19a)

εH = v3∗
κHa

. (19b)

The vertical diffusion of the turbulent energy normal to the surface ζ = 0, as well as the
diffusion Ke

∂e
∂ζ

at the upper bound ζ = Ha , are both equal to zero. The vertical diffusion
of the dissipation rate normal to the surface ζ = 0 and that at the upper bound ζ = Ha are
equal to:

Kε
∂ε

∂ζ
(ζ = 0) = −v4

s0z−1
1 c−1

3 , (20a)

Kε
∂ε

∂ζ
(ζ = 0) = −v4

s0z−1
1 c−1

3 (20b)

respectively, where vs0 = τ
1/2
0 is the local tangential friction velocity defined by the local

turbulent tangential stress τ0 on the interface. The closure scheme based on Eqs. 13–17 uses
a set of the empirical constants: κ ≈ 0.41 (the Karman constant), c1 = 3.7, ce = 1, c2 =
1.92, c3 = 1.3. In the absence of waves, as follows from the self-similarity of a logarithmic
boundary layer, the constant c4 is connected with other constants through

c4 = (c1 − c2) κ
−2c−1

3 . (21)

All the equations have been written in a non-dimensional form based on the following scales:
length L (2πL is a horizontal size of the domain) and g is the acceleration due to gravity.
All other scales have been constructed with the use of g and L .

3 The Numerical Scheme for the WBL Equations

The numerical scheme is based on the Fourier-transform method (Orszag 1970) and on
the fast Fourier transform for an arbitrary number of modes. A detailed description of the
method applied to the wave modelling problem is given in Chalikov and Sheinin (1998).
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The core of the method is that the linear part of the equation is approximated directly, while
the products of variables are calculated on a uniform ξ -coordinate grid with a number of
knots N = 4M (M is the number of the Fourier modes). Then, the Fourier coefficients of the
products are used for integration in time or for the calculation of derivatives over the ‘vertical’
coordinate ζ . The derivatives over ξ are calculated through analytical differentiation of the
Fourier series. The vertical operators are approximated on a stretched grid where intervals
between the knots �ζ j are calculated with the use of the relation �ζ j+1 = γ�ζ j (γ is a
stretching coefficient; the index j increases), and the first value of �ζ( j = 1) is defined
from the following condition:

K∑

j=1

�zk = Ha, (22)

where K is the total number of levels in the WBL. To improve the accuracy of the finite-dif-
ference approximation for the zero-number modes of u and ε, it was taken into account that:

u ∝ ln(ζ )+ const, (23a)

ε ∝ ζ−1, (23b)

For integration in time the fourth-order Runge–Kutta scheme was used.
The most difficult problem arising while solving the fluid mechanics equations in curvi-

linear coordinates is calculation of a pressure field that provides the continuity condition (9).
It is well-known that the solution quickly becomes unstable if the equation of continuity does
not yield high accuracy. The dynamical equations for covariant components of the velocity
(10) do not take the following form:

∂ ũ

∂τ
= −∂p

∂ξ
+ F̃u, (24a)

∂ ũ

∂τ
= −∂p

∂ξ
+ F̃u, (24b)

where Fu and Fw are straightforward designations of the sum of turbulent and convective
terms calculated as a combination of the right-hand sides of Eqs. 5a,b at each sub-step of the
Runge–Kutta scheme. Equations 24a,b gives a possibility to derive a standard form of the
Poisson equation for the updated pressure pl

∂2 pl

∂ξ2 + ∂2 pl

∂ζ 2 = 1

�t

(
∂ ũ

∂ξ
+ ∂w̃

∂ζ
+ ∂ F̃u

∂ξ
+ ∂ F̃w

∂ζ

)l−1

, (25)

which can be solved through a tri-diagonal matrix algorithm (TDMA) for the pressure Fourier
components pk

k2 pk + ∂2 pk

∂ζ 2 = Rk, (26)

where Rk is the Fourier component for the right-hand side in Eq. 25. Approximation of a
vertical derivative of pk considers that a vertical profile of Fourier components for pressure
can be approximated through the following function:

pk(ζ ) = Pk(ζ ) exp (−2 |k| ζ ), (27)
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where the coefficients Pk(ζ ) are a slowly changing function of ζ . To provide the continuity
equation validity up to the surface ζ = 0, boundary conditions for pressure are derived on the
basis of the boundary conditions for a ‘vertical’ component of the surface covariant velocity
w̃0 and w̃H :

w̃0 = −u0zξ + w0xξ , (28a)

w̃H = 0, (28b)

where u0 andw0 are the Cartesian components of the surface velocity. The calculated pressure
is used for correction of the velocity field as presented in Eqs. 5a,b.

This method generalizes a standard approach for solution of the Navier–Stokes equations
in curvilinear coordinates.

4 Mathematical Modelling of Waves

The approach based on non-stationary conformal mapping had been discussed long before
it was applied for the numerical solution of wave equations. Such a transformation was
first introduced by Ovsyannikov (1973), and later considered by Kano and Nishida (1979);
Fornberg (1980) and Tanveer (1991, 1993). However, none of these works used conformal
transformation for the simulation of the long-term multi-mode periodic wave dynamics. Such
a 2-D model was completed in 1992, when a new approach to different problems came into
use. The scheme for an arbitrary depth was described in detail by Chalikov and Sheinin
(1996, 1998, hereafter ChSh). Later the method developed was used (with some minor mod-
ifications) by Zakharov et al. (2002, 2006) to demonstrate certain non-linear properties of
steep waves.

Non-stationary conformal mapping for finite depths allows rewriting the principal equa-
tions of the potential flow with a free surface in a surface-following coordinate system. The
Laplace equation retains its form, while the boundaries of the flow domain (i.e., a free surface,
and a bottom) are coordinate surfaces in the new coordinate system. Accordingly, the velocity
potential of the entire domain obtains a standard presentation based on the Fourier expansion
for the velocity potential on a free surface. As a result, the full hydrodynamic system of equa-
tions is represented by two simple evolutionary equations that can be solved numerically in a
straightforward way and used for theoretical study. The assumption of potentiality simplifies
the approach so significantly that the numerical scheme does not require any finite-difference
approximations, since the derivatives can be calculated precisely using the Fourier presen-
tations, whilst non-linearities can be approximated on a dense grid with a well-estimated
accuracy. For the restricted order of non-linearity this method is also precise and depends on
the length of word assigned for the calculations. The model is a unique case in geophysical
fluid dynamics, when a real process can be simulated with computer accuracy, provided that
the surface steepness is not too high. The increase of the local steepness often results in the
development of instability and even in the overturning of sharp crests. Formally, conformal
mapping exists up to the moment when the overturning volume of water touches the surface.
In such an imaginary evolution the number of Fourier modes required increases up to infinity.
If some special measures are not taken, the calculations normally terminate much earlier due
to the strong crest instability (Longuet-Higgins and Tanaka 1997) followed by a split of a
falling volume into two phases. This phenomenon is obviously non-potential. Hence, as in
many branches of the geophysical fluid dynamics, some special measures (which are sort
of “humbug” from the point of view of the classical potential theory) must be undertaken
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to prevent numerical instabilities, whilst considering physical consequences of the breaking
events (e.g. conservation of volume, energy and momentum).

Recently, the ChSh model was used for the simulation of wave evolution at various initial
conditions (Chalikov and Sheinin 2005). The numerical simulations of the initially mono-
chromatic waves with a different steepness showed that the model was able to reproduce
the onset of the breaking process when the surface becomes a multi-valued function of a
horizontal coordinate. Then the model was used for the simulation of a non-breaking evo-
lution of the wave fields with a greater number of modes for many periods of the dominant
wave (Chalikov 2005, 2007). The statistical characteristics of the non-linear wave fields for
waves of different steepness were studied, including spectra, kurtosis and skewness, disper-
sion relation and time scales, i.e. a typical ‘lifetime’ of waves. The ChSh model was also used
for the numerical simulation of the small-amplitude and finite-amplitude Benjamin and Feir
instability (Chalikov 2007). It is shown that the initially homogeneous train of the Stokes
waves undergoes several phases of evolution. Finally the wave field turns into a random
superposition of the nearly Stokes waves. If an initial steepness is large enough (ak > 0.12),
some waves become high and asymmetric, and finally break. In the current work the initial
conditions were assigned as a superposition of the Stokes waves with a pre-assigned initial
spectrum and random phases.

Chalikov (2009) describes the results of more than 4,000 long-term (up to thousands of
peak-wave periods) numerical simulations of the non-linear gravity surface waves. The sim-
ulations were performed for the study of extreme (“freak”) wave properties, as well as for
the estimation of the statistics of such waves. A probability function for the steep waves
was constructed. Such results can be used for the development of the operational freak wave
forecast based on the third-generation wave prediction model (WAVEWATCH or WAM).

