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The results of numerical simulation of the adiabatic evolution of waves are presented. The model is based
on the fully nonlinear 1D equations of potential waves written in conformal coordinates. It is shown that
a wave spectrum is subject to strong fluctuations. Most of such fluctuations are reversible, however a
residual effect of the fluctuations causes downshifting of the spectrum. The rate of downshifting depends
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1. Introduction

The Letter considers the results of numerical simulation of
nonlinear one-dimensional unidirected surface waves. The calcu-
lations are done using the 1D fully nonlinear potential wave equa-
tion written in conformal coordinates and solved by the Fourier-
transform method. Initial conditions are assigned as a group of
linear waves. According to the general opinion based on the quasi-
linear Hasselmann’s theory, such waves cannot produce down-
shifting, i.e., a regular transfer of wave energy from high to low
wavenumber modes. The calculations prove that this statement is
incorrect. The downshifting develops at any wave steepness, since
linear waves quickly obtain nonlinear properties. Finally the mech-
anism similar to that indicated in the Benjamin-Feir theory leads
to formation and growth of the new modes.

2. Calculations

The calculations were performed using the fully nonlinear one-
dimensional model of potential waves written in conformal coor-
dinates. All variables are assumed to be nondimensional with the
scales constructed with acceleration of gravity g and an arbitrary
length scale L. The numerical scheme is based on the Fourier-
transform method and the fourth-order Runge-Kutta scheme [1-3].
This approach was described in our publications (see also the anal-
ogous work [4]). It was shown in [5,6], that the conformal model is
exact. It was proved by simulation of Stokes wave propagation with
steepness ak = 0.43 (a is an amplitude of Stokes wave and k is a
wave number of the first mode) for hundreds of periods without
any change of shape. In this Letter the model was used for sim-
ulation of deep water wave evolution for very long periods. The
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wave field in the initial condition was assigned as a superposition
of linear waves with random phases and a spectral distribution
described by the one-dimensional JONSWAP spectrum for different
inverse wave ages 2 =U/cp (U - a wind velocity, ¢, is a phase
velocity of a wave in a peak of spectrum), i.e. for different wave
steepness. Since the equations were integrated over thousands of
wave periods, details of the initial conditions as well as the specific
set of phases were of no significance.

In the course of evolution the wave spectrum was changing due
to nonlinear interactions. Contrary to the linear case a value of
the integral potential energy E, in a nonlinear wave field is not
a constant, since the potential E, and kinetic Ej energies fluctu-
ate. However, the total energy E = E}, + Ej is an adiabatic integral
invariant. The total energy in a numerical model maintains con-
stant on condition that a spectral domain is very broad and a flux
of energy into the high wave number part of the spectrum is not
restricted. For a finite size of domain a flux of energy into the trun-
cated part of the spectrum forms. A corresponding decrease of the
total energy can be considered as dissipation. To make the process
quasi-stationary such a weak loss of energy was compensated by
corresponding correction of the total energy E. The procedure of
high wavenumber smoothing and maintaining of the total energy
was described in the previous papers (for example ([2,5,8]).

The equations were integrated with the total number of modes
M = 1000, and a number of grid knots N = 4000 with a time step
At =0.001 for 5000000 steps, which corresponds to 8000 initial
peak wave periods T, =27 /wp, where w), is the frequency in the
maximum of an initial spectrum S(t = 0, w) connected with the
peak wave number k, by the dispersion relation w, = \/Ig. The
initial value of k, was always equal to ko = 100. The initial spec-
trum decreases fast for the wavenumbers k < kp, while for k > k,
it was assigned in a wavenumber space up to the wavenumber
k, +20. We do not give more details, because a specific shape
of the initial spectrum is of no significance, and only the integral
characteristics are important (see Table 1).
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The main parameter of JONSWAP spectrum is the so-called ‘in-
verse wave age’ U/c, (U - a wind velocity, ¢, = l<;1/2 - a phase 40 ¢ . . . .
velocity in a peak of spectrum) which characterizes the level of sea 0 1000 2000 3000 4000 5000

waves development. The value U/c, = 3.5 corresponds to the case
of steep (‘young’) waves when wind velocity exceeds phase veloc-
ity 3.5 times. The value U/c, =1 corresponds to the case of an
‘old sea’, when wind velocity is equal to peak phase velocity. In
this case waves do not obtain energy from the wind. In our calcu-
lation the parameter U/c, is used as an index for the cases with
different wave steepness. Wave steepness is characterized by the
two integral parameters:

M 1/2
s1= (Z/@S(kmk) , (1)
1
M 1/2
S2 =1<p<25(k)m<> 2)

k=1

where S(k) is the spectral density in the interval Ak = 1. The pa-
rameter s characterizes the steepness of a low-wavenumber part
of spectrum, while a parameter s; characterizes the steepness cre-
ated mostly by high wavenumber modes and the local steepness in
a physical space. The calculations were made for 6 different values
of U/cp. As seen, the steepness sy in our calculation varies from
0.064 to 0.123 (the values corresponding to a developed wave field
and the so-called ‘young sea’ respectively). The runs with a larger
initial steepness were terminated by breaking instability, followed
by the local steepness approaching infinity in a physical space.
The breaking can be prevented by introduction of a breaking pa-
rameterization algorithm (see [2]), however, such cases cannot be
referred to adiabatic, so, they were excluded from consideration.

The aim of this work was observation of a spectrum evolution.
It was found that at the initial stage of development the energy
spreads quickly to a high wavenumber part of spectrum forming
a spectral ‘tail’. The energy moves also to a low wavenumber do-
main, but it is a slow process. At all stages of the development
amplitudes of each mode quickly fluctuate in time even in a peak
of spectrum. Such fluctuation can be recognized as a manifestation
of the reversible nonlinear interactions. However, an alternative
explanation can be based on a purely geometrical consideration.
When a spectral resolution is high, the Fourier series represent
just an approximation of surface. Since each Fourier coefficient is
a product of integration over the entire domain, the small dis-
turbances of surface can misplace the energy from one mode to
another (probably, the closest to the initial one). The treatment of
a wave field as superposition of linear modes with fixed phases
and phase velocities is too straightforward to be correct.

Fast fluctuations of amplitudes obscure the directed evolution
of spectrum, but the averaged over wave number spectrum obtain
the two-peak structure in all runs: on the low wavenumber slope
of the spectrum a new peak starts to grow, while the initial peak
weakens. Finally, the spectrum shifts to the lower wavenumbers.
Both spectral peaks fluctuate, which is why the largest amplitude
can belong to either of the first or second peak alternatively.

t

Fig. 1. Wave number kj in a maximum of spectrum as a function of time (case 6).

It is well seen in Fig. 1 where the location of a spectral maxi-
mum is indicated as a function of nondimensional time. The top
group of points belongs to the high wavenumber peak, while
the bottom group refers to a new peak (see Fig. 5 below). The
bottom cloud of points becomes denser with time, since the
low wavenumber peak turns into the main one. The scatter re-
flects fluctuations of the amplitudes. Note that the smooth spectra
demonstrated in various investigations are often obtained at a low
spectral resolution. Note also that contrary to the wavenumber
spectra, the frequency spectra obtained over the long enough pe-
riods are always smooth, since the fluctuations of energy at the
adjacent wave numbers cause the averaging of spectrum in a fre-
quency space.

As seen from Fig. 1 the formally defined wave number k, in
a maximum of spectra has a very large scatter due to the ampli-
tude fluctuation. The mean spectrum-weighted wavenumber k,,
defined by the following expression

M M -1
Ky = ZkS(k) <ZS(I<)) (3)
k=1 k=1

is more convenient.

In Fig. 2 the weighted wave number is represented as a func-
tion of a nondimensional time t. For all cases the time was equal
approximately to 8000 of initial wave periods. As seen, all spec-
tra move monotonically to the low wave numbers. The rate of this
downshifting increases with increase of the initial steepness (given
in Table 1), while the steepness s; decreases due to the spectrum
broadening. It is particularly noticeable for the high initial steep-
ness (cases 1 and 2).

