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Abstract

A number of existing models for surface wave phase speeds (linear and non-linear, breaking and non-breaking waves) are reviewed and tested
against phase speed data from a large-scale laboratory experiment. The results of these tests are utilized in the context of assessing the potential
improvement gained by incorporating wave non-linearity in phase speed based depth inversions. The analysis is focused on the surf zone, where
depth inversion accuracies are known to degrade significantly. The collected data includes very high-resolution remote sensing video and surface
elevation records from fixed, in-situ wave gages. Wave phase speeds are extracted from the remote sensing data using a feature tracking technique,
and local wave amplitudes are determined from the wave gage records and used for comparisons to non-linear phase speed models and for non-
linear depth inversions. A series of five different regular wave conditions with a range of non-linearity and dispersion characteristics are analyzed
and results show that a composite dispersion relation, which includes both non-linearity and dispersion effects, best matches the observed phase
speeds across the domain and hence, improves surf zone depth estimation via depth inversions. Incorporating non-linearity into the phase speed
model reduces errors to O(10%), which is a level previously found for depth inversions with small amplitude waves in intermediate water depths
using linear dispersion. Considering the controlled conditions and extensive ground truth, this appears to be a practical limit for phase speed-based
depth inversions. Finally, a phase speed sensitivity analysis is performed that indicates that typical nearshore sand bars should be resolvable using
phase speed depth inversions. However, increasing wave steepness degrades the sensitivity of this inversion method.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the coastal zone, spatial variations in the sea bottom
influence both the direction and speed of propagation of surface
gravity waves. In the modeling of nearshore areas, wave phase
speeds and directions are important parameters because wave-
averaged nearshore circulation models require their explicit
prediction for the determination of radiation stress forcing.
Typical existing models for wave phase speeds are based on a
prescribed wave form such as sinusoidal, cnoidal, etc.; but, in
areas near the onset of wave breaking, wave shape is of non-
permanent form and can change very quickly, which makes the
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specification of phase speed in this region ambiguous. In
addition, most phase speed models are derived explicitly for
either breaking or non-breaking waves. Thus, for domains that
span the shoaling and breaking zones they are not universally
applicable and empirical formulations must often be called upon
(e.g. Hedges, 1976; Kirby and Dalrymple, 1986).

Surface wave phase speed is also an important remote sensing
observable. For example, if a functional relationship betweenwater
depth and phase speed is specified, then remote sensing data can be
used to determine bathymetry through depth inversion techniques
(e.g. Williams, 1946; Bell, 1999; Stockdon and Holman, 2000).
Due to the large footprint of remote sensing observations and
considering the comparative difficulties and expense of collecting
data by in-situ means, this is a potentially powerful technique for
retrieving bathymetry. However, it is clear that in realistic
situations the functional relationship between water depth and
phase speed is complex and dependent on wave non-linearity,
which is a more difficult quantity to observe remotely. In addition,
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it is disadvantageous to require separate phase speedmodels for the
regions outside and inside the surf zone, since this likely requires
additional gymnastics to determine where to apply each model for
a given domain and data set. Aarninkhof et al. (2005) have pursued
an alternative track of relating breaking-induced dissipation to the
bathymetry.However, the approach still relies on a characterization
of the energy flux, which is related to the phase speed. Hence, since
the accuracy of depth inversions is directly tied to the accuracy of
the phase speed model, there is clearly a need for a general surface
wave phase speed model that is applicable from the shoaling zone
through the surf zone to the shoreline. Yet, it is not clear that such a
model exists.

The accuracy of depth inversions based on remote measure-
ments is dependent on two criteria: 1) the ability of the remote
sensor to measure phase speed and wave amplitude, and 2) the
applicability of the chosen phase speed (and depth inversion)
model to the given wave conditions. The purpose of this paper is
to directly compare phase speed models that include non-linear
and dispersive effects with remotely sensed phase speed
measurements. It is also to study the potential improvement in
depth inversion when measured finite amplitude effects are
included in the relationship between the measured phase speed
and the local water depth. The analysis utilizes a combination of
remotely sensed video intensity data and in-situ measurements of
free surface elevations. With respect to previous depth inversion
studies, the present data set provides remote sensing data at much
higher resolution than previously considered, which reduces the
amount of inherent smoothing that often occurs in field situations.
In addition, the laboratory setting allows us to control the wave
conditions and to measure them with high accuracy throughout
the surf zone. Finally, we concentrate on the surf zone (though not
necessarily shallow water) because the accuracy of depth
inversions has been found to significantly degrade in this region.

This paper is organized as follows: in Section 2 we perform a
comprehensive review of existing phase speedmodels. Section 3
describes the measurement techniques and experimental condi-
tions used in this study. Phase speed results and the application
of selected phase speed models to depth inversions are given in
Section 4. Section 5 provides a discussion of possible error
sources and an analysis of the sensitivity of phase speed-based
depth inversions to the amplitude of a given bottom perturbation,
such as a sand bar. Conclusions are given in Section 6.

2. Phase speeds

2.1. Models for non-breaking waves

The speed of propagation (phase speed or celerity) of surface
gravity waves, c, can be defined for a surface of permanent form
based on the elapsed time τ required for the surface to travel a
characteristic distance l. Then, the phase speed is defined as

c ¼ l
s
: ð1Þ

Various permanent form solutions for c can be obtained from
surface gravity wave theory. Their form is dependent on the
assumptions made in the description of the underlying wave
motion.

2.1.1. Linear theory
The simplest case is from linear wave theory, under the

assumption of small wave amplitude and locally horizontal
bottom. The resulting free surface can be expressed as η=A exp
{i(kx−σt)}, where k=2π /L is the wavenumber, σ=2π /T is
the radian frequency, A is the wave amplitude and the quantity
i(kx−σt) is the phase. Choosing the wavelength, L, as the
characteristic distance (l) the wave period T is then the charac-
teristic time (τ). For linear waves, c, σ, and k are related by
means of the linear dispersion relation

c2 ¼ r2

k2
¼ L2

T 2
¼ g

k
tanh khð Þ; ð2Þ

where h is the water depth, g is the gravitational acceleration,
and k is the magnitude of the wavenumber vector k. Here, c is
defined relative to a fixed frame of reference. Despite its
simplicity, Eq. (2) has proven useful in a number of cases. For
example, in intermediate depths and moderate wave heights, the
full linear dispersion relation (including currents) has been used
to estimate water depths and mean currents with errors as low as
O(5%) (e.g. Dugan et al., 2001; Piotrowski and Dugan, 2002).

However, we are mostly concerned here with waves in the
surf zone, and in shallow water (khbπ / 10) Eq. (2) reduces to
the simple form

c ¼
ffiffiffiffiffiffiffi
gh;

p
ð3Þ

which shows a direct relation between the local water depth and
the speed. This makes it very simple to use for depth inversion;
yet, comparisons with measured data have shown that this linear
shallow water approximation underpredicts the observed phase
speeds, both in the field (e.g. Inman et al., 1971; Thornton and
Guza, 1982; Stockdon and Holman, 2000; Holland, 2001) and
in the laboratory (e.g. Svendsen and Buhr Hansen, 1976;
Svendsen et al., 1978; Stive, 1980; Stansell and MacFarlane,
2002). In some of these laboratory cases a limited degree of
non-linearity was incorporated by including the measured wave
setup in the water depth used in Eq. (3) (Svendsen et al., 1978;
Stive, 1980), but the overall behavior was still an under-
prediction of the phase speeds. In addition, using on a large
amount of field data from a cross-shore array of pressure
sensors, Holland (2001) showed that, in shallow water, errors in
estimated depths using the linear dispersion relation commonly
exceeded 50% and were correlated with the offshore wave
height. This was a clear indication of the importance of finite
amplitude effects for depth inversions.