5 The Equations of the Wave Model

We consider the simulation of the coupled wind–wave dynamics on the basis of the WBL and
ChSh models. The ChSh model shows that the potential wave equations can be represented
in the coordinates (3) for ζ ≤ 0 and deep water as follows:

�ξξ +�ζζ = 0, (29)

zτ = −xξ ξt − zξ ςt , (30)

ϕτ = −ζtϕξ − 1

2
J−1 (

ϕ2
ξ −�2

ζ

) − z − p0, (31)

where (30) and (31) are written for the surface ζ = 0 (so that z = η, as represented by
expansion (1)), p0 is the surface pressure, J is the Jacobian of the transformation:

J = x2
ξ + z2

ξ = x2
ζ + z2

ζ , (32)

and ξτ and ςτ are connected through the following relationship:

ζt = − (
J−1�ζ

)
ζ=0 , (33)

and ϕ = �(ζ = 0).
Equations 6, 7, 8a,b, as well as equations for the WBL, are written in a non-dimensional

form using the following scales: length L where 2πL is a dimensional period in the hori-
zontal, time L1/2g−1/2 and the velocity potential L3/2g−1/2. The capillarity was not taken
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into account in this investigation. The boundary condition assumes attenuation of the vertical
velocity at depth:

�ζ (ξ, ζ → −∞, τ ) = 0. (34)

The solution of the Laplace equation (29) with the boundary condition (34) is represented
through the Fourier expansion, which reduces the system (29)–(31) to a 1-D problem:

� =
∑

−M≤k≤M

φk(τ ) exp(kζ )ϑk(ξ), (35)

whereφk are the Fourier coefficients of the surface potential�(ξ, ζ = 0, τ ). Equations 29–33
and 35 constitute a closed system of prognostic equations for the surface functions z(ξ, ζ =
0, τ ) = η(ξ, τ ) and the surface velocity potential �(ξ, ζ = 0, τ ). For time integration, as
well as for the WBL model, the fourth-order Runge–Kutta scheme was used, and selection
of a suitable timestep was done empirically. Details of the numerical scheme can be found
in Chalikov and Sheinin (2005).

However high the spectral resolution might be, for long-term simulations of strongly non-
linear waves one must parameterize the energy flux into the severed part of the spectrum
(|k| > M), otherwise, the spurious energy accumulation at large wavenumbers can corrupt
the numerical solution. The simple dissipation terms were added to the right-hand sides of
Eqs. 30 and 31 for achieving stability:

∂ηk

∂τ
= Ek − μkηk, (36a)

∂ϕk

∂τ
= Fk − μkϕk (36b)

where Ek and Fk are the Fourier components of the right-hand sides of the equations, and

μk =
{

r M
( |k|−kd

M−kd

)2
if |k| > kd

0 if |k| ≤ kd

, (37)

where kd = M/2 and r = 0.25 were chosen for all the runs discussed below. Sensitivity of the
results for reasonable variations of kd and r was low. Dissipation effectively absorbs energy
if wavenumbers are close to the truncation number M, longer waves being virtually intact.
The modes with wavenumbers |k| ≤ kd are not affected at all. Note that an increase of the
truncation number M shifts the dissipation area to higher wavenumbers (and, with M → ∞,
the energy sink tends to zero due to dissipation), so the dissipation scheme described above
retains an approximation of the original (non-dissipative) system.

The problem of the numerical scheme validation for the wave model was discussed in
ChSh, Chalikov and Sheinin (2005) and Chalikov (2005). The scheme was found to be very
precise: a normal accuracy of solution for a sufficiently high resolution was around 10−10.
This is no surprise, since the equations written in conformal coordinates become the one-
dimensional evolutionary equations that can be accurately solved by means of the Fourier
transform method using no local approximations. A high accuracy of the solution and pres-
ervation of the integral invariants is crucial for a numerical wave simulation, as the ratio of
time scale for waves and that for the energy input and dissipation is on the order of 10−4, so
the wave motion is highly conservative, while at time scales of the order of a wave period it
is actually adiabatic.
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There is a unique possibility for validation of the numerical model by comparison of
the solution of full equations with the exact solution. Some algorithms for generation of all
the types of the stationary waves, as well as validation of the non-stationary model, were
described in ChSh. Propagation of very steep Stokes waves (ak = 0.42) was simulated by
Chalikov (2005) over 2,686,500 timesteps (932 periods). The total energy reduction for the
number of modes M =1,000 occurred only within 3 × 10−8%. Similar calculations for
ak = 0.42 carried out by Dold (1992) rapidly collapsed due to the numerical instability. The
exact phase velocity of the Stokes waves (ak = 0.42), obtained for the stationary solution
is 1.089578. The direct calculations of the phase velocity for the simulated Stokes wave
gave the value of 1.089579 ± 10−6. The same procedures were performed for the stationary
analytical solution for the capillary waves (Crapper 1957) as well as for the gravity-capillary
waves of varying capillarity (see ChSh). Such experiments proved the highest accuracy of
the scheme based on the conformal transformation. Note that the validation of the model
based on simulation of the exact Stokes waves assigned in the initial conditions is full and
not trivial.

The adiabatic version of the equations of wave theory (not necessarily potential) has a
very important property of self-similarity: a non-dimensional form of the equations (outside
of a capillary range) does not include a non-dimensional parameter. It means that due to
the simple scale transformation the numerical results can be used for analysis of the gravity
waves of any scales for the same non-dimensional initial conditions. The self-similarity of
the equation simplifies the study of wave dynamics, since the solution depends on the initial
conditions only, and each single run based on the non-dimensional equations corresponds to
an infinite number of real cases.

Over the last few years great attention has been given to the effect of breaking (Babanin
2009). In our opinion, the role of breaking for the air boundary layer is overestimated. A non-
linear dependence of the pressure extremes on the wave steepness plays a more important
role, while the influence of breaking on the WBL is just a consequence of such a dependence.
Breaking is the main mechanism of wave dissipation. A scheme based on conformal mapping
allows approaching very closely to the breaking point. In fact, the integration always termi-
nates in this way; still, due to high accuracy of the scheme, such modelling of the instability
represents an example of the unique case in fluid dynamics when a numerical and physical
instability follow each other in close succession. We use two ways of interpreting the breaking
process. When breaking is a subject of investigation per se, it is simulated directly up to the
point of the instability. The last non-realistic stage of breaking can be easily detected through
the energy conservation control. The final stage of breaking is evidently non-potential. Such
a direct method is inapplicable if the wave model is used for a long-term coupled simulation
when studying the WBL structure, the wave drag and the energy exchange.

In long-term coupled simulations the termination is not desirable. This is why an algorithm
of the breaking parameterization based on smoothing of the interface was developed. The
algorithm (the basic concept of the algorithm is very close to that used for parameterization
of free convection in atmospheric models) is designed to prevent the breaking instability
by highly selective high-frequency smoothing of the interface profile. Many schemes to
parameterize such a phenomenon were tested, the most efficient being based on the simple
diffusion-type algorithm:

ητ = Eη + J−1 ∂

∂ξ
B
∂η

∂ξ
, (38a)

ϕτ = Fϕ + J−1 ∂

∂ξ
B
∂ϕ

∂ξ
, (38b)
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where E and F� are the right-hand sides of Eqs. 32 and 33, whilst the coefficient of diffusion
B depends on the second derivative of the interface:

B =
⎧
⎨

⎩
Cb

(
�ξ ∂

2z
∂ξ2

)2
∂2z
∂ξ2 > s

0 ∂2z
∂ξ2 ≤ s

, (39)

where the coefficient Cb is of the order of 0.1, and the critical value of the second derivative
s is of the order of 300. The algorithm of the ‘tail dissipation’ (38, 39) does not change the
volume but reduces the energy and momentum of waves. It is assumed that some portion of
the energy (and momentum) loss is transferred to the horizontal flow, while another portion
is transferred to turbulence (such transformations can be considered separately, see Chalikov
and Belevich 1993). Evidently the potential wave model cannot assimilate anything but a
normal stress component.

Parameterization of the rotational breaking in the potential model allows us to effectively
prevent development of the breaking instability. Such a scheme does not influence the solu-
tion in the absence of breaking. We do not consider this algorithm as the final solution of the
problem, since it cannot prevent collapse in the cases of very high initial steepness or energy.
However, for the normal steepness of sea waves, and for the cases of a relatively slow growth
of the local energy, it works well.

6 Coupling of Wave Models with the Model of the Wave Boundary Layer
and Description of Numerical Experiments

The coupled model consists of the two main components: the wave model and the WBL
model. Both of the models must be integrated simultaneously. However, there is a small
parameter in the coupled problem, i.e., the ratio of density for air and water ρa/ρw ≈ 10−3.
This is why coupled modelling can be carried out as a separate time stepping with exchange of
matching information at each timestep. The WBL model calculates boundary conditions for
the wave model: the surface pressure p0 and the normal turbulent stress providing exchange
by momentum and energy between air and water. The wave model calculates a shape of
the interface η (ξ), a rate of the ‘vertical’ displacement ητ , required for the calculation of
the metric coefficients for the WBL model and the surface velocity components u0 and w0,
as a boundary condition for the Poisson equation for pressure, and for the calculation of the
tangential stress τt on the interface. Along with the surface pressure po, the tangential stress
τt is responsible for formation of a constant-stress layer in the WBL. τt cannot be assimilated
in the wave model due to potentiality.

The specific problem of coupled modelling is that the initial data are normally given in
Cartesian coordinates, but they need to be converted into (ξ, ζ ) coordinates. For this purpose
and for post-processing of the results a precise interpolating algorithm based on the periodic
high-order spline functions was developed.

In this study the method of approximation of initial conditions by superposition
of the Stokes waves developed in Chalikov (2005) was used. Briefly, the method is based on
the use of ‘upper conformal coordinates’ (Eq. 3) where ζ > 0 (ξu, ζu). It was shown that the
superposition of the linear waves assigned in this coordinate system, after interpolation to
Cartesian coordinates, turns into the superposition of the Stokes waves with high accuracy.
Note that the full equations at any reasonable initial conditions (after a certain accommo-
dation period) reproduce this effect too, since harmonic waves tend to turn into Stokes-like
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waves. Herein an initial generation of Stokes waves was used to accelerate transition to the
statistically homogeneous regime.