The level of energy was maintained in all numerical experi-
ments with an accuracy of 6 digits. The reviewer of this Letter
suggested that downshifting can be produced by this input of en-
ergy. This statement can hardly be correct since an input of energy
in every spectral bin is proportional to the energy contained in this
bin. To validate this statement three additional runs for cases 1, 2
and 4 (Table 1) were performed for M = 2048 with no correction
of energy. In this case the truncation area was shifted far towards
the high wave numbers. The results are shown in Fig. 3. As seen
in panel a, the total energy decreases to 50-60% off the initial
value. Respectively, the integral steepness decreases also two times
(panel c). This is why a rate of downshifting became much lower
than that for the same cases 1, 2 and 4 with a permanent level
of energy. However, the downshifting appears in these cases as
well. A systematic downshifting was not reproduced in the one-
dimensional wave field simulations carried out on the basis of the
nonlinear Schrédinger’s equation and Zakharov’s equation [9]. Both
approaches assume a weak nonlinearity of wave fields and use a
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Fig. 2. Results of calculations with a number of modes M = 1000 and with correc-
tion of total energy: a - dependence of a weighted wavenumber ky, (Eq. (3)) on
a time t; b - dependence of the integral steepness s; on a time t. In both frames
fluctuating grey curves show actual dependence; solid curves are the product of the
moving averaging with a window width equal to 41.

number of simplifying hypotheses. Probably, the wave field sim-
ulated in this investigation was not steep enough to show the
downshifting (see Fig. 4). It is also quite possible that the sim-
plified 1D equations in no way can reproduce the downshifting.

The total shift of the weighted frequency Ak, /ko over the en-
tire period of integration as a function of the initial steepness sq is
shown in Fig. 4.

As seen, the downshifting in a unidirected adiabatic wave field
can be quite significant. The three lowermost points in Fig. 4 were
obtained with no correction of total energy. As seen, the rate of
downshifting for these cases is much smaller than that for the
cases with large steepness, because wave energy dissipates due to
a flux to a truncated part of spectrum. As a result the averaged
steepness becomes small.

The wave spectrum S(k) and a rate of spectrum change due to
the nonlinear interactions S;(k), are shown in Fig. 5. Spectra S(k)
are averaged over 5 successive intervals, while spectra S, (k) are a
simple difference between successive averaged wave spectra

Sn(k) = (AD T (S(k, t + A) — S(k, D). (4)

The wave spectra have a multi-peak structure most of the time.
It can be explained by specific initial conditions: all energy was
assigned to the unidirected modes with no angle spreading. The
angle spreading decreases the energy of modes directed along
the x-axis. The spectral peak in the initial condition was proba-
bly too high for 1D simulations. Anyway, a presence of an addi-
tional peak does not change the results qualitatively. The spectrum
of the rate of the nonlinear interaction S, (k) reflects a tendency
for a wave spectrum evolution: it is mostly positive on the low-
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Fig. 3. Results of the calculations with a number of modes M = 2048 with no cor-
rection of the total energy: a - dependence of the total wave energy on a time t;
b - dependence of the spectrum-weighted wavenumber k,, (Eq. (3)) integral steep-
ness s; on a time t; ¢ — dependence of the integral steepness s; on a time t.
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Fig. 4. Dependence of the total change of the weighted wavenumber k,, for the
entire period of integration (normalized by the initial wavenumber ko) on the initial
integral steepness si.

wavenumber slopes of the wave spectrum and negative on the
high-wavenumber slopes of the wave spectrum, which results in
shifting of the spectral energy to the left.

3. Conclusions

The Letter represents the results of numerical modeling of the
multi-mode unidirected adiabatic waves evolution performed with
use of the precise 1D fully nonlinear model. It is shown, that due
to the nonlinear interaction the irreversible nonlinear interactions
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Fig. 5. The averaged over the consecutive periods of length At = 1000 wave spectra,
S(k) (solid curves) and the spectrum of the nonlinear interaction rate S (k) (dotted
curves). The spectral density below k =40 is very close to 0.

and downshifting develop. The rate of downshifting increases with
increase of nonlinearity. This conclusion contradicts to the Hassel-
mann’s results. The Hasselmann’s theory is based on the numerous
simplifying assumptions. Representing a wave field as a superpo-
sition of linear modes with random phases is the most restrict-
ing assumption. In the Benjamin and Feir investigation [6] it was
shown that keeping just the first Stokes ‘correction to a harmonic
wave resulted in developing instability. Later it was demonstrated
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