2.1.2. Boussinesq wave theory
So it is recognized that, while Eq. (3) is non-dispersive (i.e.

all waves travel at the same speed), in reality the wave
amplitude and the relative water depth will also affect the phase
speed. These effects are termed amplitude dispersion and
frequency dispersion, respectively (for a thorough review see
Svendsen (2006)). Frequency dispersion effects are explicitly
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Fig. 1. Schematic of a breaking wave and a hydraulic jump (bore) (Svendsen et al., 2003).
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related to the parameter μ=kh, amplitude dispersion to δ=A /h,
and a measure of the relative importance of each effect is given
by the Ursell number

Ur ¼ d
l2

~
kH

khð Þ3 : ð4Þ

The classical Boussinesq wave equations are based on the
assumption of δ=O(μ2)≪1 (weakly dispersive, weakly non-
linear); hence, Ur∼O(1) (Peregrine, 1967). For the case of
waves traveling in only one direction, an analytical solution for
periodic waves of constant form (cnoidal waves) is given by
(e.g. Svendsen, 2006)

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1þ H

mh
2� m� 3

E
K

� �� �
;

s
ð5Þ

where H is the wave height; K, E are the complete elliptic
functions of the first and second kind, respectively. The
parameter m is the modulus of the elliptic functions and can
be calculated if the Ursell number is known using

Ur ¼ 16
3
mK2: ð6Þ

Svendsen and Buhr Hansen (1976) rewrote the above
equation as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1þ f mð ÞH=hð Þ;

p
ð7Þ

which emphasizes the fact that deviations from the linear shal-
low water speed are expected to be of O(δ), since H /h=O(δ),
although frequency dispersion effects are still incorporated
through the parameter m (Svendsen, 2006). Those authors
tested Eq. (7) against phase speeds measured in a laboratory
experiment on a planar beach. They showed that the cnoidal
theory had problems near the breaking point, where waves sped
up and changed form rapidly, but performed better than linear
theory shoreward of the point where h /Lob0.10. This limit is in
agreement with the theoretical requirement for cnoidal theory
accuracy, h /Lob3/8π (Svendsen, 1974; Dingemans, 1997).
The depth inversion studies of Holland (2001) and Bell et al.
(2004) did not explicitly test phase speed models, but were
inherently based on Eq. (7) with a single value for f(m)
prescribed throughout the nearshore domain. Holland (2001)
chose an f(m) value that gave the best agreement between water
depths estimated by (non-linear) depth inversion and the
observations. He arrived at values of f(m)=0.42 and 0.48
depending at which cross-shore location wave heights (also an
input to Eq. (7)) were measured. Bell et al. (2004) simply
assumed a value f(m)=0.4 and used the significant wave height
measured by an offshore buoy. It is important to note that in
these cases, non-linearity is included by means of a non-local
value of wave height, i.e. Eq. (7) is used with spatially constant
values of f (m) and H. In practice, this simplification is not
strictly necessary, nor are the criteria for selecting these values
clear.

It is also of note that cnoidal wave theory is asymptotic to
linear shallow water (periodic) wave theory as m→0 (Ur→0)
and to the solitary (aperiodic) wave solution as m→1 (Ur→∞,
f (m)→1). The solitary wave is a constant form solution often
used to describe non-linear behavior in shallow water. In this
case the phase speed is given by

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1þ H=hð Þ;

p
ð8Þ

which represents the upper bound on the cnoidal wave phase
speed. Some field observations have suggested that nearshore
wave speeds are bounded by this limit (Inman et al., 1971;
Thornton and Guza, 1982); although, in a few cases the limit
has also been exceeded (Suhayda and Pettigrew, 1977;
Lippmann and Holman, 1991; Puleo et al., 2003). In general,
there is significant variability between the observed phase
speeds and the theoretical predictions. One source of this
variability is that in these comparisons H /h is generally taken as
a global constant, based on the assumption of depth-limited,
breaking waves. In this case a typical global value in the field
would be H /h=0.42–0.43 (e.g. Thornton and Guza, 1983),
although observations indicate it can vary spatially between
0.33≤H /h≤1.1.
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Suhayda and Pettigrew (1977) compared crest speeds
measured using photographic methods with Eq. (8). In their
work they used the measured local values of H /h and found
good agreement with Eq. (8) outside the surf zone, but inside
the surf zone measured speeds were found to deviate up to
±20%, often exceeding it. We note however, that their use of
the still water depth as datum for the wave height measurement
(as opposed to the trough depth) would tend to underestimate
the modeled speeds somewhat.

2.2. Models for breaking waves

The models described in the previous section were formally
derived for non-breaking waves only. In the surf zone, a phase
speed model for breaking waves is perhaps more appropriate. A
general expression can be obtained for broken waves in the
inner surf zone where waves can be considered bores, which are
propagating hydraulic jumps whose speed, chj, relative to a
fixed reference frame is (e.g. Abbot and Minns, 1992)

c2hj ¼ g
dc
dt

dt þ dcð Þ
2

; ð9Þ

where dt, dc are the instantaneous water depths at the preceding
trough and the following crest, respectively (see Fig. 1). In
deriving Eq. (9) it has been assumed that the shallow water
assumptions hold, that is, the flow is vertically uniform,
pressure is hydrostatic and the bottom is horizontal. Svendsen
et al. (1978) derived a more general expression including
vertically non-uniform velocity and pressure profiles. However,
when both quantities are assumed to be vertically uniform, their
expression takes the form

c2b
gh

¼ dcdt
h3

dt þ dcð Þ
2

: ð10Þ

Eq. (10) is slightly different from Eq. (9) because Eq. (9)
assumes a bore propagating into quiescent water, whereas if we
have a series of waves they will encounter an opposing flow of
speed ut resulting from the orbital motion in the previous wave
trough, something that is taken into consideration in deriving
Eq. (10). However, it is possible to obtain Eq. (10) from Eq. (9)
by using the Galilean transformation cb−ut =chj and a shallow
water relation ut =cbηt /dt (Svendsen et al., 2003), ηt being here
the local free surface elevation in the preceding trough.
Additionally, if dc≈dt≈h, Eqs. (9) and (10) reduce to the
linear shallow water approximation.

Svendsen et al. (1978) and Stive (1984) found good
agreement between Eq. (10) and their experimental data for
laboratory regular waves on planar beaches; Buhr Hansen and
Svendsen (1986) found similar results in the laboratory but
on the seaward side of a nearshore bar. It is of note that all
of these previous experiments were run on relatively mild
slopes (β≤1:34) and with a limited range of water depths
(khmax=0.46). Stive (1984) also introduced a phase speed
correction to account for non-uniformities in the velocity profile
due to the presence of turbulence. His results showed a slightly
improved agreement as compared to Eq. (10); however, they
required detailed knowledge of the velocity profile at each
section, which makes the method difficult to apply.

It can also be shown that Eqs. (9) and (10) collapse to the same
value if dt=h, which corresponds physically to the case of a single
bore propagating into quiescent water. If the instantaneous water
depth at the crest is defined as dc=h+H where H is taken as the
height of the bore, Eq. (10) can also be written as

c2b
gh

¼ 1þ 3
2
H
h
þ 1
2

H
h

� �2

; ð11Þ

which predicts speeds slightly larger than solitary wave theory.
The first two terms on the right-hand side of Eq. (11) were also
considered by Suhayda and Pettigrew (1977), and they showed
good agreement to this model in the area near the onset of
breaking where the observed crest speeds exceeded solitary wave
theory by ∼20%.

An empirical alternative arises from observations showing
that the phase speed in the surf zone is slightly larger than the
linear approximation but still typically proportional to h1/2

(Svendsen et al., 1978). Thus, a simple approach is to model
phase speeds with a modified shallow water approximation

c ¼ a
ffiffiffiffiffiffiffi
gh;

p
ð12Þ

where a is a constant to be determined. This approach has been
used in various wavemodels owing to its simplicity, with a typical
value of a=1.3 (Schäffer et al., 1993; Madsen et al., 1997a). This
value is consistentwith the surf zone observations of Stive (1980),
which considered regular laboratory waves. This value is also
consistent with the solitary wave solution (Eq. (8)) using a global
value of H /h=0.78. Eq. (11) can also be reduced to the form of
Eq. (12) if a globalH /h=0.42 is assumed in the surf zone, which
leads to a=1.31. Stansby and Feng (2005) presented phase speed
data from one laboratory condition (regular wave) and their
results showed a monotonic cross-shore variation for the
proportionality constant in the range a=1.06–1.32.