In this study we applied the above method for the numerical simulation of the surface
waves for investigation of evolution of a wave field assigned by the one-dimensional version
of the JONSWAP spectrum S f for finite fetch as a function of frequency ω,

S f (ω) = αg2

ω5
exp

(
−β1

(ωp

ω

)4
)
γ r , (40)

where β1 = 1, 25, γ = 3.3, ωp is a parameter whose value is close to the frequency of the
spectral peak Sp . Other parameters can be expressed through ωp:

r = exp

(
−

(
ω − ωp

)2

2σ 2ω2
p

)
, (41a)

α = 0.0099�0.66, (41b)

σ =
{

0.07 ω ≤ ωp

0.09 ω > ωp
, (41c)

where

�p = ωpU10

g
= U10

cp
, (42)

is the non-dimensional frequency in the spectral peak and cp is the peak phase velocity.
It is well-known that approximation (40) overestimates the spectrum at low values of the

non-dimensional frequencies� ≤ 1.3 (high fetches). To maintain the right asymptotic behav-
iour, the approximation (40) was combined with the Pierson–Moskowitz (PM) spectrum for
the fully developed waves

S∞(ω) = α g2

ω5
exp

(
−β2

(ω0

ω

)4
)

(43)

through the following relation:

S = S∞W + S f (1 − W ), (44)

where W is a weight that is convenient to represent as a function of�. It is easy to show that
�∞ = 0.855 for the PM spectrum. Since transition from the spectrum S∞ to S f happens in
a small interval of�, the function W quickly decays with growth of�p −�∞. The function
W (�) was approximated by

W = exp
(−15

(
�p −�∞

))
. (45)

In the initial JONSWAP approximation the enhancement parameter for the spectrum γ was
accepted as constant: γ = 3.3. Later some investigators came to the conclusion that the
above parameter can be a function of the fetch or peak frequency ωp . According to Babanin
and Soloviev (1998), γ increases with �p as γ = 1.224�p .

Merging (44) is done in a very narrow interval [0.855 to 1]. The number of cases falling
in this interval is so small that it does not influence the statistics. Approximations (40)–(43)
were rewritten in terms of wavenumbers using the linear dispersion relation that is valid at
least up to 3�p (Chalikov 2005). The non-dimensional wavenumber kp at the spectral peak
is a parameter of initial conditions. To describe the low wavenumber slope of the spectrum,
kp should exceed 1, while for a good approximation of the entire spectrum, as well as for
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spectrum spreading due to non-linearity, kp should be considerably smaller, as compared with
the total number of modes M . Actually, kp is the parameter of the accuracy of approximation.

The best way of modelling of the WBL might be based on a very high spectral resolution
for reproduction of large and small waves including capillary waves. One can imagine that
for such calculations the number of modes should not be less than 10,000. A high horizontal
resolution suggests a high vertical resolution; consequently, the number of levels in the WBL
should be about 100 and the total number of knots should be equal to 400,000. Such calcu-
lations can be performed only for a few cases. Hence, a moderate resolution for obtaining
rich statistical data on the WBL structure was assigned (see below for the description of the
numerical experiments). If the wave spectrum is not resolved up to a high wavenumber, the
problem of parameterization of the subgrid waves arises. By analogy with the solid rough
surface, we assume that the local roughness parameter zl is proportional to root-mean-square
(rms) height hr of the ‘roughness elements’, i.e. to the typical height of all subgrid waves:

zl = 0.03

⎛

⎝α
kr∫

M

k−3dk

⎞

⎠
1/2

= 0.0027k−1
r (46)

Finally, the local drag coefficient in Eq. 15 can be calculated as follows:

Cl = κ2
(

ln
z1

zl

)−2

, (47)

The initial conditions for the Fourier coefficients of the free surface η(x) were assigned
in the following form:

|hk | = (2S(k)�k)1/2, (48a)

ηk = |hk | cos (ϕk), (48b)

ηk = |h−k | sin (ϕk), (48c)

where k = 1, 2, 3, . . . ,M, |hk | is the amplitude of the kth mode, Mi is the number of modes
assigned for initial conditions, ηk, η−k are the Fourier coefficients, and ϕk are the random
(over k and over different runs) phases distributed uniformly over the interval (0 to 2π). The
Fourier coefficients fk for the surface potential f (x) were assigned through:

fk = − |k|−1/2 a−k, (49)

for k = −Mi ,Mi . Following the inverse Fourier transform, functions η(x) and f (x) were
transferred from the ‘upper coordinates’ to the ‘lower coordinates’ by means of periodic
spline interpolation providing accuracy of the order of 10−10 for very steep waves, and
10−30 for the medium-amplitude waves. Post-processing was done for the data transferred to
the Cartesian coordinate by the inverse algorithm. For the spectrum assigned in the form of
(40)–(44) for the integral rms steepness less than 0.09 the breaking instability never occurs.
For the rms steepness of the order of 0.15 the breaking instability occurs immediately within
one peak wave period.

7 Evolution of Waves

Figure 1 clearly illustrates the essence of the problem being solved. The figure represents an
instantaneous image of interacting flows for the case of the initial wave field assigned as a
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x
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Fig. 1 An example of 2-D flow structure above waves. The contours represent pressure distribution (solid
lines correspond to positive values, dashed lines to negative values); arrows are vectors of wave-produced
velocity. A small fragment of the reproduced field is drawn: the total height of domain is about 0.7; length
equals 2π

superposition of 1,000 linear (in the upper coordinate system) wave modes corresponding to
the JONSWAP spectrum for the non-dimensional peak frequency �p = U10/cp = 2. The
number of knots over the ‘horizontal’ coordinate ξ equals 4,000; over the ‘vertical coordinate’
ζ the number of levels equals 70; the stretching parameter γ equals 1.07. In fact, the coupled
model simulates a periodic process in the circular wind–wave tunnel, although with neither
wave reflection from the walls nor centrifugal acceleration. The periodic domain includes
16 peak waves. It is impossible to show the entire domain with length L = 2π and height
Ha = 0.7, so Fig. 1 shows only a small fragment with the non-dimensional height equal
to 0.1 and the non-dimensional length equal to 1.2. The solid periodic curve corresponds to
water elevation distorted by dispersing waves. The contours within the air domain represent
the distribution of pressure (solid lines correspond to positive anomalies, while dashed lines
show negative anomalies). The smooth curve in the middle of the picture shows the averaged
wind profile. The wind and waves are directed from left to right. The non-dimensional wind
speed at the top edge of the picture equals 0.5, while the non-dimensional peak phase velocity
equals 0.25. The waves demonstrate a tendency for peak sharpening and trough smoothing.
The vectors in Fig. 1 describe a wave-produced velocity field, and the largest distortions
of the pressure and velocity fields occur behind the wave crests of high waves. In general,
negative anomalies of pressure and high gradients of wave-produced velocities are concen-
trated in the narrow intervals with high negative steepness of wave surface. Such intervals
appear more frequently than those with high positive steepness, e.g. a wave has a tendency
for inclining forward, while a flux of energy depends non-linearly on the local steepness. The
spectral representation of such pressure becomes less meaningful, since the high wavenumber
Fourier modes do not correspond to real waves; they rather provide the approximation of the
impulse-like negative anomalies of the pressure. The positive anomalies of the pressure are
distributed more or less smoothly over the areas of either positive or small steepness. On the
whole, such a pressure field generates a positive flux of momentum from wind to wave.

The main advantage of the mathematical ‘wind–wave channel’ is the possibility of gen-
eration of the full set of all kinematic and dynamic fields. It is easy to install a ‘sensor’
for the registration and calculations of any statistical and spectral characteristics including
high-order moments. The total Et , kinetic Ek and potential E pwave energies are defined as

E p = (2π)−1

2π∫

0

z2xξdξ, (50a)
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E p = (2π)−1

2π∫

0

ϕϕζ dξ, (50b)

Et = E p + Ek . (50c)

The rate of energy exchange between air and waves can be calculated as follows:

Ft = pητ + τ ′
0u′

0xξ , (51)

where the first term describes the work of the surface pressure, while the second term describes
the work of the tangential stress. In general, the flux of energy is directed from wind to waves,
although in some cases, when the wave spectrum includes a swell whose phase velocity is
higher than the wind speed, the energy is directed from waves to wind (i.e., waves accelerate
the flow). Such waves are always present in the wind–wave spectrum, though the effect of
the inverse flux of energy in the low-frequency spectral range is insignificant for the WBL.
However, this process can contribute to the dissipation of the swell.

The integral rate of kinetic Dk and potential Dp energy dissipation is calculated as

Dk = η (ητ )d , (52a)

Dk = ϕ (ϕτ )d , (52b)

D = Dk + Dd , (52c)

where (ητ )d and (ϕτ )d are the sum of the dissipation terms. Equations 52a–c includes the
‘tail dissipation’ (36a,b) describing the flux of energy into the subgrid wavenumbers, and
the breaking dissipation described by Eqs. 38a,b. Note that the wave profiles often do not
contain any intervals affected by breaking; however, the dissipation due to breaking (when
it does occur) is normally greater by orders of magnitude comparing to the ‘tail dissipation’.