Recently, Bonneton (2004) developed a celerity model using
Saint-Venant shock wave theory in which the roller height can
be different from the wave height. The resulting expression for
the bore speed is

c ¼ �2
ffiffiffiffiffiffiffiffi
ghm

p
þ 2

ffiffiffiffiffiffi
ght

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
hc
ht

ht þ hc
2

� �
;

�s
ð13Þ

where hm, hc, ht are the mean, crest, and bore toe levels,
respectively. If we set hm=ht=dt and hc=dc, the model collapses
to Eq. (9); hence, the effect of the returning flow has been
neglected. This model showed relatively good agreement when
compared to the experimental data of Stive (1984) and Buhr
Hansen and Svendsen (1979). In some cases it represented an
improvement over the bore model (Eq. (10)) and the simple
model given by Eq. (12).

2.3. Composite models

Non-linear effects can be of importance in the intermediate
depths (π / 10bkhbπ) of the shoaling region as well, which also
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includes the transition from non-breaking to breaking waves.
Therefore, some composite models have been introduced that
attempt to span this range of conditions.

For example, Svendsen and Buhr Hansen (1976) found that a
combined linear-cnoidal model performed well for waves with a
small deep water steepness, Ho /Lo. In this approach, linear
theory is used for h /LoN3/8π, and cnoidal theory otherwise.
However, forcing the wave heights to match at the matching
point between the two theories causes a discontinuity in the
energy flux. Also, if the deep water steepness is greater than 4%,
a higher-order Stokes model should be used instead of linear
theory. In turn, Flick et al. (1981) found that non-linear shoaling
effects can be well described by third-order Stokes theory as
long as the Ursell number remains O(1) or less. Furthermore,
Stokes theory provided the same functional form in terms of Ur
as cnoidal theory when kh≪1 and Ur≪1, which allows both
models to be coupled. Svendsen et al. (2003) used cnoidal
theory up to the break point and the bore model given by Eq.
(10) in the inner surf zone. The phase speed in the outer surf
zone was interpolated between these end values and was
generally in good agreement with the regular wave lab data of
Buhr Hansen and Svendsen (1979) and Svendsen and
Veeramony (2001).

However, one shortcoming of these combined models is that
they require an explicit determination of the coupling boundary.
An alternative is to find a unique mathematical expression that
can be used over a wider range of conditions and in a more
predictive sense, with no a priori analysis of the wave
conditions required to link the various phase speed models.

Hedges (1976) used solitary wave theory as a reference to
modify the linear dispersion equation to include non-linear
effects by explicitly including wave height

c2 ¼ g
k
tanh k hþ Zð Þð Þ; ð14Þ

where Z=H. Booij (1981) compared Eq. (14) with the shallow
water data of Walker (1976) and found that Z=H / 2 provided a
better agreement. Kirby and Dalrymple (1986) extended the
model of Hedges (1976) so that it could be used over a wider
range of relative water depths, but employed Z=H / 2. In this
model, the phase speed is given by

c2 ¼ g=k 1þ f1ϵ2D
� �

tanh khþ f2ϵð Þ; ð15Þ

where ϵ=kA=kH / 2, A=H / 2 is the wave amplitude and

D ¼ 8þ cosh4kh� 2tanh2kh

8sinh4kh
; ð16Þ

f1 khð Þ ¼ tanh5 khð Þ; f2 khð Þ ¼ kh
sinh khð Þ

� �4

: ð17Þ

This model collapses to linear wave theory when A→0. The
model (henceforth KD86) is asymptotic to third order Stokes
theory in deep water, where D→1, f1→1 and f2→0. In
shallow water, where f1→0 and f2→1, the model is asymptotic
to Eq. (14) with Z=H / 2.
2.4. Summary

Up to this point, we have summarized a number of
formulations previously used for estimating the phase speed
of waves in (or near) the surf zone. In the remainder of this
paper, we will investigate the performance of many of these
models against experimental remote sensing data. The models
to be studied are listed in Table 2 in Section 4.2, and include
both breaking and non-breaking wave models and models that
have been used in previous depth inversion algorithms.

3. Experiment description

Large scale laboratory experiments were performed in the
Large Wave Flume (LWF) at the O.H. Hinsdale Wave Research
Laboratory (Oregon State University). The usable length of this
flume is approximately 90 m, and it is 3.7 m wide and 4.6 m
deep. The flume has a flap-type wavemaker at one end. The
LWF coordinate system has the x-axis pointing onshore along
the centerline with the origin at the wavemaker, and where
water depth was 4.27 m. A piecewise linear bathymetric profile
was constructed by using 12 ft long concrete slabs mounted on
brackets upon the tank walls. Gaps between slabs were sealed
using aluminum plates. The profile was designed to approxi-
mate the bar geometry of an observed field beach at a 1:3
reduction in scale (see Scott et al., 2005). The final bathymetry
was surveyed using a total station, which provided enough
vertical precision to resolve the minor deflection at the slab
centers due to their own weight as seen in Fig. 2.

3.1. Wave conditions

Six resistance-type wave gages were used to measure free
surface elevation and were sampled at 50 Hz. The wave gages
were installed on the east wall of the tank at cross-shore locations
x=23.45, 45.40, 52.73, 60.04, 70.99 and 81.97 m as shown in
Fig. 2. For the present work, six regular wave conditions were
tested and are listed in Table 1. Two independent runs were
performed for each condition and showed a high level of
repeatability. The given breaking wave height values correspond
to the largest wave height measured for a given condition. The
Iribarren number nb ¼ b=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Hb=Lo

p
at the break point was

computed with a representative slope β=1/24, corresponding to
the offshore face of the bar where waves began to break for
the majority of the cases. The Iribarren numbers indicate
that the breaking regime was spilling (ξbb0.4) to plunging
(0.4bξbb2.0) (Komar, 1998). Further details of the experimen-
tal procedure can be found in Catalán (2005) and Catalán and
Haller (2005).

3.2. Video data

Simultaneous video observations were collected using an
ARGUS III video station. This station is maintained by the
Coastal Imaging Lab (College of Oceanic and Atmospheric
Sciences, OSU) and consists of three digital cameras mounted
near the laboratory ceiling and aimed at different sections of the



Table 1
Wave conditions: Wave period T, deep water wave height Ho, deep water
steepness Ho /Lo, breaking wave height Hb, relative water depth at break point
(kh)b, Iribarren number ξb, and Ursell number Urb at the break point

Run T (s) Ho (m) Ho

Lo

Hb (m) (kh)b ξb Urb

R35 2.7 0.57 0.050 0.63 0.66 0.18 1.06
R36 4.0 0.63 0.025 0.67 0.43 0.25 2.68
R37 5.0 0.51 0.013 0.78 0.34 0.29 5.00
R38 6.0 0.47 0.008 0.68 0.28 0.38 6.49
R39 8.0 0.37 0.004 0.73 0.21 0.49 12.40
R40 4.0 0.40 0.016 0.55 0.43 0.28 2.21

Fig. 2. Experimental layout for the Large Wave Flume, including bathymetric profile, wave gage locations, and bay numbering scheme.
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LWF. The cameras are 9.88 m above the still water level in the
LWF and the field of view of the cameras spans the cross-shore
from x=41.7 m to the dry beach.