The evolution of the wave energy, input and dissipation of energy for the initial condi-
tions assigned by the JONSWAP spectrum at �p = 2, is shown in Fig. 2. In this run the
wave field was initially represented by 100 wave modes with kp = 16 and M = 1,000. The
wave energy increases due to the action of wind. The evolution of the potential energy E p

(the thin curve), kinetic energy Ek (the dotted curve) and total energy Et = 0.5
(
E p + Ek

)

(the thick curve, see Eq. 50c) over the last 30 peak wave periods, is represented in panel
a. The potential and kinetic energies averaged over the period (0, 2π) rapidly fluctuate, but
these fluctuations are not pronounced for the averaged total energy Et . The energy input to
waves (panel b, the upper curve) also fluctuates due to the variable wave steepness repre-
sented in frame c by the highest absolute value of the steepness in every instantaneous wave
profile. In most cases the negative steepness is stronger than the positive one, since waves are
asymmetric (i.e., inclined forward). The steepness in panel c is taken with an opposite sign.
As seen, enhancement of the energy input and energy dissipation develops with an increase
of steepness. Such fluctuations cannot be explained on the basis of the linear theory. Frame
d shows the same evolution over the total interval of integration (about 370 periods of the
peak wave periods); in this frame the curves for E p, Ek and Et merge into one thick curve.
The bottom frame e shows the evolution of the total input of energy (the upper fluctuating
curve) and its dissipation (the bottom curve). The dashed straight line close to the zero line
corresponds to the input of energy to waves through the tangential stress, which is much
smaller than the input provided by the pressure field. The input of energy is strongly inter-
mittent. Such intermittency occurs since the input depends rather on the surface geometry in
physical space than on the spectrum (which fluctuates slowly in the energy-containing part).
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Fig. 2 a Evolution of potential
E p (thin curve), kinetic Ek
(dotted curve) and total
Et = 0.5

(
E p + Ek

)
(thick

curve) energies (Eqs. 50a–c) over
the last 30 peak wave periods;
b evolution of input (upper curve,
Eq. 51) and dissipation D (lower
curve, Eqs. 5a–c) of energy for
the same period; c evolution of
the highest steepness (with an
opposite sign) in a wave profile;
d evolution of energy over the
total interval of integration (about
370 periods of peak wave
periods). In this frame the curves
for E p, Ek and Et merge;
e evolution of the total input
(upper curve) and dissipation
(lower curve) for the same period

a

b

c

d

e

Note that, according to linear theory, the input energy should be very stable and can change
due to variations of spectrum.

8 The 1-D Structure of the 2-D WBL

The main difference between the WBL and the boundary layer above the flat surface is the
presence of a moving curvilinear interface between water and air. In linear theories such
finite amplitude fluctuations of the interface are actually ignored, however, in the mathemati-
cal simulations such an approach is unacceptable. Numerical modelling of the boundary layer
and waves is impossible to carry out in the Cartesian coordinate system, which is the main
reason for the introduction of surface-following coordinates. The dynamic equations in the
curvilinear coordinates are more complicated compared with the standard form equations.
Fortunately the 2-D case allows introduction of conformal coordinates. The equations written
in such coordinates are not simple, though they are much simpler compared to equations in
general curvilinear coordinates. Moreover, the equations written in conformal coordinates
can be easily interpreted. The main advantage of the surface following coordinates (2) is that
water and air domains are separated by the coordinate ζ = 0. The natural boundary condition
above the flat surface isw = 0 at z = 0, while in conformal coordinates the ‘vertical’ contra-
variant velocity W acquires the role of the vertical velocity w. Since a kinematic condition
on the surface is W = 0, the exchange by finite volumes through the interface is absent.

Let us average the equation for the horizontal momentum (5a) over the coordinate ζ =
constant
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∂ 〈Ju〉
∂t

= ∂

∂z

⎛

⎝−〈uW 〉
(I)

+ 〈
pzζ

〉

(II)
+

〈
−zξu′u′ + xξu′w′

〉

(III)

+
〈
u′w′

〉

(IV)

⎞

⎠ (53)

which is the equation of the horizontal momentum balance. The brackets 〈 〉 denotes aver-
aging along ξ over the period [0, 2π ]. Since 〈ζ 〉 = z and 〈∂/∂ζ 〉 = ∂/∂z, Eq. 54 can be
considered as written in the Cartesian coordinate system.

The rate of momentum change depends on the vertical divergence of the vertical momen-
tum flux provided by the wave-produced velocities (I), pressure (II), fluctuations of stresses
(III) and the averaged turbulent flux (IV). Equation 53 is similar to the standard equation of
momentum balance above the flat surface:

∂u

∂t
= ∂

〈
u′w′〉

∂z
, (54)

although the Eq. 53 takes into account additional mechanisms of the vertical momentum
transport. Note that, contrary to Eq. 54, the averaging in Eq. 53 is performed along the cur-
vilinear paths. Such averaging is suitable in the presence of the curvilinear surface, since the
surface kinematic condition W = 0 at ζ = 0. Equation 54 makes no sense for the case with
a curvilinear boundary, since Eq. 54 can be derived by averaging beyond the highest eleva-
tion in ensemble only. Through the interface momentum is transferred by the pressure field
and tangential stresses. Since the wave model is potential, it cannot assimilate the tangential
stress; therefore, waves obtain energy mostly through the surface pressure field.

For investigation of the vertical structure of the WBL the results of the long run described
in the previous section were used. The instantaneous wave-produced fluctuations of pressure
have an irregular structure, however, being averaged over time, they exhibit distinct reg-
ularities. The averaged vertical profiles of the spectral component of the pressure Pk are
shown in the upper panel of Fig. 3, where the pressure spectrum decays exponentially with
height. After normalization of each profile by the surface value of pressure, and introduction
of the vertical coordinate kz, the profiles of Pk become more or less universal and can be
approximated through the following relation:

Pk = P0k exp
(−Apkz

)
, (55)

where Pok is the surface value of Pk, Ap is the decrement falling within the range 0.6 <
Ap < 0.7. Hence, the wave-produced pressure fluctuations in the turbulent flow attenuate
at a slower rate as compared with the pressure fluctuations in potential waves. The spec-
trum of the kinetic energy of the wave-produced velocity fluctuations demonstrates a similar
behaviour, the decrement Ae varying within the range 0.6 < Ae < 1.0.

An example of the surface pressure spectrum is shown in Fig. 4 (curve 2), where curves
1 and 3 show the elevation spectrum and the spectrum of the near-surface kinetic energy
respectively. The straight line 5 corresponds to the dependence Sk ∼ k−3. As seen, the high
wavenumber part of the spectrum maintains its shape with a good accuracy. The spectrum of
the near-surface kinetic energy attenuates slower with increase of wavenumber, as compared
with the wave spectrum. It is interesting to note that the maximum of the surface pressure
spectrum is shifted from the maximum of the wave spectrum to higher wavenumbers. The
maximum of the pressure spectrum is located in the vicinity of the maximum of spectral
steepness Sk (curve 4) defined by the following expression:

Sk = k
√

S�k, (56)

(k is the wavenumber, S represents values of the wave spectrum,�k = 1). Hence, anomalies
of the surface pressure depend rather on steepness than on the wave amplitudes.
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Fig. 3 Spectral structure of the
pressure field. Upper
panel—vertical profiles of
Fourier amplitudes for pressure
Pk . Bottom panel—vertical
profiles of pressure Fourier
amplitudes, normalized by their
surface value P0k as a function of
non-dimensional height kz

Fig. 4 Typical spectra of:
surface elevation—curve 1,
surface pressure—2, surface
kinetic energy—3, spectral
steepness—4 (Eq. 56). Straight
line 5 corresponds dependence
Sk ∼ k−3

Different components of the vertical momentum flux (Eq. 53) normalized by the outer
stress τ as a function of z/L p(L p = 2π/kp), are given in Fig. 5; the aggregated grey lines
are instantaneous profiles, while the solid lines are averaged profiles. As seen, all of the
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Fig. 5 Different components of the vertical momentum flux as a function of z/L p (vertical axis) normalized
by the outer stress τ (see Eq. 53). Aggregated grey lines are instantaneous profiles; solid lines are averaged
profiles: Fa—an averaged turbulent momentum flux (0th mode, term IV in Eq. 53); F f —momentum flux
provided by wave fluctuations of turbulent stresses (term III); Fp—momentum flux provided by the pressure
field (term II); Fw—momentum flux provided by the velocity field (term I); F—the total momentum flux

components of the wave-produced momentum flux (WPMF) are concentrated in the vicinity
of the surface in the layer whose thickness is of the order of 0.2L p . The averaged turbulent
momentum flux Fa (term IV in Eq. 53) transfers momentum to the averaged flow in the water
(drift currents). Fa reaches the minimum value 0.7τ at height z = 0.01L p and equals 0.9τ on
the surface. Hence, at given spectral resolution only 10% of the total stress is transferred to
the waves. The flux of momentum transferred by fluctuating turbulent stresses F f (term III in
Eq. 53) is quite insignificant, which means that a correlation between the tangential surface
stress and a tangential component of the orbital velocity is weak. Pressure transfers the main
part of the momentum to waves, Fp (term II in Eq. 53). In the given case this flux increases
monotonically upon approaching the surface where it reaches the value of 0.15τ . However,
it should be emphasized that the surface value of Fp depends on the spectral resolution (see
Sect. 10). With an increase of the ‘cut frequency’ this value grows, almost reaching the value
of the total stress τ . The flux of momentum transferred by the velocity field Fu (term II in
Eq. 53) reaches its maximum at a height z/L p ≈ 0.1, and then decreases upon approaching
the surface. Fu becomes strictly equal to zero at the surface due to the surface kinematic
condition.

Let us define the kth spectral component of the wave-produced momentum flux τ k
w as the

Fourier component of the total momentum flux to waves, i.e. the sum of the I, II and III terms
in Eq. 53. The averaged profiles of the spectral components of the WPMF calculated over
the entire run are shown as a function of z in Fig. 6. As seen, the shapes of the profiles con-
siderably depend on the wavenumber. These data can be regularized by normalization with
the surface values of τ k

w; and by introduction of the non-dimensional wave height kz, in the
same way as was done with the data shown in Fig. 3. After such a transformation the profiles
of τ k

w appear as the profiles in the bottom panel of Fig. 3. However, such a regularization can
be much more precise if the following dependence is introduced:

τ k
w = τ k

w0 exp (Gkz), (57)

where G is the weak function of ω̃ = �/�p,

G = 0.985 + 0.4 (ω̃)0.81 , (58)
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Fig. 6 The upper panel: vertical
profiles of the total wave
produced momentum flux
(WPMF) Ftwp as a function of z;
lower panel—the same profiles
but normalized by surface values
as a function of Gkz (Eq. 59)

noting that ω̄ is also equal to the ratio of the dimensional frequencies ω and ωp .
The spectral components of the profiles of τw/τw0 are presented in the lower panel in

Fig. 6 as a function of Gkz. As can be seen, Eq. 57 provides a satisfactory parameteri-
zation of the vertical profile of the WPMF spectral components. Note that the results dis-
cussed below do not change significantly, if the function G (ω̃) is replaced with a con-
stant.