Three different pixel arrays were sampled at 10 Hz, spanning
41.7bxb100 m at longshore coordinates y=1.2, 0 and −0.6 m.
Actual camera resolution varies from 1 cm2/pixel close to the
cameras (x=52.73 m) to 8 cm2/pixel near the shoreline. After
interpolation to a uniform grid, there were a total of 5736 pixels
in each array with a resolution Δx=1 cm. However, the
effective resolution depends on the sampling rate and the local
speed of the wave motion, which meant that some of the data
were statistically redundant; therefore, they were subsampled to
a resolution of Δx=25 cm. The resulting resolution per incident
wavelength, Δx /L, was 0.02 on average for these experiments.
This is significantly better than most field situations (e.g. Δx /
L≈0.06 for Stockdon and Holman (2000)). Wave conditions
in the tank were essentially uniform in the y-direction (long-
shore); however, the lighting conditions were not. We restricted
our analysis to the pixel array (at y=1.2 m) that was least
degraded by the ambient lighting conditions. In the end, the data
products that were used for this analysis were time–space maps
of pixel intensity, also known as timestacks, generated from the
pixel array. Further details of the video data processing can be
found in Catalán (2005).

Pixel intensity is related to water surface elevation through a
modulation transfer function (MTF) that governs the relation-
ship between phases and amplitudes of the observed signal and
the true waveform. The MTF will depend on the mechanism by
which the waves are imaged by the camera. When waves are not
breaking, the principal mechanism is specular reflection of the
incident light on the free surface. This specular reflection
depends on the instantaneous angle defined by the light source,
the water surface, and the camera, and also the relative angle
between the direction of wave propagation and the camera.
However, regions where the surface slope changes rapidly can
induce brightness variations not necessarily related with the true
wave signal, which can hinder its identification.

These issues associated with specular reflection are not as
important in regions where waves are breaking, in which case
isotropic scattering from the aerated and turbulent region of the
wave roller is the main observational mechanism (Stockdon and
Holman, 2000), and there is relatively little dependency on the
viewing geometry. However, the signal from persistent foam



Fig. 3. Example video data from Run 39; a) timestack I(x, t) with horizontal
dashed line indicating cross-shore location x′=58 m.; b) pixel intensity time
series I(x′=58 m, t). Dashed line is the value of mean intensity, Ī, dash-dotted
line is Ī+σI and is used to identify the breaking wave fronts.
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may also need to be removed (e.g. Aarninkhof and Ruessink,
2004) in order to correctly isolate the propagating wave signal.

In order to avoid the problems associated with specular
reflection in the laboratory (where we have distinct, non-diffuse
light sources), we have focused on the much clearer signal from
the breaking wave roller. This, by definition, limits our analysis
to the surf zone (but not necessarily shallow water).

3.3. Phase speed measurement

Validation of the aforementioned models requires compar-
isons to observations; however, the existing literature demon-
strates that phase speeds are extracted from observations in a
number of different ways depending on the nature of the data
set. For instance, for experimental data using regular waves,
phase speed is typically defined as the mean velocity of
propagation of a characteristic wave point traveling between
two cross-shore locations. Thus, if the distance between the two
locations isΔx and the tracking time isΔt, then the phase speed
is c=Δx /Δt. The wave front, η=0, is often chosen as the
characteristic point (e.g. Svendsen et al., 1978), although Stive
(1980) showed that, for waves in the inner surf zone, the
velocities of crest, front and troughs were all similar. Clearly, for
phase speed measurements based on the travel time between
two points, a high-resolution array of sensors (in-situ) or of
pixels (remote sensing) is needed to estimate local phase speeds.
Else, measured speeds will represent an average speed across a
variable depth profile.

Estimation of phase speed from this data set is performed
using the tracking technique applied to the toe of the roller,
owing to its relatively simple identification from the pixel
intensity signal. This can be seen in Fig. 3b where the roller toes
(or roller fronts) are characterized by a large increase in a given
pixel intensity time series I(x′, t). These fronts can be identified
by zero-up crossings of a threshold pixel intensity value chosen
here as Ī+σI, where Ī, σI are the mean and standard deviation of
the pixel intensity of a given timestack I(x, t). Identification of
these fronts shows little sensitivity to the threshold value due to
the strong gradients in I(x, t) near the roller front. It is also
evident in Fig. 3 that the intensity values are clipped at a value
of 220 (as opposed to 255), which is a result of the procedure
used to merge images from different cameras. This has no effect
on the phase speed estimation.

At times, trajectory tracking techniques can lead to noisy
phase speed profiles. More stable statistical estimates can be
obtained when the result is averaged over several waves,
making this technique most suitable for regular wave condi-
tions. For the present case, we average over all waves present in
an experimental run (N50 waves) and also average together two
experimental runs with the same input wave conditions. Finally,
some spatial smoothing was performed by using a running
average with a 2.5 m window.

Other measurement techniques were also tested including
spectral methods and CEOF analysis. However, for the regular
conditions analyzed herein these methods led to phase speed
profiles that showed significant modulations shoreward of the
bar. Grilli and Skourup (1998) found similar behavior in a
numerical study of regular waves over a barred profile, an
attributed it to free harmonics being released on the shoreward
face of the bar, which modulated the fundamental wave
component. The resulting phase speed profiles exhibited shorter
scale variations that were not correlated with the bathymetric
profile, thus limiting their applicability to depth inversions. For
these reasons such methods are not considered in the remainder
of this paper.

4. Results

4.1. Observed phase speeds

Fig. 4 shows phase speed profiles derived from the front-
tracking algorithm for all the runs. Several regions can be
identified in this figure. Offshore of the bar, the absence of wave
breaking prevents the use of the front-tracking technique, thus
yielding no speed values. Shoreward of this region a narrow
region exists where the observed speeds show a large increase
as the waves began to break (typically around x=52 m). These



Fig. 4. Video phase speed profiles for Run 35 (blue ○), Run 36 (red □), Run 37 (magenta ×), Run 38 (green ◇), Run 39 (black +) and Run 40 (yellow ▽). b)
Bathymetric profile.
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speeds seem to show no visual correlation with bathymetric
features. Similar results were given by Svendsen et al. (2003),
who found speeds more than two times the local value of

ffiffiffiffiffi
gh

p
in

the outer surf zone. The increased phase speeds observed in the
outer surf zone are likely the result of the process of wave roller
formation (see e.g. Basco (1985) for a description).

The region spanning the bar trough to the shoreline can be
considered the inner surf zone, and here the observed speed
profile is relatively smooth, although some oscillations are
present. Finally, there is a third region near the still water
shoreline where the observed velocities are still non-zero due to
the non-zero water depths resulting from the wave setup. In this
region some cases exhibit another increase in phase speed,
which is attributed to a second breaker line at the shoreline,
which can be seen in Fig. 3 near x=87 m, t=100 s. Finally, it
can be seen in Fig. 4 that Run 40 exhibits a region of zero
observed velocities that is a result of the cessation of breaking
near x=80 m; this case will not be considered in the subsequent
analysis. In addition, the same tracking technique was applied to
the wave gage data from the long period case (R39) for
comparison. The values thus obtained represent an average of
the wave speed between the gages used in the analysis, and
show an excellent agreement with the video observed speeds, as
can be seen in Fig. 6c.

4.2. Modeled phase speeds

The observed speeds are compared with those obtained using
the phase speed models listed in Table 2. Many of the phase
speed models reviewed introduce non-linearity through the
local wave height, while some of them need estimates of the
local water depth under the crests and troughs as well. However,
the remote sensing data from these experiments only provides
high-resolution phase speeds, not wave heights or water depths.
It should be noted that there do exist some remote sensing
technologies that are capable of measuring wave heights (e.g.
Dankert and Rosenthal, 2004; Izquierdo et al., 2005), but their
application to the nearshore has not yet been demonstrated.
However, it is reasonable to expect remotely sensed wave
heights to be available at the appropriate resolution in the future.
Nonetheless, at present these quantities need to be measured by
in-situ gages. In order to match the in-situ resolution with the
remote sensing resolution, the profiles of wave height (H), wave
setup (η̄ ) and crest and trough depths (dc, dt) were linearly
interpolated between the six wave gages. Fig. 5 shows an
example of the interpolated quantities. Additionally, wave
height and wave setup were linearly extrapolated to the still
water shoreline; wave height was set to zero at the shoreline. For
the shock model of Bonneton (2004), it is assumed that the bore
front is located near the mean water level, hence ht =hm in Eq.
(13). This was found to be a reasonable assumption based on an
examination of synchronized and co-located video and wave
gage data. It is also stressed that for all comparisons with the
solitary wave model, the value of H /h is calculated at each
cross-shore location. For the case of the modified cnoidal
equation, we used a fixed value of f(m)=0.4 as in Bell et al.
(2004), and we tested three possibilities for the input wave
height H⁎; the local value, the maximum wave height (non-
local) and the offshore wave height (non-local).

Figs. 6 and 7 show the resulting phase speed profiles and
phase speed ratio Cm/Cobs for a selected subset of the models in
Table 2. These models were chosen because of their differing

http://dx.doi.org/doi:10.1029/2003JC002130


Table 2
Table of phase speed models used in the analysis; percent relative error of the
phase speed models in the region 60.04≤x≤81.97 m, R̄c mean relative error
and R̄RMS

c average root-mean-square error

Model Equation R̄c R̄RMS
c

Linear theory c2 ¼ g
k
tanh ðkhÞ −7.4 10.5

Solitary
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1þ H

h

	 
r 17.9 19.2

Modified shallow c ¼ 1:3
ffiffiffiffiffi
gh

p 24.0 25.7

Cnoidal theory
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1þ H

mh
2� m� 3E

K

	 
h ir 7.0 9.1

Modified cnoidal c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1þ f mð ÞH⁎=hð Þ

p
H⁎=Hlocal 5.0 10.1
H⁎=Hmax 13.3 14.7
H⁎=Hoff 9.1 11.9

Bore c2b ¼ ghdcdt
h3

dt þ dcð Þ
2

13.3 14.7

Shock
c ¼ �2

ffiffiffiffiffiffiffiffi
ghm

p
þ 2

ffiffiffiffiffiffiffi
ght

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghc
ht

ht þ hc
2

� �	 
r 24.1 25.1

KD86 c2=g/k(1+ f1ϵ
2D)tanh(kh+ f2ϵ) 2.8 8.0

Hedges c2 ¼ g
k
tanh k hþ Hð Þð Þ 11.1 12.7

Booij c2 ¼ g

k
tanh k hþ H=2ð Þð Þ 2.7 8.0
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degrees of non-linearity (cnoidal, solitary, KD86), their
previous application in depth inversion studies (linear) and
their inherent basis on surf zone breaking waves (bore). It
was found that the modified shallow water and the shock
model overpredicted the speed significantly irrespective of
the wave conditions. In addition, the models of Hedges
(1976) and Booij (1981) exhibit a very similar trend to that
of the KD86 model. For these reasons they are not included
in the figure, whilst they remain in the overall analysis.
Fig. 5. Example of interpolated in-situ data, Run 39. Wave heightH (▽); (□) mean cres
Figs. 6 and 7 show three of the five conditions tested; the
most and least dispersive (R35 and R39, respectively), and the
condition with the largest non-linearity (R37). The models
exhibit piecewise linear phase speed profiles, which is attributed
to their direct dependency on the water depth. The magnitudes
of the observed speeds over the bar are bounded by the solitary
and linear models, consistent with previous findings. However,
it is not immediately obvious which model provides the best
agreement. In addition, discrepancies are significant over the
bar at the onset of breaking, where the direct dependency on the
water depth makes almost all models predict decelerations
followed by accelerations at the down slope on the shoreward
side of the bar, whereas the observed speeds show exactly the
opposite trend. The results for the shock model suggest it does
relatively better in this region (not shown), but a more
conclusive analysis would require higher resolution in the
narrow region over the bar.

In the region shoreward of the bar trough (60bxb82 m), all
models are in agreement with the observed trend of steadily
decreasing speeds consistent with a linear bathymetric profile.
Overall, the linear model appears to do best at higher relative
water depths, kh, i.e. for shorter periods and larger depths.
However, as waves enter shallower water the observed speed
gradually approaches the KD86 model or cnoidal models, and
eventually the bore model. The asymptotic behavior of the
composite model to that of Booij (1981) means they are almost
indistinguishable for most of the domain.

Agreement typically deteriorates in the region between
x=85 m and the still water shoreline at x=86.65, where all the
models predict a sharp decay in phase speeds. All models fail to
predict the observed speeds shoreward of the still water
shoreline. In some cases, a large increase in the speed occurs
that can be associated with a secondary breaker that is being
picked up by the tracking algorithm.

It is of interest to compare the performance of the speed
models in the region where all relevant parameters can be
t elevation dc; mean trough elevation dt (○) and bathymetric profile (black – – –).



Fig. 6. Comparison between modeled and observed phase speeds, a) Run 35 (H=0.6 m, T=4.0 s), b) Run 37 (H=0.5 m, T=6.0 s), c) Run 39 (H=0.4 m, T=8.0 s),
d) Bathymetry. Observed (dots); linear theory (dashed thick blue); solitary (solid dotted black); cnoidal (solid magenta); KD86 (dash-dot thick red); bore (solid thin
black); In-situ speeds denoted by (•), up arrows denote the location of in-situ gages.
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assumed known. For this reason, we focus our attention on the
region spanning from x=60.04 m (the bar trough) to
x=81.97 m. Two criteria governed this choice. First, the
physical processes taking place over the bar crest (onset of
Fig. 7. Ratio between modeled and observed spe
breaking) are not well described by any of the models under
study. Second, model results beyond x=81.97 m rely on the
extrapolated wave setup information. Both effects add an
unquantifiable source of error that could mask the true
eds, Cm/Cobs. Same color coding as Fig. 6.



Fig. 8. Distribution of the absolute relative error |Rc(x)| against dispersiveness μ=kh, non-linearity δ and Ursell number, for each model tested. Run 35 (blue ○); Run
36 (red □); Run 37 (magenta ×); Run 38 (green◇) and Run 39 (black +).
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performance of the models in their region of applicability. For
the analysis we use cross-shore profiles of the absolute relative
error defined as

Rc xð Þ ¼ cmodel xð Þ � cobs xð Þ
cobs xð Þ ; ð18Þ

where cmodel, cobs are the modeled and observed phase speeds,
respectively.

Considering the possible dependency of this error on the
dispersiveness μ and non-linearity δ, each local estimate of the
relative error is plotted against these parameters for the selected
models in Fig. 8. Here the absolute value |Rc(x)| is shown in order
Fig. 9. Ursell number as a function of dispersiveness kh for tested wave conditions w
(magenta x); Run 38 (green◇) and Run 39 (black +). (For interpretation of the referen
article.)
to simplify the analysis. It should be mentioned that for the waves
of smallest period (R 35), the limit of applicability for the cnoidal
model (h /Lob3/8π) is broached at some locations. These points
were removed from the data set of that particular run and no
attempts were made to combine it with another model.

Dispersiveness is computed based on the local wavenumber
from linear theory and ranges from 0.15bkhb0.81 for these tests,
which corresponds to shallow to intermediate water conditions.
Fig. 8 confirms that the linear model performs better where
dispersiveness dominates but has large errors in shallowwater. The
relative error also increases, as expected, with non-linearity. Both
effects are combined in the Ursell number, in which case linear
wave theory performs well when non-linearity is less than or equal
ithin the limited cross-shore domain. Run 35 (blue ○); Run 36 (red □); Run 37
ces to colour in this figure legend, the reader is referred to the web version of this



Fig. 10. Flowchart of the inversion algorithm. Dashed lines represent steps for
linear inversions, solid lines additional steps for non-linear inversions. For the
present implementation, (^) denotes data with low spatial resolution.
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to dispersiveness (i.e. Urb1). The opposite trend is true for the
shallow, solitary and shock models, which exhibit the smallest
errors at high Ursell numbers, but large errors for the opposite
conditions (only solitary model shown). A similar trend was
observed with the modified cnoidal model, using local values of
wave height, although the errors were smaller. Errors were larger if
non-local values of wave height were used instead.