9 Evaluation of the β Function

According to linear theory, the Fourier components of the surface pressure p0 are related to
the Fourier components of surface elevation through

pk + i p−k = (βk + iβ−k) (hk + ih−k), (59)

where βk and β−k are real and imaginary parts of the β function (i.e. the Fourier coefficients
at cosine and sine respectively). It is a traditional suggestion that both coefficients are a
function of the nondimensional frequency � = ωkU (where U is the nondimensional wind
speed). It would be quite reasonable to suggest that the reference level for the wind speed
can be different for different frequencies; hence, the non-dimensional frequency � can be
defined in the following way:

� = ωkU (λk/2) = U (λk/2) /ck, (60)

whereωk = |k|1/2 is the non-dimensional frequency, ck is the phase velocity of the kth mode,
and U is the non-dimensional wind speed at height ζ = λk/2, where λk = 2π/k is the length
of the kth mode.

One of the main tasks of the present investigation is the evaluation of the β function
over a wide range of the non-dimensional frequency �. For this purpose 47 long-term
(up to several hundred peak wave periods) numerical runs with various wind speeds and
spectral resolutions were performed using the coupled wind–wave model (see Table 1).
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The wind speed at the upper level of the domain was assigned through different values
of the stress τ = v∗ |v∗| directed along and against the overall movement of waves. The
main characteristics of the runs are indicated in Table 1. A stretching coefficient for the
vertical grid γ was taken as 1.07, while some experiments were repeated for γ = 1.05
and even for γ = 1.01. The peak of the spectrum was usually placed at the wavenum-
ber kp = 4, although runs 29 and 30 were carried out at kp = 8, and runs 36–44
at kp = 16. The total number of modes M was normally equal to 100, while several
runs intended for validation of the results were repeated for M = 200, M =1,000 and
M =2,000.

It should be noted that, though the algorithm of the breaking parameterization (38), (39)
was activated, some runs lapsed due to the breaking instability that occurs following the
approach of a downwind slope to the vertical. To resume another run in automatic mode, a
criterion for the run termination was defined as the first appearance of a non-single value of
the surface η in the Cartesian coordinates:

x(i + 1) < x(i) (61)

for i = 1, 2, 3, . . ., N − 1. It is possible to continue integration for the non-single-value
surface (see Chalikov and Sheinin 2005), but the details of the process are not the subject
of the current study. It is important to note that, upon reaching the criterion (61), stabil-
ity is never restored: the volume of fluid crossing the vertical x(i) quickly increases. The
overturning always starts at the crest of the steepest wave. At the initial stage of such an
evolution the conservation of invariants remains good; still, later, a sharp increase in energy
occurs, and further integration becomes pointless. Usually instability develops throughout
one Runge–Kutta timestep; the main reason for such numerical instability is growth of the
right-hand sides of Eqs. 30 and 31. Application of the dynamic timestepping (similar to that
used by Zakharov et al. 2002) can prolong run ‘agony’, though for quite a short period of
time. The numerical instability exhibiting itself in breaking has a physical origin: in reality a
falling water volume becomes rotational and splits into small patterns (i.e., a white capping
phenomenon).

Strengthening of stability can be achieved by an increase of the Cb value and by a decrease
of the s value in Eq. 39; in this case sharp wave crests become smoother, which weakens the
dynamic interaction between wind and waves. It was the reason for choosing relatively soft
smoothing. Any criterion for identification of breaking, introduced for highly idealized con-
ditions (Banner and Pierson 2007), turned out to be inapplicable. In reality the local breaking
in a multi-mode wave field occurs for some inexplicable reason. The duration of a run (Tp

in Table 1, expressed in periods of a peak wave) is found to be dependent even on a set of
initial phases for modes.

Each run performed for different values of �p provided data required for the calculation
of β (�) within the interval [�min,�max] (see Table 1). As seen, the data cover the interval
−50 < � < 50.

The total number of 1-D records of the wave surface (each of them containing from 400
to 8,000 points) was equal to 27,802. After the Fourier transform of each of such records,
the first 50 complex Fourier coefficients for p0 and η were used for the calculations of the
β function. The total number of points falling within the interval −50 < � < 50 was equal
to 1,390,100. For estimation of β values the above interval was separated into 100 bins with
the width of δ� = 0.1, and the number of points falling within each interval was roughly
the same, i.e. around 14,000.
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Table 1 Parameters of runs: v∗—friction velocity; �p = u (λk/2) /cp ; (�min,�max)—range of �k cov-
ered by run; Tp—length of run (expressed in peak wave periods); γ—stretching coefficient for vertical grid;
k p—peak wavenumber

No. v∗ �p �min �max Tp γ k p

1 −0.50 −28.75 −48.97 −10.65 57.3 1.07 16

2 −0.40 −24.78 −43.64 −8.97 89.1 1.07 16

3 −0.30 −20.31 −37.04 −7.16 12.7 1.07 16

4 −0.30 −20.31 −37.04 −7.16 19.1 1.07 16

5 −0.20 −8.97 −28.75 −5.18 127.3 1.07 4

6 −0.15 −7.16 −23.72 −4.10 127.3 1.07 4

7 −0.10 −5.18 −17.84 −2.94 222.8 1.07 4

8 −0.10 −5.18 −17.84 −1.64 79.6 1.07 4

9 −0.05 −2.94 −10.65 −1.64 95.5 1.07 4

10 −0.0125 −0.91 −3.53 −0.50 95.5 1.07 4

11 −0.00625 −0.50 −1.98 −0.27 12.7 1.07 4

12 −0.00313 −0.27 −1.10 −0.15 87.5 1.07 4

13 0.00313 0.27 0.15 1.10 76.4 1.07 4

14 0.00625 0.50 0.27 1.98 103.5 1.07 4

15 0.0125 0.91 0.50 3.53 350.1 1.07 4

16 0.025 1.64 0.91 6.19 159.2 1.07 4

17 0.05 2.94 1.64 10.65 127.3 1.07 4

18 0.05 2.94 1.64 10.65 127.3 1.05 4

19 0.08 4.10 2.31 14.46 127.3 1.07 4

20 0.10 5.18 2.94 17.84 127.3 1.07 4

21 0.10 5.18 2.94 17.84 222.8 1.05 4

22 0.13 6.19 3.53 20.91 159.2 1.07 4

23 0.10 6.83 2.94 17.84 495.2 1.01 8

24 0.15 7.16 4.10 23.72 159.2 1.07 4

25 0.15 7.16 4.10 23.72 127.3 1.05 4

26 0.20 5.18 5.18 28.75 143.2 1.07 4

27 0.20 5.18 5.18 28.75 127.3 1.05 4

28 0.15 9.39 4.10 23.72 117.0 1.01 8

29 0.25 10.65 6.19 33.15 39.8 1.07 4

30 0.25 10.65 6.19 33.15 12.7 1.05 4

31 0.30 12.24 7.16 37.04 82.8 1.07 4

32 0.30 12.24 7.16 37.04 57.3 1.05 4

33 0.35 13.74 8.08 40.52 82.8 1.07 4

34 0.35 13.74 8.08 40.52 82.8 1.05 4

35 0.40 15.16 8.97 43.64 70.0 1.07 4

36 0.40 15.16 8.97 43.64 95.5 1.05 4

37 0.20 15.16 5.18 28.75 12.7 1.07 16

38 0.20 15.16 5.18 28.75 22.3 1.07 16

39 0.45 16.53 9.82 46.44 82.8 1.07 4

40 0.45 16.53 9.82 46.44 55.7 1.05 4

41 0.50 17.84 10.65 48.97 54.1 1.07 4
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Table 1 continued

No. v∗ �p �min �max Tp γ k p

42 0.50 17.84 10.65 48.97 63.7 1.05 4

43 0.55 19.10 11.46 51.24 71.6 1.05 4

44 0.60 20.31 12.24 53.29 79.6 1.07 4

45 0.40 24.78 8.97 43.64 19.1 1.07 16

46 0.50 28.75 10.65 48.97 15.6 1.07 16

47 0.50 28.75 10.65 48.97 95.5 1.07 16

Generation of a great volume of data was necessary, since the values of the β function
have a considerable scatter. The one-point values of the real β i

k and imaginary β i
−k parts of

the β function can be calculated through the Fourier coefficients for p0 and η, viz.