In general, the cnoidal model and all the composite models
seem to have relative errors that are somewhat uniformly
Fig. 11. Estimated median depth profile using a) linear (+); b) KD86 (•) dis
distributed across all water depths with a slight increase with
non-linearity, which translates into a weak dependency on the
Ursell number. Furthermore, the errors are confined in the range
±20% for all values of kh and δ. Finally, the accuracy of the
bore model is also dependant on dispersiveness, with the errors
increasing with kh or for decreasing Ursell number. However,
the bore model performs very well for small kh values, which
may explain the good agreement found in previous studies.

In order to derive a single representative error value, we have
two choices. The first is to take the cross-shore mean of the
absolute relative error profiles, and then average over all wave
conditions in order to obtain a single estimate of the error for each
model, R̄c. However, this value is subject to cancellation of values
of the same magnitude but different sign. A root-mean-square
value is probably a more representative error measure. A second
representative error value can be defined from the absolute relative
error profiles determined for each model as

Rc
RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X cmodel xð Þ � cobs xð Þð Þ2
c2obs xð Þ ;

s
ð19Þ

where N is the total number of cross-shore locations considered.
This calculation provides aRRMS

c estimate for eachmodel and each
wave condition, which are then averaged over the wave conditions
to obtain a single estimate of the error for each model R̄RMS

c . This
error measure represents the average phase speed error when
considering a range of incident wave conditions and observation
locations.

Columns 3 and 4 in Table 2 list each of the representative error
values and show that the composite (KD86 and Booij (1981)) and
modified cnoidal models have the smallest errors and are
somewhat better than the linear and bore models. The asymptotic
nature of the KD86 model to that of Booij (1981) makes the two
persion model. Vertical error bars correspond to 95% confidence level.



Table 3
Error estimates for individual profiles and the median profile

Case Linear KD86

D̄ Drms R̄ Rrms D̄ Drms R̄ Rrms

m m % % m m % %

35 0.05 0.10 9.41 19.26 −0.10 0.14 −13.13 20.47
36 0.05 0.11 5.28 14.36 −0.12 0.16 −20.29 27.20
37 0.25 0.26 41.10 44.83 0.08 0.11 14.75 19.85
38 0.23 0.25 39.02 44.89 0.05 0.11 10.93 20.55
39 0.15 0.18 27.15 33.30 −0.03 0.11 −1.39 15.16
Median 0.17 0.18 28.20 31.65 −0.01 0.05 0.94 9.70

Cross-shore mean and rms value of the difference errors (D̄, Drms) and relative
errors (R̄, Rrms) for each model. Analysis domain contains 60.04bxb81.97 m.

105P.A. Catálan, M.C. Haller / Coastal Engineering 55 (2008) 93–111
hard to distinguish for the present wave conditions and they
accordingly yield similar relative error values. The shallow water,
solitary, and shock models fair much worse, since the range of
water depths considered well exceeds their region of validity. The
linear model performs somewhat better than the shallow water
models, which appears to result from the fact that Ursell numbers
are not very large over a good portion of the domain for the
majority of the cases studied (see Fig. 9).

In summary, the Booij (1981) and KD86 model provided the
best overall agreement, which indicates the strength of the
composite models. The modified cnoidal model that utilized the
local wave height measure was next best, and all of these tend to
offer good results over the range of Ursell numbers. However, the
performance of themodified cnoidalmodel is clearly dependant on
the choice of a characteristic wave height. Although other models
may provide better estimates locally under the appropriate
conditions, the benefit of providing dispersive and non-linear
behavior in a singlemodelmakes it themost suitable for non-linear
depth inversions. The expected better performance in intermediate
to deep water gives the composite models an extended range of
applicability and an overall advantage.

4.3. Depth inversions

Up to this point, we have assessed the performance of a range
of phase speed models in comparison to experimental data. In
the following section, we will quantify the potential benefit of
incorporating the locally measured finite amplitude effects into
the depth inversion algorithm. Based on our previous results, we
will focus on a composite model (KD86), since the composite
models performed the best of the non-linear models and we will
compare it to simple linear dispersion.

Local wavenumbers are estimated directly as the ratio
between the observed phase speed and the radian frequency
σ=2πfp, where the peak frequency fp is obtained from the pixel
intensity spectra. Wave amplitudes are interpolated from the in-
situ data and used in conjunction with wavenumbers to invert
the appropriate dispersion relation and calculate the local mean
water depth. Inversion of the linear model is explicit

h ¼ 1
2k

ln
gk þ r2

gk � r2

� �
; ð20Þ

whereas the KD86model requires an iterative procedure. Fig. 10
shows the flowchart of the inversion algorithm, highlighting the
additional steps used in this study to include a local measure of
non-linearity.

After subtracting the interpolated wave setup profiles, the
resulting bathymetric profiles are compared with the known still
water depth. Over the bar, the observed increase in speed would
lead to a trench in the depth profiles rather than a bar (see Catalán,
2005; Catalán and Haller, 2005), because as mentioned previously,
none of the phase speed models can account for the roller
formation process. Hence, in order to not bias the assessment of the
inversion algorithms, we again focus on the region shoreward of
the bar trough (x=60.04 m). Individual bathymetric profiles are
obtained for each wave condition, but it is also convenient to
consider the results in terms of a median profile, which is obtained
as the median of the individual estimates at each cross-shore
location following Stockdon and Holman (2000).

Fig. 11 shows the median profiles determined from each
inversion model. Overall, the profile shape is well recovered;
vertical error bars correspond to the 95% confidence level.
Linear theory typically overpredicts depths, consistent with
observed velocities larger than the theoretical value, and
agreement seems to deteriorate as water becomes shallower
due to increasing non-linearity. The KD86 model for its part
underpredicts depths near the bar trough, followed by a region
of better agreement.

In order to quantify the agreement, the dimensional
difference error D=h−htrue (in meters) and the relative error
R=D /htrue⁎100 (in %) are computed at each location for each
individual wave condition and for the median profile. Accord-
ing to these error definitions, positive values indicate depth
overprediction. Cross-shore mean (D̄, R̄) and root-mean-square
(Drms, Drms) values of these statistics, calculated for the region
60.04bxb81.97 m, are listed in Table 3. Again the RMS values
are probably more representative, since mean values are subject
to cancellation.

The results can be summarized as follows:

• Analysis of the individual cases indicates that the non-linear
model performs significantly better than the linear as relative
water depths decrease (and non-linearity increases).

• Individual profile errors using the non-linear model in the
surf zone are of the same order of magnitude as the average
errors from previous studies using linear theory in the
shoaling zone with small amplitude waves.

• If the median profile is considered, the non-linear model is
far superior with the mean relative error R̄ reduced from 28%
(32% RMS) for the linear model to 0.9% (10% RMS) with
the non-linear model.

5. Discussion

5.1. Sources of error

One of the fundamental assumptions of the standard video
rectification process is that pixels image the same physical



Fig. 12. Misregistration of the pixel array. The target pixel (t) is shadowed by the
finite amplitude wave at point (v), which has a corresponding location (r) when
projected over the pixel array.
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location throughout the collection; thus, the world coordinates
of any pixel in the image are known beforehand and remain
invariant. Typically for field installations, where the distance to
the sea surface is large (O(100) m), it is assumed that the water
surface lies on a single horizontal plane (mean sea level), and
vertical displacements can be neglected and do not induce
artificial horizontal displacements. However, for the present
experimental setup, grazing angles were relatively small (about
14° near the shoreline along y=1.2 m) and cameras were
relatively close to the physical target (the free surface, O(20) m).
Vertical displacements in the water surface will lead to video
misregistration.

One potential vertical displacement would be the splash-up
of a plunging breaker, which may cause the wave front to be
associated with a pixel located shoreward of the true front. This
isolated, local vertical displacement will translate into a
horizontal displacement along the pixel array and lead to a
local artificial excess of speed. This effect can be quantified on a
geometrical basis, as shown in Fig. 12. A simple estima-
tion shows that the horizontal displacements are equal to
Δx=α(x−xc), where x is the cross-shore location of the
observed pixel, xc is the camera location and α=hs / (zc− z) is
the ratio between the splashing amplitude (hs) and the vertical
distance between the camera and the free surface. For breaking
events occurring near x=54 m, and with a splashing amplitude
of 30 cm, it yields translation errors of O(5)cm. If the splashing
event lasts 2 frames (t=0.2 s), the spurious velocity will be
approximately 0.25 m/s, which represents only a fraction of
most of the observed model/data discrepancies, but may be
relevant locally. In practice, a rigorous correction for this excess
speed is not possible without detailed knowledge of the
instantaneous free surface displacement and splashing height.

A second source of vertical displacement is due to finite
amplitude waves, and the associated misregistration varies
inversely with grazing angle. This type of misregistration results
in a more global cross-shore shift in the phase speed profile. The
maximum shift due to this effect is calculated to be about 70 cm
and occurs in the vicinity of the still water shoreline (Catalán,
2005). This is expected to have little influence on the results in
the present case.

Finally, the existence of mean currents in the surf zone is not
accounted for in the phase speed models and may contribute to
model/data error. In this laboratory flume undertow would be
the main source of any mean current and a rough estimate of the
expected undertow velocity was obtained from the experiments
of Scott et al. (2005) for a condition similar to R36. For that case
the maximum undertow measured over the bar was ∼14% of
the local linear phase speed, a value slightly larger than 5–8%
found by Svendsen et al. (2003) in their experiments.

Considering mean currents in field applications, the effect of
longshore currents would likely be negligible based on their
quasi-orthogonality with the incident waves. In general, the
effect of undertow on phase speeds is likely exaggerated
somewhat in 1D laboratory flumes as compared to field
situations where mean currents are typically more complex
and two-dimensional. However, the presence of rip currents
would certainly affect the phase speed locally. Low frequency
motions can also change the local value of h over several wave
periods, hence affecting the speed of individual waves (e.g.
Thornton and Guza, 1982; Madsen et al., 1997b), although the
overall effect would average out for long runs (as is the case
here).

5.2. Sensitivity of depth inversions to measurement error

It is possible to relate errors in depth retrieval with
measurement errors in the input parameters. Using linear theory
as the basis for depth inversions, Dalrymple et al. (1998)
obtained an analytical expression for the error in the depth
estimate showing that the magnitude of the depth error is at least
twice the error in the input parameter k or σ, and this factor
increases with kh. Hence, phase speed-based depth inversion
methods tend to magnify measurement errors.

A similar expression can be obtained for the KD86 model
(see Appendix A for details) as given below

dh
h

¼ dr
r
F1 kh;Að Þ � dk

k
F2 kh;Að Þ � dA

A
F3 kh;Að Þ; ð21Þ

where δk /k, δσ /σ and δA /A correspond to relative errors (or
perturbations) in wavenumber, frequency and wave amplitude.
The expected errors in depth estimates using the KD86 model
exhibit similar behavior to the linear case in regards to σ and k,
but also incorporate a new source of error related to the
measurement of wave amplitude, A. The functional dependency
of the functions F1, F2 and F3 on kh and A show that wave
amplitude measurement errors do not get amplified as much as
those related with k or σ. This is fortunate, and our results from
the previous section indicate that even fairly sparse measure-
ments of wave amplitude can be simply interpolated and their
inclusion provides an improvement over linear depth inversion
methods. For example, if we treat Hedges model as ground
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truth, then a depth estimate ĥcan be obtained from a measured
amplitude Ameas as

ĥ ¼ c2

g
� Ameas; ð22Þ

where c is taken as the true phase speed.Hence, the relative error is

R ¼ ĥ� htrue
htrue

¼ c2=g � Ameasð Þ � c2=g � Atrueð Þ
htrue

¼ Atrue � Ameasð Þ
htrue

;

ð23Þ

where Atrue is the true amplitude. Thus, when linear dispersion is
used (Ameas=0) the relative error is equal to the non-linearity
parameter, R=Atrue /htrue, which is in accordance with previous
observations that correlated depth inversion errors with wave non-
linearity (Holland, 2001).

However, even after inclusion of non-linearity, the opera-
tional accuracy of phase speed-based depth inversions is
governed by the inherent accuracy of phase speed models
(and measurements). Under the range of controlled conditions
considered here, and with the available high-resolution remote
sensing data, the present analysis shows that phase speeds from
the KD86 dispersion relation lie within 8% of the measured
values. This, in turn, places an effective limit on the vertical size
of bathymetric features (i.e. the local depth perturbation) that
can be resolved using phase speed depth inversion. In other
words, the feature size that can be identified above the “noise”
inherent to the model/data agreement.

Considering that under typical field conditions phase speed
observations corresponding to a range of wave heights and
periods would be available for a given beach morphologic state,
Fig. 13. Fraction ofwave conditions in the rangeT=3.0–16 s,H=0.1–3.0m capable of
then there will exist some minimum resolvable bottom feature
height (vertical amplitude), Δhmin, for those conditions. The
functional form of Eq. (21) can be used to estimate this
minimum height. Under the assumption that errors in phase
speed can be attributed to errors in wavenumber, it is possible to
estimate the factor F2 in Eq. (21) as a function of wave period,
wave height and unperturbed depth (i.e. expected depth in the
absence of the bottom feature). Once the factor F2 is calculated,
the uncertainty region can be determined by

Dhmin ¼ F2⁎h⁎
dk
k
; ð24Þ

where we choose δk /k=8%. For the case of a sand bar with local
heightΔhbar above the underlying profile, ifΔhmin≤Δhbar then
the bar would represent a perturbation larger than the underlying
uncertainty and should be detected by the method. We also note
that this approach implicitly assumes that the waves are in
equilibrium with the underlying bathymetry. In fact, this
assumption underlies all phase speed models and depth
inversion algorithms in general.

In order to study if bottom features typical to field beaches
would be detectable by depth inversion algorithms, minimum bar
heights as a function of the local unperturbed depth for a range of
incidentwave conditionswere calculated as shown in Fig. 13. The
chosen range of wave condition was T=3.0–16 s and H=0.1–
3.0 m, with water depths h=0–30 m. The colored region of the
figure represents the range of observable features and indicates
that the minimum feature size increases with water depth. The
white region in the left side of the figure represents surface
piercing bars, which were removed from consideration.

In order to place these results in the context of typical bar
sizes and water depths as found in the field, we utilize the
detecting a bar. Dashedwhite line indicates the equilibrium bar height at each depth.



Fig. 14. Minimum identifiable perturbation size (in m) at a given depth, as
function of wave height and wave period. a) h=5 m, b) h=10 m.).
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equilibrium bar profile model of Hsu et al. (2006). Without
going into detail, the model provides an analytic, barred profile
shape based on given input wave conditions. The model also
requires calibration of several empirical coefficients, which we
have done here using two barred profiles measured at Duck,
NC (see Appendix B). The bar model is used here only to
constrain the bar morphologies, which are taken as independent
from the expected wave conditions used in the phase speed
analysis. The relationship between expected bar heights and
depths is shown by the white line in Fig. 13 and turns out to
be approximately Δhbar≈h/3 based on the chosen calibration
coefficients.

It can be seen that for this range of bar heights and depths,
more than 80% of the expected wave conditions provide
Δhmin≤Δhbar, and thus it is technically feasible to resolve these
sand bars using phase speed depth inversions. Of course other
field sites may have significantly different barred profile
characteristics and if expected bar heights are smaller they
may lie out of the observable range for a given site. In addition,
the chosen range of wave periods is probably somewhat wider
than is usually observed over a given bar location on an active
beach profile.

A slightly different approach is to identify the minimum bar
height that can be observed as a function of wave conditions at a
particular (unperturbed) water depth. Fig. 14 a) and b) show
contours of minimum observable bar heights for depths of
h=5 m and 10 m, respectively. The figure indicates that
minimum perturbation size increases rapidly with relative water
depth (i.e. as wave period decreases). This is an expected result
based on previous understanding of the linear dispersion
relation (Dalrymple et al., 1998). However, for shallow relative
depths (longer periods) there is a clear dependency on wave
steepness (H /T) with minimum perturbation size increasing
steadily with steepness. This reflects the fact that the sensitivity
of wave phase speed to the local water depth decreases as the
wave non-linearity of shallow water waves increases.