β i
k =

∣∣∣ηi
k

∣∣∣
−2 (

pi
kη

i
k + pi

−kη
i
−k

)
, (62a)

β i
−k =

∣∣∣ηi
k

∣∣∣
−2 (

pi
−kη

i
k − pi

kη
i
−k

)
, (62b)

while the averaged values of βk and β−k were calculated in each bin using the root-mean-
square method:

βk =
Ni∑

1

(∣∣∣ηi
k

∣∣∣
−2 (

pi
kη

i
k − pi

−kη
i
−k

)) ⎛

⎝
Ni∑

1

∣∣∣ηi
k

∣∣∣
4

⎞

⎠
−1

, (63)

β−k =
Ni∑

1

(∣∣∣ηi
k

∣∣∣
−2 (

pi−kη
i
k − pi

kη
i−k

)) ⎛

⎝
Ni∑

1

∣∣∣ηi
k

∣∣∣
4

⎞

⎠
−1

, (64)

where Ni is the number of points falling in each i th bin. The dispersion of the coefficients
for the β function is calculated as follows

σk =
⎛

⎝N−1
i

Ni∑

1

(
β i

k

)2 − β2
k

⎞

⎠
1/2

, (65a)

σ−k =
⎛

⎝N−1
i

Ni∑

1

(
β i

−k

)2 − β2−k

⎞

⎠
1/2

, (65b)

where the β function (the vertical axis) as a function of � (the horizontal axis) is given in
Fig. 7 for the three intervals: −50 < � < 50, −10 ≤ � ≤ 10 and −2 < � < 2. The
thick line (white in the left frame) corresponds to β−k (taken with opposite sign), and the
dashed line corresponds to βk . As seen, the data on β have a very wide scatter, as if they were
obtained experimentally, and it will be shown later that such a scatter has a deep physical
nature. Still, the volume of the data is so large that the shape of the β function, especially for
the range of −20 ≤ � ≤ 20, can be determined with a satisfactory accuracy. The β function
can be approximated through the following expressions
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Fig. 7 The left frame—β (ordinate) as a function of � (abscissa). Thick lines (white—in the left frame)
correspond to β−k (taken with opposite sign), dashed line to βk . The signs filled circle and asterisk indicate
mean values in the bins for β−k and βk correspondingly, while grey lines are dispersion. The two other frames
show the twice zoomed β function

β−k =
⎧
⎨

⎩

b1 + d1 (�−�1) � < �1

b0 + a0 (�−�0)+ a1 (�−�0)
2 �1 ≥ � < �2

b2 + d2 (�−�2) � ≥ �2

, (66a)

βk =
⎧
⎨

⎩

b3 + d3 (�−�4) � < �4

b4 + a2 (�−�3)
2 �4 ≥ � < �5

b3 − d3 (�−�5) � > �5

(66b)

where the numerical parameters are �0 = 0.7,�1 = −19.3,�2 = 20.7,�3 = 1.2,�4 =
−18.8,�5 = 21.2, a0 = 0.02277, a1 = 0.09476, a2 = −0.3718, b0 = −0.02, b1 =
37.43, b2 = 38.34, b3 = −141.0, b4 = 0.07, d1 = −3.768, d2 = 3.813, d3 = 14.80.

The β function is used for the calculation of the momentum F and energy flux E in the
spectral interval �ω

F(ω) = gkβ−k (�) S (ω)�ω, (67a)

E (ω) = gωβ−k (�) S (ω)�ω (67b)

where k and ω are the dimensional wavenumber and frequency respectively, and S is the
dimensional spectral density. The relations (67a,b) follow from the small-amplitude theory,
and their applicability for the finite-amplitude waves was never discussed. Note that the
equation for the spectral energy flux E (ω) is normally obtained from the equation for the
spectral momentum flux F (ω) with the use of the dispersion relation ω = √

gk. For low
wavenumbers the dispersion relation is valid, while for high frequency waves a connection
between the wavenumber and wave frequency is actually absent (Chalikov 2005), hence,
a flux of energy to the high-frequency waves should be a subject of a special investigation.
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For validation of the β function the data obtained from the additional runs were used;
these were carried out for various values of the initial steepness St defined as

St =
(

M∑

1

k2 |ηk |2
)1/2

, (68)

noting that in general St cannot serve as an indicator of steepness, since the integral of k2S
diverges at S ∼ ω−5, thus, the value of St depends on the cut-off frequency. Here we use the
parameter St only for comparison of different runs. All in all, 396 runs with the value of St
varying within the range of 0.005–0.15, were used for the calculations. A non-dimensional
root-mean-square error of pressure calculated through the β function pb, as compared to
the pressure calculated with use of the model, was obtained. The error is normalized by the
dispersion of anomalies of the ‘true’ (i.e., p0) pressure

e1 = |p0 − pb|
(

p0 − p0
)1/2 . (69)

The error increases from e1 = 0.3 at St = 0.01 to e1 = 0.6 at St = 0.12, then decreases,
since dispersion of the pressure grows faster than the error. A good agreement between the
‘true’ pressure and the pressure restored with the use of the β function exists only for small
and medium steepnesses. For the medium steepness St = 0.1 the correlation between p0

and pb is about 0.7, which makes the method of the flux calculation (67) still acceptable. For
higher steepness the connection between the ‘true’ and ‘restored’ pressure actually disap-
pears. There exist many reasons that explain why the method based on the β function cannot
provide a good accuracy for the surface pressure calculations at higher steepness. The main
reason is the non-linear dependence of pressure anomalies on steepness. This effect is clearly
seen from the point-to-point comparison of p0 and pb given in Fig. 8 for various steepnesses.
As seen, for steepness St ∼ 0.01 the agreement between p0 and pb can be considered as
good. For steepness St = 0.05 small pressure anomalies are still reproduced well, while large
anomalies are underestimated. With a further increase of steepness a disagreement between
the big values of p0 and pb becomes more significant. Such an effect can be easily explained.
Large pressure anomalies are usually concentrated in the narrow zones in the vicinity of sharp
peaks. Such a distribution of pressure does not have a clear spectral presentation; hence, the
linear dependence (59) becomes inapplicable. As a result, the steep and sharp waves provide
the flux of momentum and energy greatly exceeding the values that can be obtained on the
basis of the linear dependence of pressure on elevation. The simulated growth of the flux of
momentum occurs much faster with increase of the slope, as compared with the growth of
the flux of momentum calculated on the basis of the β function. Such properties are well
pronounced in the spectrum of wave drag in Fig. 9 where the pressure spectra are shown for
different integral steepnesses. As seen, for the small and moderate steepness St = 0.01–0.05
the agreement between spectra for p0 and pb is good, while for high steepness St = 0.13
the spectrum density for p0 is higher than the spectral density for pb over the entire spectral
interval.

10 The 1-D Model of the Wave Boundary Layer

2-D coupled modelling is a complicated problem that requires powerful computers. In this
connection, it would make sense to develop the 1-D model that could describe the main
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Fig. 8 The point-to-point comparison of surface pressure pb calculated on the basis of the β function, with
surface pressure p0 calculated with the use of the 2-D coupled model for different integral steepness St

Fig. 9 Curve 1—wave spectrum; curve 2—surface pressure spectrum calculated using the coupled model;
curve 3—surface pressure calculated with the use of β function for different integral steepness; curve 4
corresponds to the dependence k−3(ω−5). Steepness is indicated in each frame

features of the WBL suitable for different practical purposes. Such models were developed
in Chalikov and Belevich (1993) and Chalikov (1995). The new data obtained with use of
the 2-D coupled model allow a more precise formulation of this problem.
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All variables in this section are assumed as dimensional. Neglecting the correlations of
J, ξx with any dynamic characteristics, and taking into account that 〈ζ 〉 = z, the one-dimen-
sional equations of the WBL can be obtained by averaging Eqs. 5a and 16a,b along the
coordinate ξ (the sign of averaging 〈 〉 for all the variables being omitted)

∂u

∂t
= ∂

∂z

(
K
∂u

∂z
+ τw

)
, (70)

∂e

∂t
= ∂

∂z
Ke
∂e

∂z
+ P − ε, (71)

∂ε

∂t
= ∂

∂z
Kε
∂ε

∂z
+ ε

e
(c2 P − c4ε), (72)

where K = cke2/ε is the coefficient of the turbulent viscosity, P is the rate of production of
the turbulent kinetic energy

P = ∂u

∂z

(
K
∂u

∂z
+ τw

)
, (73)

τw is the flux of momentum produced by the wave-produced fluctuations of velocity, stresses
and pressure (terms I, II and III in Eq. 54). According to Eq. 57 τw can be calculated by
integration of the WPMF spectral constituencies

τw =
ωr∫

0

τ k
w exp (−G(ω̄)kz) dk, (74)

where G (ω̄) is defined by Eq. 58, and the Fourier component of the WPMF on the surface
τ k
w is defined through the following expression

τ k
w = kgβ−k

(
�̃k

)
S(k), (75)

where β−k is defined in (66a), �̃k = ωu (λk/2) cos θ/g is the apparent frequency S(k) =
0.5

(
h2

k + h2−k

)
is the wavenumber spectrum. Also, u (λω/2) is wind speed defined at z =

λω/2, where λω = 2πg/ω2. The values of u (λω/2) were calculated using the log-linear
interpolation from u (z) profiles. For the low wavenumber modes the height λω/2 often
exceeds Ha , and the value of u (λω/2) was calculated using the log-linear extrapolation that
was used for ω < ωp only.

The stationary numerical solution for Eqs. 71–73 was obtained using the second-order
scheme at the stretched grid with stretching coefficient γ = 1.07, and the explicit time
scheme. The whole scheme requires a very small timestep �t ∼ 10−3 s estimated through
the following relation:

�t = 0.25 min

(
(�z)2

K

)
. (76)

For the stationary solution, the condition τz = K ∂u/∂z + τw = τ must be satisfied over
the entire WBL. The criterion for reaching the stationary solution was taken in the following
form

(max (τz)− min (τz)) /τ < 0.01, (77)
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and since a single run is simulated readily, a more efficient scheme was not used. However,
for regular use of the 1-D model (for example, in the framework of a wave forecasting model),
a better scheme must be semi-implicit, e.g. based on the TDMA scheme and iterations.