6. Conclusions

The objectives of the present study were to 1) assess the
accuracy of a wide range of phase speed models when applied to
non-linear, dispersive surf zone waves, and 2) quantify the
potential improvement gained by incorporating non-linearity
into phase speed-based depth inversions. A number of phase
speed models were tested against laboratory observations, these
models included those explicitly derived for linear, non-linear,
breaking, and non-breaking waves. The observational data used
for comparison consisted of very high-resolution remote
sensing video along with in-situ surface elevation records.
The analysis was focused on the surf zone, an area where
previous depth inversion techniques have shown low skill.
Nonetheless, the observational data consisted of waves
exhibiting a range of non-linearity and dispersiveness.

The composite phase speed models (Kirby and Dalrymple,
1986; Booij, 1981) incorporate non-linear effects through the
additional input of the local wave height and provided the best
agreement with remotely measured phase speeds. Other models
such as the bore and shock models, can at times show better
local agreement. However, only at limited shallow water
locations and their requirement of multiple water depth
estimates as input parameters also severely hinders their use
for depth inversions. The cnoidal wave model and a number of
modified cnoidal models also performed relatively well.
However, only when the locally measured wave heights were
used was the phase speed agreement better than with linear
dispersion.

Depth inversions using both linear theory and the KD86
composite model were performed in intermediate to shallow
water (0.15bkhb0.81) for each of the individual monochro-
matic wave conditions. The median depth profiles were also
calculated and these represent the net result from inverting
speeds at individual frequencies (each with their own degree of
non-linearity) for the same bathymetry. Under field conditions
this is analogous to synchronous measurements of phase
speeds at discrete frequencies in a random wave field. For
inversions with the composite model, utilizing results from a



Table 4
Calibrated parameter space for the model of Hsu et al. (2006)

A1 A2 B1 B2 B3

2.2 1.3 3.0 2.8 −0.5
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five wave conditions reduced the errors from 20% to 10%,
approximately.

As compared to linear theory, using the composite model
significantly improved depth retrievals, with RMS errors for the
median profile reduced from 30% to 10%. Overall, the inclusion
of non-linearity allowed shallow water estimates to have the
same or better accuracy as depth inversions performed in
previous studies for intermediate water depths using linear
dispersion. Considering the controlled conditions and extensive
ground truth in the present analysis, this appears to be a practical
limit for phase speed-based depth inversions.

Also, although only the composite model of KD86 was used
for the depth inversions, both the KD86 and Booij (1981)
models showed similar agreement to the phase speed observa-
tions for the present data set. It should be noted that the Booij
(1981) model is simpler to invert and may be more useful in that
sense in practical applications of the depth inversion technique.
The two models may show more significant differences in high
Ursell number and large relative water depth regimes (Hedges,
1987; Kirby and Dalrymple, 1987). However, this could not be
tested with the present data set.

Finally, it was shown analytically that for the composite
model the errors in retrieved depths are less sensitive to mea-
Fig. 15. Calibration of the model of Hsu et al. (2006) and determination of the relevant
the Duck profiles. Dashed magenta line correspond to the interpolated unperturbed
reader is referred to the web version of this article.)
surement errors in the wave amplitude (as opposed to
wavenumber errors). A phase speed sensitivity analysis also
indicates that typical nearshore bathymetric features (bars
or depressions), should be resolvable by depth inversions
provided the remote sensing observations are sufficiently
accurate and the range of existing wave conditions is suffi-
ciently wide. Yet, the depth inversion problem is still fairly
difficult and has a number of possible sources of error. In
addition, it is of note that as wave steepness (H /T) increases in
relatively shallow water, the sensitivity of the phase speed to
bottom perturbations must necessarily decrease. Clearly, the
overall accuracy of depth retrievals from inversion methods are
decreased from traditional surveying methods; however, the
cost savings and improvements in the speed of depth acquisition
will still make inversion techniques useful in many situations.
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Appendix A. Relative error for the composite model

By differentiating the KD86 model and performing some
algebra, it is possible to obtain the relative error in water depth
as a function of the relative error in wavenumber, frequency and
wave amplitude:

dh
h

¼ dr
r
F1 kh;Að Þ � dk

k
F2 kh;Að Þ � dA

A
F3 kh;Að Þ ðA:1Þ

with

F1 kh;Að Þ ¼ 2WU
A1 þW B1 þ C1ð ÞU ðA:2Þ
F2 kh;Að Þ ¼ WUþ B1 þ C1 þ 2e2Df1ð ÞUþ A1 þ A2ef2ð ÞW
A1Wþ B1 þ C1ð ÞU

ðA:3Þ

F3 kh;Að Þ ¼ 2e2Df1Uþ A2ef2W

A1Wþ B1 þ C1ð ÞU ðA:4Þ

where

U ¼ tanh khþ f2eð Þ
W ¼ 1þ f1e2Dð Þ
e ¼ kA
f1 ¼ tanh5 khð Þ
f2 ¼ kh

sinh khð Þ
� �4

A1 ¼ A2 khþ 1� 4ef2kh
cosh khð Þ
sinh khð Þ

� �� �
A2 ¼ sech2 khþ f2eð Þ
B1 ¼ 5khe2D tanh4 khð Þsech2 khð Þ
C1 ¼ f1e2

2
kh

sinh 4khð Þ � tanh khð Þsech2 khð Þ
sinh4 khð Þ � 8D

cosh khð Þ
sinh khð Þ

� �

D ¼ 8þ cosh 4khð Þ � 2tanh2 khð Þ
8sinh4 khð Þ

This expression collapses to that derived by Dalrymple et al.
(1998) for the linear dispersion relation when A=0.

Appendix B. Calibration of the equilibrium beach profile

In order to characterize the typical bar height as a function of
water depth, the equilibrium profile of Hsu et al. (2006) was
calibrated with two barred profiles measured at the US Army
Corp of Engineers Field Research Facility, in Duck, NC (www.
frf.usace.army.mil/). In particular the profiles collected during
October 11, 1990 and 1994 near y=950 m were used. The
profiles were non dimensionalized by the depth and cross-shore
coordinate at the bar crest, which enables a direct comparison
with the model of Hsu et al. (2006), whose general expression is

H ¼ A1 1� exp�B1X
� �� A2exp

�B3 1�Xð ÞsechB2 1� Xð Þ
þ A2exp

�B3 sechB2; ðB:1Þ

where H=h /hc, X=x/xc. The resulting parameter space is
shown in Table 4 and the calibrated profile is shown in Fig. 15.
The next step is to determine the depth without the bar. It was
found that the base term in the model of Hsu et al. (2006)
yielded values that were too deep, in which case the bar height
was about the same as the depth of the bar crest. Furthermore,
this provided small values of Δhmin allowing almost full
observance of the bars. A more conservative value was obtained
by interpolating between the bar trough and the point where
X=1.5. Then, the depth of the imaginary point under the bar
crest was determined and used to characterize the unperturbed
depth. The resulting non-dimensional bar height was roughly
half the depth of the bar crest for this particular set.

To convert these values to dimensional units, it is necessary
to multiply it by the actual dimensional depth at the bar crest hc.
An empirical relation for this quantity as a function of the
incident wave period and wave height was obtained by Hsu and
Wang (1997) in the following form

hc
Lo

¼ 0:017n�1:409
o W�0:265

o ; ðB:2Þ

where Lo, ξo and Wo=H / (wT) are the deep water wavelength,
Iribarren number and non-dimensional fall velocity. The
average slope required to compute the Iribarren number was
set to β=0.035 following Stockdon and Holman (2000), and a
fall velocity of 1 cm/s was used. The above expression allows
estimation of the bar height at any water depth.
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