The boundary conditions for the 1-D equations are similar to those for the 2-D equations
(Eqs. 17–20). At the upper boundary z = Ha = 10Hs (Hs is the significant wave height) the
tangential stress is assigned as

K
∂u

∂z

∣∣∣∣
z=Ha

= τ. (78)

The rate of production PH at the upper boundary of the domain z = Ha is calculated as
follows

PH = v3∗
κHa

(79)

(vs = τ 1/2 is the friction velocity at z = Ha), while the energy of turbulence e and the rate
of dissipation ε assume the following values

eH = c1v
2∗, (80a)

εH = v3∗
κHa

. (80b)

The vertical diffusion of the turbulent energy Ke
∂e
∂ζ

at z = 0, as well as at the upper boundary
of the domain, z = Ha , is equal to zero. The vertical diffusion of the dissipation rate at z = 0
and at z = Ha is accordingly equal to

Kε
∂ε

∂ζ
(ζ = 0) = −v4

soz−1
1 c−1

3 , (81a)

Kε
∂ε

∂ζ
(ζ = Ha) = −v4∗ H−1

a c−1
3 , (81b)

where vs0 = τ
1/2
0 is the local tangential friction velocity defined by the local turbulent tan-

gential stress at the interface τ0. The constants κ, c1, c3, as well as the relationship between
K , Ke, Kε , are given in Sect. 2.

The 1-D WBL model is much simpler than the coupled 2-D model. Therefore, the wave
spectrum can be extended up to high wavenumbers. The highest wavenumber ωr is limited
by the upper bounds of the non-dimensional frequency � = ±50 in approximation (66a,b).
It was assumed that at the horizontal scales of the order of the limit resolution g/ω2

r , sea
surface can be considered as a smooth surface, so the local roughness parameter z0l can be
taken in the form (Monin and Yaglom 1971)

z0l = 0.1ν/v0z, (82a)

v0z = τ
1/2
0 , (82b)

where ν = 0.15 × 10−4 m2 s−1 is the molecular kinematic viscosity, v0z is the local friction
velocity, and τ0 is the local tangential stress defined by Eq. 15 with use of the drag coeffi-
cient: Cl = (k/ ln (�z1/z0l))

2, where the thickness of the lowest level �z1 is equal to 2zν
(zν = 60ν/v∗ is the height of the viscous sub-layer).

The initial 1-D wave spectrum was assigned by Eqs. 40–46, and the 2-D spectrum S2 (ω, θ)

was calculated as

S2 (ω, θ) = S (ω)ψ (θ), (83)
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where θ is the angle between the wind direction and the direction of a wave mode. The
function ψ was taken in the form (Donelan 1990)

ψ = ψ−1
0 (sec hb)n, (84a)

where

b =
{

2.61�1/3
p , �p < 0.95

2.28�−1/3
p , �p > 0.95

(84b)

and where ψ0 is the normalizing factor. Note that the value of n is not well known even for a
simple situation of the homogeneous wave field developed by a constant wind. For our calcu-
lation the value n = 2 corresponding to quite a broad spectrum, was chosen (Donelan 1990).
Spectrum S2(ω, θ) can be fixed; however, in our calculations the spectrum was updated
every 100 sec using a new value of �10 (Eq. 42) to obtain the fully adjusted WBL and
wave field. The wave spectrum was approximated on the stretched grid over frequency (ω)
�ωi+1 = γ�ωi , with the stretching coefficient γ = 1.03. To approximate the low-frequency
part of the spectrum the first frequency step�ω1 was equal to 0.1ωp (ωp is the dimensional
peak frequency). The angle resolution �θ equals 4◦.

11 The 1-D Structure of the Wave Boundary Layer

The specific feature of the WBL is that the new mechanism of momentum transfer develops
close to the surface (see Figs. 5, 6). The main advantage of the 1-D approach is that the wave
drag formation can be considered in a wide range including the high frequencies. Contrary to
the purely turbulent stress, the WPMF emerges due to the direct influence of waves, i.e. due
to curvilinearity of the underlying surface. Since the total momentum flux must be constant
over height for the steady wind, the turbulent momentum flux decreases when approach-
ing the surface. Hence, the WPMF modifies the interconnection of the wind profile and the
stress. Therefore, the structure of the WBL becomes different from that of the boundary layer
above the flat surface. For investigation of the WBL structure on the basis of the 1-D model
a series of calculations was carried out for �p = (0.855, 1.0, 1.25, 1.5, 2.0, 3.0, 5.0) and
for the initial value of u10 varying for each �p within the interval 8–40 m s−1. The initial
conditions for the WBL were assigned in the same way as for the logarithmic boundary layer
above the flat surface. Due to the appearance of wave drag in the process of reaching the
equilibrium solution, the wind speed u10 decreases, while the final values of u10 become
lower as compared to the initially assigned values.

Wind profiles above waves of different age for the two values of the wind speed u10 (about
15 and 30 m s−1) are shown in Fig. 10 as a function of the dimensional height z (m). The
thin lines indicate a downward extrapolation of the logarithmic wind profile from the levels
where the WPMF equals zero, while the boundary layer preserves its standard structure. As
seen, in the lowest part of the WBL a deviation of the wind profile from the logarithmic form
can reach several m for u10 ≈ 14 m s−1, and 10 m for u10 ≈ 30 m s−1. It is quite important to
note that such an effect takes place in the vicinity of the wave surface at heights of the order of
a wave height. Such features can be investigated experimentally using the surface-following
measurement technique similar to that designed by Donelan et al. (2006).

The most obscure problem of the wind–wave interaction is the dependence of stress on
wind speed, traditionally represented as the dependence of the drag coefficient C10 on u10. It
is well known that the experimental data on C10 have a large scatter providing that C10 grows
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Fig. 10 Wind profiles. In each
group thick curves correspond to
the values U10/cp =
0.855, 1.0, 1.25, 1.5, 2.0, 3.0.
For the left group
13.4 < U10 < 15.4 m s−1, whilst
for the right group—
29.5 < U10 < 36.3 m s−1. Thin
lines correspond to logarithmic
wind profiles extrapolated
downward from the outside part
of the WBL

m s-1

z 
(m

)

Fig. 11 The drag coefficient C10
as a function of U10 and
�p = U10/cp (curves labeled
with �p). Selection of Cd versus
U10 dependences by other
authors are shown: Dots are after
Babanin et al. (2001); bold line is
after Donelan (1982); 1 is after
Geernaert et al. (1986); 2 is after
Smith and Banke (1975);
3 is after Large and Pond (1982);
4 is after Yelland and Taylor
(1996)

m s-1

with wind speed at least up to u10 = 25–30 m s−1. The dependence of C10 on the wind speed
and wave age calculated with use of the 1-D model is shown in Fig. 11. As seen, the drag
coefficient depends rather on wave age than on wind speed. This conclusion is in qualitative
agreement with observations (Smedman et al. 2003), and accounts for a wide scatter of the
experimental data on the drag coefficient as a function of u10. only.

The data on C10 and u10. can be interpreted in terms of the total roughness parameter z0

based on all drag mechanisms. The dependence of the non-dimensional roughness z0g/v2∗
is given in Fig. 12. The data do not prove a universal character of the scaling Ch = v2∗/g
(Ch is the Charnock scale). However, the real data in the space

(
u10,�p

)
are distributed

over a narrower area as compared with the area shown in Fig. 12. For example, only few
data fall in the domain u10 > 20, �p > 2. Such events occur only at the early stages of
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Fig. 12 The non-dimensional
roughness parameter z0g/v2∗ as a
function of U10 and �p

m s-1

wave development at medium and strong winds. Hence, the value of z0g/v2∗ varies within
the range of 0.01-0.02, which is in good agreement with the values obtained by Smith and
Banke (1975), Garratt (1977) and Wu (1980).

Let us consider the integral fluxes of momentum and energy to waves:

T (k) = g

τ

k∫

o

kβ−k S(k)dk, (85)

E (k) = g

E10

k∫

o

ωβ−k S(k)dk, EM = E(M), (86)

where E10 = τ10u10 is the downward flux of energy at z = 10 m. Equation 85 indicates
the part of the total flux of momentum τ transferred to waves within the wavenumber range
0 to k. The integral spectra for T and E are shown in Fig. 13 (frames b, c) along with the wave
spectrum (panel a). As seen, with increase of the wavenumber, the energy flux approaches the
saturation level quite rapidly. It is different for the integral momentum flux, as it continues to
grow with increase of frequency for all values of�p . It is impossible to extend the spectrum
to higher frequencies, as the β function was studied within the range of −50 < � < 50.
The data shown in panel b of Fig. 13 demonstrates that the flux of momentum is accumu-
lated mostly in the high-frequency (high wavenumber) range of the spectrum. The explicitly
reproduced momentum flux grows with increase in the cut-off wavenumber. The ratio of the
calculated momentum flux to waves, and the total momentum flux is shown in Fig. 14, panel
a. As seen, the momentum flux τw to waves can amount to 80% of the total momentum flux;
and τw decreases with growth of �p . It is interesting to note that the ratio of the energy flux
to waves and the energy E = τ10u10 transferred downward through z = 10 m exhibits quite
an opposite behaviour: it increases with the growth of �p . Such properties of momentum
and energy exchange can be explained by the properties of the spectrum: the high-frequency
spectral density responsible for the momentum flux is high for the young sea (an overshoot
effect), while the low-frequency waves absorbing the major part of energy input, are larger
for the old sea.

There is a possibility that in the smooth areas of a water surface some part of the momen-
tum is transferred by molecular viscosity, while in the areas of high energy of short waves
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Fig. 13 a Wave spectrum, b
integral flux of momentum T (k)
(Eq. 85), c integral flux of energy
E(k) (Eq. 86) as functions of ω
for different �p

a

b

c

(rad–1)

(rad–1)

(rad–1)

(m
2 

s)

momentum is transferred to the small waves. Since the shape of the spectrum and β function
at high frequencies are not known, it is impossible to investigate the ultimate ratio of the sur-
face WPMF and the total surface stress. Fortunately enough, this problem is of no practical
importance. The high-frequency waves quickly disappear (Chalikov 2005) thus transferring
momentum to currents, while energy is transferred both to currents and turbulence (Chalikov
and Belevich 1993). The most important thing is that the total friction on the wave surface
depends significantly on wave energy at high frequencies (see Fig. 13, panel b). Most prob-
ably, the momentum flux and the drag coefficient also depend on the angle distribution of
waves.

12 Drag Coefficient at High Wind Speed

As demonstrated in Fig. 11, the current theory predicts a monotonic growth of the drag coeffi-
cient with increase of wind speed. However, there exist some data revealing that for the wind
speed exceeding 25–30 m s−1, the drag coefficient reaches an upper limit (Powell et al. 2003;
Donelan et al. 2004), while for further increase in wind speed the drag coefficient can even
decrease. Earlier, such an effect was also noted when analyzing tropical cyclone development
(Emanuel 1995). Currently some attempts are made to explain such behaviour of the drug
coefficient on the basis of the ‘droplet theory’ (Andreas 2004; Kudryavtsev 2006). According
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Fig. 14 a The ratio of surface
WPMF and total stress τ as a
function of U10 and U10/cp ,
b ratio of energy flux to waves
and total energy flux transferred
downward at z = 10 m
(Eqs. 85, 86)

a

b

m s-1

m s-1

to the theory, the drops generated as a result of splitting of falling water volumes intensify the
dissipation of turbulence, which causes a reduction of the drag coefficient. Such a scheme
looks reasonable, although the model of the drop generation (as well as the mechanism of
drops-turbulence interaction) uses too many arbitrary assumptions.

According to our data, the effect of the wave-drag reduction at high wind speeds can be
easily explained through the influence of high-frequency waves. It would be appropriate to
suggest that the energy of short waves at high winds decreases due to two factors: the presence
of foam that suppresses short waves, and flow deceleration in troughs due to flow separa-
tion. The latter can be investigated using the coupled wind–wave model directly, though
the model must take into account a broad range of the wave spectrum from peak waves to
capillary waves. A high wind speed and the necessity to use a high vertical resolution in the
WBL make this problem quite time consuming; anyway, such calculations are possible from
the technical point of view.

Note that a reduction in the drag can also be caused by the ‘blowing away’ of sharp crests:
high winds can smooth the surface and remove the elements responsible for stress. This effect
was directly observed in the wind–wave tunnel (J. Troitskaya, private communication, 2010).
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Fig. 15 The drag coefficient C10
as a function of U10 and
�p = U10/cp (15 curves
labeled), taking into account the
suppression of high-frequency
modes

m s-1

To prove that the reduction in the drag coefficient is caused by the suppression of small
waves, the additional calculations of the drag coefficient were performed with use of the
modified JONSWAP spectrum. A somewhat arbitrary assumption suggests that waves, whose
frequency exceeds some value of ω f , are absent. In our calculations the longest removed
waves are 100 times shorter than the peak wavelength. The spectral density atω = ω f equals
10−5Sp (Sp is the spectral density at the wave peak). The amplitudes of such waves is about
100 times smaller than the amplitude of the dominant wave. Hence, the modifications of
the spectrum are quite insignificant. The above modifications were introduced into a new
series of the calculations with use of the 1-D model, Eqs. 73–77. The dependence of the drag
coefficient (small waves being removed) on wind speed u10 is shown in Fig. 15. As seen, the
drag coefficient significantly decreases at high wind speed; for a developed sea (�p ∼ 1)
the drag coefficient C10 has the maximum of C10 ≈ 1.5 × 10−3 at u10 ≈ 30m s−1, while
for the younger waves the maximum is shifted to higher wind speeds.

It should be emphasized that the result presented in Fig. 15 is purely qualitative, since
the exact shape of the spectrum is unknown at high wind speeds. Figure 15 just illustrates a
simple explanation of the drag coefficient reduction at high wind speeds on the basis of the
high-frequency wave spectrum modification.

13 Conclusions

We describe the first attempts to simulate a wind and wave interaction process on the basis
of a coupled wind–wave model. Both parts of the model are written in conformal surface-
following coordinates. The use of such coordinates is the only way to construct an efficient
two-dimensional coupled model since conformity allows considerable simplifications in the
formulation of the problem and the numerical scheme. Contrary to all previous investiga-
tions, the problem of the wind–wave interaction is formulated as a statistical fluid dynamics
problem, and the coupled model used for the simulation of a statistical regime of flows.

The coupled model based on the full equations is used for the simulation of an evolution
of a multi-mode wave field under the action of wind. Such calculations cannot be carried out
without the introduction of the new physics into a wave model. Firstly, a flux of energy in a
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subgrid part of the spectrum was parameterized by selective smoothing (Eqs. 36, 37). With-
out such smoothing the calculations terminate due to the non-linear instability. Secondly, it
was necessary to prevent overturning of waves, which was parameterized by the introduc-
tion of a ‘breaking’ algorithm representing highly selective local smoothing of the surface
and a surface potential in separate intervals in physical space where a high profile curvature
is observed (Eq. 38a,b). Both of the smoothing algorithms are widely used in geophysical
fluid dynamics. In particular, a breaking parameterization is very similar to that of the static
instability in numerical atmospheric models.

A closure problem for Reynolds equations is a subject of numerous speculations. It is
well-known that the closed system of the Keller–Friedmann equation (Keller and Friedmann
1924) cannot be derived formally (see Monin and Yaglom 1971). Therefore, many additional
assumptions have been introduced since. Applicability of the closed equations can be proved
by comparison with the experimental data only. A simple K − ε scheme was used in the
model. Contrary to the conclusions of Belcher et al. (1994) made within the framework of the
linear approach, we could hardly find solid arguments in favour of the use of a more complex
scheme. It would be naive to expect that the introduction of more equations containing many
poorly known constants could lead to a substantial improvement of the results. Experience
shows that the straightforward approach used in the present work, is superior to a complex
approach.

The surface-following coordinates allow introducing explicit expressions for different
mechanisms of the momentum (and energy) fluxes produced by the averaged and fluctuating
turbulence as well as by velocity and pressure fields (Fig. 5). The sum of the above fluxes
is the so-called wave produced momentum flux (WPMF) that plays an important role in
construction of a simplified 1-D model of the WBL (Fig. 6).

The instantaneous boundary-layer fields are highly chaotic, although after appropriate
averaging they reveal a simple regularity: a vertical distribution of the Fourier modes for
pressure, kinetic energy and other variables are clearly stratified over wavenumbers.

The obtained data allow evaluation of the so-called β function, i.e., a complex coefficient
in Eq. 59. The data on the β function exhibit wide scatter, but since the volume of data is big
enough (about 1,400,000 points), the shape of the β function was defined with satisfactory
accuracy up to high non-dimensional frequencies (Eqs. 66a,b; Fig. 7). The main reason for
wide scatter is not an accuracy of modeling, but rather a result of the non-linearity of the
flow. The interaction of wind and waves generates a much broader pressure spectrum than
can be reproduced using the linear wave generation theory (Figs. 8, 9).

The vertical profiles of Fourier components for the WPMF normalized by a surface value
can be represented as a function of a non-dimensional height kz, which is used in construction
of the 1-D WBL model. If the number of wave modes taken into account is large enough, the
WPMF on a surface approaches the value of the total stress (which due to assumed steadiness
is equal to the value of the outer stress). However, contrary to suggestion of Janssen (1991),
the ultimate proportion of form and tangential stresses cannot be determined, because the
WPMF is a function of height, as well as of vertical and spectral resolution (see Chalikov
1993). When the number of wave modes is not large, the influence of form drag due to subgrid
waves should be taken into account with the use of an appropriate value of the local drag
coefficient. Hence, when waves are described directly, a drag coefficient should be considered
as a spectral concept.

Unlike turbulent friction, the WPMF is not an internal property of a turbulent boundary
layer since it is created by external forcing, i.e., by waves. The presence of the WPMF brings
forward the specific features of the WBL, e.g. the wind profile in the lowest part of the WBL
deviates considerably from the logarithmic form (Fig. 10). The 1-D theory of the WBL allows
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investigation of the dependence of the drag coefficient C10 on the wind speed u10 (Fig. 11).
It is suggested that the wide scatter in the experimental data on C10 can be explained by an
additional dependence on the wave spectrum shape. The same effect is clearly pronounced
in a roughness parameter normalized by the Charnock scale (Fig. 12). Evidently, the drag
coefficient can depend also on other parameters: the broadness of the wind spectrum, wind
gustiness and stratification (when the air–sea temperature difference is large).

The main part of the surface drag is concentrated in the high-frequency portion of the
spectrum (Fig. 13), therefore, the ratio of the surface WPMF and the total stress is a function
of the cut-off frequency. This is why the decrease of C10 at high winds can be easily explained
by the influence of the wave energy density at high frequencies. To illustrate such an effect
we assumed that high frequency waves become suppressed beyond some wavenumber ω f .
There exist several explanations for this effect. Despite the fact that ω f is many times higher
than the peak frequency ωp , and that the energy of suppressed waves is very small, the effect
of such surface smoothing is dramatic: starting with the wind speed of 25–30 m s−1, the drag
coefficient decreases in the same way as in observations (Fig. 15). Such results do not claim
to be qualitatively accurate, but are an illustration of a potential mechanism for the drag
coefficient reduction occurring in stormy conditions. A further investigation of the above
effect must be focused on the energy of small waves and their distribution over the phases of
large waves.

The current paper considers the problem of ocean–atmosphere interaction with allowance
for surface waves. As a result of such investigations the atmospheric large-scale modelling
(including weather forecast and climate simulation) may be improved through implemen-
tation of the essentially new physics. The current atmospheric and coupled models do not
take into consideration a state of the ocean surface while a less important interaction of
atmosphere and land is parameterized in more detail. The surface wave spectral modelling
is not time consuming; thus, a wave model can be easily combined with the atmospheric
and ocean models (see Chalikov and Belevich 1993). The one-dimensional model suggested
in the current paper is designed for the linking of atmospheric and ocean models through a
wave model.
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